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Abstract

This paper describes a prediction method for wind speed us-
ing a neural network and an investigation of the structure of
the network. Generally, wind speed is observed as time series
data, and the current wind speed is related to the past wind
speed. Therefore, we propose a prediction model using long
short-term memory (LSTM) and a one-dimensional convolu-
tional neural network (1D-CNN) in order to consider the past
information for prediction. The prediction results of these
networks and a fully connected neural network are compared
for evaluation. The prediction accuracy and time delay are
found to be improved by using LSTM and the 1D-CNN.

1. Introduction

Currently, most electricity is generated from fossil fuels.
However, the amount of fossil fuels is limited, and CO2,
which is a cause of global warming, is emitted during power
generation. Therefore, in recent years, renewable energy
has attracted attention because it does not emit CO2 during
power generation. Among the various types of renewable
energy, wind power generation is being introduced rapidly
all over the world since it can generate electricity continu-
ously if wind blows. However, wind power generation has
a problem of output fluctuation due to wind speed changes.
As measures against this problem, electric companies regu-
late the supply of power using thermal power generation and
pumped-storage hydroelectricity. Hence, it is necessary to
predict the output of wind power generation to regulate the
supply of power effectively.

So far, our research group has proposed several types of
wind speed prediction system using a neural network. How-
ever, there is a time-delay prediction error[1]. In this paper,
we propose a new wind speed prediction system with long
short-term memory (LSTM) and a one-dimensional convolu-
tional neural network (1D-CNN), both of which are effective
for considering time-series data. LSTM is an extension of a
recurrent neural network (RNN), which inputs the unit’s out-
put to the same unit recursively. It can learn the long-term
dependence of time series data, and it is often used for sen-
tence generation and dialogue system. A 1D-CNN can ex-

tract features by convolving time series data in the time direc-
tion, and it is used for sound recognition. Focusing on these
features, LSTM and a 1D-CNN are expected to be effective
methods for wind speed prediction. The usefulness of these
networks is evaluated from the comparison of prediction re-
sults in terms of the accuracy and time delay of prediction
outputs. Here, we use a fully connected neural network for
comparison with these networks.

2. Wind Speed Prediction System
2.1 Prediction period and input data

The prediction period is set to 1 h later in consideration
of the adjustment ability of thermal power generation and
pumped-storage hydroelectricity. We use the wind speed data
of Tokushima city acquired from AMeDAS at 10 min inter-
vals as input and teaching data. However, it is difficult to
make predictions from only the wind speed. Therefore, we
used the wind direction and extraterrestrial solar radiation as
input data, which include information on seasonality, region-
ality, and the time of day. These are also data for Tokushima
city given at 10 min intervals. The wind direction acquired
from AMeDAS is expressed as one of 16 directions. This
is used to decompose the wind speed into north-south and
east-west components. The extraterrestrial solar radiation is
the theoretical value. An example of input data is shown in
Fig.1; data is normalized to values from 0 to 1 for inputting
because each set of data has a different scale.

0 6 12 18 24 30 36 42 48 54 60 66 72
−8

−4

0

4

8

12

0

500

1000

1500Extraterrestrial solar radiation
North−South

Time [hour]

W
in

d
 s

p
e
e
d

 [
m

/s
]

East−WestObserved value

E
x

tr
a
te

rr
e
st

ri
a
l 

so
la

r 
ra

d
ia

ti
o

n
 [

W
/m

2
]

Figure 1: Input data for May 20-22, 2016 at Tokushima

2.2 Constitution of fully connected neural network
Figure 2 shows the fully connected neural network, which

consists of an input layer, three middle layers, and an out-
put layer. In order to consider past information, the input
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is data for one day (144 dimensions) including the current
value. Each layer is connected with weight w(k)

ij and has one

bias weight b(k)i . The output from the unit is calculated by
the activation function ReLU (ϕ(u) = max(0, u)) from in-
ternal state u. Hence, the ith output of the kth middle layer is
expressed by

h
(k)
i = ϕ




M(k)∑
j=1

w
(k)
ij x

(k)
j + b

(k)
i


 (1)

where M (k) is the number of inputs and x
(k)
j is the value

input to the kth middle layer. The output is the input of the
next layer. The weights and biases of each unit are adjusted
by the backpropagation (BP) method. Here, the loss function
is the squared error.

