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Abstract: All the currently used type A botulinum neurotoxins for clinical uses are of subtype A1.
We compared the efficacy and safety for the first time head-to-head between a novel botulinum
toxin A2NTX prepared from subtype A2 and onabotulinumtoxinA (BOTOX) derived from A1 for
post-stroke spasticity. We assessed the modified Ashworth scale (MAS) of the ankle joint, the mobility
scores of Functional Independence Measure (FIM), and the grip power of the unaffected hand before
and after injecting 300 units of BOTOX or A2NTX into calf muscles. The procedure was done in
a blinded manner for the patient, the injecting physician, and the examiner. Stroke patients with
chronic spastic hemiparesis (15 for A2NTX and 16 for BOTOX) were enrolled, and 11 for A2NTX and
13 for BOTOX (MAS of ankle; > or = 2) were entered for the MAS study. Area-under-curves of changes
in MAS (primary outcome) were greater for A2NTX by day 30 (p = 0.044), and were similar by day
60. FIM was significantly improved in the A2NTX group (p = 0.005), but not in the BOTOX group
by day 60. The hand grip of the unaffected limb was significantly decreased in the BOTOX-injected
group (p = 0.002), but was unaffected in the A2NTX-injected group by day 60, suggesting there was
less spread of A2NTX to the upper limb than there was with BOTOX. Being a small-sized pilot
investigation with an imbalance in the gender of the subjects, the present study suggested superior
efficacy and safety of A2NTX, and warrants a larger scale clinical trial of A2NTX to confirm these
preliminary results.

Keywords: botulinum neurotoxin; subtype A2; A2NTX; onabotulinumtoxinA; clinical efficacy; safety;
spasticity: modified Ashworth scale; Functional Independence Measure; hand grip; spread

Key Contribution: The newly developed botulinum neurotoxin derived from subtype A2 (A2NTX)
was compared to onabotulinumtoxinA on its clinical efficacy and safety in treating post-stroke
spasticity. A2NTX showed a faster onset of action in reducing spasticity as measured by the modified
Ashworth Scale. Although there is the limitation of gender imbalance of the subjects, the neurotoxin
showed better outcomes in the Functional Independence Measure and superior safety with less
spread of its action, as reflected in the changes in grip power on the un-injected side.

1. Introduction

Botulinum neurotoxins (BoNTs) are classified into seven immunologically distinct
serotypes A–G [1,2]. Type A BoNT has been widely used clinically except for type B
(rimabotulinumtoxinB or Myobloc®/Neurobloc®) [3,4]. Serotype A is now divided into
subtypes A1–A8 with differing amino acid sequences [5,6] and only A1 toxins from Hall
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strain (e.g., onabotulinumtoxinA, OnaA or BOTOX®, abobotulinumtoxinA or Dysport®,
incobotulinumtoxinA or Xeomin®) are available for clinical uses in the US [7,8]. Type A
BoNTs exist in various molecular weights: LL (900 kD), L (500 kD), M (300 kD), and S
(150 kD) toxins [3,9]. OnabotulinumtoxinA is a large molecular weight LL toxin, whereas
incobotulinumtoxinA is a S toxin with low molecular weight [10,11]. It has been argued
that incobotulinumtoxinA is less antigenic than onabotulinumtoxinA [11,12], whereas the
latter might spread less than the former because of its large molecular weight [13,14].

We have developed a low molecular weight (150 kD) or S type BoNT of subtype
A2 (A2NTX) produced by a unique strain of C. botulinum obtained from cases of infant
botulism in Japan (Chiba-H) [15,16]. Subtype A2 toxins were found to enter the neuronal
cells faster in vitro [17], and to be less diffusible to the contralateral limbs in vivo [18] than
A1. A2NTX was also shown to be more efficacious per mouse LD50 unit in reducing muscle
power in rats [18] and monkeys [19] than onabotulinumtoxinA (OnaA). The first-in-man
clinical study [20] using injections into the extensor digitorum brevis (EDB) muscle indi-
cated that A2NTX is around 1.54 times as potent as the same unit of onabotulinumtoxinA
in reducing compound muscle action potentials (CMAPs), with similar duration of action
to OnaA at the dose adjusted.

