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Hyperphosphatemia is an independent and non-classical risk
factor of cardiovascular disease and mortality in patients with
chronic kidney disease (CKD). Increased levels of extracellular
inorganic phosphate (Pi) are known to directly induce vascular
calcification, but the detailed underlying mechanism has not been
clarified. Although serum Pi levels during the growth period are
as high as those observed in hyperphosphatemia in adult CKD,
vascular calcification does not usually occur during growth. Here,
we have examined whether the defence system against Pi-
induced vascular calcification can exist during the growth period
using mice model. We found that calcification propensity of
young serum (aged 3 weeks) was significantly lower than that
of adult serum (10 months), possibly due to high fetuin-A levels.
In addition, when the aorta was cultured in high Pi medium
in vitro, obvious calcification was observed in the adult aorta
but not in the young aorta. Furthermore, culture in high Pi
medium increased the mRNA level of tissue-nonspecific alkaline
phosphatase (TNAP), which degrades pyrophosphate, only in the
adult aorta. Collectively, our findings indicate that the aorta in
growing mouse may be resistant to Pi-induced vascular
calcification via a mechanism in which high serum fetuin-A levels
and suppressed TNAP expression.
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I norganic phosphate (Pi) is an essential nutrient as a compo‐
nent of bone, cell membranes, and adenosine triphosphate,

and to maintain these functions, serum Pi levels are normally
maintained within a certain range (2.5–4.5 mg/dl).(1,2) However,
hyperphosphatemia is caused by chronic kidney disease (CKD)
due to decreased Pi excretion. Hyperphosphatemia is a leading
cause of vascular calcification, and closely related to cardiovas‐
cular mortality.(3) Vascular calcification, the pathological deposi‐
tion of hydroxyapatite crystals in the blood vessel wall, is a risk
factor for arterial stiffness and cardiovascular disease, especially
in patients with CKD.(4,5) Vascular calcification is classified
into intimal, valvular, and medial types, the last of which is
commonly observed in patients with CKD.(6) Although the
detailed mechanism of vascular calcification has not been
clarified, both passive deposition of hydroxyapatite and active
calcification similar to the process involved in bone formation
are involved. The key step in vascular calcification is considered
to be the osteochondrogenic differentiation of vascular smooth
muscle cells in response to various external stresses,(7) such as
hyperphosphatemia, diabetes, hypoxia, and ageing. Conversely,

there are several mechanisms that inhibit vascular calcification,
including humoral factors such as fetuin-A and inorganic
pyrophosphate (PPi). A decrease in the circulation of these
inhibitors can also promote vascular calcification.(8)

A recent intervention study reported that strict control of
serum Pi levels improved the coronary artery calcification score
in dialysis patients.(9) This suggests that lowering serum Pi levels
by medication of Pi-binding agents or dietary Pi restriction by
avoidance of foods related to increasing serum Pi levels may be
effective in the prevention of vascular calcification,(10) however
those treatments are not always successful easily. For example,
adherence of Pi-binding agents for hyperphosphatemia is often
not good due to polypharmacy problem.(11,12) On the other hand,
dietary Pi restriction also has low adherence and may cause
protein energy wasting or malnutrition with several nutrients in
relation to low protein diet.(13) Therefore, a different approach
against vascular calcification should be needed.
Notably, serum Pi levels change over lifetime. Levels are

highest in early life-stages and gradually decrease with aging as
long as renal function is normal.(14,15) Because low serum Pi
during the growth period leads to bone dysplasia and short
stature, maintaining high serum Pi levels during this life stage
must be essential for normal bone modeling.(15) Interestingly,
serum Pi during the growth period (4–7 mg/dl) is as high as that
in cases of hyperphosphatemia among patients with end-stage
CKD (5–10 mg/dl). Nevertheless, vascular calcification does not
occur during the growth period in healthy individuals. This is
probably related to the increased demand for Pi in bone, however
there is no evidence showing that active bone modeling prevents
vascular calcification. Moreover, even if Pi is used for bone
formation, arteries continued to be exposed to high serum Pi
level, so some mechanism should be needed to prevent vascular
calcification. Therefore, we hypothesized that an underlying
mechanism prevents vascular calcification during the growth
periods, while allowing hard tissues to be calcified. To examine
whether the defence system against Pi-induced vascular calcifica‐
tion can exist during the growth period, here we identified
candidates for humoral and cellular factors among the known
inhibitor or stimulator of vascular calcification by comparing
mice at the growth stage with adult mice.
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Materials and Methods

