This is a pre-copyedited, author-produced version of an article accepted for publication in The Journal of ECT. The published version of record Kinoshita, Michiko MD, PhD ; Kinoshita, Makoto MD, PhD†; Takahashi, Rikako MD ; Mutoh, Sarara MD ; Kakuta, Nami MD, PhD ; Tanaka, Katsuya MD, PhD . The Safety and Strategies for Reinitiating Electroconvulsive Therapy After ECT-Induced Takotsubo Cardiomyopathy: A Case Report and Systematic Review. The Journal of ECT 39(3): p 185-192: 10.1097/ YCT.0000000000000005, January 30, 2023. is available online at: https://doi.org/10.1097/YCT.000000000000005.

The Safety and Strategies for Reinitiating Electroconvulsive Therapy (ECT) After ECT-Induced Takotsubo Cardiomyopathy: A Case Report and Systematic Review

Michiko Kinoshita, MD, PhD,^{1*} Makoto Kinoshita, MD, PhD,² Rikako Takahashi,

MD,1 Sarara Mutoh, MD,1 Nami Kakuta, MD, PhD,1 Katsuya Tanaka, MD, PhD1

¹ Department of Anesthesiology, Tokushima University Hospital, 2-50-1 Kuramotocho, Tokushima-shi, Tokushima 770-8503, Japan

² Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-8-15 Kuramoto-cho, Tokushima-shi, Tokushima 770-8503, Japan

* Address for Correspondence and Reprints: Michiko Kinoshita, Department of Anesthesiology, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima-shi, Tokushima 770-8503, Japan. Tel.: +81 (0)88-633-7181; Fax: +81 (0)88-633-7182; Email: michiko-kinoshita@tokushima-u.ac.jp

Conflicts of Interest and Source of Funding: The remaining authors have no conflicts of interest or financial disclosures to report.

ABSTRACT

2	Objectives:
3	Takotsubo cardiomyopathy (TCM) is a life-threatening complication of
4	electroconvulsive therapy (ECT). We report the case of a 66-year-old woman who was
5	re-challenged with ECT after ECT-induced TCM. Moreover, we have made a
6	systematic review to assess the safety of and strategies for re-initiating ECT after TCM.
7	Methods:
8	We searched for published reports on ECT-induced TCM since 1990 in MEDLINE
9	(PubMed), Scopus, Cochrane Library, ICHUSHI, and CiNii Research.
10	Results:
11	A total of 24 ECT-induced TCM cases were identified. Patients who developed ECT-
12	induced TCM were predominantly middle-aged and older women. There was no
13	specific trend in anesthetic agents used. Seventeen (70.8%) cases developed TCM by
14	the third session in the acute ECT course. Eight (33.3%) cases developed ECT-induced
15	TCM despite the use of β -blockers. Ten (41.7%) cases developed cardiogenic shock or
16	abnormal vital signs related to cardiogenic shock. All cases recovered from TCM. Eight
17	(33.3%) cases tried to receive ECT retrial. The duration until ECT retrial was between 3
18	weeks and 9 months. The most common preventive measures during ECT retrial were

19	related to β -blockers; however, the type, dose, and route of administration of β -blockers
20	varied. In all cases, ECT could be re-performed without TCM recurrence.
21	Conclusions:
22	ECT-induced TCM is more likely to cause cardiogenic shock than non-perioperative
23	cases; nevertheless, it has good prognosis. Cautious re-initiation of ECT after TCM
24	recovery is possible. Further studies are required to determine preventive measures for
25	ECT-induced TCM.
26	
27	Key Words: electroconvulsive therapy, takotsubo cardiomyopathy, case report,
28	systematic review
29	

INTRODUCTION

32	Takotsubo cardiomyopathy (TCM), also called stress cardiomyopathy, broken
33	heart syndrome, and apical ballooning syndrome, is a non-ischemic cardiomyopathy
34	induced by emotional or physical stress. ¹ Over half of patients with TCM have
35	neurological or psychiatric disorders, suggesting an association between
36	neuropsychiatric disorders and TCM. ² While the mechanism underlying TCM is not yet
37	fully understood, sympathetic stimulation and excess catecholamines are the most likely
38	causes. ^{3–6} No preventive measures for TCM, including pharmacotherapy, have been
39	established to date. ⁷
40	Electroconvulsive therapy (ECT) is highly effective in treating severe major
41	depressive disorders, bipolar disorders, and schizophrenia. ^{8–10} ECT safety under general
42	management is considered very high11; nevertheless, clinical reports describing ECT-
43	induced TCM have increased. Repeated ECT performance within a short period is
44	essential for therapeutic efficacy in the acute phase, ¹² and multiple ECT cycles over an
45	extended period are sometimes necessary to maintain remission and prevent relapse. ¹³
46	Hence, once ECT-induced TCM develops, the feasibility and safe performance of ECT
47	retrial in patients with severe psychiatric disorders are crucial; however, they are
48	insufficiently understood.

49	Herein, we report the case of a 66-year-old woman with ECT-induced TCM
50	who was successfully re-challenged with ECT without TCM recurrence. Additionally,
51	we conducted a comprehensive literature search and summarized the characteristics of
52	previously published cases of ECT-induced TCM. This systematic review aimed to
53	assess the safety of and strategies for re-initiating ECT after TCM. The results of this
54	study can contribute to the perioperative management and understanding of ECT
55	complications.
56	
57	MATERIALS AND METHODS
58	Case Report
59	Written consent was obtained from the patient and her family for the
60	publication of the case report, and the patient's anonymity was carefully protected.
61	The patient was a 66-year-old female (height: 155.5 cm, weight: 38.3 kg) with
62	a history of depressive episodes (specifically, at the age of 23 years after childbirth and
63	at the age of 45 years upon the death of her brother). One year prior to hospitalization,
64	she experienced anxiety, insomnia, and difficulty concentrating. She also had delusions
65	of belittlement and was diagnosed with severe major depressive disorder, alongside
66	psychotic features. Then, she started receiving medications, specifically vortioxetine

67	and aripiprazole. Her delusions were partially improved; however, other symptoms
68	persisted. Vortioxetine and aripiprazole were changed to venlafaxine and brexpiprazole,
69	respectively. She was hospitalized due to inadequate response to drug therapy. After
70	hospitalization, lurasidone was combined with venlafaxine. Subsequently, venlafaxine
71	was replaced with escitalopram; mirtazapine was also prescribed but was ineffective.
72	Her Hamilton Rating Scale for Depression (HAM-D) score was 25 points in 17 items
73	and 28 points in 21 items. The first ECT course was scheduled to improve the
74	symptoms. Her medical history included hypertension and transient ischemic attack,
75	whereas her medications included lurasidone, escitalopram, mirtazapine, irbesartan,
76	aspirin, lansoprazole, and linaclotide. Preoperative examination findings revealed a left
77	anterior hemiblock on electrocardiogram (ECG); no other special abnormalities were
78	observed.
79	Her vital signs before the first ECT session were as follows: heart rate, 70 beats
80	per minute (bpm); blood pressure, 135/80 mmHg. Propofol (40 mg) and succinylcholine
81	(40 mg) were used as anesthetic agents and bilateral pulse-wave ECT produced
82	effective motor and electroencephalogram seizure duration (≥ 15 s and ≥ 20 s,
83	respectively). Her heart rate increased to 128 bpm and her tachycardia (>100 bpm)
84	lasted for 234 s after stimulation. Subsequently, her blood pressure increased to 204/87

