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Deep learning approach for
analyzing chest x-rays to predict
cardiac events in heart failure
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and Masataka Sata1

1Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan, 2Ultrasound
Examination Center, Tokushima University Hospital, Tokushima, Japan, 3Department of Radiological
Technology, Graduate School of Medical Care and Technology, Teikyo University, Tokyo, Japan

Background: A deep learning (DL) model based on a chest x-ray was reported to
predict elevated pulmonary artery wedge pressure (PAWP) as heart failure (HF).
Objectives: The aim of this study was to (1) investigate the role of probability of
elevated PAWP for the prediction of clinical outcomes in association with other
parameters, and (2) to evaluate whether probability of elevated PAWP based on
DL added prognostic information to other conventional clinical prognostic
factors in HF.
Methods: We evaluated 192 patients hospitalized with HF. We used a previously
developed AI model to predict HF and calculated probability of elevated PAWP.
Readmission following HF and cardiac mortality were the primary endpoints.
Results: Probability of elevated PAWP was associated with diastolic function by
echocardiography. During a median follow-up period of 58 months, 57
individuals either died or were readmitted. Probability of elevated PAWP
appeared to be associated with worse clinical outcomes. After adjustment for
readmission score and laboratory data in a Cox proportional-hazards model,
probability of elevated PAWP at pre-discharge was associated with event free
survival, independent of elevated left atrial pressure (LAP) based on
echocardiographic guidelines (p < 0.001). In sequential Cox models, a model
based on clinical data was improved by elevated LAP (p= 0.005), and increased
further by probability of elevated PAWP (p < 0.001). In contrast, the addition of
pulmonary congestion interpreted by a doctor did not statistically improve the
ability of a model containing clinical variables (compared p= 0.086).
Conclusions: This study showed the potential of using a DL model on a chest x-ray
to predict PAWP and its ability to add prognostic information to other conventional
clinical prognostic factors in HF. The results may help to enhance the accuracy of
prediction models used to evaluate the risk of clinical outcomes in HF, potentially
resulting in more informed clinical decision-making and better care for patients.
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Introduction

Heart failure (HF) continues to be a significant socioeconomic issue and is one of the top

causes of death from cardiovascular disease (CV) (1). Despite the development of current

therapy, readmission rates for HF have remained high (2). The identification of

hospitalized patients with a high risk of HF readmission is important for providing timely
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interventions. Understanding the underlying etiology, severity, and

prognosis of HF requires evaluation of CV imaging (3, 4). A

standard chest x-ray (CXR) in patients with suspected HF has a

certain clinical value in the diagnosis and management of HF

(5, 6). However, the sensitivity and specificity of this imaging

modality is relatively low (7, 8).

Recently, artificial intelligence (AI) including deep learning

(DL) has been used to provide precise recognition of understated

patterns in medical images (9, 10). We reported that a DL model

based on CXR analysis predicted elevated pulmonary artery

wedge pressure (PAWP) in patients who had undergone right

heart catheterization (11). The probability of elevated PAWP

may therefore be a potential tool for managing HF in the clinical

setting. We hypothesize that a previously developed application

of a CXR-based DL algorithm could also be used to predict

re-hospitalized HF in patients with HF. The aims of the current

study were (1) to investigate the potential of probability of

elevated PAWP for the prediction of clinical outcomes in

association with other parameters, and (2) to evaluate whether

probability of elevated PAWP based on AI added prognostic

information to other clinical prognostic factors in patients with HF.
Methods

Study population

A single-center, retrospective study was designed (Figure 1).

Two hundred seventy-two patients who were first HF

hospitalized were enrolled initially. The study’s time frame was

from January 2013 to December 2017. Patients with HF were

defined as having a clear history of HF with typical symptoms
FIGURE 1

Flow chart showing recruitment of the patients. COPD, chronic obstructive
HFrEF, heart failure with reduced ejection fraction.
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that were accompanied by signs including pulmonary congestion

and BNP elevation (12). Exclusion criteria were post valve

replacement, pacemaker implantation, active cancer, severe

valvular disease and severe chronic obstructive pulmonary

disease. Patients without clinical data at discharge were excluded.

