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Abstract

Drug-induced ion channel trafficking disturbance can cause cardiac arrhythmias. The subcellular level at which drugs interfere in trafficking path-
ways is largely unknown. KIR2.1 inward rectifier channels, largely responsible for the cardiac inward rectifier current (IK1), are degraded in lyso-
somes. Amiodarone and dronedarone are class III antiarrhythmics. Chronic use of amiodarone, and to a lesser extent dronedarone, causes
serious adverse effects to several organs and tissue types, including the heart. Both drugs have been described to interfere in the late-endo-
some/lysosome system. Here we defined the potential interference in KIR2.1 backward trafficking by amiodarone and dronedarone. Both drugs
inhibited IK1 in isolated rabbit ventricular cardiomyocytes at supraclinical doses only. In HK-KWGF cells, both drugs dose- and time-dependently
increased KIR2.1 expression (2.0 � 0.2-fold with amiodarone: 10 lM, 24 hrs; 2.3 � 0.3-fold with dronedarone: 5 lM, 24 hrs) and late-endo-
somal/lysosomal KIR2.1 accumulation. Increased KIR2.1 expression level was also observed in the presence of Nav1.5 co-expression. Augmented
KIR2.1 protein levels and intracellular accumulation were also observed in COS-7, END-2, MES-1 and EPI-7 cells. Both drugs had no effect on
Kv11.1 ion channel protein expression levels. Finally, amiodarone (73.3 � 10.3% P < 0.05 at �120 mV, 5 lM) enhanced IKIR2.1 upon 24-hrs
treatment, whereas dronedarone tended to increase IKIR2.1 and it did not reach significance (43.8 � 5.5%, P = 0.26 at �120 mV; 2 lM). We
conclude that chronic amiodarone, and potentially also dronedarone, treatment can result in enhanced IK1 by inhibiting KIR2.1 degradation.
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Introduction

Proper ion channel expression and function is one of the corner-
stones of normal heart function. Unequal ion distribution between the
intra-and extracellular compartment in concert with ion specific volt-
age-sensitive channels in the plasma membrane determines action
potential formation. The stable and negative resting membrane poten-
tial in between action potentials results from the activity of the inward
rectifying ion channels of the KCNJ gene family [1]. In the heart, the
KIR2.1 channel protein, encoded by KCNJ2, is the main contributor to
ventricular IK1. KIR2.1 loss of function has been associated with
Andersen–Tawil syndrome, characterized by action potential prolon-
gation, and thus QT-lengthening on the ECG. Furthermore, patients
experience periodic paralysis and mild episodes of cardiac arrhythmia
[2]. In contrast, gain-of-function mutations are associated with QT

shortening and atrial fibrillation [3]. Besides its important function in
the heart, KIR2.1 proteins also contribute to inward rectifier currents
in skeletal and smooth muscle, and several neuronal cell types [4]. In
Andersen–Tawil syndrome patients, association with the occurrence
of increased U-waves on the ECG has been found [5]. Pharmacologi-
cal inhibition of KCNJ channels by barium has also been associated
with more apparent U-waves [6]. In a study on the presence and
amplitudes of U-waves associated with loss- and gain-of-function
mutations in KCNJ2 patients at normokalemic conditions, the authors
speculate that at least a part of the U-wave is inversely correlated with
the amount of IK1 [7].

KIR2.1 ion channel trafficking is a strictly regulated process that
can be divided into forward (anterograde; towards the plasma mem-
brane) and backward (retrograde; from the plasma membrane) traf-
ficking events [8]. KIR2.1 channels become internalized via a clathrin-
mediated pathway and subsequently travel towards the lysosome,
where the channels ultimately become degraded via an initial discrete
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cleavage step that removes the N-terminus [9, 10]. Interference in
lysosomal degradation and upstream trafficking events by specific
inhibitors results in increased KIR2.1 expression levels, and most
likely by saturation of the endocytotic machinery, also in increased IK1
densities [9, 10]. Also clinical drugs can have significant effects on
ion channel trafficking and this can lead to severe adverse effects [8].
Among the variety of affected channel proteins, the KIR2.1 channel
internalization and degradation is sensitive for disturbances by,
although old, clinical drugs like chlorpromazine and chloroquine
[9–11].