85	mmHg, and nicardipine (1 mg) was administered intravenously. There were no
86	complaints, including chest pain or abnormal vital signs, after the first ECT.
87	She was set to receive the second ECT 2 days after the first ECT session;
88	however, this was canceled because deep negative T-waves were observed in all limb
89	leads of the ECG, although other vital signs were normal and there were no complaints.
90	Her heart rate and blood pressure were 76 bpm and 112/81 mmHg, respectively.
91	Echocardiography revealed full circumferential apex akinesis, basal left ventricular
92	(LV) hypercontractility, and ejection fraction of 34%. Coronary artery and LV
93	angiography revealed characteristic LV dysfunction without lesions in the coronary
94	artery. Troponin I was elevated to 1256 pg·mg ⁻¹ (reference value, <27 g·mg ⁻¹). She was
95	diagnosed with TCM according to the Japanese Circulation Society diagnostic criteria,14
96	consistent with the Mayo Clinic criteria. ¹⁵ There were no subjective symptoms or
97	abnormal vital findings, and no other special treatment was required for TCM. LV
98	systolic dysfunctions faded without challenges. Moreover, there were no obvious wall
99	motion abnormalities at 4 weeks after TCM onset.
100	Re-initiating ECT was considered because of persistent depressive symptoms
101	after TCM improved. Her HAM-D score was 28 points in 17 items and 33 points in 21
102	items. Medications included sertraline and olanzapine; administration of irbesartan,

103	aspirin, lansoprazole, and linaclotide was continued, as before. She and her family
104	chose to resume ECT after a discussion of the risks and benefits of resuming ECT,
105	including the risk of TCM recurrence. In the new ECT session, remifentanil was used
106	with the anesthetic used during the first session. Landiolol, a short-acting $\beta 1$ selective
107	blocker, was scheduled to be used only if tachycardia persisted after stimulation.
108	At 6 weeks after TCM onset, a new ECT session was initiated. A bolus dose of
109	40 ug and a continuous dose of 0.3 ug·kg ⁻¹ ·min ⁻¹ of remifentanil were administered
110	until stimulation. Furthermore, propofol was reduced to 30 mg, and 40 mg of
111	succinylcholine was administered as before. Her ECG was carefully monitored after
112	ECT, and brief echocardiography was performed after each ECT until the fifth session.
113	Consequently, she could receive 10 ECT sessions without TCM recurrence. Her
114	depressive symptoms were improved; her HAM-D score was 0 points in both 17 and 21
115	items. In the 10 ECT sessions with remifentanil, the mean systolic blood pressure
116	elevation was 42 mmHg (95% confidence interval [CI]: 32-50). Her mean maximum
117	heart rate was 117 bpm (95% CI: 114–120) and mean tachycardia duration was 38 s
118	(95% CI: 29–47). Landiolol was not needed owing to the short duration of tachycardia.
119	

120 Ethics

8

121	This study was registered in the International Prospective Register of
122	Systematic Reviews (PROSPERO; registration number: 336851). This manuscript
123	adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
124	(PRISMA) statement.
125	
126	Information Source and Search Strategy
127	We conducted a comprehensive literature search using MEDLINE (PubMed),
128	Scopus, Cochrane Library, ICHUSHI (Japan Medical Abstract Society), and CiNii
129	(Citation Information by the National Institute of Informatics) Research. The search
130	strategy included ECT- and TCM-related English and Japanese terms. Details of the
131	search strategy are provided in Supplemental Digital Content 1.
132	The search was conducted between January 1, 1990 and June 1, 2022. No
133	restrictions were set on language or geographic location, and EndNote version 20.3
134	(Clarivate TM , London, UK), a literature management software, was used.
135	
136	Eligibility Criteria
137	Case reports, case series, reviews, studies, letters, and conference reports
138	comprehensively describing the original data of the patients with ECT-induced TCM

139	were included, and TCM cases that were not triggered by ECT were excluded. In
140	addition, articles providing previously-reported cases were excluded to avoid
141	duplication, as were those without the full text.
142	
143	Selection Process
144	After excluding duplicate cases, two authors conducted the first screening (the
145	first and second MKs) by independently checking the titles and, then, evaluating
146	abstracts. Eligible articles were identified based on a full-text review during the second
147	screening. The references cited in the article that passed the first screening were
148	checked, additional articles were included, and disagreements were resolved through
149	discussion.
150	
151	Data Extraction
152	Data were extracted by the first author (MK) and independently checked for
153	accuracy by two other authors (RT and SM). Any disagreement was resolved through
154	discussion.
155	The following data were extracted: the first author's name, publication year,
156	article type, age, sex, primary disease, use of β -blocker during ECT-induced TCM,

157	anesthetics, number of ECT before TCM onset, TCM symptoms, clinical course of
158	TCM, ECT retrial, TCM conditions before ECT retrial, duration until ECT retrial, ECT
159	retrial strategies, and TCM recurrence. Cardiogenic shock or abnormal vital signs
160	related to cardiogenic shock are marked with an asterisk in the TCM symptoms section
161	of Table 1. Abnormal vital signs related to cardiogenic shock included hypotension,
162	pulmonary edema, hypoxemia, and pale skin.
163	
164	Risk-of-Bias Assessment
165	Two authors (the first and second MKs) assessed the risk of bias in each article
166	using a tool to assess the methodological quality of case reports and case series. ¹⁶ This
167	tool included eight items, and two relate to adverse drug event reports, including the
168	challenge or re-challenge phenomenon and a dose-response effect; however, these were
169	inapplicable in this study. Selection bias assessed whether the reported cases were
170	representative of the entire experience of the authors or centers. Assessing selection bias
171	in case reports with respect to specific diseases is not useful except for case control
172	studies or reports of adverse drug events. Therefore, assessing the selection bias of case
173	reports was also considered inapplicable to this review. The five remaining items
174	included exposure ascertainment, outcome ascertainment, accurate diagnosis, follow-up

175 period, and reporting bias. Each article was judged using a binary (yes or no) response 176 to the items above, and disagreements were resolved through discussion. 177 Exposure ascertainment assessed the proper description of the conditions; 178 Exposure was defined as ECT. Outcome ascertainment assessed the proper description 179 of outcome; the outcome was defined as TCM development after ECT. Accurate 180 diagnosis assessed the absence of alternative causes that may explain the observation; 181 TCM possesses the diagnostic criteria of the Mayo Clinic or the Japanese Circulation 182 Society. The intact coronary arteries on angiography were essential to diagnosing TCM. 183 However, an alternative method was considered acceptable despite the missing 184 angiography when there were reasons, such as patient refusal of angiography. Follow-185 up examinations assessed the sufficiency of the surveillance period to detect outcomes; 186 we assessed the description of TCM course and psychiatric diseases after the follow-up. 187 Reporting bias assessed the description of cases with sufficient details to allow for 188 clinical application. 189 190 Data Synthesis

191 Descriptive statistics reported demographic and clinical characteristics as means
192 (standard deviation [SD]) or medians (interquartile range [IQR]) for continuous

