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For many model organisms traditionally in use for cardiac electrophysiological studies, char-
acterization of ion channel genes is lacking. We focused here on two genes encoding the
inward rectifier current, KCNJ2 and KCNJ12, in the dog heart. A combination of RT-PCR, 5′-
RACE, and 3′-RACE demonstrated the status of KCNJ2 as a two exon gene.The complete
open reading frame (ORF) was located on the second exon. One transcription initiation
site was mapped. Four differential transcription termination sites were found downstream
of two consensus polyadenylation signals. The canine KCNJ12 gene was found to consist
of three exons, with its ORF located on the third exon. One transcription initiation and
one termination site were found. No alternative splicing was observed in right ventricle or
brain cortex. The gene structure of canine KCNJ2 and KCNJ12 was conserved amongst
other vertebrates, while current GenBank gene annotation was determined as incomplete.
In silico translation of KCN12 revealed a non-conserved glycine rich stretch located near
the carboxy-terminus of the KIR2.2 protein. However, no differences were observed when
comparing dog with human KIR2.2 protein upon ectopic expression in COS-7 or HEK293
cells with respect to subcellular localization or electrophysiological properties.
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INTRODUCTION
In the mammalian heart, the resting membrane potential of car-
diomyocytes is set and stabilized by the inward rectifier potassium
current (I K1; Dhamoon and Jalife, 2005). In addition, I K1 con-
tributes to outward potassium current during the last phase of
action potential repolarization. The main molecular determinants
of cardiac I K1 are the KIR2.1 and KIR2.2 proteins expressed from
the KCNJ2 and KCNJ12 genes respectively (De Boer et al., 2010a).
Defective inward rectifier current may lead, amongst other fea-
tures, to lethal cardiac arrhythmias in mice and man such as
ventricular arrhythmias and atrial fibrillation (Anumonwo and
Lopatin, 2010). ECG recording from neonatal mice homozygous
for a KCNJ2 null mutation showed lengthening of RR, PR, and
QT intervals and QRS broadening. Furthermore, isolated neona-
tal cardiomyocytes displayed action potential lengthening and
ectopic activity (Zaritsky et al., 2001). In contrast, however, null
mutation of KCNJ12 generated no cardiac abnormalities (Zarit-
sky et al., 2001). KCNJ2 loss of function mutation associated
with Andersen–Tawil syndrome 1 regularly, but not in each case,
displayed long repolarization times (LQT) and biventricular tachy-
cardias. On the other hand, KCNJ2 gain of function mutations
have been associated with short QT (Priori et al., 2005), and atrial
fibrillation (Xia et al., 2005). Atrial fibrillation was also observed
in a mouse model overexpressing KCNJ2 (Li et al., 2004). Finally,
KCNJ2 mutations have been associated with Catecholaminergic
Polymorphic Ventricular Tachycardia (Vega et al., 2009). Affected
KIR2.1 and KIR2.2 functioning may be the result of amino-acid

substitutions (Tristani-Firouzi and Etheridge, 2010), direct chan-
nel block (Rodríguez-Menchaca et al., 2008; De Boer et al., 2010b),
or changes in expression regulation (Yang et al., 2007).

The dog (Canis lupus familiaris, Cf) with chronic complete
atrial–ventricular block (cAVB) is a well established model for
drug-induced arrhythmia (Thomsen et al., 2006a). The model
acquires its sensitivity and specificity from bradycardia associated
volume overload and subsequent cardiac remodeling (Thomsen
et al., 2007). The latter process translates into modified contrac-
tile, structural, and electrical function (Oros et al., 2008). As a
result of electrical remodeling, the so-called repolarization reserve
(Roden, 1998; Michael et al., 2009) is diminished as evidenced
by increased action potential duration and moreover by increased
beat-to-beat variation of repolarization (Thomsen et al., 2006b).