Amiodarone is a class III antiarrhythmic, based on the benzofuran
structure used in atrial and ventricular fibrillation therapy [12]. Amio-
darone is a multichannel blocker affecting delayed rectifier IKr, sodium
channel and L-type calcium currents. Amiodarone therapy is known
for its many adverse effects on the ocular, neurological, dermatologi-
cal, thyroid, gastrointestinal, pulmonary, cardiac and liver systems
[13–15]. Some studies demonstrate detrimental effects of amio-
darone on cargo trafficking through the late-endosome/lysosome
compartments, which could partly explain the plethora of side effects
[16–18]. Amiodarone has been shown to inhibit the degradation of
lung surfactant protein A in vitro and in vivo [16]. Dronedarone is a
synthetic analogue of amiodarone developed to preserve antiarrhyth-
mic properties with less adverse effects, especially thyroid and pul-
monary toxicity [19]. Compared with amiodarone, dronedarone is
less lipophilic and has a much shorter half-life (1–2 versus 30–
55 days). Nevertheless, also dronedarone appears to interfere in nor-
mal late-endosome/lysosome function [17]. Chronic amiodarone ther-
apy has been associated with the appearance of prominent U-waves
[20–22], which may allude to a potential disturbance of IK1. Currently,
it is unknown whether amiodarone and dronedarone interfere in the
process of KIR2.1 trafficking, in particular its degradation, which was
therefore investigated in the current study.

Materials and methods

Rabbit ventricular cardiomyocyte isolation

Animal care and experimental procedures were in accordance with the

‘European Directive for the Protection of Vertebrate animals used for

Experimental and Scientific Purpose, European Community Directive

2010/63/EU’ and were approved by the Committee for Experiments on
Animals of the Utrecht University, the Netherlands.

Ventricular rabbit cardiomyocytes were isolated by enzymatic diges-

tion using a Langendorff set-up identical to that described previously

[23].

Cell culture

HEK293 cells expressing C-terminal GFP-tagged murine KIR2.1 (HK-

KWGF cells) were cultured as described before [9, 24]. Mouse P19

embryonal carcinoma-derived germ layer cell lines END-2, MES-1 and

EPI-7 cells [25, 26], COS-7, HEK293t, HEK-hERG [27] and Ex-293 [28]
cells were cultured in DMEM (Lonza, Breda, the Netherlands)

supplemented with 10% FCS (Sigma-Aldrich, Zwijndrecht, the
Netherlands), 2 mM L-glutamine (Lonza), and 50 U/ml penicillin and

50 mg/ml streptomycin (both Lonza). In time course experiments, cells

were seeded and harvested on identical days.

In COS-7 western blot experiments, cells were transfected using lin-
ear polyethylenimine (PEI). In short, PEI (Mw 25,000 Polysciences Inc.,

Eppelheim, Germany) was dissolved in water at 0.323 g/l. PEI solution

was subsequently adjusted to pH 8.0, sterilized using filtration and
freeze-thawed four times. Aliquots of PEI stock solution were stored at

�20°C. For each transfection, 2.5 lg plasmid DNA was added to a

150 mM NaCl solution, total volume 150 ll. 20 ll of PEI stock solution

was also added to a 150 mM NaCl solution, total volume 150 ll. Both
solutions were mixed, incubated at room temperature for 20 min. and

subsequently added to the cells. Medium was replaced at 16 hrs post-

transfection. In immunofluorescence microscopy experiments, HEK293t,

END-2, MES-1 and EPI-7 cells were transfected with human
KIR2.1 + Rab7-GFP or KIR2.1 alone using Lipofectamine (Invitrogen,

Breda, the Netherlands) according to the manufacturer’s protocol.

Drugs

Amiodarone (cat. no. 8357 lot AR20569) and dronedarone (cat. no.

SR33589B lot 7963) (both Sanofi Recherche, Montpellier, France) were
dissolved in DMSO at 50 mM.