Figure 2: Constitution of fully connected neural network

2.3 Constitution of LSTM
Figure 3 shows the constitution of a layer of the LSTM[2].

Here, inputs, outputs, and weights are represented by vec-
tors and matrices, and Fig.3 shows the operation of a layer.
The LSTM block has an input gate, output gate, and forget
gate[3]. These gates realize learning long-term dependences.
The model using the LSTM is constructed by replacing units
of middle layers of the fully connected neural network in
Fig.2 with LSTM blocks. Figure 4 shows the LSTM unfolded
in the time axis direction. Weights and biases are adjusted by

Figure 3: Constitution of LSTM layer

backpropagation through time (BPTT), where the loss func-
tion is the squared error. BPTT can update weights in consid-
eration of a time series because it backpropagates the error to
the recursive connection. However, when the time series be-
comes longer, the BP route also becomes longer. This can be
regarded as the layer becoming deep, and the calculation cost
increases. Therefore, in order to reduce the calculation cost,
we use truncated BPTT. This backpropagates the error only in
a certain period, such as for the sequence length in Fig.4, dur-
ing training. Here, we set the sequence length to 144, which
is the same as the input length of a fully connected neural
network and the number of data for one day.

Figure 4: Operation of LSTM

2.4 Constitution of 1D-CNN
Figure 5 shows the constitution of the 1D-CNN. In order to

consider past information, the input is data for one day (144
dimensions) including the current value. If there are multiple
input data, the input vectors are superimposed in the channel
direction as shown in Fig.5. In Fig.5, C(k) is the number
of channels in the kth convolutional layer and H is the size
of the filter. The activation function is ReLU. Therefore, the
convolution process of the ith filter is expressed by

h
(k)
ij = ϕ




C(k−1)∑
p=1

H∑
q=1

w
(k)
ipqx

(k)
p, j+q + b

(k)
i


 (2)

where w
(k)
ipq is the weight of the filter, b(k)i is the bias of the

filter, and x(k) is input to the kth layer. The number of fil-
ters in each layer is 16, 32, and 64, and H is set to 3. The
convolution processes are performed while sliding the filter
with a stride width of 1. After passing through the three con-
volutional layers, the created feature map is input to the fully
connected output layer. The weight and bias are updated by
BP. Here the loss function is the squared error.

Figure 5: Constitution of 1D-CNN
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3. Prediction Results
In this study, all prediction models are implemented by

Chainer[4] and trained with data from 2010 to 2014. The
optimization function is Adam. The training method is mini-
batch training and the batch size is 100. Gradient clipping
with a threshold of 5 is performed to prevent gradient explo-
sion. Table 1 shows the input datasets of two patterns, Type1
and Type2, used to consider the effectiveness of increasing
the input data. All prediction models are evaluated for loss
transition in the training process from the prediction result
for 2015, and the best epoch is decided from the transition
of loss. We evaluate the prediction result for 2016. The pre-
diction accuracy is evaluated by the root-mean-square error
(RMSE) of the predicted wind speed, and the time delay is
evaluated by the cross-correlation function. The data of the
first day is only used for the input in order to align the predic-
tion period of all models.

Table 1: Types of input datasets
Input data

Type1 Wind speed (no normalization)
North-south wind speed

Type2 East-west wind speed
Extraterrestrial solar radiation

3.1 Loss transition in training process
Figures 6(a) and 6(b) show the transition of loss in the

training process in each network. The loss for the training
data decreases in all models. In contrast, the loss for the vali-
dation data starts to increase from the early stage of training.
Hence, after 500 epochs, it can be seen that overtraining oc-
curs in all cases. In the case of LSTM, the loss for the training
data fluctuates, the loss at 500 epochs is the smallest, and the
output fits the training data very well as shown in Fig.6(a).
We consider that these features show the effectiveness of the
LSTM.
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Figure 6: Transition of loss in training process

3.2 Prediction error and time delay
In the evaluation of the prediction models, we use the

weights of the epoch where the loss for the validation data
is nearly minimum for each model as shown in Table 2. We
predict the data for 2016 and evaluate the results. Table 3

shows the RMSE of the prediction for 2016. Comparing the
network types, the LSTM has the smallest RMSE in both
Type1 and Type2, and the prediction accuracy is good. On
the other hand, comparing the input type, the RMSE of Type2
is smaller, except in the case of a fully connected neural net-
work. In particular, the prediction accuracy of the 1D-CNN
is improved. It is found that the 1D-CNN is valid in the case
of multiple input data.

