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The thymus is a highly specialized organ that plays an indispensable role in the

establishment of self-tolerance, a process characterized by the “education” of

developing T-cells. To provide competent T-cells tolerant to self-antigens,

medullary thymic epithelial cells (mTECs) orchestrate negative selection by

ectopically expressing a wide range of genes, including various tissue-

restricted antigens (TRAs). Notably, recent advancements in the high-

throughput single-cell analysis have revealed remarkable heterogeneity in

mTECs, giving us important clues for dissecting the mechanisms underlying

TRA expression. We overview how recent single-cell studies have furthered our

understanding of mTECs, with a focus on the role of Aire in inducing mTEC

heterogeneity to encompass TRAs.
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1 Introduction

In the thymus, the cortex and the medulla coordinate to elicit proficient T-cells that can

effectively eliminate foreign pathogens while simultaneously exhibiting tolerance towards

self-components. Basically, cortical thymic epithelial cells (cTECs) orchestrate positive

selection, while medullary thymic epithelial cells (mTECs) orchestrate negative selection as

well as the induction of regulatory T-cells (Tregs) (1, 2). To effectively screen for an

extensive array of self-reactive T-cell clones, mature mTECs are capable of “ectopically” or

“promiscuously” expressing nearly 90% of the coding genome, including thousands of

tissue-restricted antigens (TRAs) (3–5). Due to their exceptional characteristics, the thymic

medulla has been proposed to function as “a mosaic of epithelial self” by mirroring extra-

thymic tissues (6, 7).

Since long before, scientists have been aware of the heterogeneity among mTECs as

evidenced by histological examinations through electron microscopy. This is exemplified
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by the identification of multiple subsets such as myoid cells (8),

ciliated cells, and secretory cells (9). Besides these morphological

variations, further analysis disclosed the nature of promiscuous

gene expression (pGE) among mTECs (7), and a seminal study

identified autoimmune regulator (Aire) as the key molecule for pGE

(10). Notably, individual mTECs do not uniformly express TRA

genes in the existence of Aire, but it is estimated that only 1-3% of

mTECs would express a particular TRA at any given time (4, 5, 11–

13). Consequently, there exist two kinds of heterogeneity among

mTECs; (i) inter-populational heterogeneity among mTECs based

on the morphology and biological properties and (ii) intra-

populational heterogeneity among Aire-expressing mTECs

associated with pGE. Although recent transcriptomic analyses

have provided various insights into the biology of mTECs, the

complexity of mTEC heterogeneity impedes understanding of how

mTECs orchestrate the presentation of TRAs as a whole. In this

review, we will attempt to unravel this enigma by summarizing the

findings in mTECs and Aire brought to us by recent single-

cell studies.
2 The “two-faced” role of
Aire in mTECs

Depending on their surface markers, mTECs have been

generally categorized into two distinct subsets; MHC-

IIlowCD80low (mTEClow) and MHC-IIhighCD80high (mTEChigh),

the latter being considered a mature subset. Along with the high

expression of molecules related to antigen presentation, mTEChigh

is distinguished by the unique expression of Aire in the form of dot

morphology in the nucleus (14–16). Initially, the human AIRE gene

was positionally cloned as the causative gene for autoimmune

polyendocrinopathy-candidiasis-ectodermal dystrophy

(APECED), which is characterized by organ-specific autoimmune

disease with an autosomal recessive inheritance (17, 18). As for the

pathogenesis of the disease, Anderson et al. first demonstrated that

TRAs are enriched among the down-regulated genes in mTECs

from Aire-knockout (Aire-KO) mice utilizing microarray analysis

(10). Based on this result, they suggested that Aire is responsible for

the establishment of central tolerance by promoting TRA

expression from mTECs. Consistent with this finding, subsequent

transcriptomic studies by high-throughput RNA-seq analysis

reported that nearly 4,000 genes, including a large number of

TRAs, were down-regulated in Aire-KO mTEChigh compared

with those from wild-type (WT) mTEChigh (4, 19).