193	variables, and as numbers of cases and frequencies (percentages) for categorical
194	variables. The extracted data are summarized in the tables. Missing values are presented
195	in Table 1 by stating "not described," and the treatment of missing values is separately
196	presented in the data synthesis results.
197	
198	RESULTS
199	The database search yielded 166 articles; after duplicate removal, screening,
200	and citation search, 33 articles describing patients with ECT-induced TCM were
201	identified. Nine articles were excluded due to their provision of only abstracts without
202	the full text, and these excluded articles were Japanese conference reports held in Japan.
203	Finally, 24 articles met the eligibility criteria in this review. ¹⁷⁻⁴⁰ A PRISMA flow
204	diagram is presented in Figure 1. An article ³⁴ described two ECT-induced TCM cases,
205	while two articles ^{36,37} described the same patient using different timelines.
206	Consequently, 24 articles/24 cases were selected.
207	The risk-of-bias assessment of articles is summarized in Figure 2, and the
208	particular risk of bias for each case is presented in Supplemental Digital Content 2.
209	Articles were considered to have a low risk of bias regarding exposure and outcome
210	assessment (24/24 [100%] and 24/24 [100%], respectively), accurate diagnosis (21/24

211	[87.5%]), and reporting bias (24/24 [100%]). Some articles (13/24 [54.2%]) did not
212	include adequate follow-up; therefore, we deemed the articles to have a high risk of bias
213	regarding follow-up.
214	The synthesized characteristics of the 24 ECT-induced TCM cases are
215	presented in Table 1. The 24 articles describing ECT-induced TCM included 13 case
216	reports, ^{18–21,24,25,27,32,33,35,36,39,40} eight case reports with review, ^{22,23,26,30,31,34,37,38} and three
217	letter-style case reports. ^{17,28,29} Most patients were female individuals (21/24 [87.5%]),
218	and the mean (SD) age was 62.3 (15.0) years; Two cases ^{$19,21$} were excluded from the
219	analysis because age details were not provided. The primary diseases included 16 cases
220	of major depressive disorders, ^{19,23–27,29–34,36–40} five cases of bipolar disorder, ^{17,18,20,34,35}
221	and three cases of schizophrenia. ^{21,22,28} Eight (33.3%) cases developed ECT-induced
222	TCM despite the use of β -blockers (including bisoprolol, ^{17,27} metoprolol, ^{20,26,33,36,37}
223	propranolol, ^{22,39} and esmolol ²⁶). One case ²⁶ developed ECT-induced TCM despite the
224	use of intravenous esmolol prior to each ECT session. The anesthetic agents included
225	etomidate (five cases ^{20,23,24,29,30}), propofol (five cases ^{17,22,27,30,31}), methohexital (four
226	cases ^{32,33,36,37,39}), and thiopental or thiamylal (three cases ^{19,21,40}); eight
227	cases ^{18,25,26,28,34,35,38} missed the description. Sixteen cases used succinylcholine as a
228	muscle relaxant, ^{17,19–24,27,29–33,36,37,39,40} and eight missed the description. ^{18,25,26,28,34,35,38}

229	Seventeen (70.8%) cases ^{17,18,21,22,24,27,29,31–40} developed TCM by the third session in the
230	acute ECT course. Ten (41.7%) cases ^{17,18,21,22,28,29,32,34,39} presented with cardiogenic
231	shock or abnormal vital signs related to cardiogenic shock, and three (12.5%)
232	cases ^{24,35,40} denied subjective or objective symptoms. All evaluable cases recovered
233	from TCM.
234	Eight (33.3%) cases ^{17,20,23,29,30,33,36,37,40} tried to receive ECT retrial after ECT-
235	induced TCM, and their synthesized data are presented in Table 2. The period until ECT
236	retrial was 3 weeks to 9 months; the median (IQR) was 5.5 (4.0-12) weeks. Seven
237	(87.5%) cases ^{17,20,23,30,33,36,37,40} had ECT re-initiation after TCM wall motion
238	abnormalities had recovered; however, one case ²⁹ had incomplete TCM recovery. All
239	cases took some measures during ECT retrial (including duplicates): Seven
240	cases 17,20,29,30,33,36,37,40 took measures related to β -blockers (dose increase, change, or
241	addition); Three cases ^{33,36,37,40} for calcium channel blocker addition; one case ²³ for
242	change in anesthetic agents; one case for nitrate. ⁴⁰ ECT could be re-performed without
243	TCM recurrence in all cases. One case ⁴⁰ experienced a negative T-wave on the ECG
244	after the first ECT re-initiation; however, subsequent ECTs were successful without
245	challenges. This negative T-wave had not been adequately elucidated, and it was
246	unknown if it was a TCM recurrence.

248 DISCUSSION We identified 24 cases of ECT-induced TCM, and the patients who developed 249 TCM were predominantly middle-aged and older women, consistent with previously-250 reported characteristics of TCM.^{2,6,41} ECT-induced TCM widely occurred in major 251 252 depressive disorders, bipolar disorders, and schizophrenia, and there was no specific 253 tendency in the anesthetic agents used. Eight (33.3%) cases developed TCM despite the use of β -blockers, consistent with the previous report, which had observed a certain 254 number of patients who developed TCM, even with β -blockers.² Seventeen (70.8%) 255 cases developed TCM by the third session in the acute ECT course, suggesting that 256 257 ECT-induced TCM develops earlier in the acute course. Ten (41.7%) TCM cases 258 developed cardiogenic shock or abnormal vital signs related to cardiogenic shock, 259 possibly of higher incidence since the frequency of cardiogenic shock in TCM is approximately 10%.^{2,42,43} Our results are consistent with those of previous studies 260 261 reporting that TCMs triggered by perioperative or physical stress are associated with more severe cases than those that were not.^{44,45} All evaluable cases were recovered from 262 263 ECT-induced TCM without severe complications or death.

15

264	Nine references of the 33 case reports of ECT-induced TCM were excluded
265	from this review because they had not been described in full text, equivalent to
266	approximately one-fourth of the total. All excluded cases were Japanese reports
267	identified from the Japanese medical literature database, ICHUSHI, and CiNii Research.
268	Perioperative TCM is no longer a novelty and many case reports may have been
269	foregone ⁴⁶ ; The number of ECT-induced TCM cases may be underestimated. Clinicians
270	should be aware of TCM as a complication of ECT.
271	Avoiding stressors triggering TCM makes sense to prevent recurrence,
272	although preventive measures have not yet been established. ⁷ However, ECT-induced
273	TCM is problematic with respect to the possibility of patients undergoing ECT multiple
274	times in the future. We observed that eight (33.3%) out of 24 ECT-induced TCM cases
275	tried to be re-challenged with ECT, and they all successfully received ECT retrial
276	without TCM recurrence. ECT was re-initiated after recovery of wall motion
277	abnormalities in most cases, and the period before retrial ECT ranged from 3 weeks to 9
278	months. The most important result of this report suggests that ECT can be cautiously re-
279	performed after TCM recovery.
280	Strategies for re-initiating ECT after TCM were inconsistent; nevertheless,
281	measures related to β -blockers were the most prominent, with seven cases identified.