Here, we present a small-sized pilot study of the head-to-head comparison of A2NTX
and onabotulinumtoxinA (OnaA) on their efficacy and safety in treating post-stroke spas-
ticity to explore its potential clinical utilities. This study is a part of a long-term clinical trial
exploring the safety and tolerability of A2NTX [14], and all the entered subjects already had
subtype A1 BoNTs (OnaA or S-toxin of A1 subtype, A1NTX) with a matched mixture and
intervals from the previous injections. This study is registered (ClinicalTrials.gov identifier:
NCT01910363, accessed 25 April 2022), and was published as abstracts [21,22] and as a
proceeding reporting preliminary and partial data of the present study [23], but is the first
to report the entire data package registered.

The entire protocol was approved by the IRB of Tokushima University, Japan (date of
approval: 31 March 2004, No. 2005–216, with revisions in 2006 and 2010). The study was
conducted according to the guidelines of the Declaration of Helsinki. The procedure of
administering to human subjects was before 2018, when the Japanese regulatory agency re-
quired all the test drugs to be manufactured in strict accordance with Good Manufacturer’s
Practice (GMP). The last patient was injected prior to 2018 when the drug was considered
legitimate. Informed consent was obtained from all patients in written form.

2. Results
2.1. Patients Breakdown

A total of 31 patients (16 for onabotulinumtoxinA and 15 for A2NTX) were enrolled
after screening at day 0. All the subjects had previous injections of BoNTs [14], and the
values of MAS had been small. We therefore set the criteria for MAS analysis as 24 patients
who had greater values than 1 at least in the ankle flexors or greater than 0 for extensors
(Full Analysis Set or FAS analysis). The rest of the outcomes were evaluated in the whole
subjects (Intention-To-Treat or ITT analysis), although the number of subjects analyzed was
variable in each measure.

The background of each group is depicted in Table 1, and there was no significant
difference between the two except for the gender ratio and the cause of stroke (bleeding or
infarct). The number of those who received OnaA and A1NTX in the past were matched
(n = 15 or 16) for each group and intervals from the previous injections of OnaA and A1NTX
were also similar (96.2 ± 2.5 days for OnaA, and 95.3 ± 1.8 days for A2NTX; mean ± SD).
There was no subject who developed secondary unresponsiveness to BoNTs before entry.
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Table 1. Patients’ background (mean ± SD, range; ITT analysis 1).

OnaA n = 16 A2NTX n = 15 Test p

Sex (male/female) 15/1 10/5 Fisher’s exact 0.00014 *
Age (years) 65.8 ± 8.3 (52~78) 65.5 ± 9.2 (42~78) t 0.88

Duration of illness (months) 98.1 ± 59.1 (22~240) 88.9 ± 66.0 (32~241.5) t 0.58
Side of Paresis R/L 5/11 8/7 Fisher’s exact 0.23

Cause Bleeding/Infarct 12/4 9/6 Fisher’s exact 0.02 *
MAS (Ankle Flexion) 2.53 ± 0.85 (1~3) 2.53 ± 0.92 (1~4) t 0.99

MAS (Ankle Extension) 0.94 ± 0.44 (0~2) 1.00 ± 0.93 (0~3) t 0.81
Hand Grip Power (kg) 33.1 ± 8.2 (16.4~49.8) 27.2 ± 8.2 (15.5~38.1) t 0.09

10 m Gait Time (s) 29.2 ± 24.5 (12.0~119.0) 32.5 ± 28.8 (9.3~114.2) t 0.58
FIM (Full: 35) 26.9 ± 5.7 (17~33) 25.2 ± 4.8 (17~34) t 0.41

MMT (Tibialis Anterior) 2.59 ± 1.38 (0–4) 2.40 ± 1.40 (0–4) t 0.35
1 ITT: Intention-To-Treat, including all the data before exclusion for MAS criteria. * indicates significant difference.