Then, how does a single Aire gene elicit such a dynamic

alteration in the transcriptome? The current prevailing view is

that Aire operates as a transcription factor to promote a broad

array of transcriptional targets, not by recognizing particular DNA

sequences but by involving epigenetic mechanisms. It has been

suggested that Aire preferentially engages in the interaction with

repressive chromatin states, such as H3K4me0 and H3K27me3 (4,

20–23), in cooperation with various partner molecules (24–29)

(Figure 1, upper left). Upon being recruited to such a chromatin

state, Aire is considered to promote the transcription of TRA genes
Frontiers in Immunology 02
by releasing stalled polymerase II from their promoters (30, 31).

Furthermore, a recent study using ChIP-seq demonstrated that

Aire-containing complexes are preferentially located on super-

enhancers, chromatin stretches hosting high densities of general

and cell-type-specific transcription factors, to induce TRAs (32).

However, the function of Aire turned out to extend beyond simply

serving as a transcriptional regulator of TRA genes, suggesting that

it plays a pivotal role in the development/differentiation of mTECs

(Figure 1, upper right). This notion was first derived from observing

morphological alteration in the medullary components in Aire-KO

mice (33, 34). Aire-KO mice were reported to exhibit increased

numbers of mTECs with a globular cell shape (35, 36) and a near

absence of Hassall’s corpuscle-like structures (36, 37), along with

increased percentages of mTEChigh (38–41). Recently, we and

another group have also reported that mTEChigh from Aire-KO

mice ectopically expresses CTLA-4 at a high level (42, 43). Thus, the

Aire-KO mTEChigh is not only defective in TRA expressions but

also impaired in their normal development, which would be

required for tolerogenic function.

Besides this “two-faced” mode regarding the role of Aire (i.e.,

transcriptional activity and mTEC development), there also exist

two potential paradigms in debate for the way in which mTECs

present TRAs to T-cells in the thymus. The first is a pattern in

which individual mTECs express various TRAs in a completely

“stochastic” manner, lacking any coherent functional/

developmental relevance (Figure 1, lower left). The second is a

pattern in which TRAs are expressed by particular mTECs in a

“coordinated” manner based on their biological properties

(Figure 1, lower right). Comparing these two paradigms with the

two-faced function of Aire, the stochastic model seems to be more

closely linked with pGE due to Aire’s genuine transcriptional

activity, whereas the coordinated model appears to pertain to the

engagement of Aire in mTEC development. So far, the role of Aire

has been basically discussed in a dichotomous manner; “(genuine)

transcriptional activity” versus “mTEC development” and

“stochastic gene induction” versus “coordinated gene induction.”

However, upon considering the findings of prior studies, it seems

reasonable to assume that Aire fulfills both of these capacities. We

discuss below the multifaceted nature of Aire as revealed by the

single-cell analyses.
3 Heterogeneity of mTECs revealed by
single-cell analysis

Like mTEChigh, the mTEClow fraction also appears to consist of

non-homogenous subsets. Using ontogenetic analysis and

reaggregate thymic organ culture (RTOC) system, Gray et al.

demonstrated that the mTEClow compartment comprises

progenitors developing into mature mTEChigh (38). For this

developmental process of mTECs, they require multiple TNF

receptor superfamily signals, including RANK, CD40 and

lymphotoxin-b receptor (44–51). Furthermore, fate-mapping and

lineage-tracing studies revealed that the mTEClow fraction also

holds mTECs in a terminally differentiated stage, termed “post-
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1176450
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Matsumoto et al. 10.3389/fimmu.2023.1176450
Aire”mTECs, that have progressively lost their expression of MHC-

II, CD80, and Aire (52, 53). These studies suggested that the

classification into mTEChigh and mTEClow is insufficient to

capture the biology of mTECs.