For some species, the molecular basis underlying cardiac
electrophysiology, e.g., ion channel, gap junction, and trans-
porter genes and proteins, is well described. However, a func-
tional integration of the individual components to explain a
number of electrophysiological phenomena lags behind, despite
many decades of research (Coronel, 2010). When consider-
ing the dog, the amount of electrophysiological studies by far
outnumbers those on the molecular make-up of the under-
lying ion currents. Nevertheless, the canine genes coding for
the electrophysiological building blocks are becoming deci-
phered rapidly; genome project information can be found at
http://www.broadinstitute.org/mammals/dog. The publication of
the dog genome has provided an important additional tool that
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stimulated molecular research in this model species (Lindblad-
Toh et al., 2005). However, as algorithm driven gene annotation is
improving gradually (Flicek, 2007), its results are still often doubt-
ful indicating that experimental confirmation of the genomic
structure of the genes of interest is required. To enable our future
studies on KCNJ2 and KCNJ12 expression regulation in the dog, it
is crucial to characterize the molecular structure of the respec-
tive genes. Here we have characterized the canine KCNJ2 and
KCNJ12 gene structures by combining genome project data, RT-
PCR, and 5′- and 3′-RACE protocols. We demonstrated that the
canine KCNJ2 gene consists of two exons harboring its open read-
ing frame (ORF) on exon 2. In contrast, we provided experimental
evidence that KCNJ12 is a three exon gene. Its ORF is located
on exon 3. No alternative splicing was detected in either heart or
brain tissue. We demonstrated that the gene structure is conserved.
Canine KIR2.2 harbors a peculiar stretch of glycine residues in its
carboxy-terminus that is not present in KIR2.2 proteins from other
species, which did not affect however its expression in cell systems
neither its electrophysiological properties.

MATERIALS AND METHODS
RT-PCR, 3′- AND 5′-RACE
The investigation conformed to the Guide for the Care and
Use of Laboratory Animals published by the US National Insti-
tutes of Health (NIH Publication No. 85-23, revised 1996) and
was approved by the institutional committee for animal experi-
ments. For all sequencing, samples from at least two purpose bred
mongrel dogs were used, that harbored no known genetic defects.

Total RNA was isolated from canine ventricular cells or brain
cortex tissue using Trizol (Invitrogen, Breda, The Netherlands)
according to the manufacturers recommendations. mRNA was
reverse transcribed using oligo dT and Superscript 2 (Invitro-
gen). Primer sequences for PCR are given in Table 1. Products
were analyzed on ethidium-bromide stained 0.7–1.5% agarose
gels. PCR products were isolated from gel using QIAquick Gel
Extraction kit (Qiagen,Venlo, The Netherlands), cloned in pGEM-
T-easy (Promega, Leiden, The Netherlands) and subsequently
sequenced.

3′- and 5′-rapid amplification of cDNA ends (RACE) was per-
formed on total RNA using GeneRacer™kit (Invitrogen) according
to the manufacturers recommendations. In short, total RNA was
dephosphorylated and decapped followed by ligation of GeneR-
acer™ 5′ RNA primer. Subsequently, reverse transcription was
performed using GeneRacer™Oligo dT primer and Superscript
3. Finally, 5′ and 3′ RACE PCR was performed using KCNJ2 and
12 primers as indicated in the results and discussion section, in
combination with primers supplied and recommended by the
manufacturer. Sequences of primers used for RACE are depicted in
Table 1. All PCR products were sequenced by the Dye-terminator
sequencing method (BigDye®, Applied Biosystems, Nieuwerkerk
a.d. IJssel, The Netherlands) on a 3730 Genetic Analyzer (Applied
Biosystems).

CLONING AND EXPRESSION ANALYSIS OF CfKCNJ12
Complete CfKCNJ12 coding sequence was amplified as above
using primers KCNJ12#10se and KCNJ12#12as as first and
KCNJ12#11se and KCNJ12#13as as nested primers, and cloned in

Table 1 | Sequences of primers used in this study, sequences are given

in 5′–3′ orientation.