Immunohistochemistry and confocal microscopy

HK-KWGF cells were cultured on Ø 15-mm cover slips, pre-coated with

poly-L-lysine (Sigma-Aldrich). END-2, MES-1, EPI-7 and HEK293t cells

were cultured on Ø 15-mm cover slips, pre-coated with 0.1% gelatin.
Cells were rinsed with PBS supplemented with 1 mM Ca2+ and 1 mM

Mg2+ and fixed with 3% paraformaldehyde, pH 7.4. Permeabilization

was performed with 0.5% Triton X-100 in PBS and 50 mM PBS–glycine
was used as quenching agent. To block non-specific interaction sites,
NET-gel was applied on the cells. Then cells were incubated overnight

with the primary antibodies KIR2.1 (for END-2, MES-1, EPI-7 and

HEK293t cells (1:250; Santa Cruz Biotechnology, Heidelberg, Germany,

cat. no. sc-18708), LAMP-1 (1:200; BD Bioscience Pharmingen, Breda,
The Netherlands) or EEA1 (1:1000; BD Bioscience Pharmingen) (both

for HK-KWGF cells) in NET-gel. Cell nuclei were stained with 40,6-diami-

dino-2-phenylindole (DAPI) (1:50.000; Molecular Probes, Leiden, The
Netherlands) during secondary antibody incubation. A five times 5 min.

wash step procedure was done with NET-gel before and after incubation

with donkey antimouse DyLight secondary antibody (1:250; Jackson

ImmunoResearch Laboratories Inc., West Baltimore Pike West Grove,
PA, USA) or donkey anti-goat Alexa Red (1:400; Jackson ImmunoRe-

search Laboratories Inc.). The cover slips were mounted with Vec-

tashield (Vector Laboratories Inc. Burlingame, CA, USA), and confocal

images were obtained using a Zeiss Axiovert 200 M confocal micro-
scope (Carl Zeiss Microscopy GmbH, Germany) equipped with a 639

water immersion objective (NA 1.2) plus 29 digital zoom. Excitation

was performed with an air-cooled Argon ion laser (LASOS, RMC 7812Z,
488 nm) for GFP and a HeNE (LASOS, SAN 7450A, 543 nm) laser for

DyLight. Colocalization between KIR2.1-GFP, EEA1, and LAMP-1, and

KIR2.1 and Rab7-GFP, was quantified by determining the Pearson coeffi-

cient (r) with the Costes automated threshold method provided by the
JACoB plugin for the ImageJ software [29].
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Western blotting

Following treatment, cells were harvested in lysis buffer (20 mM HEPES,
pH 7.6, 125 mM NaCl, 10% (v/v) glycerol, 1 mM EDTA, 1 mM EGTA,

1 mM dithiothreitol, 1% (v/v) Triton X-100). Subsequently, 20 lg protein

lysate was separated by 7% or 10% SDS-PAGE and blotted onto nitrocel-

lulose membrane. Blots were blocked with 5% (w/v) non-fat milk powder
for detection with GFP antibody (1:500; Santa Cruz Biotechnology, cat.

no. sc9996) or Kv11.1 antibody (1:3000; Alomone Labs, Jerusalem, Israel,

cat. no. APC062) or 5% egg yolk (v/v) for KIR2.1 antibody (1:250; Santa

Cruz Biotechnology, cat. no. sc-18708) in TBST (20 mM Tris–Cl, pH 8.0,
150 mM NaCl, 0.05% (v/v) Tween-20) for 1 hr at room temperature. Don-

key antimouse or anti-goat (Jackson ImmunoResearch, cat. nos. 715-

065-137 and 705-035-003, respectively) horseradish peroxidase sec-
ondary antibody was subsequently used. Standard ECL Prime procedure

was used for final detection (GE Healthcare Life Sciences, Eindhoven, the

Netherlands).

Electrophysiology

In ventricular rabbit cells, IK1 was measured by patch clamp experiments
in whole-cell mode using an Axon amplifier controlled by pClamp9.2 soft-

ware (Molecular Devices, Sunnyvale, CA, USA). Experiments were per-

formed at 37°C using temperature control (Cell MicroControls, Norfolk,

VA, USA). Cardiomyocytes were put in the chamber and superfused with
normal Tyrode’s solution (mM) (140 NaCl, 5 KCl, 6 HEPES, 6 glucose, 1.8

CaCl2, 1 MgCl2, pH 7.4 with NaOH). Borosilicate glass pipettes were made

with a Sutter P-2000 puller (Sutter Instrument, Novato, CA, USA) and had

a pipette resistant of 2–3 MΩ when filled with pipette solution (mM) (110
KCl, 10 EGTA, 10 HEPES, 4 K2-ATP, 5.17 CaCl2, 1.42 MgCl2, pH 7.2 with

KOH). The voltage protocol for IK1 measurements was as follows: holding

potential was set to �80 mV, and a prepulse at �40 mV for 200 ms was

applied to inactivate native sodium current. IK1 was elicited by 1-s step
pulses from �120 mV to 30 mV by 10 mV step increments.