In addition to these notions, recent advancements in

transcriptomic analysis via single-cell RNA-seq (scRNA-seq) have

extended our understanding of mTEC heterogeneity. We have

summarized previous reports utilizing single-cell analysis,

specifically those pertaining to TECs, with their significance in
Frontiers in Immunology 03
Table 1. scRNA-seq has now become a widely employed technique

for identifying cell types or cell states in the field of immunology

(70). Indeed, scRNA-seq studies have uncovered multiple mTEC

subpopulations based on their transcriptome, exemplified by the

identification of a novel mTEC subset reminiscent of tuft cells in the

small intestine (56, 57). Based on the transcriptome similarity

computed by scRNA-seq, Bornstein et al. divided mTECs into

four subgroups referring to the previously established mTEC

subsets; mTEC I (CCL21+ mTEClow), mTEC II (mature
FIGURE 1

The “two-faced” role of Aire. (Upper left) Aire orchestrates its transcriptional function by employing epigenetic mechanisms. Through coordinating
with various binding partners, Aire preferentially interacts with repressive chromatin marks, such as H3K4me0 and H3K27me3, thereby derepressing
gene expression. (Upper right) Aire’s participation in the mTEC development. In the presence of Aire, mTEChigh attains a fully developed capability
with abundant TRA expression. Conversely, Aire-deficiency leads to the altered development of mTEChigh with ectopic CTLA-4 expression and a
defect in TRA expression. (Lower left and lower right) Depicting two potential paradigms for TRA expression; a stochastic manner without any
coherent biological relevance (left) and a coordinated manner based on the biological properties of particular types of mTEC (right).
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mTEChigh), mTEC III (post-Aire mTECs), and mTEC IV (thymic

tuft cells) (56). Other single-cell studies also reproduced the

identification of thymic tuft cells, not only in mice (59, 61, 62,

64–69) but also in the human thymic stroma (60, 63). Notably, the

development of thymic tuft cells is dependent on the transcription

factor Pou2f3, which serves as a master regulator of intestinal tuft

cells (56, 57). The identification of thymic tuft cells reminded us of

the model that the thymus comprises “a mosaic of epithelial self.”

Besides scRNA-seq, single-cell ATAC-seq (scATAC-seq) has been

recently developed as a means to infer the cis- and trans- gene
Frontiers in Immunology 04
regulatory mechanisms in single cells in a massively parallel

way (71).
4 Altered composition of mTECs due
to Aire deficiency

Michelson et al. have recently extended the idea described above

by demonstrating that mTECs utilize lineage-defining transcription
TABLE 1 Reports of single-cell approach to TECs including both scRNA-seq and scATAC-seq analyses.

Authors Organism Platform Subject Significance

Sansom et al.,
2014 (4)

Mouse
Fluidigm

C1
Smart-seq

MHC-IIhigh mTECs
Identifying Aire-induced genes and uncovering their sparse yet strong

expressions within individual mTECs

Brennecke et al.,
2015 (5)

Mouse
Smart-
Seq2

MHC-IIhigh mTECs, Ceacam1+ mTECs,
Klk5+ mTECs, Tspan8+ mTECs

Demonstrating coordinated patterns in TRA expression with their
probable association with chromatin accessibility

Meredith et al.,
2015 (13)

Mouse CEL-Seq MHC-IIhigh mTECs
Detecting diminutive co-expression clusters in Aire’s target genes,

characterizing their fashion as “ordered stochasticity”

Miragaia et al.,
2018 (54)

Mouse
Fluidigm

C1
Smart-seq2

Total mTECs
Analyzing the acquisition process of TRA expression in correlation with

the developmental stages of mTECs

Kernfeld et al.,
2018 (55)

Mouse Drop-seq Total TECs
Uncovering the heterogeneity and transcriptomic dynamics of TECs

during thymus organogenesis in embryos

Bornstein et al.,
2018 (56)

Mouse MARS-seq Total mTECs
The identification of thymic tuft cells as a novel subset of mTECs, with

evidence of their dependency on Pou2f3Miller et al.,
2018 (57)

Mouse Smart-seq2 Thymic tuft cells

Zeng et al.,
2019 (58)

Human
Chromium
STRT-seq

Total TECs
Characterizing TEC populations during embryonic and fetal stages with

the anticipation of intercellular interactions

Dhalla et al.,
2020 (59)