After these exclusions, 192 HF hospitalized patients were

included in the final analysis. We divided this cohort into two

groups: HF with reduced ejection fraction (HFrEF, n = 99) and

HF with preserved EF (HFpEF, n = 93). Left ventricular ejection

fraction (LVEF) less than 50% was designated as HFrEF, whereas

LVEF greater than 50% was designated as HFpEF (13, 14).

Patients collected to build the AI model were not included in

this study.
Chest x-ray

The Radiology Department performed all chest radiographs.

One attending cardiologist who had no prior knowledge of the

patients’ clinical information or hemodynamic status assessed the

CXR images. A typical posteroanterior chest radiograph was used

to measure the cardiothoracic ratio (CTR), which measures the

size of the cardiac chambers. Consensus of two expert agreement

of lung congestions on CXR images was used.
AI model for detection of PH

We used a previously developed AI model based on CXR

analysis to predict elevated PAWP and then the continuous

output of a classification network as a probability of elevated

PAWP in the study cohort (11). The study involved examining
pulmonary disease; HFpEF, heart failure with preserved ejection fraction;
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CXR data at admission and discharge. All patients underwent CXR

within 24 h of admission and 48 h before discharge. The AUC of

ResNet 50 for predicting elevated PAWP (mean PAWP

>18 mmHg) was 0.77 in the study cohort (11). The batch size

was set at 16, with the Adam optimizer used for training (15).

The whole learning process was calculated by a graphics

processing unit (Geforce RTX 2080 Ti 11 Gb, NVIDIA) using

Ubuntu 18.04 and Chainer version 5.1.0. We performed

gradient-weighted class activation mapping (Grad-CAM) to

visualize how our model detected a PAWP >18 mmHg from a

CXR of each patient (16).
Echocardiographic assessment

Echocardiography was performed using commercially available

ultrasound machines. The echocardiographic data were obtained

during the hospitalization according to the recommendations of

the American Society of Echocardiography (17). Apical two- and

four-chamber images were included. The biplane method of

disks in two dimensions was used to calculate the volumes of

the left atrium (LA) and LV. The LA volume index (LAVi) and

LVEF were determined using these volumes. Based on 2016

recommendations, we implemented a decision tree using the

mean E/e′ ratio, tricuspid regurgitant: TR velocity, and LAVi to

identify the existence of elevated LA pressure (LAP) (18). Three

criteria are required to decide if there is raised LAP: E/e′ ratio

>14, LAVI > 34 ml/m², TR velocity >2.8 m/s.
Calculation of readmission risk scores

The Yale–CORE HF application [developed by Yale New

Haven Health Services Corporation/Center for Outcomes

Research and Evaluation (YNHHSC/CORE)] was used to

determine the readmission risk for each patient (19).

Readmission risk was calculated using 20 variables per patient,

including demographic and historical variables abstracted from

the medical record, admission physical examination variables,

and laboratory and clinical variables (age, sex, in-hospital cardiac

arrest, history of diabetes, previous HF, coronary artery disease,

previous percutaneous coronary intervention, aortic stenosis,

stroke, chronic obstructive pulmonary disease, prior diagnosis of

dementia, systolic blood pressure, heart rate, respiratory rate,

plasma sodium, creatinine, and glucose levels, blood urea

nitrogen level, hematocrit, and LVEF). The risk scores could be

calculated without any missing data.
Clinical outcomes

At TokushimaUniversity Hospital, all patients received follow-up

care, with clinical follow-up visits occurring at least every three

months. After the follow-up echocardiography, the follow-up period

began and terminated in May 2021. At Tokushima University

Hospital or one of its affiliated hospitals, all the patients received
Frontiers in Cardiovascular Medicine 03
follow-up care. There was no patient lost to follow-up. The AI data