Animals. C57BL/6J male mice aged 3 weeks or 9–10
months were purchased from The Jackson Laboratory Japan,
Inc. (Yokohama, Japan) and Japan SLC, Inc. (Shizuoka, Japan).
All animals were kept at the Division for Animal Research
Resources and Genetic Engineering, Support Center for
Advanced Medical Sciences, Tokushima University Graduate
School under pathogen-free conditions. They were maintained in
a climate-controlled room (22 ± 2°C) under a 12/12 h light/dark
cycle with free access to distilled water and standard chow
(MF; Oriental Yeast Co., LTD., Tokyo, Japan). All mice were
euthanized under anesthesia for sample collection. All animal
studies were approved by the animal experimentation committee
of Tokushima University and conducted in accordance with the
guidelines for the management and handling of experimental
animals. (Approval No. T2019-27 and T2022-28).

Determination of serum calcification propensity. Calci‐
fication propensity was evaluated in vitro by overloading Ca
and Pi into serum samples as previously reported with a few
modifications.(16) In brief, 80 μl of serum was mixed with 20 μl of
NaCl (140 mM), 50 μl of Pi stock solution (24 mM), and 50 μl of
Ca stock solution (40 mM) in a 96-well plate. The plate was then
covered with a thin adhesive sealing film and incubated at 37°C
for 600 min. Optical density at 650 nm (OD650) was measured
every 60 min with a microplate reader (SpectraMax ABS; Molec‐
ular Devices, San Jose, CA).

Plasma biochemical parameters. Blood samples were
collected into tubes with heparin (Mochida Pharmaceutical Co.,
Ltd., Tokyo, Japan) by inferior vena cava puncture. After
centrifugation for 15 min at 5,000 × g, the supernatant was
collected as plasma. For the pyrophosphate assay, each plasma
sample was immediately filtered by a membrane filter (Nanosep
30 K, Pall, Port Washington), snap-frozen in liquid nitrogen, and
stored at −80°C until analysis. Plasma phosphate was estimated
by the p-methyl aminophenol method using Phospha-C test
(FUJIFILM Wako Pure Chemical Corp., Osaka, Japan). Plasma
calcium (Ca) was estimated by the methylxylenol blue method
using Calcium-E test (FUJIFILM Wako Pure Chemical Corp.).
Plasma fetuin-A was estimated by a Quantikine® ELISA kit
(R&D Systems, Minneapolis, MN). Plasma PPi was estimated by
PPi LightTM (Lonza, Basel, Switzerland). Alkaline phosphatase
activity was estimated by measuring the absorbance of p-

nitrophenol converted from p-nitrophenyl phosphate (FUJIFILM
Wako Pure Chemical Corp.) as a substrate.

Real-time RT-PCR analysis. Total RNA was isolated from
homogenized liver, femur and aorta tissue by using RNAiso Plus
(Takara Bio Inc., Shiga, Japan) and then digested by recombinant
DNase I (Worthington Biochemical, Lakewood). Femur without
bone marrow flushing was subjected to homogenize. First-strand
cDNA was synthesized from 1.0 μg of total RNA by using M-
MLV Reverse Transcriptase (Nippon Gene, Tokyo, Japan), Oligo
(dT) Primer (Invitrogen, Waltham, MA), and dNTP Mixture
(Promega, Madison, WI). After cDNA synthesis, real-time PCR
was performed with appropriate forward and reverse primers and
Fast SYBRTM Green master mix (Applied Biosystems, Waltham,
MA) using a real-time PCR system (StepOne Plus; Applied
Biosystems). The primer sequences and target genes, including
abbreviations, are summarized in Table 1. Each gene was quanti‐
fied as the mRNA level normalized to a housekeeping gene
(β-actin for liver and femur, Rplp0 for aorta) using the compara‐
tive Ct method.