Mouse Chromium
Total mTECs, TSPAN8+ mTECs,

GP2+ mTECs
Identifying ordered co-expression patterns among TRA genes with

uncertain biological significance in mTECs

Park et al., 2020
(60)

Human Chromium Total TECs
Construction of the comprehensive cell atlas of the thymus, comprising

TECs, across the prenatal and postnatal stages

Baran-Gale
et al., 2020 (61)

Mouse Smart-seq2 Total TECs
Unveiling the effect of aging on the TEC composition associated with

the disruption of progenitor differentiation

Wells et al.,
2020 (62)

Mouse Chromium Total TECs
Proposing a branching development into Aire- and Ccl21a-expressing

mTECs from transit-amplifying TECs

Bautista et al.,
2021 (63)

Human Chromium Total TECs
Characterizing thymic stromal cells across different stages of life and

detecting unique subsets among mTECs

Nishijima et al.,
2022 (64)

Mouse Chromium Total TECs
Revealing composition of mTECs dramatically alters in Aire-deficient

mice, leading to the impairment of TRA expression

Gao et al., 2022
(65)

Mouse Chromium Total TECs
Profiling the temporal dynamics of TEC development and
transcriptomics throughout embryonic to adult stages

Miyao et al.,
2022 (66)

Mouse
Chromium
RamDA-

seq

Total TECs (RNA & ATAC)
RTOC (RNA)

Demonstrating that transit-amplifying Aire+ mTECs serve as precursors
of functionally mature Aire+ mTECs

Nusser et al.,
2022 (67)

Mouse CEL-Seq2 Total TECs
Identifying two distinct types of principal TEC progenitors by utilizing

a CRISPR-Cas9-based barcoding system

Michelson et al.,
2022 (68)

Mouse Chromium
MHC-IIhigh mTECs (ATAC),

MHC-IIlowPdpn-CD104- mTECs (RNA)
Suggesting mTECs co-opt lineage-defining transcription factors to

mirror extra-thymic cell types for TRA expression

Liang et al.,
2022 (69)

Mouse Chromium Total TECs
Demonstrating TEC-specific deletion of Furin leads to a decrease in the

number of mTECs, including thymic tuft cells
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factors to mirror the extra-thymic cell types (68). They conducted a

large set of single-cell experiments, including scATAC-seq and

scRNA-seq, to investigate the mechanisms of TRA expressions in

mTECs. They categorized mTECs into various subpopulations

based on their resemblance to particular extra-thymic tissues,

such as keratinocytes, tuft cells, microfold cells, neuroendocrine/

secretory cells, ciliated cells, and myocytes. They called these

populations “mimetic cells” and demonstrated that the majority

of them are in the “post-Aire” stage. Similar to thymic tuft cells, they

discovered that microfold mTECs are nearly eliminated in mice

lacking Sox8 or Spib, transcription factors that characterize the

corresponding subset (i.e., microfold cells) (68). Thus, their findings

support the concept of coordinated machinery underlying the

expression of TRAs (Figure 1, lower right). Several studies have

also reported matched mTEC clusters for mimetic cells, albeit with

slight variations in terminology (Table 2). Importantly, Aire-KO

mice showed the reduction of certain mimetic cell clusters to

varying degrees, suggesting that Aire is partially and variably

required for the development of these subpopulations (68).

Our previous scRNA-seq study further focused on

transcriptome changes in the primary Aire-expressing mTECs

caused by the lack of Aire (64). Interestingly, a comprehensive

analysis of WT and Aire-KO mice revealed a significant alteration

in the composition of mTECs, as also documented in other reports

(56, 68). The most striking change was the presence of clusters

unique to Aire-KO mTECs that emerged instead of Aire-expressing
Frontiers in Immunology 05
mTEChigh in WT mice; “Aire-less” mTEChigh, hereafter. These