KCNJ2 PRIMERS

KCNJ2#1se AGCTGGGTCTTGGGGATTCTGG

KCNJ2#2se TTGCAGAGCGCACTGGAGCC

KCNJ2#3as CATCCACCGCCAGCGAATGT

KCNJ2#4as ACTGGACGTTGCAGTGGCCG

KCNJ2#5se TCCGAGGAGACTCGCCGTGAAT

KCNJ2#6se AGCAGAGTGAGCTCTCCTTCGC

KCNJ12 PRIMERS

KCNJ12#1se GCTGCTGCTGACACAGCCTTG

KCNJ12#2se CGGGGTGTCCAGAGACCTGGGTTC

KCNJ12#3se GGACCTGGAGACCGACGACTTCG

KCNJ12#4se GAGCCGCGATGAGGAAGACGAGG

KCNJ12#5se GGGTTTGAGCAGAATGGGCCTGG

KCNJ12#6as GATCACCCAGAAGATGATGCC

KCNJ12#7as GTTGCCGAAGCCGTTGGCACCCGAC

KCNJ12#8as CCCGCCTGTGTCAGCAGCAGC

KCNJ12#9as CGATGGTGGTCTGCGTCTCAATGG

KCNJ12#10se GTGACCGATTCCTCTCCAGCT

KCNJ12#11se GCAGGAAATGGAAGCTGCTGC

KCNJ12#12as ACGCTACTGAGTCTGCAACCG

KCNJ13#13as CCAGGCCCATTCTGCTCAAAC

SUPPLIED GENERACER™ PRIMERS USED

GeneRacer™ 5′ RNA primer CGACUGGAGCACGAGGACACUGACAUG

GACUGAAGGAGUAGAAA

GeneRacer™ Oligo dT primer GCTGTCAACGATACGCTACGTAACGGCAT

GACAGTG(T)24

GeneRacer™ 5′ primer CGACTGGAGCACGAGGACACTGA

GeneRacer™ 5′ nested primer GGACACTGACATGGACTGAAGGAGTA

GeneRacer™ 3′ primer GCTGTCAACGATACGCTACGTAACG

GeneRacer™ 3′ nested primer CGCTACGTAACGGCATGACAGTG

pGEM-T-Easy followed by subcloning in pcDNA3.1 using EcoRI.
COS-7 cells were transfected with pcDNA–CfKCNJ12 or pcDNA–
HsKCNJ12 (human KCNJ12) construct using Lipofectamine 2000
(Invitrogen) according to the manufacturers recommendations.
Twenty-four hours post-transfection, cells were harvested in lysis
buffer [20 mM HEPES, pH 7.6, 125 mM NaCl, 10% (v/v) glycerol,
1 mM EDTA, 1 mM EGTA, 1 mM Dithiothreitol, 1% (v/v) Triton
X-100]. Subsequently, 20 μg protein lysate was separated by 10%
SDS-PAGE and blotted onto nitrocellulose membrane. Blots were
blocked with 5% (v/v) fresh chicken egg yolk in TBST [20 mM
Tris–Cl, pH 8.0, 150 mM NaCl, 0.05% (v/v) Tween-20] for 1 h
at room temperature. KIR2.2 protein was detected using KIR2.1/2
antibody (cat. no. sc-18708, Santa Cruz Biotechnology, Santa Cruz,
CA, USA) and Donkey-anti-Goat horseradish peroxidase (cat. no.
705-035-003, Jackson ImmunoResearch, West Grove, PA, USA).
Standard ECL procedure was used for final detection (Santa Cruz
Biotechnology). Localization studies were performed following
transient transfection in HEK293 cells as described previously
(Jansen et al., 2008).

PATCH CLAMP ELECTROPHYSIOLOGY
HEK293T cells cultured on glass coverslips were co-transfected
with 0.5 μg pcDNA–KIR2.2 and 0.5 μg pEGFP1 expression
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FIGURE 1 | Canine KCNJ2 genomic structure. (A) Representation of the
KCNJ2 gene indicating lengths of first and second exons, intron and the open
reading frame (ORF). Relative position of KCNJ2 specific primers used for
intron/exon mapping, 5′ and 3′ RACE are indicated by numbered box arrows.
(B) Transcription initiation site (bold and underlined) with upstream (lower
case) and downstream exon 1 (upper case) sequences. (C) Sequence
surrounding exon 1–intron and intron–exon 2 splicing sites of dog, mouse, and

chicken KCNJ2 genes. Hatched bar indicates intron region. Exon 1 and exon 2
sequences are indicated in upper case lettering, intron sequence in lower
case. Consensus splicing sequences are indicated above the sites
(underlined). (D) Four alternative 3′ transcript termini (bold). Exon 2
sequences are indicated in upper case, downstream genomic sequences in
lower case. Consensus termination signals are indicated above the
sequences (underlined).