Ex vivo culture of aortic tissue. Thoracic aortas were
isolated, perfused with phosphate-buffered saline (PBS), and
maintained in Dulbecco’s modified Eagle’s medium (high
glucose; Sigma, St. Louis, MO) containing 10% fetal bovine
serum (Cosmo Bio Co., LTD., Tokyo, Japan), 100 U/ml penicillin,
and 100 μg/ml streptomycin (Nacalai Tesque, Inc., Kyoto, Japan)
at 37°C in a humidified atmosphere of 5% CO2 and 95% air.
Calcification was induced by incubating each aorta in 5 mM high
Pi medium. To examine the effect of tissue-nonspecific alkaline
phosphatase (TNAP) inhibitor on aortic calcification, levamisole
was added at a final concentration of 1 mM. The aorta was then
incubated for 8 days with replacement of the medium every 2
days. The first region 2–3 mm of the descending aorta was used
for histology and remaining sample was used for Ca deposition
or real-time PCR analysis.

Evaluation of calcification. To evaluate Ca deposition, each
incubated aorta was immersed in 0.6 N HCl for 24 h at room
temperature. The amount of dissolved Ca was determined by
the methylxylenol blue method described above and corrected
by wet tissue weight. For histological analysis, each cultured
aorta was fixed overnight by 4% paraformaldehyde/PBS and
embedded in paraffin wax. The paraffin block was dissected in
5-μm sections, subjected to Von Kossa staining as previously
described,(17,18) and counterstained with hematoxylin-eosin (HE).

Table 1. Oligonucleotide primers for real-time PCR analysis

Gene name Forward primer (5'-3') Reverse primer (5'-3')

β-actin CTGACCCTGAAGTACCCCATTGAACA CTGGGGTGTTGAAGGTCTCAAACATG

Abcc6 ACCATGAGCTTTGCCACCTTT AGCCAGTACCCGAACAACAC

Enpp1 CTGGTTTTGTCAGTATGTGTGCT CTCACCGCACCTGAATTTGTT

Ank ATGTGGATGAGTCTGTGGGGAG TGGCTACGAAAACAACCTGAGC

TNAP GTTGCCAAGCTGGGAAGAACAC CCCACCCCGCTATTCCAAAC

Fetuin-A GAAACAAGACGGCCAGTTCA TGGACCACGTTGGTATCGTT

Rplp0 GGGCATCACCACGAAAATCTC CTGCCGTTGTCAAACACCT

MGP GGCAACCCTGTGCTACGAAT CCTGGACTCTCTTTTGGGCTTTA

αSMA GTCCCAGACATCAGGGAGTAA TCGGATACTTCAGCGTCAGGA

SM22α TTCTTGAAGGCAGCTGAAGA GCACTGCTGCCATATCCTTA

Pit-1 TCTGACCTTCACTCCGAGTCTG AAGGATCTGCAGGAACTGGAAG

Runx2 TGCACCTACCAGCCTCACCATAC GACAGCGACTTCATTCGACTTCC

IL-6 CTGATGCTGGTGACAACCAC TCCACGATTTCCCAGAGAAC

Abcc6, ATP binding cassette sub-family C member 6; Enpp1, ectonucleotide pyrophosphatase/phosphodiesterase 1;
Ank, progressive ankylosis protein; TNAP, tissue nonspecific alkaline phosphatase; Rplp0, ribosomal protein lateral
stalk subunit P0; MGP, matrix gla protein; αSMA, α-smooth muscle actin; SM22α, smooth muscle 22α; Pit-1, sodium-
dependent phosphate transporter 1; Runx2, Runt-related transcription factor 2; IL-6, interleukin 6.
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For Alizarin red staining, tissue sections were treated with 1%
alizarin red solution (pH 6.4) for 5 min, and then washed with
distilled water.

Statistical analysis. Welch’s t test was used for two-group
comparisons and one-way analysis of variance (ANOVA) with
Tukey-Kramer post hoc test was used to compare data among
three groups or more. All statistical analysis was performed using
GraphPad Prism 9 (GraphPad Software, San Diego, CA). A
p value of <0.05 was considered to be statistically significant.

Results

Young serum more strongly inhibits the ripening of
calciprotein particles. To test the hypothesis that a humoral
factor may contribute to the inhibition of Pi-induced vascular
calcification during the growth period, we compared the calcifi‐
cation propensity of serum between young mice (aged 3 weeks)
and adult mice (10 months). Without serum, a supersaturated
solution of Ca and Pi immediately formed a visible white precipi‐
tation with a high OD650 (Fig. 1A, 0 min). Addition of serum
inhibits this precipitation due to the formation of colloidal parti‐
cles of Ca, Pi, and fetuin-A, known as calciprotein particles
(CPPs). Here, a sharp increase in OD650 was observed at 120–
300 min after the start of incubation with adult serum (Fig. 1A),
which may reflect the transition from amorphous primary CPP to
more crystalline secondary CPP.(16) With young serum, an
increase in OD650 was observed at 240–420 min after the start of
incubation (Fig. 1A). At 600 min, OD650 was significantly lower
in young serum than in adult serum (Fig. 1B). Correspondingly,
the amount of precipitation at the endpoint was clearly smaller in
young serum than in adult serum (Fig. 1C). These results suggest
that, as compared with adult serum, young serum can inhibit
more strongly the ripening of CPPs from amorphous primary
particles to more crystalline secondary participles.