The flow chart (Figure 1) shows the breakdown of excluded patients who did not meet
the MAS criteria at day 0, and the total number of those who participated in MAS analysis
(FAS) was 24 (Ona 13 and A2NTX 11). Since the range of modified Ashworth scale (MAS)
would have been limited, if we included all patients, we set preconceived entry criteria
of MAS being equal or more than two for analysis (ClinicalTrials.gov NCT01910363) as in
other studies [24–26]. Excluded subjects whose MAS was zero in all extensor muscles. For
the rest of analysis, all patients were included wherever their data were available (ITT).
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Figure 1. Flow chart for patients’ disposition.

Number of subjects may vary depending on availability of measure in ITT analysis.
Table 2 shows the summary of cases used for the main analysis of MAS (Modified

Ashworth Scale) after exclusion of those who did not meet the criteria (Full Analysis Set or
FAS). All the backgrounds here were balanced between the two groups.
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Table 2. Patients’ background (mean ± SD, range; FAS analysis 1).

OnaA n = 13 A2NTX n = 11 Test p

Sex (male/female) 12/1 8/3 Fisher’s exact 0.08
Age (years) 64.1 ± 8.0 (52~78) 63.2 ± 10.3 (42~78) t 0.88

Duration of illness (months) 88.7 ± 47.8 (22~192) 90.1 ± 53.5 (32~179) t 0.94
Side of Paresis R/L 5/8 8/3 Fisher’s exact 0.54

Cause Bleeding/Infarct 10/3 8/3 Fisher’s exact 0.12
MAS (Ankle Flexion) 2.85 ± 0.55 (1~3) 2.73 ± 0.90 (1~4) t 0.99

MAS (Ankle Extension) 1.08 ± 0.28 (1~2) 1.36 ± 0.81 (1~3) t 0.81
Hand Grip Power (kg) 33.5 ± 10.4 (16.4~49.8) 28.0 ±8.1 (15.5~41.2) t 0.09
10 m Gait Time (sec) 27.9 ± 27.3 (12.0~112.0) 37.5 ± 32.4 (9.3~114.2) t 0.58

FIM (Full: 35) 26.7 ± 6.0 (16~33) 26.0 ± 4.8 (17~34) t 0.41
MMT (Tibialis Anterior) 2.53 ± 1.39 (0–4) 2.45 ± 1.21 (1–4) t 0.44

1 FAS: Full-Analysis-Set, after exclusion for MAS criteria.

2.2. Primary Outcomes

Table 3 shows a summary of MAS data (Full Analysis Set or FAS). Day 90 data were
incomplete because of their reduced number of samples (n = 12 for OnaA and 10 for
A2NTX), and are shown as being Supplementary.

Table 3. MAS data.

A2NTX OnaA p Value

MAS changes
Day 30 0.95 ± 0.27 (n = 11) 0.38 ± 0.18 (n = 13) 0.044 *
Day 60 0.55 ± 0.27 (n = 11) 0.73 ± 0.32 (n = 13) 0.350
Day 90 0.60 ± 0.31(n = 10) 0.42 ± 0.29 (n = 12) 0.338

MAS changes/AUC *
~Day 30 14.32 ± 4.10 (n = 11) 5.77 ± 2.71 (n = 13) 0.044 *
~Day 60 36.82 ± 11.37 (n = 11) 22.5 ± 9.30 (n = 13) 0.168
~Day 90 55.50 ± 21.07 (n = 10) 40.0 ± 18.24 (n = 12) 0.291

* Bold figures indicate primary outcomes. Day 90 data are Supplementary.

As for changes of MAS (Figure 2), the A2NTX group showed significantly greater
changes than the OnaA group at day 30 with modest levels.
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Figure 3 summarizes the primary outcome of MAS/AUCs in both groups. Area-
under-curves (AUCs) of MAS changes also demonstrated significantly greater values in the
A2NTX-group at day 30, because of the same statistical nature as MAS changes at day 30.
The co-primary of MAS/AUCs at day 60 showed greater values on the average, but there
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was no statistical difference between the two (p = 0.168). Day 90 data are incomplete and
only Supplementary.
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Each value indicates the sum of area-under-curves (AUCs) from day 0–30 (~day 30),
day 0–60 (~day 60), and day 0–90 (Supplementary Data; ~day90). Vertical bars indicate
standard errors.