constructs as described aboved. Patch clamp measurements were
done using a AxoPatch 200B amplifier controlled by pClamp 9
software (Molecular devices, Sunnyvale, CA, USA). Voltage clamp
measurements of whole cell I K1 were performed by applying 1 s
test pulses ranging between −120 and +40 mV, in 10 mV incre-
ments, from a holding potential of −40 mV, and with series resis-
tance compensation of at least 70%. Steady state current at the end
of the pulse was normalized to cell capacitance and plotted ver-
sus test potential (corrected for liquid junction potential). Patch
pipettes were made with a Sutter P-2000 puller (Sutter Instrument,

Novato, CA, USA) and had resistances of 2–3 MΩ. Extracellular
solution for whole cell I K1 measurements contained (in mmol/L):
NaCl 140, KCl 5.4, CaCl2 1, MgCl2 1, glucose 6, NaHCO3 17.5,
HEPES 15, pH 7.4/NaOH. Pipette solution contained potassium
gluconate 125, KCl 10, HEPES 5, EGTA 5, MgCl2 2, CaCl2 0.6,
Na2ATP 4, pH 7.20/KOH.

To evaluate the blocking effect of polyamine on KIR2.2 channel
currents from both human and dog KCNJ12 genes, we analyzed
chord conductance values from I –V relationship by inside-out
patch clamp experiments as previously described (Ishihara and
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FIGURE 2 | Canine KCNJ12 genomic structure. (A) Representation of the
KCNJ12 gene indicating lengths of first, second, and third exons, first and
second intron, and the open reading frame (ORF). Relative position of KCNJ12
specific primers used for intron/exon mapping, 5′ and 3′ RACE are indicated
by numbered box arrows 1–9. Relative positions of KCNJ12 specific primers
for cloning the ORF are indicated by numbered box arrows 10–13. (B)

Transcription initiation site (bold and underlined) with upstream (lower case)
and downstream exon 1 (upper case) sequences. (C) Sequence surrounding

exon 1–intron 1, intron 1–exon 2, exon 2–intron 2, and intron 2–exon 3 splicing
sites of dog KCNJ12. Open bars indicate intron regions, hatched bar indicates
exon 2 region. Exon sequences are indicated in upper case lettering, intron
sequences in lower case. Consensus splicing sequences are indicated above
the sites (underlined). (D) 3′ transcript terminus (bold). Exon 3 sequence is
indicated in upper case, downstream genomic sequence in lower case.
Consensus termination signals are indicated above the sequences
(underlined).

Ehara,2004). The pipette (extracellular) solution contained (mM):
145 KCl, 1 CaCl2, and 5 HEPES (pH 7.4 with KOH). The bath
(intracellular) solution contained (mM) 125 KCl, 4 EDTA (2K),
7.2 K2HPO4, and 2.8 KH2PO4 (pH 7.2 with KOH). Spermine was
used in the concentration of 0.1, 1, and 10 μM. Currents were
recorded from inside-out membrane patches at room tempera-
ture (22˚C; De Boer et al., 2010b). The holding potential was set
to 0 mV, and test pulses were applied between −60 and +90 mV
in 5 mV steps with −40 mV hyperpolarizing pre-pulse. Current

amplitude was measured at 2 s after the onset of the test pulse. For
this evaluation, we used the equation G = I /(V −V rev). In our
study, the values of V rev measured by a ramp protocol (40 mV/s)
were always near 0 mV (between ±2 mV). Conductance values for
each test voltage were normalized by the maximum value. Further-
more, we evaluated the time-dependent decay of KIR2.2 channel
current just after the onset of test pulse. Single exponential fitting
of the current was performed by Microcal Origin (ver.8, Microcal
Software, Northampton, MA, USA).
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RESULTS AND DISCUSSION
MAPPING OF THE KCNJ2 GENE
To experimentally map the canine KCNJ2 gene (Figure 1A),
we first retrieved the putative KCNJ2 genomic sequence from
chromosome 9 using the canine genome project data (acces-
sion number NC_006591). Homology comparison (Vector NTI
suite 8, operating on Clustal W algorithm) with the mapped
murine KCNJ2 (Redell and Tempel, 1998) indicated putative
regions for a first and second exon. Based on these, PCR primers
were designed for RT-PCR, 5′- and 3′-RACE (Table 1). RNA was
isolated from canine ventricular cardiomyocytes. RT-PCR using
primer KCNJ2#1se and KCNJ2#3as designed at the putative exon
1 and exon 2 sequences respectively revealed one single product of
approximately 590 bp. Exon/intron boundaries were determined
by sequencing of the products and aligned against the genomic
DNA sequences. Boundaries were found to conform to consensus
exon/intron and intron/exon sites, and high levels of homology
were found at the splice sites when compared with mouse and
chicken (Figure 1C). No additional exons were found in this
intron region. No differences with respect to the genome reference
sequence were observed.