HK-KWGF cells were grown on 0.1% gelatin (Bio-Rad, Veenendaal,

the Netherlands) coated Ø 12-mm cover slips. IKIR2.1 from single cells
was recorded in whole-cell voltage clamp mode using an Axopatch

200B amplifier and a Digidata 1322A digitizer and recorded with

pCLAMP 9.2 software. Signals were low-pass-filtered at 2 kHz and sam-

pled at 4 kHz. Measurements were taken at 37°C in a temperature-con-
trolled perfusion chamber filled with tyrode solution containing (in mM)

NaCl 140, KCl 5.4, CaCl2 1.8, MgCl2 1, glucose 6, HEPES 6, pH 7.4/

NaOH. Pipettes were pulled on a Sutter Instrument P-2000 laser micro-

pipette puller and had a resistance of 1.5–3 MΩ when filled with pipette
solution, containing (in mM) K-gluconate 125, KCl 10, EGTA 5, CaCl2
0.6, MgCl2 2, HEPES 5, Na2ATP 4, pH 7.2/KOH. HK-KWGF cells were

kept at a holding potential of -40 mV and 1-s test pulses were applied
ranging from �120 mV to +30 mV with increments of 10 mV.

Steady-state currents from both cell types were analysed using

Clampfit 9.2 software (Molecular Devices) and corrected for membrane

capacitance to determine current density.

Statistics

Data were analysed using GraphPad Prism version 6.00 for Windows
(GraphPad Software, La Jolla, California USA) or Origin 8 (Microcal

Software, Northampton, MA, USA) for rabbit cardiomyocyte

measurements. For normally distributed data, Student’s t-test or ANOVA

for paired samples with Tukey’s HSD post hoc or Bonferroni correction

for multiple comparisons was used, while nonparametric data were

analysed using Wilcoxon rank-sum test and Friedman’s test with Dunn’s

multiple comparison test. Results are presented as mean � S.E.M.
Values of P < 0.05 were considered significant.

Results

Amiodarone and dronedarone are known to have IK1 blocking capacities
in guinea pig ventricular cardiomyocytes [30, 31], albeit that their
respective IC50 values of >20 lM and >30 lM are beyond maximal
plasma levels obtained from patients (approximately 5 lM for amio-
darone and 0.3 lM for dronedarone) [19, 32]. Using rabbit ventricular
cardiomyocytes, we were able to confirm these results as depicted in
Figure 1A and B. Block at �120 mV was 17.0 � 1.4%, 25.4 � 4.0%
and 54.3 � 7.2% for 5, 10 and 50 lM amiodarone, respectively. Out-
ward current block at �80 mV was 17.5 � 2.3% and 35.7 � 6.0% for
10 and 50 lM amiodarone, respectively. Similar levels of inhibition were
observed with dronedarone (block at �120 mV of 17.6 � 2.5%,
28.4 � 3.6% and 46.2 � 6.3%; block at �80 mV of 2.3 � 0.3%,
15.1 � 2.8% and 40.1 � 7.0% for 1, 5 and 20 lM, respectively).

We next assessed effects of chronic treatment with amiodarone
and dronedarone on KIR2.1 expression in our previously described
model system for KIR2.1 channel trafficking, HK-KWGF cells [9–11].
Both amiodarone and dronedarone resulted in dose-dependent
increase in total KIR2.1 expression as established by Western blotting
(Fig. 2A and B). In these assays, the strongest effects were reached
with 20 lM amiodarone (2.9 � 0.2-fold) and 10 lM dronedarone
(6.1 � 1.5), respectively. No effects on mRNA levels were found by
quantitative PCR (1.00 � 0.02 versus 0.92 � 0.02 and 1.02 � 0.01
for control, 10 lM amiodarone and 5 lM dronedarone, respectively).
In contrast, amiodarone and dronedarone were unable to increase
mature and immature Kv11.1 expression in stably transfected
HEK293 cells (Fig. 2C and D).