282	However, the type, dose, and route of administration of β -blockers used varied. The
283	efficacy of β -blockers in preventing TCM remains controversial. ⁷ β -blockers were
284	previously expected to prevent TCM47; however, several reports have revealed no
285	significant effectiveness in using β -blockers for TCM recurrence. ^{2,48–51} Conversely,
286	there are few reports supporting the efficacy of β -blockers. ⁵² A prospective randomized
287	study is required to conclude the impact of β -blockers on TCM as previous reports were
288	retrospective or observational studies.
289	The long-term TCM recurrence rate is approximately 1–11.4%. ^{2,4,41,48,52–55} The
290	recurrence rate of ECT-induced TCM may not be significant. Nonetheless, patients and
291	clinicians may be reluctant to re-initiate ECT without precautions after it has triggered
292	TCM. The efficacy of β -blockers in preventing TCM is not yet clear, and prophylactic
293	administration of β -blockers during the perioperative period is not approved in Japan.
294	Therefore, we used remifentanil in the ECT retrial, resulting in no TCM recurrence after
295	10 sessions of the ECT retrial. In addition, remifentanil stabilized hemodynamics during
296	the ECT retrial, as compared with the initial ECT that triggered TCM.
297	The causes and pathogenesis of TCM are not fully understood. However,
298	catecholamine surge following stress-induced sympathetic stimulation has been viewed
299	as a possible mechanism of cardiotoxicity. ^{3–6} Stimulation by ECT reportedly releases

300	catecholamines; hence, the suppression of excess catecholamines during ECT may
301	reasonably prevent TCM. Remifentanil significantly inhibits intraoperative
302	catecholamine release ⁵⁶ and significantly reduces hemodynamic variations during
303	ECT. ⁵⁷ Opioids have been proposed to effectively prevent perioperative TCM ⁵⁸ ;
304	nevertheless, future studies or reports on the prevention of ECT-induced TCM using
305	opioid-based anesthesia are required.
306	In addition to emotional and physical stress, some drugs can trigger TCM due
307	to direct or indirect catecholamine stimulation. Kido et al. identified 157 cases of drug-
308	induced TCM in their systematic literature search. ⁵⁹ Regarding medications associated
309	with psychiatric disorders, lithium and serotonin norepinephrine reuptake inhibitors
310	(SNRIs) have been reported as causative agents of TCM. ⁵⁹⁻⁶¹ Whereas there is some
311	evidence that rapid uptitration or overdose of SNRIs may induce TCM, there are no
312	similar reports on noradrenergic and specific serotonergic antidepressants (NaSSAs).
313	There is one report of a patient with post-traumatic stress disorder with repeated TCM
314	who was treated with mirtazapine (NaSSA) to avoid SNRIs. ⁶² Selective serotonin
315	reuptake inhibitors (SSRIs) are considered relatively safe for populations with
316	cardiovascular vulnerability ⁶³ , however, only fluoxetine may be related to the
317	development of TCM by increasing the norepinephrine levels. ⁶⁴ When our patient

318	developed ECT-induced TCM, the medications included lurasidone, escitalopram
319	(SSRI), and mirtazapine (NaSSA). When ECT was reinitiated, medications included
320	sertraline (SSRI) and olanzapine. Lurasidone and olanzapine are both atypical
321	antipsychotics with α adrenergic antagonism, although they differ in affinity and
322	selectivity. ⁶⁵ To date, there is no evidence concerning whether atypical antipsychotics
323	influence the development of TCM.
324	This report has some limitations. First, the case report included only one case;
325	therefore, the generalized application of the results is limited. The ECT retrial was
326	successfully performed with simultaneous remifentanil use without TCM recurrence;
327	however, the significant effect of remifentanil remains unverified. This systematic
328	review summarized previously reported cases, and we included 24 case reports, eight of
329	which re-performed ECT, which is insufficient to discuss the TCM recurrence rate.
330	Studies with more evidence, such as randomized controlled trials and prospective
331	observational studies, could not be identified. Furthermore, language restrictions were
332	not set for this review; however, keywords were searched for in English and Japanese,
333	and more cases could have been revealed by searching in other languages. Case reports
334	possess some inherent bias, including detection, publication, and information bias, and
335	more severe and successful cases may be reported. Furthermore, the articles included in

336	our review had a high risk of bias regarding follow-up. TCM was first described in
337	Japan in 1990 and has subsequently become a globally recognized disease. ^{1, 2, 66}
338	Therefore, the search period was set from 1990 onward. TCM likely existed prior to
339	1990; however, earlier reports were not included in this review.
340	In conclusion, clinicians should be aware of TCM as a complication of ECT.
341	ECT-induced TCM is more likely to cause life-threatening cardiogenic shock than non-
342	perioperative cases; nevertheless, it has good prognosis. ECT can be cautiously
343	reinitiated after TCM recovery; however, preventive measures for TCM are currently
344	controversial. In our case, remifentanil was used in the ECT retrial, resulting in no TCM
345	recurrence. Further studies are required to determine preventive measures for ECT-
346	induced TCM.
347	
348	ACKNOWLEDGEMENTS
349	The authors thank Editage (www.editage.com) for English language editing.
350	
351	AUTHOR CONTRIBUTIONS
352	Michiko Kinoshita wrote the draft, managed the anesthesia, obtained the patient's
353	consent, collected/interpreted the literature, and performed data analysis. Makoto

354	Kinoshita managed the psychiatric treatment, collected/interpreted the literature,
355	performed data analysis, and edited the manuscript. Rikako Takahashi performed data
356	analysis, helped in interpreting the literature, and edited the manuscript. Sarara Mutoh
357	performed data analysis, helped in interpreting the literature, and edited the manuscript.
358	Nami Kakuta supervised the anesthetic management, helped in interpreting the
359	literature, and edited the manuscript. Katsuya Tanaka supervised the anesthetic
360	management, helped in conceiving/designing the study, helped in interpreting the
361	literature, and edited the manuscript. All authors read and approved the final
362	manuscript.
363	
364	CONFLICTS OF INTEREST AND SOURCE OF FUNDING

365 Non declared

366	FIGURE LEGENDS
367	FIGURE 1. PRISMA flow diagram.
368	n, number; TCM, takotsubo cardiomyopathy; ECT, electroconvulsive therapy
369	
370	FIGURE 2. The risk-of-bias assessment.
371	

372		REFERENCES
373	1.	Akashi YJ, Goldstein DS, Barbaro G, et al. Takotsubo cardiomyopathy: a new
374		form of acute, reversible heart failure. Circulation. 2008;118:2754-2762.
375	2.	Templin C, Ghadri JR, Diekmann J, et al. Clinical features and outcomes of
376		takotsubo (stress) cardiomyopathy. N Engl J Med. 2015;373:929-938.
377	3.	Pelliccia F, Kaski JC, Crea F, et al. Pathophysiology of takotsubo
378		syndrome. Circulation. 2017;135:2426-2441.
379	4.	Gianni M, Dentali F, Grandi AM, et al. Apical ballooning syndrome or
380		takotsubo cardiomyopathy: a systematic review. Eur Heart J. 2006;27:1523-
381		1529.
382	5.	Wittstein IS, Thiemann DR, Lima JA, et al. Neurohumoral features of
383		myocardial stunning due to sudden emotional stress. N Engl J
384		Med. 2005;352:539-548.
385	6.	Ghadri JR, Wittstein IS, Prasad A, et al. International expert consensus
386		document on takotsubo syndrome (part I): clinical characteristics, diagnostic
387		criteria, and pathophysiology. Eur Heart J. 2018;39:2032-2046.
388	7.	Singh T, Khan H, Gamble DT, et al. Takotsubo syndrome: pathophysiology,
389		emerging concepts, and clinical implications. Circulation. 2022;145:1002-1019.