2.3. Secondary Outcomes

Table 4 summarizes the results of the other secondary outcomes on the efficacy (mo-
bility scores of Functional Independence Measure or FIM, and 10 m walking time) and
safety (Manual Muscle Testing of the un-injected tibialis anterior muscle and the hand grip
power on the unaffected side of the stroke as indicators of unwanted spread of action to a
neighboring (tibialis anterior) and distant (hand grip) muscles).

Table 4. Secondary Outcomes (within-group comparison; paired-t test).

Efficacy A2NTX p OnaA p

FIM (Day 0) 25.1 ± 1.3 (n = 14) 26.7 ± 1.5 (n = 15)

FIM (Day 30) 26.0 ± 1.2 (n = 14) 0.17 27.6 ± 1.2(n = 15) 0.22

FIM (Day 60) 27.9 ± 0.9 (n = 14) 0.005 * 28.3 ± 1.1 (n = 15) 0.09

10 m walking (Day 0) 31.6 ± 8.5 (n = 15) 26.4 ± 7.9 (n = 14)

10 m walking (Day 30) 28.2 ± 7.1 (n = 15) 0.09 25.7 ± 7.0 (n = 14) 0.26

10 m walking (Day 60) 27.7 ± 6.4 (n = 15) 0.06 24.9 ± 7.3 (n = 14) 0.07

Safety

Hand Grip (Day 0) 27.2 ± 2.1 (n = 15) 33.2 ± 2.5 (n = 16)

Hand Grip (Day 30) 26.5 ± 2.1 (n = 15) 0.14 31.9 ± 2.3 (n = 16) 0.05 *

Hand Grip (Day 60) 28.4 ± 2.2 (n = 14) 0.77 30.7 ± 2.7 (n = 15) 0.002 *

∆MMT (TA: Day 30) −0.23 ± 0.19 (n = 15) −0.56 ± 0.28 (n = 16) 0.17 ‡

∆MMT (TA: Day 60) 0.30 ± 0.26 (n = 15) −0.31 ± 0.4 (n = 16) 0.11 ‡

* indicates significant values, and ‡ are results of between-group comparison (Student-t).

As depicted in Figure 4, the A2NTX group, but not the OnaA group, showed highly
significant functional improvements at day 60 in the within-group comparison before and
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after the treatment. Walking time for 10 m on the other hand showed no significant changes
in both groups (Table 3).
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As for the safety assessment, MMT of the tibialis anterior muscle showed no significant
difference between the two groups, although the mean values were more reduced in the
OnaA group than A2NTX. The hand grip power measurements showed a highly significant
drop in the OnaA group at day 60, but not in the A2NTX-injected group (Figure 5).
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Blood sampling (liver, renal functions, electrolytes, complete blood cells) showed no
significant changes before and after the injections of BoNTs. Other clinical adverse effects
were unremarkable as reported previously [14].

3. Discussion

Our previous clinical study on tolerability and safety of A2NTX in various muscle
hyperactivities including dystonia and spasticity showed that doses up to 500 mouse LD50
units were well tolerated for longer terms, and the majority of the patients preferred A2NTX
rather than onabotulinumtoxinA (OnaA) at the end of the test periods [14]. Despite the
small sample size, the present study for the first time demonstrated that the efficacy of
A2NTX as measured by MAS changes or their AUCs was higher than that of onabotulinum-
toxinA at day 30 at amodest significance level. They were similar between the two groups
at day 60.
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Those at day 60 and day 90 were variable from case to case, possibly because of the
differing efficacies of the patients’ individual rehabilitation, despite the constancy of their
own methods throughout the study, and because of the limited number of subjects. Another
reason for lack of statistical significance is the lack of a treatment effect at these timepoints.
Since the patient backgrounds (Table 2; FAS) were comparable, at least the onset of clinical
efficacy in MAS reduction seems to be faster for A2NTX than for OnaA.

