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Abstract: Coronary computed tomography angiography (CCTA) is widely used due to its improve-
ments in computed tomography (CT) diagnostic performance. Unlike other CT examinations, CCTA
requires shorter rotation times of the X-ray tube, improving the temporal resolution and facilitating
the imaging of the beating heart in a stationary state. However, reconstructed CT images, including
those of the coronary arteries, contain insufficient X-ray photons and considerable noise. In this study,
we introduce an image-processing technique for noise reduction using singular value decomposition
(SVD) for CCTA images. The threshold of SVD was determined on the basis of minimization of
Jensen–Shannon (JS) divergence. Experiments were performed with various numerical phantoms
and varying levels of noise to reduce noise in clinical CCTA images using the determined threshold
value. The numerical phantoms produced 10% higher-quality images than the conventional noise
reduction method when compared on a quantitative SSIM basis. The threshold value determined by
minimizing the JS–divergence was found to be useful for efficient noise reduction in actual clinical
images, depending on the level of noise.

Keywords: coronary computed tomography angiography; singular value decomposition; Jensen–
Shannon divergence; noise reduction

1. Introduction

Coronary computed tomography angiography (CCTA) has been widely used in recent
years due to its the improved performance [1,2]. In particular, the scan length extension in
the z-axis direction owing to the wide coverage and improvement in the X-ray tube rotation
speed are the notable features of CCTA. CCTA has also been demonstrated to improve the
risk assessment and further management of patients with a low-to-intermediate risk of
coronary artery disease (CAD) [3,4]. However, unlike other computed tomography (CT)
scans, the beating heart is the target in CCTA scans; therefore, image quality degradation
due to noise can occur due to insufficient X-ray photons . Various approaches have been
proposed to reduce noise. The first approach is to solve this problem by developing image
reconstruction methods. Some vendors have developed iterative reconstruction methods
for reducing image noise [5,6]. However, iterative reconstruction algorithms have become
more algorithmically complex and require more computational power, making image
reconstruction a time-consuming task.

The second approach is that the use of artificial intelligence has recently been proposed
to address this problem, and the potential of deep convolutional neural networks to
improve CT image reconstruction has been investigated [7]. Deep learning has been
suggested to achieve this goal by minimizing the loss function between the input data
and the teacher data, which are the correct data, potentially yielding significant noise
reduction in comparison with conventional methods. However, deep learning has some
disadvantages. It requires a large amount of training data, is difficult to implement, and has
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many problems that must be solved owing to the complexity of interpreting the obtained
results. In particular, when the interpretation of the results is unclear, the diagnosis of
medical images is greatly affected.

The third approach is to process the reconstructed image. This method is more
advantageous than the above two methods because it can use previously acquired images
and does not require special hardware. In addition, the simplicity of implementation and
the comprehensibility of the process make it easy to interpret the results, and does not
significantly affect the diagnosis of medical images. Therefore, we aimed to provide a
mathematically consistent method to reduce noise in medical images, especially to focus on
noise reduction in CCTA images. To achieve this goal, singular value decomposition (SVD)
is the main method used in this study. SVD is used alongside principal component analysis
as a method of dimensionality reduction and has been used in a wide range of fields [8–10].
SVD denoising takes advantage of the fact that singular values of noise are smaller than
the singular values that compose the image. This is achieved by setting the number of
singular values (number of ranks) to 0 for a certain threshold value. However, there is no
established method of determining the threshold value. Moreover, if the threshold value
is not properly determined, the image structure may be excessively corrupted or noise
removal may be insufficient.

