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ABSTRACT   

Progression of thoracic aortic calcification (TAC) has been shown to be associated with hard cardiovascular events 

including stroke and all-cause mortality as well as coronary events. In this study, we propose an automated detection 

method of TACs of non-contrast CT images using mediastinal anatomical label map. This method consists of two steps: 

(1) the construction of a mediastinal anatomical label map, and (2) the detection of TACs using the intensity and the 

mediastinal anatomical label map. The proposed method was applied to two non-contrast CT image datasets: 24 cases of 

chronic thromboembolic pulmonary hypertension (CTEPH) and 100 non-CTEPH cases of low-dose CT screening. The 

method was compared with two-dimensional U-Nets and the Swin UNETR. The results showed that the method 

achieved significantly higher F1 score of 0.937 than other methods for the non-CTEPH case dataset (p-value < 0.05, 

pairwise Wilcoxon signed rank test with Bonferroni correction). 
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1. INTRODUCTION  

Vascular calcification is linked to an increased risk of heart disease, stroke, and atherosclerotic plaque rupture [1][2]. 

Kälsch, et al. [2] investigated the association of thoracic aorta calcification(TAC)-progression with incident 

cardiovascular events and all-cause mortality in a population-based cohort and to determine its predictive value for these 

endpoints. They found that TAC progression is associated with hard coronary as well as cardiovascular events including 

stroke and all-cause mortality. Aortic calcified components can be quantified from non-contrast computed tomography 

(CT) by the Agatston method [3]. Automatic calcification scoring is expected that would enable routine cardiovascular 

risk prediction from low-dose chest CT scans. Various methods for vascular calcification detection and scoring from 

non-contrast CT images have been proposed [4]-[8], such as deep learning (DL)-based method for automatic calcium 

scoring across a wide range of CT examination types [6], and a convolutional neural networks (CNNs) to detect aortic 

calcifications and automate the TAC score assessment in intermediate cardiovascular disease risk patients [8].  

Accurate recognition of mediastinal vascular and cardiac structures is one of the most important factors in the detection 

of TAC. Various methods for this task have been proposed [9]-[13]. Suzuki et al. proposed an accurate automatic 

segmentation method of the thoracic aorta and main pulmonary artery using an ensemble method of five U-Net 

architectures from non-contrast CT images [11]. Wasserthal et al. proposed the TotalSegmentator that is an automated 

segmentation method for multiple anatomical structures in whole body CT images, which demonstrated accurate 

segmentation  results across a diverse dataset drawn from clinical  routine [13]. In this study, we construct a mediastinal 

anatomical label map by combining three automated segmentation methods and use the map for detection of TACs. The 

overview of this framework is shown in Fig. 1. Its detection performance was evaluated by comparison with two-

dimensional U-Net [14]  and the Swin UNETR [15].  
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2. MATERIALS AND METHODS 

2.1 Non-contrast CT image datasets 

This study used two datasets of non-contrast chest CT images: non-chronic thromboembolic pulmonary hypertension 

(non-CTEPH) cases of low-dose CT screening (dataset A) and CTEPH cases (dataset B). The collection and analysis of 

data were approved by the Institutional Review Board at Tokushima University. The CT images of dataset A were 

acquired on Aquilion Lightning scanner with 30 mA at 120 kVp, plane resolution: 0.625 mm, reconstruction matrix: 512 

x 512, convolution kernel: FC01, slice thickness: 1.0 mm, and reconstruction interval: 1.0 mm. The CT images of dataset 

B were acquired on Aquilion ONE scanner with 112-295 mA at 120 kVp, plane resolution: 0.570-0.698 mm, 

reconstruction matrix: 512×512, convolution kernel: FC07, slice thickness: 0.5 mm, and reconstruction interval: 0.5 mm. 

The number of cases in datasets A and B was 100 and 24.  

2.2 Manual annotation of thoracic aorta calcification 

Examples of aorta and coronary artery calcifications in non-contrast CT images are shown in Fig. 2. The Agatston 

method [3] uses the weighted sum of lesions with a density above 130 HU, multiplying the area of calcium by a factor 

related to maximum plaque attenuation: 130-199 HU, factor 1; 200-299 HU, factor 2; 300-399 HU, factor 3; and ≥ 400 

HU, factor 4. Based on this criterion, manual annotations of the TAC were performed using the CT value over 130 HU. 

The window level and width for the annotation were adjusted to 500 and 2000, respectively. The mean values and 

standard deviations of the calcium volume per scan for datasets A and B were 1,537.9±1,960.7 mm3 and 805.0±889.2 

mm3, respectively. The histograms of the calcium volume per scan for datasets A and B are shown in Fig. 3. 