clusters were reminiscent of morphologically abnormal mTECs

observed in the medulla in Aire-KO mice (35, 36), and they

exhibited high expression of Ctla4 (42). Besides the defect of TRA

genes in Aire-less mTEChigh compared with Aire-expressing

mTEChigh, a comparison of these two groups identified a

signature of “keratinocyte differentiation,” suggesting the

impairment of normal developmental process in Aire-less

mTEChigh (64). Thus, recent studies utilizing single-cell

techniques and Aire-KO mice have indicated that Aire deficiency

leads to the impaired development of mTECs at the Aire-expressing

stage itself, as well as subpopulations mimicking the extra-thymic

tissues to a variable extent. However, the exact mechanisms through

which Aire promotes the development of various mTEC

subpopulations remain elusive.
5 Aire-induced genes revisited by
single-cell resolution

As aforementioned, Sansom et al. reported the down-regulation

of nearly 4,000 genes in Aire-KO mTEChigh in comparison to the

wild-type counterpart (4). They classified these genes as “Aire-

induced genes” and further defined a group of genes whose

expression is entirely dependent on Aire as “Aire-dependent

genes.” Although these gene lists have been extensively employed
TABLE 2 mTEC subpopulations mirroring extra-thymic cell types identified by single-cell analysis.

Subset Organism Gene signature Other description Reference

Post-Aire mTEC
Mouse Spink5, Ivl, Krt10, Krt80, Pigr, Ly6d, Cnfn, Flg mTEC-III, Keratinocyte mTEC, Corneocyte-like

mTEC, Spink5+ cell
(56, 59–69)

Human KRT1, KRT10, IVL

Thymic tuft cell
Mouse

Pou2f3, Dclk1, Avil, Lrmp, Trpm5, Il25, Gng13, L1cam,
Sox9, Chat mTEC-IV,

Tuft-like mTEC
(56, 59–69)

Human POU2F3, DCLK1, GNAT3, GNB3, PLCB2, OVOL3

Microfold
mTEC

Mouse
Sox8, Spib, Gp2, Ccl6, Ccl9, Ccl20, Ccr5, Tnfaip2,

Tnfrsf11b
Gp2-preffered mTEC,
Gp2+ TEC, Ccl6+ cell

(59, 65, 66, 68)

Neuroendocrine/
Secretory cell

Mouse Snap25, Stxbp5l, Car8, Cd177 Structural TEC,
TEC (neuro)

(60, 61, 63, 66,
68)Human NEUROD1, NEUROG1, CHGA, BEX1

Ciliated cell
Mouse

Dynlrb2, Dnah12, Spag16, Wdr34, Bbs7, Tppp3,
Fam183b Cilia-TEC (59, 63, 66, 68)

Human ATOH1, GFI1, LHX3, FOXJ1

Myoid cell
Mouse Myog, Myl1, Actc1 Muscle mTEC,

TEC (myo)
(60, 63, 68)

Human MYOD1, MYOG, DES

Lung mTEC Mouse Aqp4, Aqp5, Muc5b, Slc12a2, Bpifa1 Bpifa1+ cell (65, 68)

Ionocyte
Mouse Slc12a2, Atp6v1b1

(63, 68)
Human CFTR, FOXI1, ASCL3, CLCNKB

Enterocyte/
Hepatocyte
mTEC

Mouse Reg3g, Saa1, Saa3, Aldob (68)

Myelin+ cell Human SOX10, MPZ, MBP, S100A1 (63)
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in subsequent studies with the assumption that Aire directly regulates

their transcription within Aire-expressing mTECs, the following

single-cell studies have provided an alternative interpretation.

Regarding the mTECs in WT mice, a previous single-cell

analysis demonstrated that MHC-IIhigh fraction comprises Aire-

expressing mTECs and various mTEC subsets mirroring extra-

thymic cell types (i.e., mimetic cells) (68). Furthermore, it has been

reported that Aire-expressing mTECs in active cell-cycle, known as

transit-amplifying TECs (TAC-TECs), also exist within the

mTEChigh population (62, 66). While these cells were suggested to

be the precursors of quiescent and functionally mature Aire-

expressing mTEChigh, they were incapable of expressing sufficient

levels of TRA genes together with Aire-induced genes (66).

