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Figure 7: Simulation results 2: (a) Original image, (b) Input image, (c)
Sharpened image, (d) Heat-diffused image, (e) Logic difference image, (f)
Logic OR with NOT image, (g) Enhanced edge-detected image, (h) Output
image, (i) Unsharp masked image

USM. Figure 7(a) shows the original image. The input im-
age contains a woman and a reticulated background. Fig-
ure 7(b) shows the simulation result obtained when heat dif-
fusion is applied to the input image with 100 iterations. The
overall image is blurred. Figure 7(c) shows the simulation
result obtained when edge detection is applied to the input
image. The overall image is sharpened compared wtih that
in Fig. 7(c). Figure 7(d) shows the simulation result ob-
tained when heat diffusion is applied to the sharpened image.
The overall image is blurred compared wtih that in Fig. 7(c).
Figure 7(e) shows the simulation result obtained when the
logic difference is applied to the sharpened and heat-diffused
image. The lines of the reticulated background are sharp-
ened. Figure 7(f) shows the simulation result obtained when
logic OR with NOT is applied to the sharpened and heat-
diffused image. The left side of a background, which was
not detected in Fig. 7(e), was detected. Figure 7(g) shows the
simulation result obtained when edge detection is applied to
the enhanced image. The lines of the sharpened image are en-
hanced compared with those in Fig. 7(g). Figure 7(h) shows
the simulation result obtained when logic OR is applied to
the sharpened and enhanced image. Not many unclear ob-
jects remain. On the other hand, in Fig. 7(i), more unclear
objects remain than in Fig. 7(h). We evaluated the simulation
results using the structural similarity (SSIM), which evaluates

the changes in pixel values, constants, and structure between
the target images. An SSIM closer to 1 indicates greater sim-
ilarity similar to the target image. In Tab. 1, we show the
SSIM of each output image.

Table 1: Structural similarity
Figure 6(h) 0.6388
Figure 6(i) 0.4833
Figure 7(h) 0.7276
Figure 7(i) 0.6053

Figures 6(h)(i) are compared with Fig. 6(a), and
Figs. 7(h)(i) are compared with Figure 7(a) in terms of sim-
ilarity. Figs. 6(h) and 7(h) are processed by in terms of the
proposed method, and Figs. 6(i) and 7(i) are processed by
USM. From Tab. 1, the SSIM obtained with using the pro-
posed method is higher than that obtained by USM. From
these simulation results, the proposed method is more effec-
tive than USM.

5. Conclusion

In this study, we proposed an algorithm for sharpening
blurred images by using a CNN. Moreover, we investigated
the sharpening of blurred images by USM. Then, we evalu-
ated similarities from the simulation results. Our proposed
method is more effective than USM. In future works, we
would like to investigate the performance for other images.
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Abstract
This paper describes a statistical correction model for wind
speed data of the Meso-Scale Model Grid Point Value (MSM-
GPV), which is one of the numerical weather forecasting sys-
tems. In the numerical forecasting system, there are calcula-
tion errors caused by both the physical modeling and estima-
tion of initial values. Because numerical forecast data have
two-dimensional spatial information, convolution with a con-
volutional neural network (CNN) is used to grasp and correct
the two-dimensional features of errors contained in the fore-
cast data. In the simulations, several MSM-GPV data used
for the input data and various correction models are prepared
and compared with the results of a fully connected neural net-
work from the viewpoints of the error improvement rate and
error distribution.

1. Introduction
Currently, power is mainly generated using fossil fuels, but

fossil fuels have limited supply and emit CO2 during power
generation, causing global warming. For these reasons, re-
newable energy, which does not run out or emit CO2 dur-
ing power generation, has attracted attention in recent years.
In particular, wind power is being introduced worldwide be-
cause it can generate electricity as long as the wind is blowing
[1].

However, the output of wind power fluctuates greatly de-
pending on the wind speed. For this reason, power compa-
nies adjust the power supply and demand balance using ther-
mal and pumped-storage power generation. In order to oper-
ate a power system efficiently and stably, the prediction of
wind power output using numerical forecasts is performed
[2]. However, numerical forecasts are affected by the mod-
eling errors of atmospheric and terrain models used in sim-
ulations. Therefore, in the prediction of wind power output
using numerical forecasts, a correction is performed using a
statistical method [3].

In this paper, we propose a statistical correction model for

the wind speed data of the Meso-Scale Model Grid Point
Value (MSM-GPV), which is one of the numerical forecast
systems provided by Japan Meteorological Agency. The pro-
posed model is composed of a two-dimensional convolutional
neural network (2D-CNN)[4], which grasps the physical re-
lationship between the grid points and the two-dimensional
spatial information of errors included in GPV data, and cor-
rects forecast wind speed data. Several models with different
configurations are developed and compared on the basis of
the error improvement rate and the error distribution of data
from the simulation model.