Plasma fetuin-A levels is higher in young mice than adult
mice. Next, we compared endogenous calcification stimulators
and inhibitors in plasma between young mice and adult mice to
investigate the factors involved in the differences in calcification
propensity. Plasma Pi and Pi × Ca product levels were signifi‐
cantly higher in young mice than in adult mice (Table 2). In addi‐
tion, the level of inorganic pyrophosphate (PPi), one of the potent
calcification inhibitors,(19) was significantly lower in young
plasma than in adult plasma (Table 2). This may not be due to
low hepatic PPi production but high femoral expression of tissue-
nonspecific alkaline phosphatase (TNAP),(20) which degrades
PPi, and high plasma alkaline phosphatase activity in young
plasma (Table 2, Fig. 2A and B). On the other hand, plasma
concentrations and liver mRNA levels of fetuin-A, which is a
systemic inhibitor of calcification and major components of the
CPP,(21) were significantly higher in young mice (Table 2 and
Fig. 2B). These data suggest that high levels of fetuin-A may
counteract the high vulnerability to calcification due to high Pi,
high calcium, and low PPi in young plasma.

Young aorta is more resistant to Pi-induced vascular calci‐
fication. An alternative hypothesis is that the young aorta
per se may have an inhibitory mechanism against Pi-induced
calcification. To test this hypothesis, we compared the suscepti‐
bility to Pi-induced vascular calcification between young aorta
and adult aorta. It is difficult to evaluate this susceptibility in vivo
because multiple macro- and micro-environmental factors affect
vascular calcification; therefore, we used an ex vivo culture
model to compare the young and adult aorta under the same
environment. Interestingly, young aorta did not exhibit calcifica‐
tion under the high Pi condition (Fig. 3A and C), whereas adult
aorta showed obvious calcification (Fig. 3B and C). These results
suggest that young aorta may be more resistant to Pi-induced
vascular calcification as compared with adult aorta.

Pi-induced TNAP mRNA upregulation is suppressed in
young aorta. Then, we compared the mRNA expression of
genes involved in vascular calcification between young and adult
aorta cultured under both normal control (CP) and high Pi (HP)
conditions. The mRNA levels of MGP, Enpp1, αSMA, Pit-1, and
Runx2 were not significantly different among the four groups,
while the mRNA expression of SM22α was significantly lower in
the adult HP group than adult CP Group (Fig. 4A–F). Notably,
the mRNA expression of TNAP and IL-6 was significantly
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higher in the adult HP group than in any other group (Fig. 4G
and H). Because TNAP is known to have an important role in the
development of vascular calcification,(22) we further explored the
role of TNAP on vascular calcification in our aortic culture
model by evaluating the effect of the TNAP inhibitor levamisole.

Table 2. Comparison of plasma biochemical data between young
(3 weeks) and adult (10 months) mice

Young Adult

Pi (mg/dl) 8.88 ± 0.59 7.25 ± 0.24*

Ca (mg/dl) 8.01 ± 0.14 7.63 ± 0.13

Pi × Ca (mg2/dl2) 71.44 ± 5.78 55.27 ± 1.92*

PPi (μmol/L) 0.12 ± 0.03 1.04 ± 0.12***

ALP activity (μmol/L/min) 114.40 ± 3.43 15.11 ± 1.27****

Fetuin-A (μg/ml) 171.78 ± 7.92 76.72 ± 6.32****

Data are expressed as mean ± SEM (n = 6). *p<0.05, ***p<0.001,
****p<0.0001 vs young mice.
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As shown in Fig. 4I and J, levamisole significantly suppressed
Pi-induced vascular calcification in adult aorta. These results
suggest that the suppression of Pi-induced TNAP expression may
contribute to resistance to vascular calcification during the
growth period.