390	8.	Kellner CH, Greenberg RM, Murrough JW, et al. ECT in treatment-resistant
391		depression. Am J Psychiatry. 2012;169:1238-1244.
392	9.	Elias A, Thomas N, Sackeim HA. Electroconvulsive therapy in mania: a review
393		of 80 years of clinical experience. Am J Psychiatry. 2021;178:229-239.
394	10.	Tharyan P, Adams CE. Electroconvulsive therapy for schizophrenia. Cochrane
395		Database Syst Rev. 2005;2:CD000076.
396	11.	Watts BV, Groft A, Bagian JP, et al. An examination of mortality and other
397		adverse events related to electroconvulsive therapy using a national adverse
398		event report system. JECT. 2011;27:105-108.
399	12.	Gangadhar BN, Thirthalli J. Frequency of electroconvulsive therapy sessions in
400		a course. JECT. 2010;26:181-185.
401	13.	Gill SP, Kellner CH. Clinical practice recommendations for continuation and
402		maintenance electroconvulsive therapy for depression: outcomes from a review
403		of the evidence and a consensus workshop held in Australia in May 2017. J
404		<i>ECT</i> . 2019;35:14-20.
405	14.	Kawai S, Kitabatake A, Tomoike H. Guidelines for diagnosis of takotsubo
406		(ampulla) cardiomyopathy. Circ J. 2007;71:990-992.

407	15. Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (tako-tsubo or
408	stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart
409	J. 2008;155:408-417.
410	16. Murad MH, Sultan S, Haffar S, et al. Methodological quality and synthesis of
411	case series and case reports. BMJ Evid Based Med. 2018;23:60-63.
412	17. Guiné JB, Rooze P, Bukowski N, et al. Electroconvulsive therapy-induced
413	takotsubo cardiomyopathy: a successful retrial of ECT with 1-year follow-up in
414	a 69-year-old woman. J ECT. 2022;38:e22-e23.
415	18. Miyahara K, Shiomi Y, Ishikawa E, et al. A case of decreased blood pressure
416	and wide ST elevation after electroconvulsive therapy for depression. Shinzo.
417	2020;52:523-527.
418	19. Sasaki M, Tamada Y, Omae S. Importance of frequent electrocardiography for
419	early detection of takotsubo cardiomyopathy after electroconvulsive therapy.
420	Psychiatria et Neurologia Japonica. 2019;121:777-789.
421	20. Clifford K, Chaudhry W, Muscat S, et al. Reinitiation of electroconvulsive
422	therapy 4 weeks after the diagnosis of ECT-induced takotsubo
423	cardiomyopathy. Psychosomatics. 2019;60:93-96.

424	21. Seto H, Noguchi M, Kanamura S, et al. Takotsubo cardiomyopathy after
425	electroconvulsive therapy: a case report. Clin Psychiatry. 2018;60:301-306.
426	22. Medved S, Ostojić Z, Jurin H, et al. Takotsubo cardiomyopathy after the first
427	electroconvulsive therapy regardless of adjuvant beta-blocker use: a case report
428	and literature review. Croat Med J. 2018;59:307-312.
429	23. Kudling R, Hartmut Schoels W, Kuhn J. Tako-tsubo cardiomyopathy during a
430	series of electroconvulsive therapy (ECT) applications: a case report, systematic
431	literature research and discussion of specific risk factors. Fortschr Neurol
432	Psychiatr. 2018;86:699-710.
433	24. Krause TJ, Said SM, Braun-Dullaeus RC, et al. Takotsubo cardiomyopathy after
434	electroconvulsive therapy: a case report. Nervenarzt. 2015;86:609-611.
435	25. de Wolf MM, Olde Bijvank EG. Takotsubo cardiomyopathy as a complication
436	of electroconvulsive therapy. Tijdschr Psychiatr. 2015;57:361-366.
437	26. Agarwal S, Bean MG, Hata JS, et al. Perioperative takotsubo cardiomyopathy: a
438	systematic review of published cases. Semin Cardiothorac Vasc
439	Anesth. 2017;21:277-290.

440	27. Narayanan A, Russell MD, Sundararaman S, et al. Takotsubo cardiomyopathy
441	following electroconvulsive therapy: an increasingly recognised
442	phenomenon. BMJ Case Rep. 2014;2014:bcr2014206816.
443	28. Grubisha M, Gopalan P, Azzam PN. Takotsubo cardiomyopathy in a young man
444	after maintenance electroconvulsive therapy and clozapine initiation: a case
445	report. JECT. 2014;30:e40-41.
446	29. Binhas M, Liger C, Sedaghati A, et al. When retrial of ECT is possible after
447	ECT-induced takotsubo cardiomyopathy?. Ann Fr Anesth Reanim. 2013;32:723-
448	724.
449	30. Celano CM, Torri A, Seiner S. Takotsubo cardiomyopathy after
450	electroconvulsive therapy: a case report and review. J ECT. 2011;27:221-223.
451	31. Serby MJ, Lantz M, Chabus BI, et al. Takotsubo cardiomyopathy and
452	electroconvulsive treatments: a case study and review. Int J Psychiatry
453	Med. 2010;40:93-96.
454	32. Beach SR, Wichman CL, Canterbury RJ. Takotsubo cardiomyopathy after
155	electroconvulsive therapy. <i>Psychosomatics</i> , 2010:51:432-436.

456	33. Kent LK, Weston CA, Heyer EJ, et al. Successful retrial of ECT two months
457	after ECT-induced takotsubo cardiomyopathy. Am J Psychiatry. 2009;166:857-
458	862.
459	34. Go O, Mukherjee R, Bhatta L, et al. Myocardial stunning after electroconvulsive
460	therapy in patients with an apparently normal heart. JECT. 2009;25:117-120.
461	35. Chandra PA, Golduber G, Chuprun D, et al. Tako-tsubo cardiomyopathy
462	following electroconvulsive therapy. J Cardiovasc Med
463	(Hagerstown). 2009;10:333-335.
464	36. Littlejohn FC, Syed O, Ornstein E, et al. Takotsubo cardiomyopathy associated
465	with anesthesia: three case reports. Cases J. 2008;1:227.
466	37. Satterthwaite TD, Cristancho MA, Alici Y, et al. Electroconvulsive therapy in a
467	72-year-old woman with a history of takotsubo cardiomyopathy: a case report
468	and review of the literature. Brain Stimul. 2009;2:238-240.
469	38. O'Reardon JP, Lott JP, Akhtar UW, et al. Acute coronary syndrome (takotsubo
470	cardiomyopathy) following electroconvulsive therapy in the absence of
471	significant coronary artery disease: case report and review of the literature. J
472	ECT. 2008;24:277-280.