Singular values reduction method using threshold value is called low-rank approxi-
mation. The low-rank approximation is a minimization problem in which the evaluation
function measures the goodness-of-fit between the given data and the approximating
matrix. The appropriate evaluation function affects the determination of the threshold
value and quality of the approximated image. The Frobenius norm is often used as an
evaluation function to measure the level of approximation between noise-free and noisy
images in low-rank approximations using SVD. This is a natural generalization of the
2-norm of a vector into a matrix. The 2-norm is known to be robust against noise; however,
its convergence performance is poor, and it does not accurately capture the structure of
medical images [11,12]. The thresholding of denoising by SVD requires the introduction
of the effective evaluation function as a measure of the level of approximation between
noise-free and noisy images. Methods using various evaluation functions have been
proposed for CT image reconstruction, and their resulting high performances have been
demonstrated [13,14]. Therefore, we used Jensen–Shannon (JS) divergence as an evaluation
function for thresholding using low-rank approximation. It is a measure of the similarity
between two probability distributions. JS–divergence is also used in generative adversarial
networks (GANs), a widely used approach for generative modeling using deep neural
networks [15]. When thresholding SVD using the evaluation function, it is necessary to
correctly evaluate the noise-free and noisy images and provide a threshold that removes
only noise. JS–divergence is expected to facilitate this process.

We evaluated the performance of the low-rank approximation through numerical
experiments simulating medical images. First, various levels of noise were added to a
numerical phantom that simulated a medical image, and a detailed study of the noise and
singular values was conducted. The numerical phantom produced noise-free images of
various noise levels and was used for thresholding to obtain the minimum JS–divergence.
We also compared the results obtained by the proposed method with other noise reduction
methods and confirmed the superiority of the proposed method. We then performed
denoising for CCTA images from clinical CT scanner with the threshold value obtained by
the numerical phantom and found that the proposed method was high performance. The
advantage of using the minimum of the JS–divergence as the threshold decision is that it
can be objectively determined on the basis of image quality.
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2. Methods
2.1. Preliminary

The relationship between noisy and noise-free images can be described using the
following equation:

A = e + δ (1)

where A ∈ Rm×n
+ , e ∈ Rm×n

+ , and δ ∈ Rm denote the noisy image, noise-free image,
and noise, respectively, and R+ denotes the sets of nonnegative real numbers. The noise
δ is assumed to follow a normal distribution with mean 0 and variance σ and is de-
fined as follows:

δ ∼ N (0|σ). (2)

Noise σ degrades the image quality and is a feature that interferes with medical
image diagnosis.

2.2. Singular Value Decomposition

SVD was first proposed for real square matrices by Bletrami and Jordan, then extended
to complex square matrices by Autonne, and finally to general rectangular matrices by
Eckart and Young [16]. SVD is also a popular method of matrix factorization in linear
algebra, and a special case of eigenvalue decomposition can be formulated as follows:

A = UΛV> (3)

where U ∈ Rm×m
+ is an orthogonal matrix consisting of the left singular vector of A.

V ∈ Rn×n
+ is an orthogonal matrix consisting of the right singular vector and > denotes the

transpose. Λ ∈ Rm×n
+ is a diagonal matrix with singular values, λi ≥ λ2 · · · ≥ λn ≥ 0. Let i

denote the number of nonzero singular values of A or, equivalently, the rank of A (where
i = rank(A) ≤ n).

Equation (3) can be rewritten as follows:

A =
n

∑
i=1

uiλiv>i . (4)

Equation (4) is used to describe the denoised estimated matrix A by using a low-rank
matrix [17].

2.3. Jensen–Shannon Divergence

KL–divergence is widely known as divergence [18]. Divergence is a function that
coincides with the Riemannian distance if the distance is microscopic on the manifold. Let
p and q be two non-negative vectors.

KL(p, q) =
n

∑
i=1

pi log
pi
qi

+ qi − pi. (5)

Although the KL–divergence measure is sometimes referred to as a metric in the
probability distribution, the KL–divergence is not symmetric and does not strictly satisfy
the axiom of distance as a metric. In general,

KL(p, q) 6= KL(q, p). (6)

Specifically, it does not satisfy the triangular inequality, and a practical problem of
indeterminate values exists when there is a region where p 6= 0, q = 0. Minimizing the KL–
divergence has an important property in that it is equivalent to maximizing the likelihood
function modeled by the probability distribution.