had little influence on clinical management. The primary endpoint

was cardiac death or readmission due to HF using predetermined

criteria. HF readmission was defined as admission for a primary

diagnosis of HF and CV death as passing away from a CV cause,

such as a myocardial infarction, a cerebrovascular accident, or

sudden cardiac death. Based on previously published reports (20,

21), we mainly used variables measured at pre-discharge to assess

the prognostic values in the study.
Statistical analysis

Categorical data were expressed as an absolute number and

percentages, whereas continuous data were expressed as mean

standard deviation. Based on the likelihood of an elevated PAWP

(>50%) being normal or abnormal, the patients were split into

two groups. The Mann-Whitney U test or the unpaired Student’s

t test, as applicable, was used to compare continuous variables.

Depending on the situation, the Fisher’s exact test or the 2 test

were used to compare categorical variables. The probability of

elevated PAWP was used to divide the patients into two groups

for Kaplan–Meier analysis, with survival compared using the log-

rank test. A median value of Δprobability of elevated PAWP was

used as the definition of improved probability of elevated PAWP.

We used a Cox proportional-hazard model to determine the

factors associated with survival. The variables selected were based

on previous knowledge for the assessment of prognosis in

patients with HF. To ascertain the incremental value of

the probability of elevated PAWP over clinical data in relation to

the main endpoint, sequential Cox models were built. The

incremental prognostic value was defined as an increase in the

global log-likelihood χ2 of the model that was statistically

significant. The assumption of proportional hazards was assessed

by plotting the scaled Schoenfeld residuals for each independent

variable against time to determine whether these correlations

were nonsignificant. Time-dependent receiver operating

characteristic (ROC) curves were used to calculate the C-statistic

analyzed by the R package survival ROC. The DeLong method

was used to compare the C-statistic. All statistical analyses were

performed using SPSS 21.0 (SPSS, Chicago, IL, USA), MedCalc

19.5.6 (Mariakerke, Belgium), and R 3.3.3 (R Foundation for

Statistical Computing, Vienna, Austria). A P value < 0.05 was

considered statistically significant.
Results

Clinical backgrounds

Table 1 shows the baseline characteristics of the patients at

discharge. A total of 192 hospitalized patients with HF (mean

age 69 ± 14 years; 61% male) were divided into two groups: those

with HFrEF and those with HFpEF. The patients were treated

with an ACEi/ACE (65%), β-blocker (79%), or diuretics (73%).

No significant difference was observed between the two groups
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TABLE 1 Clinical characteristics.

All
(n = 192)

HFpEF
(n = 93)

HFrEF
(n = 99)

p
value

Age (years) 69 ± 14 71 ± 14 68 ± 14 0.07

Male, n (%) 117 (61%) 46 (49%) 71 (72%) 0.002

BSA (m2) 1.62 ± 0.23 1.58 ± 0.22 1.66 ± 0.22 0.02

Heart rate (beats/min) 86 ± 20 82 ± 20 89 ± 20 0.01

Systolic BP (mmHg) 126 ± 24 129 ± 26 122 ± 23 0.05

Diastolic BP (mmHg) 74 ± 17 72 ± 18 75 ± 16 0.16

Readmission for
HF, n (%)

57 (30%) 30 (32%) 27 (27%) 0.45

Backgrounds
Hypertension, n (%) 131 (68%) 69 (74%) 62 (63%) 0.09

Diabetes, n (%) 80 (42%) 37 (40%) 43 (43%) 0.61

Chronic atrial
fibrillation, n (%)

35 (18%) 20 (22%) 15 (15%) 0.26

Ischemic
cardiomyopathy, n (%)

43 (22%) 11 (12%) 32 (32%) <0.001

Laboratory data
Hb (g/dl) 12.1 ± 2.3 11.9 ± 2.4 12.2 ± 2.2 0.25

eGFR (ml/min/
1.73 m2)