473	39. Ring BS, Parnass SM, Shulman RB, et al. Cardiogenic shock after
474	electroconvulsive therapy. Anesthesiology. 1996;84:1511-1513.
475	40. Zhu WX, Olson DE, Karon BL, et al. Myocardial stunning after
476	electroconvulsive therapy. Ann Intern Med. 1992;117:914-915.
477	41. El-Battrawy I, Santoro F, Stiermaier T, et al. Incidence and clinical impact of
478	recurrent takotsubo syndrome: results from the GEIST Registry. J Am Heart
479	Assoc. 2019;8:e010753.
480	42. Stiermaier T, Eitel C, Desch S, et al. Incidence, determinants and prognostic
481	relevance of cardiogenic shock in patients with takotsubo cardiomyopathy. Eur
482	Heart J Acute Cardiovasc Care. 2016;5:489-496.
483	43. Di Vece D, Citro R, Cammann VL, et al. Outcomes associated with cardiogenic
484	shock in takotsubo syndrome. Circulation. 2019;139:413-415.
485	44. García Guzzo ME, Sánchez Novas D, Iglesias FÁ, et al. Anesthetic implications
486	of perioperative takotsubo syndrome: a retrospective cohort study. Can J
487	Anaesth. 2021;68:1747-1755.
488	45. Ghadri JR, Kato K, Cammann VL, et al. Long-term prognosis of patients with
489	takotsubo syndrome. J Am Coll Cardiol. 2018;72:874-882.

490	46. Hessel EA, London MJ. Takotsubo (stress) cardiomyopathy and the
491	anesthesiologist: enough case reports. Let's try to answer some specific
492	questions. Anesth Analg. 2010;110:674-679.
493	47. Kyuma M, Tsuchihashi K, Shinshi Y, et al. Effect of intravenous propranolol on
494	left ventricular apical ballooning without coronary artery stenosis (ampulla
495	cardiomyopathy): three cases. Circ J. 2002;66:1181-1184.
496	48. Singh K, Carson K, Usmani Z, et al. Systematic review and meta-analysis of
497	incidence and correlates of recurrence of takot subo cardiomyopathy. Int ${\cal J}$
498	Cardiol. 2014;174:696-701.
499	49. Santoro F, Ieva R, Musaico F, et al. Lack of efficacy of drug therapy in
500	preventing takotsubo cardiomyopathy recurrence: a meta-analysis. Clin
501	Cardiol. 2014;37:434-439.
502	50. Sharkey SW, Windenburg DC, Lesser JR, et al. Natural history and expansive
503	clinical profile of stress (tako-tsubo) cardiomyopathy. J Am Coll
504	Cardiol. 2010;55:333-341.
505	51. Brunetti ND, Santoro F, De Gennaro L, et al. Drug treatment rates with beta-
506	blockers and ACE-inhibitors/angiotensin receptor blockers and recurrences in

|--|

- 508 *Cardiol.* 2016;214:340-342.
- 509 52. Lau C, Chiu S, Nayak R, et al. Survival and risk of recurrence of takotsubo
- 510 syndrome. *Heart*. 2021;107:1160-1166.
- 51. 53. Elesber AA, Prasad A, Lennon RJ, et al. Four-year recurrence rate and prognosis
- 512 of the apical ballooning syndrome. *J Am Coll Cardiol*. 2007;50:448-452.
- 513 54. Kurisu S, Inoue I, Kawagoe T, et al. Assessment of medications in patients with

tako-Tsubo cardiomyopathy. *Int J Cardiol.* 2009;134:e120-123.

- 55. Looi JL, Wong CW, Khan A, et al. Clinical characteristics and outcome of
- 516 apical ballooning syndrome in Auckland, New Zealand. *Heart Lung*
- 517 *Circ.* 2012;21:143-149.
- 56. Myre K, Raeder J, Rostrup M, et al. Catecholamine release during laparoscopic
- 519 fundoplication with high and low doses of remifentanil. *Acta Anaesthesiol*
- *Scand.* 2003;47:267-273.
- 521 57. Takekita Y, Suwa T, Sunada N, et al. Remifentanil in electroconvulsive therapy:
- 522 a systematic review and meta-analysis of randomized controlled trials. *Eur Arch*
- *Psychiatry Clin Neurosci.* 2016;266:703-717.

524	58. Yang J, Rao Z, Hong F, et al. Takotsubo syndrome after liver transplantation:
525	An association with intraoperatively administered epinephrine and fentanyl. Clin
526	Transplant. 2021;35:e14463.
527	59. Kido K, Guglin M. Drug-induced Takotsubo cardiomyopathy. J Cardiovasc
528	Pharmacol Ther. 2017;22:552-563.
529	60. Kitami M, Oizumi H, Kish SJ, et al. Takotsubo cardiomyopathy associated with
530	lithium intoxication in bipolar disorder: a case report. J Clin Psychopharmacol.
531	2014;34:410-411.
532	61. Y-Hassan S. Serotonin norepinephrine re-uptake inhibitor (SNRI)-, selective
533	norepinephrine reuptake inhibitor (S-NRI)-, and exogenously administered
534	norepinephrine-induced takotsubo syndrome: Analysis of published cases. Int J
535	Cardiol. 2017;231:228-233.
536	62. Hefner J, Csef H, Frantz S, et al. Recurrent Tako-Tsubo cardiomyopathy (TTC)
537	in a pre-menopausal woman: Late sequelae of a traumatic event? BMC
538	Cardiovasc Disord. 2015;15:3.
539	63. Behlke LM, Lenze EJ, Carney RM. The cardiovascular effects of newer
540	antidepressants in older adults and those with or at high risk for cardiovascular
541	diseases. CNS Drugs. 2020;34:1133-1147.

542	64. Bairashevskaia AV, Belogubova SY, Kondratiuk MR, et al. Update of
543	Takotsubo cardiomyopathy: Present experience and outlook for the future. Int J
544	Cardiol Heart Vasc. 2022;39:100990.
545	65. Proudman RGW, Akinaga J, Baker JG. The affinity and selectivity of α -
546	adrenoceptor antagonists, antidepressants and antipsychotics for the human $\alpha 2A$,
547	$\alpha 2B$, and $\alpha 2C$ -adrenoceptors and comparison with human $\alpha 1$ and β -
548	adrenoceptors. Pharmacol Res Perspect. 2022;10:e00936.
549	66. Satoh H, Tateishi H, UchidaT. Takotsubo-type cardiomyopathy due to
550	multivessel spasm. In: Kodama K, Haze K, Hon M, eds. Clinical Aspect of
551	Myocardial Injury : From Ischemia to Heart Failure. Tokyo, Japan:
552	Kagakuhyouronsha. 1990:56-64.

					β-blockers				
		S			use during		Previous ECT before		
1st Author		e		Primary	ECT that		TCM onset		
(Ref. No.)	Year	X	Age	Disease	induced TCM	Anesthesia	(session/course)*1	TCM Symptoms	TCM Course
Guine ¹⁷	2022	F	69	BD	Bisoprolol	Propofol,	2/3rd course	Acute respiratory failure,	Improved
						succinylcholine		cardiogenic shock*5	
Miyahara ¹⁸	2020	F	67	BD	ND	ND	2/1st course	Hypotension*5	Improved
Sasaki ¹⁹	2019	F	50's	MD	ND	Thiopental,	4/1st course	Ventricular Tachycardia	Improved
						succinylcholine			
Clifford ²⁰	2019	F	65	BD	Metoprolol	Etomidate,	26th session	Brief apneic, syncope	Improved
						succinylcholine	(maintenance ECT)		
Seto ²¹	2018	F	60's	SC	ND	Thiamylal,	2/1st course	Cardiogenic shock*5	Improved
						succinylcholine			
Medved ²²	2018	N	40	SC	Propranolol	Propofol,	1/1st course	Gastric pain, pale,	Improved
						succinylcholine		tachypneic without a	
								palpable radial pulse,	
								shortness of breath*5	