The JS–divergence was introduced by Lin as a measure of the discrepancy between
two or more discrete probability distributions to overcome these limitations [19].



Diagnostics 2023, 13, 1111 4 of 15

The generalized JS–divergence is defined as follows:

JS(p, q) =
1
2

KL
(

p,
1
2
(p, q)

)
+

1
2

KL
(

q,
1
2
(p, q)

)
(7)

=
1
2

n

∑
i=1

pi log
pi

1
2 (pi + qi)

+
1
2

n

∑
i=1

qi log
qi

1
2 (pi + qi)

.

The JS–divergence symmetrizes the KL–divergence by taking the average relative
entropy of the source distributions to the entropy of the average distribution [20–23]. JS–
divergence, which also exhibits high performance in the domain of image recognition, has
the following properties in addition to symmetry [24–26]. It takes non-negative elements
and is zero if and only if all the elements are identical. The square root of itself is a metric.
In particular, the fact that the elements are nonnegative is particularly suitable in the
image domain.

2.4. SVD with JS–Divergence

Noise reduction by SVD is performed by selecting an appropriate number of ranks
k to estimate e in Equation (1). Various methods have been proposed for selecting the
number of the rank [27–30]. However, in this study, the number of ranks that minimized
the JS–divergence between the noise-free image and the noisy image was selected as the
optimal number of ranks for denoising. Therefore, we had set the following evaluation
function for the optimal rank selection of SVD based on our proposed minimization of
JS–divergence:

E(A(i)) := JS(e, A(i)), (8)

and the optimal rank k approximation of a denoising matrix A under JS–divergence can be
formulated as follows:

A = argmin
s.t.rank(A)=k

E(A(i)). (9)

The rank k that yields the minimum value in Equation (8) is set as the threshold
value, and the singular value after the threshold value is set to 0 to remove noise from
the image. By using JS–divergence as an evaluation function, we expected to eliminate
high-performance noise in low-rank approximations of images while preserving the diag-
nostically important structure of medical images.

3. Experimental Results and Discussion

In this section, We will conduct experiments to validate our proposed method. First,
we show the results for a numerical phantom. Next, we provide the results of comparison
with other noise reduction methods. Finally, we confirm and discuss the results of using
the proposed method on CCTA images obtained from a clinical CT scanner.

3.1. Numerical Phantom

The usefulness of the proposed method was verified using a numerical phantom
for which the true pixel value e is known. In medical imaging, it is difficult to obtain
a noise-free image using a clinical CT scanner. In this study, a noise-free image was
used as the true image and the correct data were obtained using a numerical phantom.
The numerical phantoms used in our study were the Shepp–Logan phantom, which is
popular for evaluating performance in CT image reconstruction [31], and a simulated water
phantom consisting of cylindrical rods of different sizes placed in an acrylic container in
water, as illustrated in Figure 1a,b.

Each numerical phantom had a true noise-free pixel value e ∈ [0, 255] and was com-
posed of 512 × 512 pixels. The entire process from phantom creation to numerical com-
putation was performed using Python 3.10.9. To reproduce the noise usually observed in
CT images for both the Shepp–Logan and the water phantoms, the noise of the normal
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distribution in Equations (1) and (2) was added with variances of 15, 20, and 25. Images
with noise added to the true image in each phantom are shown in Figure 2.

(a) (b)

Figure 1. Numerical phantom. (a) Shepp–Logan phantom. (b) Water phantom.

Phantom
σ Shepp–Logan Water

15

20

25

Figure 2. Shepp–Logan and water phantoms with noise N (0|σ).
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First, we verified the singular value λi of the Shepp–Logan and water phantoms in
Equation (4). The plot of the singular value for each phantom is shown in Figure 3.