50 ± 25 50 ± 26 50 ± 24 0.94

BNP (pg/ml) 228 (92, 471) 192 (62, 350) 291 (127, 531) 0.002

Chest x-ray on pre-discharge
CTR 56 ± 7 55 ± 8 56 ± 7 0.17

Lung congestion, n (%) 53 (28%) 26 (26%) 27 (27%) 0.88

Echocardiographic parameters
LVEF (%) 45 ± 15 59 ± 7 32 ± 7 –

LVEDVi (ml/m2) 83 ± 32 64 ± 26 101 ± 25 <0.001

LAVi (ml/m2) 51 ± 19 50 ± 19 52 ± 19 0.57

E/e′ ratio 13.8 ± 8.3 13.4 ± 8.2 14.2 ± 8.4 0.49

TR-V (m/s) 2.48 ± 0.46 2.55 ± 0.44 2.40 ± 0.47 0.02

Elevated LAP (%) 102 (53%) 50 (54%) 52 (53%) 0.86

AI parameters
Probability of elevated
PAWP on
admission (%)

76 (23, 95) 70 (10, 95) 84 (26, 96) 0.16

Probability of elevated
PAWP on
pre-discharge (%)

11 (2, 62) 7 (2, 64) 13 (2, 55) 0.91

ΔProbability of
elevated PAWP (%)

26 (2, 68) 12 (1, 61) 36 (3, 77) 0.17

Data are presented as number of patients (percentage), mean ± SD or median

(interquartile range).

BSA, body surface area; BP, blood pressure; HF, heart failure; ACEi/ARB,

angiotensin-converting-enzyme inhibitor/angiotensin II receptor blocker; HB,

hemoglobin; eGFR, estimated glomerular filtration rate; BNP, brain natriuretic

peptide; LVEF, left ventricular ejection fraction; LVEDVi, left ventricular end-

diastolic volume index; LAVi, left atrial volume index; E, early diastolic transmitral

flow velocity; e′, early diastolic mitral annular motion; TR-V, tricuspid regurgitant

velocity; LAP, left atrial pressure.
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for age, blood pressure, and comorbidities except for ischemic

cardiomyopathy. The patients with HFrEF included a higher

number of males, a higher use of β-blockers, increased brain

natriuretic peptide (BNP) levels, and a larger LV size.

Interestingly, there was no difference in CXR profiles including

CTR, lung congestion, probability of elevated PAWP on

admission and pre-discharge between the two groups.

The characteristics and echocardiographic parameters of the

two groups with and without an abnormal elevated PAWP at
Frontiers in Cardiovascular Medicine 04
pre-discharge are shown in Table 2. In this analysis, LAVi