Table 1: The characteristics of ECT-induced TCM

Kudling ²³	2018	N	63	MD	ND	Etomidate, succinvlcholine.	11/2nd course	Chest discomfort, hyper tension	Improved
						atracurium			
Krause ²⁴	2015	F	50	MD	ND	Etomidate,	2/1st course	No symptom	Improved
						succinylcholine			
De Wolf ²⁵	2015	F	67	MD	ND	ND	24th session	Chest pain	Improved
							(maintenance ECT)		
Agarwal ²⁶	2015	F	67	MD	Oral	ND	6/1st course*2	Sinus tachycardia	Improved
					metoprolol,				
					intravenous				
					esmolol				
Narayanan ²⁷	2014	F	74	MD	Bisoprolol	Propofol,	1/2nd course	Acute epigastric	Improved
						succinylcholine		discomfort	
Grubisha ²⁸	2014	N	31	SC	ND	ND	The final session	Hypotension*5	Improved
							(> 50 ECT)		
Binhas ²⁹	2013	F	85	MD	ND	Etomidate,	3/unknown course	Dyspnea, hypoxemia*5	Improved
						succinylcholine			
Celano ³⁰	2011	F	76	MD	ND	Etomidate, prop	11th session	Chest pain radiating to	Improved
						ofol, succinylch	(1st maintenance ECT	back	
						oline	after 10 acute ECT)		

Serby ³¹	2010	F	90	MD	ND	Propofol,	3/ unknown course	ND	Improved
						succinylcholine	(> 100 ECT)		
Beach ³²	2010	F	52	MD	ND	Methohexital,	1/1st course*2	Chest pain, nausea, jaw	Improved
						succinylcholine		pain, hypotension*5	
Kent ³³	2009	F	71	MD	Metoprolol	Methohexital,	3/2nd course *3	Chest tightness	Improved
						succinylcholine			
Go ³⁴	2009	F	50	MD	ND	ND	3/1st course*2	Dyspnea, hypoxemia,	Improved
								moderate	
								pulmonary edema*5	
Go ³⁴	2009	F	49	BD	ND	ND	1/1st course*2	Tachycardia, dyspnea,	Improved
								hypotension*5	
Chandra ³⁵	2009	F	70	BD	ND	ND	1/1st course*2	No symptom	Improved
Littlejohn ³⁶	2008	F	71	MD	Metoprolol	Methohexital,	1/2nd course	Chest pain, dyspnea	Improved
Satterthwaite ³⁷	2009		72			succinylcholine			
*4									
O'Reardon ³⁸	2008	F	45	MD	ND	ND	3/1st course	Non-radiating, substernal	Improved
								chest pain, hypertension,	
								tachycardia	
Ring ³⁹	1996	F	41	MD	Propranolol	Methohexital,	1/1st course*2	Pinky frothy fluid,	Improved
						succinylcholine		hypoxemia*5	
Zhu ⁴⁰	1992	F	77	MD	ND	Thiopental,	1/1st course*2	No symptom	Improved
						succinylcholine			

Ref. No., reference number; ECT, electroconvulsive therapy; TCM, takotsubo cardiomyopathy; MD, Major depression; BD, Bipolar disorder;

- SC, Schizophrenia; ND, not described.
- *1: In cases of acute ECT, session/course was listed; otherwise, the number of times was noted.
- *2: Judged based on the text, though not clearly described.
- *3: The two initial sessions were below the convulsive threshold.
- *4: Two articles described the same patient in different time series.
- *5: Cardiogenic shock or abnormal vial signs related to cardiogenic shock.

1st Author		Condition of TCM	Duration to		ТСМ
(Ref. No.)	Year	before retrial ECT	retrial ECT	Management for ECT retrial	recurrence
Guine ¹⁷	2022	Improved	4 weeks	Change in β-blocker	No
				Bisoprolol→atenolol	
Clifford ²⁰	2019	Improved	4 weeks	Increased dose of metoprolol,	No
				Addition of esmolol	
Kudling ²³	2018	Improved	5 weeks	Change in anesthetic agents	No
				Etomidate→methohexital	
Binhas ²⁹	2013	Not yet improved	3 weeks	Addition of bisoprolol	No
Celano ³⁰	2011	Improved	1.5 months	Addition of	No
				intravenous labetalol	
Kent ³³	2009	Improved	2 months	Addition of	No
				intravenous esmolol	
				and nicardipine	
Littlejohn ³⁶	2008	Improved	9 months	Addition of	No
Satterthwaite ³⁷	2009			labetalol or esmolol,	
				and nicardipine	
Zhu^{40}	1992	Improved	6 months	Addition of	Yes/No*2
				nitrates, diltiazem and labetalol*1	

 Table 2: The data of retrial ECT after ECT-induced TCM

Ref. No., reference number; ECT, electroconvulsive therapy; TCM, takotsubo cardiomyopathy.

*1: Nitrate and diltiazem were used in the first ECT retrial; Labetalol was used in the second ECT retrial.

*2: This case developed a negative T-wave on electrocardiogram after the first ECT retrial; however, no recurrence on the subsequent retrial ECT was observed.

The Safety and Strategies for Reinitiating Electroconvulsive Therapy (ECT) After ECT-induced Takotsubo Cardiomyopathy: A Case Report and Systematic Review

Michiko Kinoshita, M.D., Ph.D.¹, Makoto Kinoshita, M.D., Ph.D.², Rikako Takahashi, M.D.¹, Sarara Mutoh, M.D.¹, Nami Kakuta, M.D., Ph.D.¹, and Katsuya Tanaka, M.D., Ph.D.¹

¹ Department of Anesthesiology, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima-shi, Tokushima 770-8503, Japan

² Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-8-15 Kuramoto-cho, Tokushima-shi, Tokushima 770-8503, Japan

Corresponding Author: Michiko Kinoshita

2-50-1 Kuramoto-cho, Tokushima-shi, Tokushima 770-8503, Japan Telephone number: +81 (0)88-633-7181, Fax number: +81 (0)88-633-7182 Email: michiko-kinoshita@tokushima-u.ac.jp

Supplemental Digital Content 1: Research strategy

MEDLINE (pubmed)