Shepp–Logan phantom Water phantom

si
ng

ul
ar

va
lu

e

si
ng

ul
ar

va
lu

e

i i

Figure 3. Graph of singular value in the true image e and the respective noise level. The maximum
singular value is set to 1, and is restricted for easy observation.

The graph shows plots of noise-free and various noise levels, and the singular values
are normalized to a maximum value of 1. The vertical axis shows the singular value,
with the maximum value restricted for ease of observation while the horizontal axis repre-
sents the value of i. The singular values rapidly decreased as the number of rank in the
image matrix increased. For higher orders, the values are close to 0. It is clear from each
of the graphs that the singular value shifts from the true image e to larger values due to
noise. Additionally, the graph also clearly demonstrates that the higher the noise level,
the larger the singular value. Furthermore, it was difficult to determine the index at which
the singular value should be a threshold from these graphs. Separating noise from the
important components of an image required a threshold method different from the graph
for a singular value.

Next, we observed the singular vector for a singular value. Figure 4 shows the value
of singular vectors in Equation (4) for the noise-free image e and for σ = 20, the middle of
each noise level. An example using the Shepp–Logan phantom. Orange dot groups shows
a noise-free image, and green dot groups shows σ = 20. All graphs were drawn on the same
scale, with horizontal line segments in the graphs representing the zero level. From the
graphs, the singular vectors are concave and convex with short periods as the value of i
increases, that is, their spatial frequency increases. However, when noise is added, there is
no periodic structure, and the graph is a scattering graph indicating randomness. Thus,
the value of i, when thresholded by a singular value, dominates the trade-off between
the fine structure and noise elements of the image. While the noise in the image can be
suppressed for small values of i, higher frequencies are also removed, making it impossible
to represent fine structures. In CCTA images, resolution reduction may affect the peripheral
vascularization of coronary arteries, thus making the threshold value an important factor
in determining image resolution.

We examined the threshold results using the JS–divergence proposed in this study as
the evaluation function. A graph plotting the value of the evaluation function log10(E(A(i)))
for each i between the noise-free image e as a true image and the noisy image is shown in
the upper panels of Figure 5. The vertical axis value of the evaluation function denotes the
logarithmic value log10(E(A(i))). The evaluation function E(A(i)) is 0 when the distance
between the two distributions is equal, i.e., when the low-rank approximate image and
noise-free image e are equal. A lower value indicates a closer match to the true image.
The lower panel shows the position of the minimum value of the evaluation function for
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each level of noise, as indicated by the red dots and vertical bars. The value of the index
i at the time of the minimum value of the evaluation function is the optimal threshold
value k in SVD.

i = 1 i = 2 i = 6

i = 12 i = 15 i = 60

i = 120 i = 240 i = 500

Figure 4. Singular vectors at the noise-free images e and noise σ = 20 at each rank number i. Orange
dot groups shows the noise-free image and green dot groups shows σ = 20 as an example of noise level.

The true image, which is noise-free, and the image containing noise are measured by
the evaluation function E(A(i)) based on the JS–divergence, yielding the image closest to
the true image. The minimum value of each evaluation function log10(E(A(k))) and the
index value i = k are summarized in Table 1.

Table 1. log10(E(A(k))) minimum of JS–divergence for noise σ = 15, 20, and 25 in each phantom and
threshold i = k.

σ
Shepp–Logan Phantom Water Phantom

log10(E(A(k))) k log10(E(A(k))) k

15 12.7817 90 12.3518 116
20 13.0832 60 12.6728 66
25 13.3065 42 12.8896 46
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Shepp–Logan phantom Water phantom
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Figure 5. Upper panel corresponds to graphs of JS–divergence log10(E(A(i))) at noise σ = 15, 20,
and 25. The lower panel depicts the minimum value i = k and the position of the threshold with dots
and vertical bars.

As the graph shows, as the level of noise increases, the value of threshold k tends to
decrease, and the noise reduction becomes stronger. This trend was also observed in for
the Shepp–Logan and water phantoms.