Discussion

To our best knowledge, this is the first study to investigate why
vascular calcification is not observed during the normal growth
period even though serum Pi levels are higher than those
observed in adult. Our results indicate that there are at least two
contributing factors, fetuin-A, and TNAP, involved in the mecha‐
nism to protect the aorta from Pi-induced vascular calcification
during the growth period. Vascular calcification can be closely
related to bone calcification. Several reports have shown a nega‐
tive correlation between vascular calcification and bone mineral
density.(23,24) This is called the calcification paradox and have
been major issues in the research field of calcification for many
years.(25) Clarifying the mechanism that prevents vascular calcifi‐
cation during the growth period may be an important to under‐
stand the calcification paradox.

Higher serum calcification propensity is associated with more
severe vascular calcification and mortality among patients with
CKD.(26,27) In addition, high calcification propensity can predict
cardiovascular mortality independent of renal function.(28)

Despite the high Pi × Ca product and low PPi levels, our results
revealed that the calcification propensity of young serum was
lower than that of adult serum, suggesting that young serum is
likely to contain either large amounts of calcification inhibitors
or small amounts of calcification promoters. Given the role of
fetuin-A in suppressing CPP ripening,(16) the low serum calcifica‐
tion propensity observed during the growth period may be
explained, in part, by high fetuin-A levels. To date, several other
inhibitors of CPP ripening such as albumin,(16) magnesium,(16,29)

and zinc have been identified;(30,31) however, there are no studies
demonstrating a relationship between their abundance in serum
and CPP ripening during the growth period. Further research is
needed to determine in detail the cause of the low calcification
propensity of young serum.
Fetuin-A is secreted from the liver into the circulation and

inhibits calcification by forming CPPs.(32) Many studies have
demonstrated the relationship between plasma fetuin-A and
vascular calcification or cardiovascular disease, including a
study in paediatric CKD.(33–35) Fetuin-A is highly enriched in the
mineralized bone matrix,(36) and mice lacking fetuin-A exhibit
dysplasia of long bone.(37) Furthermore, CPPs extravasated into
the bone marrow are deposited on the inner surface of the
bone.(38) Therefore, the high levels of plasma fetuin-A observed
during the growth period seem to be important not only for main‐
taining bone formation, but also for inhibiting vascular calcifica‐
tion by transporting Ca and Pi to the bone. However, further
studies are needed to clarify why high levels of fetuin-A expres‐
sion are maintained in the liver during the growth period.

In contrast to fetuin-A, plasma PPi levels were significantly
lower in young mice than in adult mice. PPi inhibits calcification
by binding to hydroxyapatite crystals and inhibiting their
growth.(39) Lower plasma PPi levels are reported in patients with
end-stage CKD and may be involved in vascular calcifica‐
tion.(40,41) The absence of vascular calcification during the growth
period despite low plasma PPi concentrations suggests that PPi

production in the vascular microenvironment is more important
than circulating PPi in inhibiting calcification. In support of
this, it has been reported that lethal vascular calcification occurs
in mice overexpressing TNAP specifically within vascular
smooth muscle cells even though circulating PPi levels do not
decrease.(42)

The TNAP enzyme is expressed primarily in bone, kidney,
and liver, and can strongly promote calcification by degrading
PPi and producing Pi.(22) It is also expressed in vascular smooth
muscle cells and upregulated under pro-calcific conditions. We
demonstrated that the calcification propensity of young aorta was
lower than that of adult aorta, and was possibly related to the
suppression of Pi-induced TNAP expression. TNAP expression
is regulated by Runx2, a master regulator of osteoblasts that
activates TNAP expression via its binding enhancer region in
mouse mesenchymal-like C3H10T1/2 cells.(43,44) However, our
data demonstrated that neither young nor adult aorta showed a
significant increase in Runx2 expression after incubation in high
Pi medium.

A limitation of this study is that the ex vivo experiment may
not fully reflect in vivo conditions. In addition, this study focused
only on known inhibitors or stimulators of calcification. Global
multi-omics analysis will be helpful to identify other important
factors, leading to understand the defense system against Pi-
induced vascular calcification during the growth period.

In conclusion, our findings indicate that in growing mice the
aorta may be resistant to Pi-induced vascular calcification, via a
mechanism based on high serum fetuin-A levels and suppression
of TNAP expression in response to high serum Pi. Further inves‐
tigations based on these findings will contribute to the design
of new therapeutic targets for vascular calcification in CKD
patients.
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