("Electroconvulsive Therapy" [MeSH Terms] OR ("electroconvulsant" [All Fields] OR "electroconvulsion" [All Fields] OR "electroconvulsions" [All Fields] OR "electroconvulsive"[All Fields]) OR ("electroshock"[MeSH Terms] OR "electroshock" [All Fields] OR "electroshocks" [All Fields]) OR "electric shock" [All Fields] OR "ect" [All Fields]) AND ("Takotsubo Cardiomyopathy" [MeSH Terms] OR ("takotsubo" [All Fields] OR "takotsubo s" [All Fields]) OR "tako-tsubo" [All Fields] OR "Takotsubo Cardiomyopathy" [All Fields] OR "tako-tsubo cardiomyopathy" [All Fields] OR "stress cardiomyopathy" [All Fields] OR "stress-induced cardiomyopathy" [All Fields] OR "stress-induced cardiomyopathy" [All Fields] OR "ampulla cardiomyopathy"[All Fields] OR "catecholamine cardiomyopathy"[All Fields] OR "catecholamine-induced cardiomyopathy"[All Fields] OR "catecholamine cardiotoxicity"[All Fields] OR "catecholamine-induced cardiotoxicity"[All Fields] OR "catecholamine-induced cardiotoxicity"[All Fields] OR "broken heart"[All Fields] OR "apical ballooning" [All Fields] OR "ventricular ballooning" [All Fields] OR "transient regional left ventricular dysfunction"[All Fields] OR "transient myocardial dysfunction"[All Fields] OR "transient systolic dysfunction"[All Fields] OR "stunned myocardium"[All Fields] OR "myocardial stunning"[All Fields] OR "neurocardiogenic stunning"[All Fields] OR "cardiogenic shock"[All Fields] OR (("neurogenic"[All Fields] OR "neurogenically" [All Fields] OR "neurogenics" [All Fields]) AND ("stress" [All Fields] OR "stressed" [All Fields] OR "stresses" [All Fields] OR "stressful"[All Fields] OR "stressfulness"[All Fields] OR "stressing"[All Fields]) AND ("myocardium" [MeSH Terms] OR "myocardium" [All Fields] OR "myocardiums" [All Fields])) OR "reversible acute heart failure"[All Fields])

Scopus

(electroconvulsive OR electroshock OR "electric shock" OR "ect") AND (takotsubo OR tako-tsubo OR "takotsubo cardiomyopathy" OR "tako-tsubo cardiomyopathy" OR "stress cardiomyopathy" OR "stress induced cardiomyopathy" OR "stress-induced

cardiomyopathy" OR "ampulla cardiomyopathy" OR "catecholamine cardiomyopathy" OR "catecholamine-induced cardiomyopathy" OR "catecholamine cardiotoxicity" OR "catecholamine induced cardiotoxicity" OR "catecholamine-induced cardiotoxicity" OR "broken heart" OR "apical ballooning" OR "ventricular ballooning" OR "transient regional left ventricular dysfunction" OR "transient myocardial dysfunction" OR "transient systolic dysfunction" OR "stunned myocardium" OR "myocardial stunning" OR "neurocardiogenic stunning" OR "cardiogenic shock" OR "neurogenic stressed myocardium" OR "reversible acute heart failure")

Cochrane Library

(electroconvulsive OR electroshock OR "electric shock" OR "ect") AND (takotsubo OR tako-tsubo OR "takotsubo cardiomyopathy" OR "tako-tsubo cardiomyopathy" OR "stress induced cardiomyopathy" OR "stress-induced cardiomyopathy" OR "stress-induced cardiomyopathy" OR "catecholamine cardiomyopathy" OR "catecholamine induced cardiotoxicity" OR "catecholamine-induced cardiotoxicity" OR "broken heart" OR "apical ballooning" OR "ventricular ballooning" OR "transient regional left ventricular dysfunction" OR "transient myocardial dysfunction" OR "transient systolic dysfunction" OR "stunned myocardium" OR "myocardial stunning" OR "neurocardiogenic stunning" OR "cardiogenic shock" OR "neurogenic stressed myocardium" OR "reversible acute heart failure")

ICHUSHI (in Japanese)

(電気ショック/TH or 電気けいれん療法/TH) and (心筋症-たこつぼ型/TH or (心筋 疾患/TH or 心筋症/AL))

CiNii (in Japanese)

(電気痙攣 OR 電気けいれん OR 電気ショック)AND (たこつぼ OR 心筋症)

(electroconvulsive OR electroshock OR "electric shock" OR "ect") AND (takotsubo OR tako-tsubo OR "takotsubo cardiomyopathy" OR "tako-tsubo cardiomyopathy" OR

"stress cardiomyopathy" OR "stress induced cardiomyopathy" OR "stress-induced cardiomyopathy" OR "ampulla cardiomyopathy" OR "catecholamine cardiomyopathy" OR "catecholamine-induced cardiomyopathy" OR "catecholamine cardiotoxicity" OR "catecholamine induced cardiotoxicity" OR "catecholamine-induced cardiotoxicity" OR "broken heart" OR "apical ballooning" OR "ventricular ballooning" OR "transient regional left ventricular dysfunction" OR "transient myocardial dysfunction" OR "transient systolic dysfunction" OR "stunned myocardium" OR "myocardial stunning" OR "neurocardiogenic stunning" OR "cardiogenic shock" OR "neurogenic stressed myocardium" OR "reversible acute heart failure") The Safety and Strategies for Reinitiating Electroconvulsive Therapy (ECT) After ECT-induced Takotsubo Cardiomyopathy: A Case Report and Systematic Review

Michiko Kinoshita, M.D., Ph.D.¹, Makoto Kinoshita, M.D., Ph.D.², Rikako Takahashi, M.D.¹, Sarara Mutoh, M.D.¹, Nami Kakuta, M.D., Ph.D.¹, and Katsuya Tanaka, M.D., Ph.D.¹

¹ Department of Anesthesiology, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima-shi, Tokushima 770-8503, Japan

² Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-8-15 Kuramoto-cho, Tokushima-shi, Tokushima 770-8503, Japan

Corresponding Author: Michiko Kinoshita

2-50-1 Kuramoto-cho, Tokushima-shi, Tokushima 770-8503, Japan Telephone number: +81 (0)88-633-7181, Fax number: +81 (0)88-633-7182 Email: michiko-kinoshita@tokushima-u.ac.jp

1st Author	Exposure	Outcome	Correct	Follow-up	Reporting
(Rf. No.)	assessment	assessment	diagnosis	period	bias
Guine ¹⁷	Yes	Yes	Yes	Yes	Yes
Miyahara ¹⁸	Yes	Yes	Yes	Yes	Yes
Sasaki ¹⁹	Yes	Yes	Yes	Yes	Yes
Clifford ²⁰	Yes	Yes	Yes	Yes	Yes
Seto ²¹	Yes	Yes	No	No	Yes
Medved ²²	Yes	Yes	Yes	No	Yes
Kudling ²³	Yes	Yes	Yes	Yes	Yes
Krause ²⁴	Yes	Yes	Yes	No	Yes
De Wolf ²⁵	Yes	Yes	Yes	Yes	Yes
Agarwal ²⁶	Yes	Yes	Yes	No	Yes
Narayanan ²⁷	Yes	Yes	Yes	Yes	Yes
Grubisha ²⁸	Yes	Yes	Yes	No	Yes
Binhas ²⁹	Yes	Yes	Yes	No	Yes
Celano ³⁰	Yes	Yes	Yes	Yes	Yes
Serby ³¹	Yes	Yes	Yes	Yes	Yes
Beach ³²	Yes	Yes	Yes	Yes	Yes
Kent ³³	Yes	Yes	Yes	Yes	Yes
Go ³⁴	Yes	Yes	No	No	Yes
Go ³⁴	Yes	Yes	No	No	Yes
Chandra ³⁵	Yes	Yes	Yes	No	Yes
Littlejohn ³⁶	Yes	Yes	Yes	Yes	Yes
Satterthwaite ³⁷					
*4					
O'Reardon ³⁸	Yes	Yes	Yes	Yes	Yes
Ring ³⁹	Yes	Yes	Yes	No	Yes
Zhu ⁴⁰	Yes	Yes	Yes	No	Yes

Supplemental Digital Content 2: The risk bias assessment of each case

Ref. No., reference number; ND, not described.

*1: Two articles described the same patient in different time series.