2.3 Construction of mediastinal anatomical label map 

The TotalSegmentator was applied to construct the basic anatomical label maps comprising of bone, airway, lungs, and 

heart. Then, the mediastinum region was identified by a segmentation method  on the basis of the lungs and bone 

boundaries [16]. The aorta can also be segmented by the TotalSegmentator, however, accurate boundary recognition is 

required for the detection of the aorta calcification. Therefore, the aorta was segmented by a method comprised of the 

organ localization and an ensemble of five U-Net architectures [11]. In this process, a sub-volume centered on the 

tracheal bifurcation was cropped from original CT volume. The size of sub-volume is 256×256×256 pixels. 

Fig. 1. Overview of the detection method of the aorta calcification using mediastinal anatomical label map. 
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2.4 Detection of TACs using mediastinal anatomical label map 

Low-dose CT images are noisy and this noise can cause CT values of exceeding 130 HU. This can lead to an increase in 

false positive results. Therefore, 3D bilateral filter [17] was adopted as the preprocessing. The spatial and range 

parameters were set to 1.5 and 30, respectively.  

Initial seeds of the TAC were detected as pixels with CT value of over 130 HU in the aorta of the mediastinal anatomical 

label map. Then, the seeds within 5 mm from the aortic wall were adopted because calcifications occur near the aortic 

wall. These seeds were finally dilated using region growing to the regions over 130 HU within the mediastinum.  

2.5 Evaluation of detection performance by comparison with the 2D U-Net architectures 

The detection performance of TACs by the proposed method was compared with 2D U-Nets and the Swin UNETR. The 

training conditions of the methods are shown in Table 1. The axial slices for the training process were collected based on 

   (a)                                                       (b)                                                          (c) 

Fig. 2. Examples of aorta and coronary artery calcifications on non-contrast CT images. Aorta calcifications are shown in 

(a),(b), and coronary artery calcifications are shown in (c). AA, DA, VC, PT, RMPA, and LMPA are ascending aorta, 

descending aorta, vena cava, pulmonary trunk, right main pulmonary artery, and left main pulmonary artery. White arrows 

indicate the calcium regions. 
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Table 1 Training conditions of U-Nets and Swin UNETR. 

Model Dimension Pre-trained model Input size

(pixel)

Optimization Loss

function

Mini-batch

size

Epoch

U-Net 2D No 256×256 Adam Dice 4 40

U-Net (VGG-16) 2D
VGG-16 Encoder

(ImageNet)
256×256 Adam Dice 4 40

U-Net (patch-based) 2D No 128×128 Adam Dice 4 40

Swin UNETR 2D No 256×256 Adam Dice 4 40
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Fig. 3 Histograms of thoracic calcium volume per scan for datasets A (a) and B (b). 
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two ways: (a) the sparse selection with the 10 slices interval, and (b) the selection of all slices including the ground truth 

regions. Training and testing were performed by 10-fold cross-validation using a mixed dataset of 100 non-CTEPH cases 

and 24 CTEPH cases. 5% of the training dataset was used for the validation dataset. The evaluation was performed in 

terms of three metrics: pixel-wise F1 score, pixel-wise sensitivity, and false positive volume per scan (mm3). Pairwise 

comparisons were performed by Wilcoxon signed rank test with Bonferroni correction. 

3. RESULTS 

U-Nets were implemented using PyTorch [18] and MONAI framework [19] on a computer with a Core i9 central 

processing unit, 256 GByte memory, and NVIDIA RTX A6000 graphics processing units. The mean values and standard 

deviations of the metrics are shown in Table 2. In dataset A, the proposed method achieved the highest F1 score (p-value 

< 0.05). Among the DL-based methods, Swin UNETR achieved higher F1 score and sensitivity than the other DL-based 

methods (p-values < 0.05). In dataset B, the proposed method achieved high F1 score, however there were no significant 

difference in any of the metrics. Among the DL-based method, Swin UNETR achieved the higher sensitivity than other 

DL-based methods (p-value < 0.05). Examples of calcification detection results by the proposed method, U-Net, and 

Swin UNETR are shown in Fig. 4. The major false positives were observed at coronary artery bifurcations, near the 

esophagus and the bronchial wall. 

4. CONCLUSIONS 

We presented an automated detection method of TACs from non-contrast CT images using a mediastinal anatomical 

label map. The proposed method achieved high detection performance of TACs with few false positives. The mediastinal 

anatomical label map would be useful to construct a simple, accurate, and evidence-explainable TAC scoring method. 
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