(p = 0.03), TR velocity (p = 0.01), and the presence of elevated

LAP (p = 0.008) were associated with an abnormal probability of

elevated PAWP. This result indicated probability of elevated

PAWP was linked to left ventricular diastolic function. In

patients with a normal probability of elevated PAWP on

pre-discharge, the median probability of elevated PAWP on

admission was 69%, while change in probability of elevated

PAWP from admission to pre-discharge (Δprobability of elevated

PAWP) was 53%. On the other hand, in patients with an

abnormal probability of elevated PAWP on pre-discharge, the

median probability of elevated PAWP on admission was high

(94%). The status of lung congestion in patients with a higher

probability of elevated PAWP may not have been reduced at

pre-discharge. Based on expert CXR assessments, lung congestion

is more frequent in patients with an abnormal probability of

elevated PAWP.
Cardiac mortality and readmission to HF

During a median follow-up period of 58 months (range, 11–80

months), 57 patients (30%) reached the primary endpoint (CV

death, n = 13, or readmission due to HF, n = 44). During the

follow-up period, no patient passed away from anything other

than CV disease. Figure 2A shows the time to the primary

endpoint. Probability of elevated PAWP appeared to be

associated with worse clinical outcomes in both the HFpEF (p <

0.001) and HFrEF (p = 0.003) cohorts. Figure 2B shows the

event-free survival of patients stratified according to the presence

of an elevated LAP and abnormal probability of elevated PAWP

(probability of elevated PAWP >50%). Patients with an elevated

LAP and abnormal probability of elevated PAWP had

significantly shorter event-free survival than those without these

abnormalities (p < 0.001). In addition, Figure 2C shows the

event-free survival of patients stratified according to improved or

not improved probability of elevated PAWP (Δprobability of

elevated PAWP, cut-off value: 26%). Patients without an

improved probability of elevated PAWP had significantly shorter

event-free survival than those with an improved probability of

elevated PAWP (p = 0.03).

We used univariate and multivariate Cox proportional-hazard

regression analysis to identify the variables connected to the main

outcome. In the univariate model, the Yale-CPRE HF score,

estimated glomerular filtration rate (eGFR), log BNP, LAVi, E/e′
ratio, TR-V, and elevated LAP as defined by the 2016

recommendations were linked to the primary endpoint (Table 3).

The probability of elevated PAWP at admission was not related

to the primary endpoint. Importantly, probability of elevated

PAWP at pre-discharge (per 1SD) was related significantly with

the primary outcomes (hazard ratio: 1.46, 95% CI: 1.23–1.72, p <

0.001). In addition, Δprobability of elevated PAWP from

admission to pre-discharge was also associated with clinical

outcomes. Pulmonary congestion by expert assessment was

weakly associated with clinical outcomes (p = 0.049).
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TABLE 2 Clinical and echocardiographic parameters between normal and abnormal probability of elevated PAWP on pre-discharge.

x-ray group Normal probability of elevated
PAWP on pre-discharge

Abnormal probability of elevated
PAWP on pre-discharge

p value

Number 134 58

AI parameters
Probability of elevated PAWP on pre-discharge (%) 3 (1, 13) 81 (65, 95) –

Probability of elevated PAWP on admission (%) 69 (14, 92) 94 (67, 99) <0.001

ΔProbability of elevated PAWP (%) 53 (6, 87) 9 (0, 44) <0.001

Characteristics
Age (years) 70 ± 14 69 ± 14 0.79

Male, % 38 (66) 82 (59) 0.39

Heart rate (beats/min) 86 ± 21 86 ± 19 0.89

Systolic BP (mmHg) 125 ± 22 128 ± 29 0.54

Yale-CORE HF score 22 ± 4 23 ± 4 0.26

Medications
ACEi or ARB, n (%) 87 (65) 37 (64) 0.88

β-blocker, n (%) 107 (80) 45 (78) 0.73

Diuretics, n (%) 96 (72) 44 (76) 0.54

Laboratory data
eGFR (ml/min/1.73 m2) 52 ± 26 46 ± 22 0.12

BNP (pg/ml) 236 (91, 471) 210 (107, 464) 0.55

Chest x-ray on pre-discharge
CTR 55 ± 8 58 ± 7 0.02

Lung congestion, n (%) 25 (19) 28 (48) 0.001

Echocardiographic parameters
LVEF (%) 45 ± 15 46 ± 16 0.76

LVEDVi (ml/m2) 84 ± 32 83 ± 30 0.84

LAVi (ml/m2) 49 ± 18 56 ± 21 0.03

E/e′ ratio 13.1 ± 7.4 15.3 ± 9.9 0.13

TR-V (m/s) 2.41 ± 0.41 2.61 ± 0.54 0.01

Elevated LAP (%) 63 (47%) 39 (67%) 0.008

See abbreviations as in Table 1.

Kusunose et al. 10.3389/fcvm.2023.1081628
In the multivariate analysis (Table 4), both elevated LAP and

probability of elevated PAWP based on the AI algorithm were

significant predictors for the primary outcomes after adjustment

for the Yale-CORE HF score, log BNP, and eGFR. Furthermore,

the Δprobability of elevated PAWP was also a predictor for the

primary endpoint after adjustment for these variables.