Figures 6 and 7 show the optimal threshold k value that yields the minimum value of
the evaluation function and the obtained noise-reduction image. The top row shows the
true image and its density profile, and the red line in the image indicates the position of the
acquired density profile. Next to the noise-reduced image for each noise level σ = 15, 20,
and 25, the original image with noise and the concentration profile of the reduced image
are shown. Although the randomness of the density profile increases with increasing noise
level for both the Shepp–Logan and the water phantoms, the noise-reduced image obtained
with the proposed method shows that the randomness can be suppressed at any noise level.
In particular, the density profile of the noise σ = 25 of the water phantom in Figure 7 shows
a low contrast, but the density profile of the noise-reduced image can discriminate contrast
differences. By obtaining the density profile, evaluations such as visual and quantitative
evaluation are possible and can be performed.
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Shepp–Logan phantom

Profile line e

σ

15

k = 90 Noisy profile Noise reduction

20

k = 60 Noisy profile Noise reduction

25

k = 42 Noisy profile Noise reduction

Figure 6. The optimal threshold k that yields the minimum value of the evaluation function at
each noise level and the resultant noise-reduced image of the Shepp–Logan phantom. The top row
shows the true image and its density profile. The red line depicts the area where the density profile
was obtained. The profiles below the top row show the concentration profiles of the noisy and
noise-reduced image.
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Water phantom

Profile line e

σ

15

k = 116 Noisy profile Noise reduction

20

k = 66 Noisy profile Noise reduction

25

k = 46 Noisy profile Noise reduction

Figure 7. The optimal threshold k that yields the minimum value of the evaluation function at each
noise level and the resultant noise-reduced image of the water phantom. The top row shows the true
image and its density profile. The red line depicts the area where the density profile was obtained.
The profiles below the top row show the concentration profiles of the noisy and noise-reduced image.

To further confirm the effectiveness of our proposed method, we compared it with
other noise reduction methods. To solve the problem of noise reduction in medical images,
various methods are used in practice. We compared the wavelet transform, which is a typi-
cal noise reduction method [32,33]. Figures 8 and 9 show the comparison of the proposed
method and wavelet transform denoising with the images and its density profiles. Shepp–
Logan and water phantoms indicate that the proposed method is effective in reducing noise.
In particular, at the high noise level of σ = 25, we confirmed that the proposed method
effectively achieves noise reduction, whereas the wavelet transform is not sufficient to
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remove noise. From the viewpoint of quantitative evaluation, the structural similarity index
measure [34] (SSIM) between the noise reduction and noise-free images was calculated in
Table 2. The SSIM is a perception-based quality index, and higher values of SSIM indicate
higher image quality. The SSIM values also show that the proposed method produces high
values for all noise levels, indicating that the images are of high quality.

Shepp–Logan phantom
σ Proposed Wavelet transform

15

20

25

Figure 8. Comparison images and density profiles between the proposed method and noise reduction
by wavelet transform.

Water phantom
σ Proposed Wavelet transform

15

20

25

Figure 9. Comparison images and density profiles between the proposed method and noise reduction
by wavelet transform.
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Table 2. SSIM for noise reduction by the proposed method and wavelet transform.

σ

SSIM

Proposed Wavelet Transform

Shepp–Logan Phantom Water Phantom Shepp–Logan Phantom Water Phantom

15 0.7331 0.7047 0.6781 0.6298
20 0.7130 0.6826 0.6431 0.5556
25 0.6968 0.6589 0.6026 0.5198

3.2. SVD Using CCTA

We aimed to validate the proposed method on a numerical phantom by using CCTA
images obtained from a clinical CT scanner. Unlike numerical phantoms, noise-free images
are difficult to obtain in clinical imaging. However, using the results obtained from previous
numerical phantoms, noise reduction can be applied to clinical images. Figure 10 shows
images of CCTA obtained from the clinical CT scanner.

Figure 10. Axial image of CCTA acquired from a clinical CT scanner. It can be seen that the image
contains a significant amount of noise.