Notably, compositional changes are taking place in the mTEChigh

fraction from Aire-KOmice. First, Aire-KOmTECs harbor “Aire-less”

mTEChigh, which shows the defect of TRA expressions (64), altered

globular morphology (35, 36) along with the enlarged cell numbers

(38–40, 64), and abnormal Ctla4 expression (42, 43). Second, several

mimetic cell clusters were reported to decrease in various degrees (e.g.,

ciliated mTECs, neuroendocrine/secretory mTECs, and microfold

mTECs) (68). In contrast to functionally mature Aire-expressing

mTEChigh, the effect of Aire deficiency in the TAC-TEC cluster

seems to be minimal, as we observed no significant changes in their

distribution and cell numbers in Aire-KO mice (64).

When the transcriptomes of mTEChigh from WT and Aire-KO

mice are compared by bulk RNA-seq, differentially upregulated
Frontiers in Immunology 06
genes in WT mTEChigh would be detected as Aire-induced genes

(Figure 2). Therefore, “bulk” Aire-induced genes do not constitute a

single group of genes brought by the genuine transcriptional activity

of Aire. We suggest that the “bulk” Aire-induced genes consist of

two contexts in which Aire promotes the genes via distinct

regulatory mechanisms; (i) genes induced by Aire’s genuine

transcriptional activity and (ii) genes preferentially expressed in

mimetic cells. In other words, the higher a mimetic cell cluster’s

dependence on Aire, the more genes characteristic of the

corresponding cluster will be detected as Aire-induced genes.
6 Stochastic “and” coordinated
manner in TRAs?

Initially, single-cell analyses with single-cell PCR were applied

to MHC-IIhigh mTECs, focusing on certain TRAs to dissect the

mechanism underlying TRA expressions (11, 12, 72). Although

these studies emphasized the stochasticity of pGE in individual

mTECs, later scRNA-seq experiments utilizing a few hundred

MHC-IIhigh mTECs concluded that Aire-induced genes fall into

some sort of coordinated patterns besides its stochasticity (4, 5, 13).

Furthermore, a recent large-scale scRNA-seq analysis (total of 6,894

mTECs) also noted an ordered co-expression pattern in TRAs,

confirmed by focusing on particular Aire-induced TRAs (i.e.,

Tspan8 and Gp2), while the biological significance of co-
FIGURE 2

The landscape of the bulk Aire-induced genes. Illustrating the compositional changes between wild-type MHC-IIhigh mTECs and Aire-KO MHC-IIhigh

mTECs. Besides the defect in the transcriptional activity in primary Aire-expressing mTEChigh, the altered composition of various mTEC
subpopulations in mTEChigh contributes to the difference in the transcriptome detected by the bulk RNA-seq.
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expression remained inexplicable (59). It should be noted that these

arguments are predicated upon the assumption that TRA induction

is primarily brought by a single mechanism. However, as discussed

above, it seems reasonable to posit that Aire induces TRA

expression through a combination of (i) a stochastic pattern

resulting from the genuine transcriptional activity of Aire and (ii)

a coordinated pattern established by mTECs mirroring extra-

thymic cell types (i.e., mimetic cells). Given this two-faced role of

Aire, analyses utilizing total mTEChigh or focusing on specific TRAs

highly expressed within a particular mimetic cell cluster may not be

sufficient. Instead, it might be essential to classify mTECs accurately

into subclusters in advance and then investigate the significance of

Aire-induced genes or TRA genes within individual clusters. In this

regard, single-cell analysis, especially the droplet-based approach, is

an ideal tool to dissect inter-populational heterogeneity

underlying mTECs.