Finally, we tested whether increased KIR2.1 expression levels are
dependent upon coexpression of Nav1.5 expression, a cardiac ion
channel that has previously been shown to associate with KIR2.1 and
which combined expression demonstrates reciprocal modulation
[33]. Ex-293 cells, a HEK293 cell line both expressing KIR2.1 and
Nav1.5 [28], displayed a dose-dependent increase in KIR2.1 expres-
sion upon treatment with either amiodarone or dronedarone (Fig. 2E
and F). Strongest effects were observed with 20 lM amiodarone
(3.4 � 1.2-fold) and 10 lM dronedarone (14.44 � 6.0).

To determine whether the increased KIR2.1-GFP expression levels
is cell line specific or depends on the GFP tag, experiments were
repeated in transiently transfected COS-7 cells. Under these condi-
tions, similar effects were seen for amiodarone and dronedarone on
the non-tagged human KIR2.1 (Fig. 3A and B). Strongest effects in
COS-7 cells were observed with 20 lM amiodarone (3.4 � 0.6-fold)
and 10 lM dronedarone (4.5 � 0.7).

Significant enhanced expression of KIR2.1 in HK-KWGF cells was
seen from 4 hrs following drug application. Maximal response rates
were observed after 4–6 hrs (Fig. 4A and B).
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Immunofluorescence microscopy revealed dose-dependent accu-
mulation of KIR2.1-GFP (Fig. 5A) in a pattern resembling that of bafi-
lomycin A1 and chloroquine treatment [10]. No intracellular
accumulation was seen with 2 lM amiodarone or dronedarone, while
relatively small aggregates were seen with 5 lM amiodarone and
large aggregates were observed with 10 lM amiodarone or 5 lM
dronedarone (Fig. 5A). In order to exclude that KIR2.1-GFP accumula-
tion in response to amiodarone and dronedarone is cell type specific
or depends on the GFP tag, we made use of mouse P19 embryonal
carcinoma-derived END-2, MES-1 and EPI-7 cells representing the
three different germ layers [34] that were transiently transfected with
non-tagged human KIR2.1. Amiodarone at 10 lM induced clear intra-
cellular aggregates similar as observed in HK-KWGF cells (Fig. 5B).
Furthermore, dronedarone at 5 lM induced intracellular KIR2.1 accu-
mulation in MES-1 cells. In END-2 and EPI-7 cells, dronedarone
appeared to induce larger aggregates (Fig. 5B).

An increase in KIR2.1-GFP costaining for lysosomes (LAMP1) was
observed following 10 lM amiodarone or 5 lM dronedarone (Pear-
son coefficient 0.13 � 0.02, 0.56 � 0.03 (P < 0.05) and
0.58 � 0.01 (P < 0.05) for control, 10 lM amiodarone and 5 lM
dronedarone, respectively) (Fig. 6A). Costaining for early endosomes
(EEA1) revealed no increase in colocalization following 10 lM amio-
darone (0.10 � 0.06 versus 0.18 � 0.07 (n.s.) for control and
10 lM amiodarone) (Fig. 6B). In cells cotransfected with non-tagged
KIR2.1 and Rab7-GFP (late endosome), no change in colocalization
was observed in response to 10 lM amiodarone or 5 lM dronedar-
one (Pearson coefficient 0.49 � 0.08, 0.54 � 0.06 (n.s.) and
0.51 � 0.07 (n.s.) for control, 10 lM amiodarone and 5 lM drone-
darone, respectively) (Fig. 6C).

We suggested that the intracellular accumulation of KIR2.1-GFP
protein could result in saturation of upstream trafficking pathways
which may result in enhanced current levels, as seen before with the
lysosomal inhibitor chloroquine [9] and the clathrin-mediated inter-
nalization inhibitor dynasore [10]. Cells were treated for 24 hrs with
either 2 lM dronedarone or 5 lM amiodarone, and IK1 densities were
compared to their non-treated counterparts (Fig. 7A and B). Chronic
dronedarone treatment resulted in a slight trend towards increased
IKIR2.1 densities for the inward (43.8 � 5.5%, P = 0.26 at �120 mV)
and a non-significant increase in outward (32.0 � 7.8%, P = 0.83 at
�60 mV) current components. 24-hrs treatment with amiodarone
resulted in a significant increase in the inward current component at
�120, �110 and �100 mV of 73.3 � 10.3%, 78.0 � 10.9% and
84.4 � 11.5%, respectively, whereas a non-significant increased out-
ward current (75.9 � 24.9%, P = 0.38 at �60 mV) was observed.