2. Correction Model of MSM-GPV Wind Speed Data
In this paper, we propose a correction model of MSM-GPV

by using a CNN and analyze the effects of different sizes of
the input area by comparing the correction results. The tar-
get points of the correction are four grid points of the MSM-
GPV, A, B, C, and D, as shown in Fig. 1, which surround the
AMeDAS weather observation station located in Tokushima.
Four forecasted data surrounding the prediction point are re-
quired to predict the wind speed at a point distant from the
grid point in our future task. The target forecast data of MSM-
GPV for correction is 6 hours ahead in consideration of the
distribution delay time of MSM-GPV and an adjustment ca-
pability to valance the supply and demand on the power grid.
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Figure 1: Correction points around Tokushima
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All simulations using the correction models in this paper
are constructed using Tensorflow [5]. The activation func-
tion in each model is ReLU. Weights and biases are adjusted
by the back-propagation method with the Adam optimization
function. The learning method is mini-batch learning with a
batch size of 64. Correction models with 18 different layer
configurations and three input sizes are compared to con-
sider an appropriate model. Also, the proposed models are
compared with a previously studied fully connected neural
network[6] under several conditions.

2.1 Correction period and input data
As the input data, the ground wind speed data in the areas

enclosed in squares shown in Fig. 1 are used. MSM-GPV
is data on grid points on a 5 km mesh, and the calculation
is started every 3 hours. For each calculation start time, the
forecast values for 1 hour intervals are calculated up to 39
hours ahead. Wind speed data are given as the east-west and
north-south components. For the correction, the initial wind
speed data at the calculation start time and the forecast value
6 hours ahead in the MSM-GPV wind speed data are used.
By using the two wind speed data for the input, the model
can consider time-series information, which is effective for
the correction. To compare the effects of the input image size,
corrections are conducted by inputting the three types of input
data set enclosed by colored lines in Fig. 1 and listed in Table
1.

Table 1: Types of input data set
Input data Enclosed color (line)

Type 1 4×4 points red
Type 2 8×8 points yellow
Type 3 37×37 points blue

Types 1, 2, and 3 use data from 16 (4×4), 64 (8×8),
and 1369 grid points (37×37), respectively, surrounding the
AMeDAS located in Tokushima. In Type 1 and 2, the
AMeDAS is at the center of the input data, but in Type 3,
the correction target is 100 km from the north end and 100
km from the west end of the data used as shown in Fig. 1.
The periods of the input data sets are assigned as shown in
Table 2.

Table 2: Periods of input data sets
Period

Training April 2015−−March 2016
Validation April 2016−−March 2017

Target February 2018

Each model is trained using the training data, and its gener-
alization performance is examined using the validation data.
The model with the smallest error for the validation data is
used for correction and evaluated with the target data. When
using the CNN, the data is input with time, and X and Y com-
ponents of wind are superimposed in the channel direction.

When using a fully connected neural network, the data is re-
shaped and input as one-dimensional data.

2.2 Correction method with 2D-CNN
The 2D-CNN in this study consists of convolutional, pool-

ing, and fully connected layers as shown in Fig. 2. The CNN
extracts spatial features using the convolutional and pooling
layers. Multiple data with different time and wind direction
components are used as input data, and input in the channel
direction. In the 2D-CNN, the output of unit zijxy at position
(x, y) in the jth feature map in the ith layer with the filter of
Pi ×Qi is given by

zijxy = f

(
K−1∑
k=0

Pi−1∑
p=0

Qi−1∑
q=0

z
(i−1)j
(x+p)(y+q)kh

kij
pq + bij

)
(1)

where f (·) is the activation function, K is the number of
channels of the previous layer, h is the pixel of the filter, and
b is the bias. The convolution process is performed while
sliding the filter with a stride of 1. After passing through the
convolution–pooling layer, the created feature map is input to
the fully connected layer. Here, the pooling method is max
pooling and the loss function is the root mean square error
(RMSE). The batch size for mini-batch learning is set to 64.
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Figure 2: Overall structure of correction model

2.3 Fully connected neural network
In our previous research, the five-layered fully connected

neural network shown in Fig. 3 was effective for correction
with the Type 1 input [6]. This model is used as a comparison
target for correction in this paper.