However, since the sequencing depth in each cell is relatively

low in the droplet-based method, it may not be sufficient to detect

pGE in mTECs due to its sparse nature. To capture the dynamics of

the transcriptome in single mTECs, another plate-based approach,

such as Smart-seq (73) and RamDA-seq (74), would be better than

the droplet-based method as it offers much higher sensitivity and

near-complete full-length transcript coverage. Furthermore, the

method employed for cell isolation would significantly affect the

outcome of downstream analysis. Indeed, a previous study utilizing

scRNA-seq for FACS-sorted MHC-IIlowPdpn−CD104–-mTEClow

fraction (68) detected various mimetic cells at a higher resolution

compared with other studies utilizing the total TEC population (62,

64–66). On the other hand, the protocol of TEC isolation itself

would also have a significant impact on the result of single-cell

analysis (75, 76). Given that a previous imaging study has reported

~1.1x106 Aire+ mTECs in 5 weeks old mice (77), it is possible that

there still exists unknown TEC populations. The integration of

these techniques and methodologies will lead to a better

understanding of inter-populational heterogeneity in TECs and

intra-populational heterogeneity in Aire-expressing mTECs.
7 Shared and distinct features
between mouse and human mTECs

Although previous scRNA-seq studies have demonstrated the

similarities between mouse and human mTECs, certain differences

also exist between them. Representative mTEC clusters

corresponding to CCL21+ mTEClow, AIRE-expressing mTEChigh

and post-AIRE mTECs were identified among human TECs (60,

63). Several mimetic cell clusters, such as thymic tuft cells, myoid

cells and ciliated cells have also been detected both in mouse and

human thymic stroma (Table 1). Nevertheless, the composition of

mimetic cell clusters varies between mice and humans. For example,

the cluster of thymic tuft cells was relatively small and indistinct in

human mTECs compared with mouse mTECs (60, 63). In contrast,

Bautista et al. reported the presence of myelin-expressing mTECs in

humans that have not been reported in the mouse thymi (63).

Furthermore, the TAC-TEC cluster has not been captured in the

previous studies related to human TECs (60, 63). However, we also
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need to consider the dynamics of TEC composition associated with

aging and other stress (61) when comparing mouse and human

TECs. Since the single-cell studies on human TECs are currently

limited, future studies employing larger sample sizes, higher

sequencing depth, and more sophisticated analytical tools will be

crucial for elucidating the full spectrum of cellular heterogeneity in

human TECs.
8 Single-cell analysis beyond mTECs

8.1 Aire expression from antigen-
presenting cells in the periphery

Other than mTECs, Gardner et al. characterized Aire-expressing

hematopoietic population in peripheral lymphoid tissues as

extrathymic Aire-expressing cells (eTACs), showing the

characteristics of MHC-IIhigh antigen-presenting cells (78, 79). A

recent study utilizing single-cell multi-omics (scRNA-seq + scATAC-

seq) further divided eTACs into two distinct types; migratory dendritic

cell (DC)-type and RORgt+ group 3 innate lymphoid cell (ILC3)-type,

as they termed the latter Janus cells (JCs) (80). The result was also

corroborated by three back-to-back studies that identified Aire-

expressing lineage among RORgt+ cells by scRNA-seq (81–84).

Notably, Dobes ̌ et al. demonstrated that Aire deficiency in ILC3-type

eTACs (i.e., JCs) leads to the impaired generation of Candida-specific

T-cell response, providing new insight into the mechanism underlying

mucocutaneous candidiasis of APECED patients and extra-thymic

function of Aire (85).

Given that the transcriptional impact of Aire varies with cell

type (86), it is questionable whether the presence of Aire elicits the

expression of TRAs in hematopoietic cells similar to its effect in

mTECs. Wang et al. suggested the similarity in the transcriptome

between JCs and mTECs by calculating the cosine similarity score

and demonstrated the enrichment of TRAs in JCs, while the effect of

Aire deficiency was not mentioned (80). Another study revealed

that Aire deficiency impacted the transcriptome under the heat-

killed C. albicans (HKCA)-stimulated condition in JCs, resulting in

the impaired induction of genes encoding cytokines (Il6, Il18 and

Bmp2), C. albicans-sensing receptors (Clec7a), cell adhesion

molecules (Vcam1 and Cadm1), costimulatory molecules (Cd86)

and enzymes involved in proinflammatory response (Ptgs2) (85).