Functional improvement as measured by the mobility scores of FIM was attained with
a high significance level at day 60 in the A2NTX group, but not in the OnaA group. In
ITT analysis (Table 1), there was male predominance and more bleeding as the cause in
the OnaA group, and we must use caution in the interpretation of the results. It seems,
however, unlikely that disease severity is different between the groups with the gender of
subjects or the cause of stroke exerting notable influences, since the MAS scores and FIM
levels were matched between the two groups. In addition, there was three patients with
MAS being zero in the planter extensor muscle in the A2NTX group, who were excluded for
FAS, but included in ITT analysis. It might be argued that these three cases contributed
better outcomes in FIM. There was, however, no significant differences of pre-injection
MAS of the extensor or flexor muscles between groups (Table 1), and it is unlikely that
these specific cases contributed to any significant improvement.

As for safety, the hand grip of the unaffected limb decreased significantly at day 60 in
the OnaA group, suggesting spread of the toxin effect to distant muscles, whereas that in
A2NTX was unchanged as a whole. The increase in muscle power in some subjects who
had A2NTX (Figure 5) may be because of already reduced grip strength due to the previous
exposures to A1 toxins (OnaA and A1NTX), which could be reversed, since all patients
had been treated with A1 toxins before. Again, the imbalance in gender may preclude the
interpretation, but a larger number female subjects in the A2NTX group would have made
A2 more susceptible to adverse effects such as distant spreading, because of the smaller
body weights of the female. Nor is evidence that bleeding as the cause would enhance
spreading of the effect to a distant muscle. Despite these limitations of the background
imbalance, the present findings recapitulated the results of the previous clinical and in vivo
studies of A2NTX, in that one mouse LD50 unit of A2NTX is as effective as 1.54 unit of
onabotulinumtoxinA in reducing CMAPs [20], and that A2NTX spreads less of its action to
distant muscles [14,27].

The major limitation of this study is the small number of subjects, which makes it an
exploratory pilot study. The imbalance in gender and cause of stroke was also a limitation
for ITT analysis. Although a modestly significant (p = 0.044) difference in MAS changes
at day 30 may suffer from multiple comparisons, the present results may indicate the
superior efficacy at day 30, since we set MAS changes up to 30 days or 60 days in AUCs
as co-primary outcomes from the start (ClinicalTrials.gov NCT01910363). Despite being
the secondary outcomes, FIM and hand-grip changes also endorsed higher safety and
efficacy of A2NTX over OnaA with much higher significance levels. FIM was significantly
improved only 60 days after injection in the A2NTX-injected group. This effect is probably
the result of the combination of the BoNT injection and continued rehabilitation, which
would require rather long periods for functional improvements.

The safety of BoNTs mainly depends on weakness in un-injected muscles [28], in-
cluding respiratory ones [29,30]. As mentioned, BoNTs spread to other muscles locally in
the adjacent muscles [20] or as reported by one group, and distantly through the nervous
system [27,31]. Some of the local spread can be controlled by reducing the volume of
injected BoNTs [32,33]. It is, however, unavoidable to see weakness in nearby muscles
when large doses are injected [34]. It was demonstrated that OnaA can spread to the
contralateral distant muscles trans-synaptically [35,36], although contradicting results were
also reported [37]. These spreads through the spinal cord were more diffuse in OnaA than
in A2NTX [27,36]. Much higher doses of BoNT can spread via the hematogenous route
even with A2NTX [27]. The present study is the first to show a significant decrease of hand
grip power in the contralateral upper limb after injection of OnaA into the lower limb, but
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with no drop after A2NTX. On the other hand, there was no significant difference in MMT,
which reflects both local and trans-synaptic spread (Table 4), despite the larger drop of
mean MMT for the OnaA group than A2NTX. This is possibly because the sensitivity of
hand grip is higher than MMT.

Since all regulatory agencies stipulate that units are not interchangeable between
different BoNT preparations, a comparison using the same mouse LD50 unit is not always
appropriate for comparing safety and efficacy. In fact, one unit of A2NTX was shown to be
1.54 times as effective as one unit of OnaA [20]. While there seems to be better safety and
tolerability profile of A2NTX than OnaA in the previous study [14], the exact assessment
of efficacy and safety in man must be based on the ratio of efficacy and safety, such as the
therapeutic margin used in the primate study of A2NTX [19].