The transcription initiation site (TIS) was mapped by 5′-RACE
using primer KCNJ2#3as and the nested primer KCNJ2#4as orig-
inated from exon 2. Only a single TIS was obtained in this way
(Figure 1B). RT-PCR using primer KCNJ2#2se, located directly
upstream of the TIS and KCNJ2#4as yielded no product. In the
mouse KCNJ2 gene, four TISs were determined located in a stretch
of eight nucleotides (Redell and Tempel, 1998). In chicken, also
four TISs were mapped, of which three are located adjacent to each
other, while a fourth was located approximately 20 nucleotides
upstream of these (Mutai et al., 2004).

For 3′-RACE, nested PCR using KCNJ2#5se and subsequent
KCNJ2#6se (nested) combined with antisense primers provided
by the fabricant was performed. This revealed the presence of four
different transcripts (heterogeneity of mRNA cleavage) terminat-
ing after two consensus poly (A) signals, namely AAUAAA and
AUUAAA (Zhao et al., 1999; Figure 1D). While for mouse, the
transcript was reported to end following the first consensus poly
(A) (Redell and Tempel, 1998), we found transcript termination
only following the second consensus poly (A) site. Heterogenous
mRNA cleavage has been noted in approximately 50% of mam-
malian transcripts with a single poly (A) signal (Tian et al., 2005),
however its biological significance, if any, is unknown. In the case
of KCNJ2, heterogenic mRNA cleavage may result from the pres-
ence of two poly (A) sites. Furthermore, it has been suggested
that the RNA cleavage by the polyadenylation enzyme complex
is imprecise in nature (Tian et al., 2005). Resulting sequences
and annotations can be found at the following GenBank acces-
sion numbers: HM209045 for 5′ sequences, HM209046 for 3′
sequences, and BK007085 for complete gene annotation.

When comparing the overall KCNJ2 structure from dog with
those of mouse and chicken (Table 2) we notice a very sim-
ilar make-up existing of a short first exon (103–168 bp) con-
taining untranslated mRNA (UTR) only, a large intron varying
between ∼4900 and ∼5500 bp and a large second exon containing
the entire ORF. While the length of the second exon is reason-
ably well conserved between dog and mouse (5268 and 5316 bp

Table 2 | Comparison of canine KCNJ2 and KCNJ12 gene structure

with that of other species.

KCNJ2 KCNJ12

Dog Mouse1 Chicken2 Dog Human3,4

Exon 1 120 168 103 406 >192

Intron 1 5163 ∼5500 ∼4900 1761 n.d.

Exon 2 5268 ∼5316 2020 122 ∼123

Intron 2 n.a. n.a. n.a. 6435 n.d.

Exon 3 n.a. n.a. n.a. 1804 ∼1883

ORF 1284 1287 1284 1323 1302

5′UTR 338 403 319 584 >369

3′UTR 3766 ∼3800 550 425 ∼527

Numbers are given in base pairs. ORF, open reading frame; UTR, untranslated

region. 1Redell and Tempel (1998), 2Mutai et al. (2004), 3Hugnot et al. (1997),
4Ryan et al. (2010).

respectively), that of the chicken is much shorter (2020 bp). Finally,
the gene structure as presented here is not annotated in NCBI
Entrez Gene (GeneID 403717, accessed at July 19, 2011), that
annotates the coding region only.