However, the transcriptome changes were not as pronounced as

those observed in Aire-KO mTECs. In contrast, we noted no

considerable effect on the transcriptome of DC-type eTACs as a

result of the lack of Aire (87). Despite these equivocal findings

regarding the transcriptional activity of Aire in antigen-presenting

cells, a comprehensive study of Aire in distinct cell types and its

effect may improve our understanding in the biology of Aire.
8.2 AIRE expression in thymic
epithelial tumors

Recently, two groups independently reported the scRNA-seq

analysis of thymic epithelial tumors (TETs) (88, 89). TETs are
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classified into six types of thymomas (Type A, AB, B1-B3

thymomas, and micronodular thymoma with lymphoid stroma)

and thymic carcinoma according to the current WHO classification

(90). While there is no doubt that TETs originate from TECs, it is

still elusive whether each histological type originates from cTECs or

mTECs. A previous immunohistochemical study reported that

most thymomas showed character is t ics of bi- l ineage

differentiation toward mTECs and cTECs, suggesting that they

derive from a common progenitor cell (91). Indeed, the scRNA-

seq data showed that each TET contained varying proportions of

neoplastic TECs resembling normal cTECs and mTECs within the

tumor, containing a small number of AIRE-expressing cells (88, 89).

In great contrast, our study combining immunohistochemical

analysis for AIRE with published scRNA-seq data demonstrated

that most thymic carcinomas express AIRE protein and harbor the

molecular characteristics of several subpopulations in mTECs, but

not cTECs, suggesting their cell of origin as mTECs (92). A recent

report also demonstrated that a tuft cell-like signature was prevalent

in thymic carcinomas (93).

Patients with thymomas often develop autoimmunity, most

typically myasthenia gravis (MG), whereas thymoma is recorded in

only 10-15% of all patients with MG (94–96). Besides thymomas,

thymic hyperplasia (thymic follicular hyperplasia), which forms

abundant germinal centers in the medulla, can also cause MG. Of

note, autoimmunity is significantly rare in patients with thymic

carcinomas (94, 95). Although the role of AIRE and mTECs in the

pathogenesis of MG is still elusive, the absence or the insufficiency of

AIRE expression from thymoma tissues has been discussed with the

development of autoimmunity in thymoma patients in several studies

(97–100). However, our immunohistochemical approach revealed that

most type B thymomas, in which paraneoplastic autoimmunity is most

frequent, harbored focal but intense AIRE staining in the area showing

differentiation to mTECs (92). Furthermore, we did not see a

correlation between the incidence of MG and the expression of AIRE

protein in our TET cohort, raising a possibility that some other factors

than AIRE might be responsible for the development of MG in

thymomas. In this regard, it is quite important to disclose whether

AIRE is also functional in the neoplastic milieu. While the information

on AIRE-dependent genes in humans is currently unavailable, single-

cell data accumulated so far from human TECsmay help to identify the

putative AIRE’s targets. Furthermore, spatial transcriptomics may

provide novel insights into the biology of TETs by capturing their

abnormal architecture and altered gene expressions simultaneously.
9 Conclusions and perspectives

Although recent advances in the single-cell analysis have expanded

our understanding of mTECs, it is an issue of great importance for
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further study to reveal how a single Aire gene participates in such a

multilayered task outlined above and how it functions even in the

extra-thymic cellular context. It should also be noted that scRNA-seq

analysis of embryofetal and neonatal mice draws dramatically different

distributions of TECs from adult samples (56, 65). Considering the

distinct profiles of Tregs generated in early life (101) and the

importance of Aire expression during the perinatal period (102), it

would be worthwhile to focus on Aire’s actions during early life to see

any possible difference from those seen in adults at a single-cell

resolution. It is also crucial to clarify how the TRAs from Aire-

expressing mTECs and mimetic clusters share roles for inducing

immune tolerance. Particularly, the benefit of stochastic TRA

expression from a small population in Aire-expressing mTECs is of

great interest. We hope that our review will contribute to a better

understanding of mTEC biology and illuminate a new perspective on

the Aire.
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