CCTA images were acquired from a 320-row CT Aquilion ONE Vision Edition (Canon
Medical Systems, Tochigi, Japan) by ECG-synchronized scanning. The scan conditions
were as follows: tube voltage, 120 kV; tube current, 600 mA; and rotation time, 0.275 s.
The entire heart was scanned once as a volumetric scan. The thickness and spacing of
the reconstructed slices were 0.5 mm. Image reconstruction was performed using half-
reconstruction. As seen from Figure 10, of the CCTA image, the rotation time of the X-ray
tube must be made shorter to obtain a stationary image. This resulted in a lack of X-
ray photons and a reconstructed image is noisy. Therefore, we used our proposed noise
reduction method for CCTA images. From numerical phantom experiments, the index
giving the minimum value of the evaluation function was used as the threshold for noise
reduction. The problem of not being able to obtain noise-free images in a clinical CT scanner
was solved by using the results of numerical phantom experiments.

First, to determine the threshold in the clinical image, the region of interest (ROI)
shown in Figure 11 was set and the level of noise was measured.

Although it is difficult to estimate the amount of noise directly from clinical images,
the simplest method is to obtain the standard deviation from the ROI. The standard
deviation in this CCTA image was σ = 19.8. Therefore, the standard deviation was almost
the same as that of the noise N (0|20) added to the numerical phantom. From Table 1,
k = 66, which is the lowest value of the evaluation function when σ = 20, which was set as
the threshold value in CCTA. Figure 12 shows the results of noise reduction with k = 66.
The density profiles are shown with normalized scaling, such that the maximum value is
at 1 and the minimum value is at 0. As with the numerical phantom, the red line shows
the profiles before and after noise reduction. As can be seen from the images and profiles,
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the randomness owing to noise was reduced. The results obtained from the numerical
phantom were used to determine the threshold value for noise reduction, and as with the
numerical phantom, noise reduction with a high level of accuracy was achieved.

Another advantage of noise reduction using SVD is that it can reduce the dimension-
ality of the image because it removes singular values from the image by thresholding,
whereas noise reduction using ordinary pixel-based filtering cannot reduce the dimension-
ality of the image. Reducing the dimensionality of features by removing noise, which is
an additional component in machine learning, is advantageous for building an efficient
learning system. The thresholding method based on JS–divergence proposed in this study
enables noise removal while preserving the important components of the image.

Figure 11. A CCTA image displaying the location of the region of interest (ROI) to measure the level
of noise in the image.

CCTA image

Profile Line k = 66

Profile Original Noise reduction

Figure 12. Original and noise-reduced image, and their respective density profiles before and after
noise reduction, are displayed. The red line depicts the area where the density profiles were obtained
on the image before noise reduction.
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4. Conclusions

We proposed a new thresholding method for noise reduction by SVD using
JS–divergence as an evaluation function. A noise-free image cannot be obtained in clinical
imaging. However, by using a numerical phantom, noise-free images were obtained for use
in thresholding based on the minimum value of JS–divergence. JS–divergence functioned
as an evaluation function to separate important structures from noise in the image and pro-
vided high-quality images. Furthermore, by comparing the threshold value obtained from
the numerical phantoms with the noise levels of clinical CCTA images, we justified that this
approach for noise reduction is also effective for clinical images. By using JS–divergence,
a well-known tool for comparing probability distributions, as an evaluation function, it
is possible to compare pixels as probability distributions. By mapping comparisons be-
tween distributions to noise-free and noisy images, the minimum value of JS–divergence
can provide the threshold that yields the best image, as opposed to SVD, for which the
determination of the threshold has traditionally been empirical. In the future, we plan to
develop a new method to reduce noise in more complex structures of numerical phantoms
and use clinical images other than CCTA. Furthermore, it is necessary to examine how the
noise and dimensionality reduction functions of SVD affect the results and diagnosis as
training data for machine learning in future studies.
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