MAPPING OF THE KCNJ12 GENE
For mapping KCNJ12 (Figure 2A) experimentally, a similar
approach was used as for KCNJ2. The putative KCNJ12 sequence
was derived from chromosome 5 (accession number NC_006587).
Next, sense (KCNJ12#1se) and antisense (KCNJ12#6as) primers
were generated within exon 2 (which was then considered as
the first exon) and exon 3 sequences, respectively. Subsequent
sequencing revealed the exon 2 – intron 2 – exon 3 bound-
aries (Figure 2C). Upon 5′RACE using KCNJ12#7as located in
exon 3 and the nested primer KCNJ12#8as located in exon
2, an additional exon of 406 bps was discovered (Figure 2A).
Resulting sequences and annotations can be found at GenBank
accession numbers HQ378597. RT-PCR using primers located in
exon 1 (KCNJ12#2se) and exon 3 (KCNJ12#7as for cortex and
KCNJ12#9as for right ventricle) sequences yielded a single product
in heart and brain tissue (Figure 3A). Upon sequencing, the latter
was found as being identical to the ventricular product. No evi-
dence was found for alternative splicing, either by 5′RACE neither
by inter-exon RT-PCR. Exon/intron boundaries were determined
by sequencing PCR products and compare these to genomic DNA
(Figure 2C). As for KCNJ2, boundaries were found to conform
to consensus exon/intron and intron/exon sites. 5′-RACE using
primer KCNJ12#7as and primer KCNJ12#8as identified one TIS
(Figure 2B). No putative TATA box was found upstream of the ini-
tiation site. 3′-RACE using KCNJ12#3se and two different nested
primers (KCNJ12#4se and KCNJ12#5se), all located in exon 3,
identified only one termination site (Figure 2D). No genuine ter-
mination signal was identified in this gene. Finally, no differences
with respect to the genome reference sequence were observed.

To our knowledge, no KCNJ12 gene structure from other
species has been published. Indirectly however, Ryan et al. (2010)
indicate that the genomic structure of KCNJ12 is very similar with
that of KCNJ16. They indicate that KCNJ12 is a three exon gene
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FIGURE 3 | (A) KCNJ12 mRNA RT-PCR using primers located in exon 1 and 3
regions yields a single amplification product. Left panel, chronic AV block dog
right ventricle; right panel control dog cortex. + Indicates prior RT-reaction, −

indicates minus RT control. (B) Homology comparison of dog (Cf), human (Hs),
guinea pig (Cp), bovine (Bt), rat (Rn), and mouse (Mm) KIR2.2 carboxy-termini.
Conserved residues are depicted in white font on black background.

FIGURE 4 | Characterization of CfKIR2.2. (A) Western blot depicting
human (Hs) and dog (Cf) KIR2.2 expression upon ectopic expression in
COS-7 cells. Non-transfected cells were used as negative control. (B)

Subcellular localization of ectopic human (Hs) and dog (Cf) KIR2.2 in
HEK293 cells. (C) Current traces of CfKIR2.2 carried IK1, before (control),

upon 100 μM BaCl2 application (Ba2+), and following washout (washout).
Horizontal bar: 200 ms; Vertical bar: 2 nA. (D) Current–Voltage relationship
of dog (Cf, blue squares and line; n = 8, average ± SEM) and human (Hs,
red circles and line; n = 4, average ± SEM) KIR2.2 carried IK1 in HEK293T
cells.

with strong homology to KCNJ16 except for exon 1, which is
longer in KCNJ12 than in KCNJ16. KCNJ12 intron lengths were

not reported. When comparing our dog KCNJ12 sequence with
that of human, strong similarity is seen for the length of exon 2
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FIGURE 5 | Spermine-induced block of human (Hs) and dog (Cf) KIR2.2

channels. (A) Representative traces of KIR2.2 channel currents in the absence
and presence of 0.1, 1, and 10 μM of spermine. Inset: pulse protocol, currents
were elicit by 10 mV step test pulses from −60 to +90 mV. (B) Comparison of

V –G relationships of human and dog KIR2.2. The scale of G/Gmax is logarithmic.
Test pulses were applied in 5 mV steps from −60 to +90 mV, and G was
calculated for each voltage. (C) The comparison of time constant of KIR2.2
channel currents at +80 mV in the presence of 1 and 10 μM SPM.

and 3 (Table 2). Furthermore, dog KCNJ12 is a three exon gene
too, with its entire ORF located on Exon 3. Unfortunately, due
to the lack of more specific sequence information of the human
form, no reliable comparisons can be made further. Finally, the
gene structure as presented here is different from the one that is
annotated in NCBI Entrez Gene (GeneID 403760, accessed at July
19, 2011), that annotates the coding region on five separate exons.
Furthermore, no 5′ UTR is presented, while the 3′UTR is ∼22 bp
in length.