Table 2: Epoch for evaluation of RMSE
Input data Fully connected LSTM 1D-CNN

Type1 24 86 2
Type2 31 86 17

Table 3: Prediction RMSE [m/s]
Input data Fully connected LSTM 1D-CNN

Type1 0.939 0.938 0.940
Type2 0.967 0.918 0.918

In order to evaluate the time delay of the prediction result,
the cross-correlation function between the calculated value
and the prediction result is obtained as shown in Fig.7. The
cross-correlation function is defined by

z(τ) =
1

N

N−1∑
t=0

v̂(t)v(t+ τ) (3)

where v is the observed value, v̂ is the predicted value, τ is the
time lag, and N is the number of data. In Fig.7 the persistent
model presupposes that the current wind speed will be sus-
tained until the prediction time (1 h). Hence, the prediction
of the persistent model is the waveform of the observed value
with a 1 h delay, and the cross correlation has a peak at 1 h. If
the prediction result becomes accurate and decreases the time
delay, the peak of the cross correlation will move from 1 h to
0 h. However, in Fig.7, all the peaks for the prediction results
are located at 1 h, indicating that the models cannot reduce
the time delay further. Therefore, we discuss the degree of
the improvement of the time delay from the viewpoint of the
ratio of the cross correlation at 1 h and 0 h. The ratio of the
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cross correlation to each prediction result is shown in Table
4. For the persistent model, the ratio is 0.826. By comparing
the input type, it is found that the ratio of Type2 is larger than
that of Type1. Therefore, the time delay is reduced by adding
the wind direction and extraterrestrial solar radiation to the
input. On the other hand, by comparing the models, it was
found that there is not much difference in the results.

Table 4: Ratio of cross correlation
Input data Fully connected LSTM 1D-CNN

Type1 0.856 0.855 0.853
Type2 0.895 0.886 0.887

To consider the prediction result for each day, the predic-
tion output of May 21, 2016 is shown in Figs.8(a) and 8(b).
By comparing the input type, it can be confirmed that the time
delay is improved around 16:00. Also, the predicted values of
the LSTM and 1D-CNN are close to the observed values in
Fig.8(b).
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Figure 8: Prediction result for May 21, 2016 at Tokushima

As a result, the LSTM and 1D-CNN with the Type2 in-
put have good prediction accuracy and the time delay is re-
duced. On the other hand, even if Type2 is used for the fully
connected neural network, the prediction accuracy is not im-
proved. This is thought to be related to the number of dimen-
sions of the input. In the case of the fully connected neural
network, the number of dimensions of the input is extremely
large, 432, in consideration of the past day of each of the
three inputs. On the other hand, the LSTM has a structure
that can consider time series; thus, it that inputs only the cur-
rent value, and the number of dimensions is 3. In the case
of the 1D-CNN, the number of dimensions of the input is
large and the same as that of the fully connected neural net-
work. However, the 1D-CNN has good prediction accuracy.
In the case of increasing the input data, the input of the 1D-
CNN is added in the channel direction and the input data is

convolved by the filter. Hence, time information is not lost.
The fully connected neural network cannot process time se-
ries data and timing information between the three inputs ef-
fectively because of the structure of the connection. Since the
1D-CNN can extract features from the input with time infor-
mation even if the input data increases, the prediction accu-
racy is good. The significance of adding an input that assists
prediction is indicated by the prediction results. Therefore,
the LSTM and 1D-CNN can cope with an increase in input
data while considering time series, making them effective for
wind speed prediction. In particular, the LSTM can add a
large number of input data because it has an input vector with
fewer dimensions.

4. Conclusions
We predicted the 1-hour-later wind speed using a fully

connected neural network, LSTM, and a 1D-CNN and com-
pared their prediction results. Also, we compared the case
of inputting only the wind speed and the case of inputting
normalized data of the north-south/east-west wind speed and
extraterrestrial solar radiation. The prediction accuracy and
time delay were improved by using the north-south/east-west
wind speed and extraterrestrial solar radiation for the LSTM
and 1D-CNN. Also, the LSTM is expected to improve them
by adding a large numbers of valid input data.

A future task is to consider valid input data is addition to
the wind direction and extraterrestrial solar radiation. In ad-
dition, we will search for the optimum hyperparameters, such
as the number of layers, units, and filters, for wind speed pre-
diction by these methods.
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