As input data, two-dimensional and time-series data of grid
points are converted into one-dimensional data. Each layer is
connected by weights w

(k)
ij and has biases b

(k)
i . The output

of the unit is calculated from the internal state by the ReLU
activation function. The ith output of the kth hidden layer is
given by

h
(k)
i = f




M(k)∑
j=1

w
(k)
ij x

(k)
j + b

(k)
i


 (2)

where M is the number of inputs and x is the input to the
kth hidden layer. The output in the hidden layer becomes the
input to the next layer. Here, the mean square error (MSE) is
used as the loss function.
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All simulations using the correction models in this paper
are constructed using Tensorflow [5]. The activation func-
tion in each model is ReLU. Weights and biases are adjusted
by the back-propagation method with the Adam optimization
function. The learning method is mini-batch learning with a
batch size of 64. Correction models with 18 different layer
configurations and three input sizes are compared to con-
sider an appropriate model. Also, the proposed models are
compared with a previously studied fully connected neural
network[6] under several conditions.

2.1 Correction period and input data
As the input data, the ground wind speed data in the areas

enclosed in squares shown in Fig. 1 are used. MSM-GPV
is data on grid points on a 5 km mesh, and the calculation
is started every 3 hours. For each calculation start time, the
forecast values for 1 hour intervals are calculated up to 39
hours ahead. Wind speed data are given as the east-west and
north-south components. For the correction, the initial wind
speed data at the calculation start time and the forecast value
6 hours ahead in the MSM-GPV wind speed data are used.
By using the two wind speed data for the input, the model
can consider time-series information, which is effective for
the correction. To compare the effects of the input image size,
corrections are conducted by inputting the three types of input
data set enclosed by colored lines in Fig. 1 and listed in Table
1.

Table 1: Types of input data set
Input data Enclosed color (line)

Type 1 4×4 points red
Type 2 8×8 points yellow
Type 3 37×37 points blue

Types 1, 2, and 3 use data from 16 (4×4), 64 (8×8),
and 1369 grid points (37×37), respectively, surrounding the
AMeDAS located in Tokushima. In Type 1 and 2, the
AMeDAS is at the center of the input data, but in Type 3,
the correction target is 100 km from the north end and 100
km from the west end of the data used as shown in Fig. 1.
The periods of the input data sets are assigned as shown in
Table 2.

Table 2: Periods of input data sets
Period

Training April 2015−−March 2016
Validation April 2016−−March 2017

Target February 2018

Each model is trained using the training data, and its gener-
alization performance is examined using the validation data.
The model with the smallest error for the validation data is
used for correction and evaluated with the target data. When
using the CNN, the data is input with time, and X and Y com-
ponents of wind are superimposed in the channel direction.

When using a fully connected neural network, the data is re-
shaped and input as one-dimensional data.

2.2 Correction method with 2D-CNN
The 2D-CNN in this study consists of convolutional, pool-

ing, and fully connected layers as shown in Fig. 2. The CNN
extracts spatial features using the convolutional and pooling
layers. Multiple data with different time and wind direction
components are used as input data, and input in the channel
direction. In the 2D-CNN, the output of unit zijxy at position
(x, y) in the jth feature map in the ith layer with the filter of
Pi ×Qi is given by

zijxy = f

(
K−1∑
k=0

Pi−1∑
p=0

Qi−1∑
q=0

z
(i−1)j
(x+p)(y+q)kh

kij
pq + bij

)
(1)

where f (·) is the activation function, K is the number of
channels of the previous layer, h is the pixel of the filter, and
b is the bias. The convolution process is performed while
sliding the filter with a stride of 1. After passing through the
convolution–pooling layer, the created feature map is input to
the fully connected layer. Here, the pooling method is max
pooling and the loss function is the root mean square error
(RMSE). The batch size for mini-batch learning is set to 64.
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Figure 2: Overall structure of correction model

2.3 Fully connected neural network
In our previous research, the five-layered fully connected

neural network shown in Fig. 3 was effective for correction
with the Type 1 input [6]. This model is used as a comparison
target for correction in this paper.

As input data, two-dimensional and time-series data of grid
points are converted into one-dimensional data. Each layer is
connected by weights w

(k)
ij and has biases b

(k)
i . The output

of the unit is calculated from the internal state by the ReLU
activation function. The ith output of the kth hidden layer is
given by

h
(k)
i = f




M(k)∑
j=1

w
(k)
ij x

(k)
j + b

(k)
i


 (2)

where M is the number of inputs and x is the input to the
kth hidden layer. The output in the hidden layer becomes the
input to the next layer. Here, the mean square error (MSE) is
used as the loss function.
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Figure 3: Structure of fully connected neural network

3. Network Configuration of the Correction Model
Table 3 shows the parameters of the developed correction

models. The models are changed to cases 1 to 18, and their
correction accuracies are compared. The correction accuracy
of each model is evaluated on the basis of the improvement
rate of the RMSE with respect to the uncorrected 6-hour fore-
cast value of MSM-GPV. In addition, each correction model
is evaluated on the basis of the distribution of the error.