Discussion

Amiodarone is known for its hepatic and pulmonary adverse effects in
patients. This is associated with the occurrence of lysosomal struc-
tural abnormalities such as lamellar lysosomal inclusion bodies [35,
36]. Less is known on the effects of amiodarone on muscle cell lyso-
some morphology and function. Several case reports demonstrate
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5 lM (squares, N = 8) and 20 lM (diamonds, N = 6) dronedarone (D)
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10 lM dronedarone for 24 hrs. C indi-

cates control (untreated) cells. Ponceau
staining is used as loading control. Aver-

aged data from eight (amiodarone) and

seven (dronedarone) independent experi-
ments, respectively, are depicted in bar

graphs in the lower part of both panels.(C
and D) Western blot analysis of Kv11.1

expression in HEK-hERG cells treated with
2, 5, 10 or 20 lM amiodarone or 2, 5 or

10 lM dronedarone for 24 hrs. C indi-

cates control (untreated) cells. Ponceau

staining is used as loading control. Aver-
aged data from 3 independent experi-

ments are depicted in bar graphs in the

lower part of both panels. (E and F) Wes-

tern blot analysis of KIR2.1 expression in
Ex293 cells treated with 2, 5, 10 or

20 lM amiodarone or 2, 5 or 10 lM dro-

nedarone for 24 hrs. C indicates control
(untreated) cells. Ponceau staining is used

as loading control. Averaged data from

three (amiodarone) and five (dronedarone)

independent experiments are depicted in
bar graphs in the lower part of both pan-

els. *P < 0.05; ***P < 0.001.
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the occurrence of skeletal muscle vacuolarization with or without the
presence of inclusion bodies upon chronic amiodarone therapy, inter-
preted as lysosomal defects by the authors [37, 38]. In myocardial
fibres from the left and right ventricle, and right atrium derived from
dogs chronically treated with amiodarone, abnormal lysosomal struc-
tures with often dense lamellar inclusion bodies were found [39].
Similar ‘autophagic vacuoles’ were observed in isolated rat ventricular
myocytes chronically treated with amiodarone in vitro [40, 41].
Morissette et al. demonstrated that amiodarone application resulted
in vacuolar sequestration and evolved towards persistent macroau-
tophagy in macrophages, smooth muscle cells and HEK293 cells
[42]. Dronedarone shows strong similarities to amiodarone with
respect to induction of the formation of cellular vacuoles containing
lamellar bodies (lysosomal structures) as demonstrated in alveolar
macrophages [43].

We found that amiodarone and dronedarone treatment increased
KIR2.1 expression and intracellular accumulation, most likely in late
endosomes and lysosomes, in several different cell lines. Interest-
ingly, compared with chloroquine treatment that results in lysosomal
accumulation of full-length and a discrete N-terminally cleaved KIR2.1
protein, only accumulation of the full-length product is seen with
amiodarone and dronedarone. Therefore, either the majority of the
KIR2.1 accumulates in pre-lysosomal compartments, which is in line
with the findings of Picolli et al. [17] who describe that amiodarone
and dronedarone do not affect early endosome function, but inter-
feres in the late compartments of the endocytotic pathway, or these
compounds interfere in protease function responsible for the N-term-
inal KIR2.1 cleavage. The latter explanation is in line with findings of
Buratta et al. [44] who describe that specific cathepsins display
altered processing in some cell types upon amiodarone treatment.
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Fig. 3 Amiodarone and dronedarone
induce dose-dependent increases in KIR2.1

expression in COS-7 cells. (A and B) Wes-

tern blot analysis of KIR2.1 expression in

COS-7 cells treated with 2, 5, 10 or
20 lM amiodarone or 2, 5 or 10 lM dro-

nedarone for 24 hrs. C indicates control

(untreated) cells. Ponceau staining is used

as loading control. Averaged data from
three independent experiments are

depicted in bar graphs in the lower part of

both panels. *P < 0.05; **P < 0.01;