It is generally argued that BoNT with high molecular weight is less diffusible [13,14].
Indeed, S toxin from A1 subtype BoNT or A1NTX was shown to be more diffusible than
OnaA [14,38]. The reason for the even less spreading of A2NTX compared to OnaA is not
clear, but it is conceivable that the higher affinity of A2 subtype BoNT to its receptors [17,39]
outweighs its small molecular weight.

4. Future Perspectives

As for the clinical implication of the present study, the dose of the same 300 mouse
LD50 units of OnaA and A2NTX suggested that A2 may be more efficacious and spread
less than A1, despite its small sample size. Combined with the previous study where
A2NTX was tolerable up to 500 u [14], the dose equivalent to 800 u of OnaA could be used
successfully and safely used for treating spasticity if a larger clinical trial with botulinum
toxin-naive patients fulfills the promise.

5. Conclusions

Despite the small-size and the difference in the gender ratio between the groups,
the present pilot study suggested that A2NTX has an earlier onset of clinical efficacy as
measured by MAS changes and higher efficacy in FIM and safety in distant spread than
onabotulinumtoxinA, warranting a larger full-scale study.

6. Subjects and Methods
6.1. BoNT Preparations

OnabotulinumtoxinA (BOTOX®), marketed by GSK, Japan, Inc., was used. A2NTX
(molecular weight: 150 k Dal) was produced and purified from the Chiba-H strain of
Clostridium Botulinum, isolated from honey associated with cases of infant botulism [14,16]
as previously described [18,40]. C. botulinum type A strains Chiba-H was cultured in a
PYG medium containing 2% peptone, 0.5% yeast extract, 0.5% glucose, and 0.025% sodium
thioglycolate by allowing them to stand at 30 ◦C for 3 days. M toxin was purified from the
culture fluid by acid precipitation, protamine treatment, ion-exchange chromatography,
and gel filtration. Each subtype of M toxin was adsorbed onto a DEAE Sepharose column
equilibrated with 10 mM phosphate buffer, and eluted with a 0–0.3 M NaCl gradient buffer
for the separation of A2NTX from the non-toxic component. Human serum albumin (Japan
Red Cross, Japan) was added as an excipient. The toxicity of purified neurotoxin A2NTX,
titrated by serial 2-fold dilution intraperitoneal injection measured as a mean 50% lethal
dose (LD50), was 5.2 × 106 LD50/mg protein [18]. A2NTX was stored in a deep freezer
(<−70 ◦C) and thawed immediately before use.

6.2. Entry Criteria

Male or female patients suffering from lower limb spasticity after stroke with dura-
tions of more than 6 months, aged 40–79 years, and with no contractures were enrolled.
Randomization was made as to age. Those who had regular rehabilitation therapy can be
entered, but were not allowed to change their schedule in the period of assessment (day
0–60). For spasticity assessment, the Modified Ashworth scale (MAS; see below) of the
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ankle joint flexor or extensor must be more than or equal to 2 in the ankle flexor and more
than 0 in the ankle extensor. These rather low MAS scores for entry were due to the fact
that all patients had been treated with onabotulinumtoxinA (OnaA) or S-toxin of subtype
A1 (A1NTX) previously [14]. Patients with botulinum toxin injections within 3 months of
the study were excluded. Patients with serious hepatorenal dysfunction, cardiopulmonary
failure, and those who cannot understand the instructions were also excluded.

6.3. BoNT Injection

Injections were performed by a single neurologist (RK), blinded as to the BoNT, with
an EMG device (Clavis®, Medtronics Inc.), using an Ambu® (744 75/10) monopolar lumen
electrode of 75 mm length. BoNTs were first injected 150 LD50 units (diluted with 6 mL of
saline) into the tibilais posterior muscle (TP); second, the needle was pulled out close to the
skin, and the subject was injected in the medial gastrocnemius muscle (mGC) with 150 u
(diluted with 6 mL of saline) with the same needle tract. The location was confirmed by
EMG activation by passive stretch and electric stimulation causing movement of the foot
(Figure 6).
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Figure 6. Method for injection.