Table 3: Types of correction model
Number of maps Fully connected layer

case 1st 2nd 3rd 4th 1st 2nd 3rd 4th
1 32 64 128 - 128 8 - -
2 16 32 64 - 128 8 - -
3 32 64 128 - 128 64 32 8
4 16 32 64 - 64 32 16 8
5 32 32 32 - 128 8 - -
6 128 128 128 - 128 8 - -
7 16 32 64 - 128 64 32 8
8 32 64 128 256 256 128 32 8
9 16 32 64 - 2048 1024 512 8

10 128 128 128 128 256 128 32 8
11 32 128 - - 128 8 - -
12 32 64 - - 128 8 - -
13 16 32 - - 128 8 - -
14 64 128 - - 256 8 - -
15 64 - - - 256 8 - -
16 128 - - - 512 8 - -
17 16 32 64 - 256 228 32 8
18 32 64 128 - 64 32 16 8

3.1 Loss transition in training process
Figure 4 shows the transition of losses for the training and

validation data in the training process with the best and worst
improvement rates for each input data type. The loss for the
training data decreases during training in all models. In con-
trast, the loss for the validation data start to increase from the
early stage of training as shown in Fig.4(b) . In the case of 200
epochs, it can be seen that overtraining occurs in all cases. In
the case of Type3, the loss for the training data fluctuates, the
loss at 200 epochs is the smallest, and the output fits the train-
ing data very well as shown in Fig. 4(a). Therefore, the target

data is corrected by each model with the smallest error for the
validation data.
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Figure 4: Transition of loss in training process

3.2 Correction accuracy and improvement rate
The error with respect to the validation data of each model

is minimized at a certain number of epochs. In Table 4, red
numbers indicate the best model and blue numbers indicate
the worst model for each input data type. The models at these
epoch numbers are used for correction.

Table 4: Epoch with minimum loss
case 1 2 3 4 5 6 7 8 9

Type1 14 24 21 24 24 19 16 10 10
Type2 10 15 23 19 19 6 14 13 4
Type3 16 23 24 21 24 17 14 193 15
case 10 11 12 13 14 15 16 17 18

Type1 22 20 21 31 20 22 32 32 27
Type2 11 16 12 20 11 13 9 22 12
Type3 143 15 13 16 16 16 7 20 21

As a result of the correction, using the network for all input
types and models, the average RMSE of the four correcting
points was improved from that of the uncorrected data. Table
5 shows the maximum and minimum improvement rates for
each input type. The improvement rates at points B and D
were largest because these points are grid points on the sea
where the effect of the terrain is small. Therefore, the ten-
dency of the error is easy to grasp. On the other hand, points
A and C are grid points on land where the effect of the ter-
rain is large; therefore, the tendency of the error is considered
to be complex. Regardless of the input type, the average im-
provement rate of the four points was positive; therefore, the
correction was successfully made in terms of RMSE. The cor-
rection result with a 37×37 data input to the network model
of case 12 was the best.

Figures 5(a) to 5(d) show the distribution of the error on
each model before and after correction. The variance of the
error decreases after correction, and it can be seen that the
correction is performed in all models. In particular, a signifi-
cant improvement was seen at points B and D. In addition, no
significant difference was observed between the CNN and the
HNN when the correction was performed using Type 1 data.
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(b) Point B
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(c) Point C
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(d) Point D

Figure 5: Error distribution for each point and model

Table 5: Improvement of RMSE
Input Type 1
Point A B C D Average
case3 8.07 28.59 6.67 30.31 21.43
case11 14.93 23.20 -0.23 23.29 14.41

5–layer HNN 9.69 27.97 10.5 32.60 22.96
Input Type 2
Point A B C D Average
case4 12.11 27.25 5.36 22.24 18.96
case16 16.67 21.20 -20.16 2.51 6.95
Input Type 3
Point A B C D Average

case12 25.63 33.36 13.83 23.71 25.41
case9 21.44 11.58 -21.24 -4.83 2.69

Compared with the CNN for each input, at a points A and C
on land, a larger input size was a better improvement rate. On
the other hand, for points B and D on the sea, a smaller input
size has a better improvement rate.

4. Conclusions

We corrected the 6-hour forecast values of MSM-GPV at
four grid points around Tokushima City by using a CNN and
confirmed the improvement rate for the MSM-GPV forecast.
Forecasting accuracy can be improved by correction using a
wide range of input data. Comparing the error distributions
obtained before and after the correction, there was a small
difference between the CNN and the HNN.

Future tasks should consider the relationship between the
prediction time and the size of input data, and evaluate the
effect of MSM-GPV correction on wind speed prediction.
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