***P < 0.001.
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Fig. 4 Amiodarone and dronedarone

induce time-dependent increases in

KIR2.1-GFP expression. Western blot anal-

ysis of KIR2.1-GFP expression in HK-
KWGF cells treated for 1, 2, 4, 6 and

24 hrs with 10 lM amiodarone or 5 lM
dronedarone. C indicates control

(untreated) cells. Ponceau staining is used
as loading control. Averaged data from

eight (amiodarone) and ten (dronedarone)

independent experiments, respectively, are
shown in bar graphs in the lower part of

both panels. *P < 0.05; **P < 0.01;

***P < 0.001.
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Whatever the exact mechanism, our findings for KIR2.1 are in line
with those of Baritussio et al. [16], who demonstrated that amio-
darone inhibits surfactant protein A degradation that normally takes
place in the lysosomal compartment.

As amiodarone treatment correlates with the induction of
autophagocytosis, especially upon longer treatment (>24 hrs), we
cannot exclude the possibility that a part of the intracellular KIR2.1
accumulation occurs in non-functioning, due to the amiodarone and

dronedarone acid buffering capacity, macroautophagosomes [42].
This may contribute to the observed colocalization of KIR2.1 with
LAMP-1. Finally, expression level of the Kv11.1 potassium channel
protein is not increased by amiodarone or dronedarone, once more
demonstrating channel specificity in trafficking pathways and their
(patho)physiological regulation [45].

When considering potassium ion channel trafficking with respect
to the action of amiodarone and dronedarone, only few data are

Fig. 5 Amiodarone and dronedarone

induce dose-dependent intracellular KIR2.1
accumulation. (A) KIR2.1-GFP localization

in control (C) (untreated) and HK-KWGF

cells treated for 24 hrs with 2 (D2) or 5
(D5) lM dronedarone, or 2 (A2), 5 (A5)

or 10 (A10) lM amiodarone. (B) KIR2.1

localization in control (C) (untreated) and

END-2, MES-1 and EPI-7 cells treated for
24 hrs with 10 (A10) lM amiodarone or

5 lM (D5) dronedarone. Scale bars repre-

sent 5 lm.
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B

A

C

Fig. 6 (A) Costaining of KIR2.1-GFP and LAMP1 in control (untreated) and cells treated with 10 lM amiodarone (A10) or 5 lM dronedarone (D5).
Merged pictures are presented in colour. Individual staining patterns of the boxed parts are given in the lower six panels in b/w. Red arrows indicate

regions of colocalization. Pearson coefficient of colocalization is presented as bars on the right. (B) Costaining of KIR2.1-GFP (green) and EEA1

(red) in control (untreated) and cells treated with 10 lM amiodarone (A10). Individual staining patterns of the boxed parts are given in the right
panels in b/w. Pearson coefficient of colocalization is presented as bars on the right. (C) Costaining of KIR2.1 (red) and Rab7-GFP (green) in control

(untreated) and cells treated with 10 lM amiodarone (A10) or 5 lM dronedarone (D5). Individual staining patterns of the boxed parts are given in

the lower six panels in b/w. Pearson coefficient of colocalization is presented as bars on the right. Scale bars represent 5 lm. *P < 0.05.
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available in the literature. Taniguchi et al. [46] found no effect of
amiodarone on IKs channel trafficking in Chinese hamster ovary cells.
In the hERG-Lite assay [47], amiodarone inhibits hERG surface
expression which may result from impaired forward or enhanced
backward trafficking or translation interference. We and others
showed that backward trafficking of hERG and KIR2.1 channels fol-
lows different pathways, which makes them react differently to a
number of drugs [11]. We showed that amiodarone and dronedarone
also affect KIR2.1 trafficking differently than that for hERG channels.
In cardiomyocytes isolated from guinea pigs treated with amiodarone
for 7 days, decreased IK1, IKs and IKr densities were found [48]. In
contrast, in cardiomyocytes from mice treated with amiodarone for
6 weeks, no differences in IK1 densities, in neither KCNJ2 nor KCNJ12
transcript levels, were observed [49]. For now, it is unclear to what
extent and by what mechanisms amiodarone and dronedarone affect
potassium ion channel trafficking in vivo which warrants future
research.
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