The location of the needle insertion was determined as 5 finger-breadths distal to the
tibial tubercle (TT) down the anterior margin of the tibia, and 2 finger-breadths posterior to
the posterior edge of the tibia on the skin surface. The tip was directed toward the posterior
aspect of the tibia. Caution was used to avoid vessels and nerves by checking the blood
backflow from the needle and asking the subject to report any radiating pain along the
foot. First, the tibialis posterior muscle was targeted, and then medial gastrocnemius was
located just underneath the skin and confirmed by electric stimulation using the single
needle tract.

6.4. Outcome Measures
6.4.1. Modified Ashworth Scale (MAS)

The MAS was assessed as previously published [26,41]. Scales ranging from 0, 0.5, 1,
1.5, 2, 3, and 4 were analyzed as continuous values. Those of the ankle joint were measured
in the ankle flexors and extensors, separately, and their changes after BoNT injections
(day 0) were summed to represent the changes of the ankle joint MAS at day 30 and day 60.
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Day 90 was optional. Area-under-curves (AUCs) of MAS changes up to day 30 and up to
day 60 were the primary outcome measures.

6.4.2. Functional Independence Measure (FIM)

FIM was assessed as a measure of functional improvement [42,43]. Functional status
of the patient’s mobility was assessed through physical examination or an interview from
the care-giver by a blinded physiotherapist (TF) at day 30 and 60. The mobility part of FIM
was calculated (minimum of 5, maximum of 35).

6.4.3. 10 m Walking Time

Time (in seconds) required for the subject to walk for 10 m with or without assistance
was established [44]. If assisted, the same assistance will be maintained throughout the
study [24,44]. If the subject is unable to walk, the data were excluded for the analysis. The
time was measured twice in a row, and the average of the 2 was processed.

6.4.4. Manual Muscle Testing and Grip Strength

The MRC (Medical Research Council) scales (0, 1, 2, 3, 4−, 4+, 5) of manual muscle
testing [43,45] of the antagonist (tibialis anterior) muscle were obtained at each visit by a
physiatrist blinded as to BoNT (NS). The spread of BoNT action to the antagonist was thus
assessed as a safety measure. Another safety assessment was the hand grip power [31] in
kg torque of the side unaffected by the stroke. The hand grip was measured 3 times, and
the average of the top 2 were calculated as the strength, providing evidence of the spread
to distant muscles.

6.4.5. Blood Sampling

At each visit (day −30, day 0, day 30, and day 60), blood samples were collected to
evaluate complete blood cell counts, liver and renal function, and electrolytes.

6.5. Schedule of Visits

All the candidates for the study had a screening visit 30 days (day−30) prior to the
300 units BoNT injection for eligibility. When the subject was judged as eligible, blood
sampling and a test injection of 50 units of BoNT into the flexor carpi radialis muscle on the
affected side were performed (Figure 7). The purpose of this injection at day -30 was to test
the new A2 toxin for any idiosyncratic adverse effects as required by IRB at a small dose in
a different limb. On the injection day (day 0), MAS of the ankle flexors and extensors, the
hand grip power of the unaffected upper limb, 10 m gait speed, and FIM were evaluated.
The visit at day 90 was optional.
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Figure 7. Summary of injection and evaluation schedule.

6.6. Statistical Analysis

Patients’ background differences were analyzed with the unpaired-t test or Fisher’s
exact test. MAS was evaluated in the subjects who fulfilled the criteria of 0> and = or more
than 2 at day 0). The area-under-curves (AUCs) of MAS changes of the ankle joint (the sum
of the ankle flexor and extensor MAS changes) were analyzed. AUCs of day 30 (area over
day 0–30) and of day 60 (areas over day 0–30–60) were calculated as primary outcomes.
AUCs were compared with the Student-t test with a significance level of 0.05 (one-sided).
Other parameters were analyzed, including all the subjects tested (ITT analysis): hand grip
power in kg, gait time in seconds, and FIM, which were then compared within subjects
using the paired-t test with a significance level of 0.05. Changes of MRC scales (∆MMT)
were compared with the Student-t test between A2NTX and OnaA. Since this study is a
pilot study with preconceived primary outcomes, no corrections were made for multiple
comparisons.

Supplementary Materials: The following information can be downloaded at: https://www.mdpi.
com/article/10.3390/toxins14110739/s1, The supporting statistical data of Fisher exact test can be
found as attachments.
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