ELECTROPHYSIOLOGICAL ANALYSIS OF KIR2.2
Translating genomic KCNJ12 sequence revealed a KIR2.2 protein
containing a peculiar stretch of glycine residues near the carboxy-
terminus. Apparently this was not a sequencing artifact as RT-PCR
using primers located in exon 1 and 3 confirmed the finding
in mRNA derived from left ventricle and cortex (Figure 3A).
Although the glycine rich region was not identified in other species
(Figure 3B), it is found in a less-conserved region of the pro-
tein. Glycine rich amino-acid stretches are found in many other
proteins, however no function has been addressed. To investi-
gate a potential functional consequence, the complete channel
was cloned. Expression in COS-7 cells revealed a protein with

an apparent M w of ∼50 kDa (Figure 4A). Upon transfection in
HEK293 cells, strong expression of canine KIR2.2 was seen at
the plasma membrane, comparable with that of human KIR2.2
(Figure 4B; Kaibara et al., 2002). When expressed in HEK293T
cells, patch clamp analysis demonstrated the presence of a typical
barium sensitive inward rectifying current (Figure 4C) which was
indistinguishable from human KIR2.2 carried I K1 (Figure 4D).

KIR2.x channels show dose-dependent changes of blocking
profile by spermine (SPM) and spermidine (Ishihara and Yan,
2007). To evaluate the electrophysiological properties of canine
KIR2.2 into more detail, voltage-dependent blockade of KIR2.2
channel current by different concentrations of SPM was analyzed
by determining the V –G relationship (Figures 5A,B). The rep-
resentative current traces measured by inside-out patch clamp
show that outward I K1 currents mediated by human and dog
KCNJ12 are blocked in the presence of 0.1–10 μM of SPM in a
dose-dependent manner. The V –G curve shifted to more negative
voltages upon increasing the SPM concentration. No significant
difference in V –G relations at either SPM concentration was
observed (Figure 5B). In the presence of physiological levels of
SPM (1 and 10 μM; Yan et al., 2005), human and dog KIR2.2 chan-
nels displayed similar time-dependent decay at +80 mV [1 μM:
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0.74 ± 0.21 (SEM; n = 5) and 0.74 ± 0.15 (n = 6) ms; 10 μM:
0.44 ± 0.10 (n = 5) and 0.41 ± 0.06 (n = 5) ms for human and
dog respectively; Figure 5C]. Our results suggested that there is
no difference between human and dog KIR2.2 with respect to
SPM affinity and speed of binding. As the glycine rich domain
is not conserved among species and we observed no differences
in electrophysiological parameters tested, we speculate that it has
no relevance for canine KIR2.2 function and its interaction with
polyamines.

Only few studies have addressed KIR2.2 in ventricular tissue of
large animal models, and currently, we can only speculate on the
function and significance of canine KIR2.2 expression in the heart.
Ojaimi et al. (2007) measured expression of left ventricular genes
upon transition to pacing induced heart failure in the dog heart.
Their data indicate clear expression of both KCNJ2 and KCNJ12
in the left ventricle (NCBI gene expression omnibus (GEO) pro-
files and GDS2424/1582618_at and GDS2424/1582977_at, respec-
tively), however, no change was found upon transition into
heart failure. Zobel et al. (2003) report KIR2.2 expression in

isolated rabbit ventricular myocytes. Upon culturing, expression
levels remained whereas KIR2.1 expression decreased by 80%. In
humans, KIR2.2 displayed a more pronounced regional expression
than KIR2.1, i.e., a preferential expression in the epicardium of the
right ventricle compared to the endocardium (Gaborit et al., 2007).

CONCLUSION
We were able to experimentally map the canine KCNJ2 and
KCNJ12 genes. KCNJ2 is a two exon gene that displays a simi-
lar organization as the mouse homolog, while it differs with the
chicken variant in the length of exon 2 only. KCNJ12 is a three exon
gene, which resembles the human organization. No alternative
splicing in KCNJ12 was detected in heart or brain tissue. Canine
KCNJ12 produced genuine KIR2.2 carried I K1 upon expression in
HEK293T cells.
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