Figure 3 shows the added benefit of AI parameters for

predicting the primary outcomes. The addition of

echocardiographic assessment (elevated LAP) and probability of

elevated PAWP significantly improved the ability of a model

containing the Yale-CORE HF score, eGFR, and log BNP (model

1), Yale-CORE HF score, χ2 = 4.4 (model 2), plus eGFR and log

BNP, χ2 = 16.8, p = 0.001 (model 3), plus elevated LAP, χ2 = 24.4,

p = 0.005, plus probability of elevated PAWP on pre-discharge,

χ2 = 41.1, p < 0.001). In contrast, the addition of pulmonary

congestion interpreted by a doctor did not statistically improve

the ability of a model containing the Yale-CORE HF score,

eGFR, log BNP, and elevated LAP (model 3 plus pulmonary

congestion, from χ2 = 24.4 to χ2 = 27.5, compared p = 0.086).

For the Cox model based on lung congestion by expert

assessment, the Harrell C concordance statistic was calculated as

0.55 (95% CI: 0.49–0.61). The Harrell C concordance statistic

was calculated as 0.72 (95% CI: 0.65–0.78) for the Cox model
Frontiers in Cardiovascular Medicine 05
based on the Yale-CORE HF score, eGFR, pro BNP, and elevated

LAP. When probability of elevated PAWP was added to the

model, the C-statistic improved significantly to 0.78 (95% CI:

0.71–0.84, p = 0.039 for the comparison).
Assessment of Grad-CAM

We analyzed the images to determine where AI was focused to

help explain the AI assessment (Figure 4). Grad-CAM

demonstrated that in our situations, whether a patient had

primary events or not, our model focused on the heart region. The

proposed AI model may thus offer fresh perspectives to accurately

identify differences in CXR images in the future large dataset.
Discussion

The objective of this study was to assess the clinical meanings

of probability of elevated PAWP based on an AI algorithm, as an

association between probability of elevated PAWP and CV

events. The study provided several insights into the interpretation

of probability of elevated PAWP: (1) probability of elevated
frontiersin.org
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FIGURE 2

Kaplan-Meier analysis of event-free survival. (A) According to the
presence or absence of abnormal probability of elevated PAWP in
HFpEF and HFrEF, we divided patients into 2 groups. (B) According to
the presence of an elevated left atrial pressure based on
echocardiography and probability of elevated PAWP based on artificial
intelligence, we divided patients into 4 groups. (C) According to the
presence or absence of abnormal probability of elevated PAWP for
improved and not-improved probability of elevated PAWP.

Kusunose et al. 10.3389/fcvm.2023.1081628
PAWP was related to left ventricular diastolic function; (2) patients

with an abnormal probability of elevated PAWP had a significantly

higher event rate compared to patients with a normal probability of

elevated PAWP; (3) the association between probability of elevated

PAWP and the primary endpoints remained significant after
Frontiers in Cardiovascular Medicine 06
adjustment for HF risk score, laboratory data, and

echocardiographic data. Interestingly, Lung congestion assessed

by one attending cardiologist was only weakly associated with

outcomes. This information might provide insights into the

clinical utility of medical imaging based on an AI algorithm in

patients with HF beyond assessments by experts. Our findings

suggest that the likelihood of elevated PAWP may be helpful for

clinical evaluation and follow-up during the ideal period of

medical treatment.
Findings on probability of elevated PAWP in
chest x-rays

The association between classical radiographic features of HF

in CXR images and physiological hemodynamic parameters has

been described previously (22, 23). Cephalization of pulmonary

venous blood flow occurs with redistribution of pulmonary blood

flow and typically when the PAWP is >10–15 mmHg. Interstitial

edema characterized by Kerley B lines is thought to result when

the PAWP is >20 mmHg due to thickening of the interlobular

septa. Alveolar edema is present when the PAWP exceeds

25 mmHg. However, these radiographic changes are not always

present and sometimes may only be partially present, or indeed

absent, even in cases of clinically significant HF. An increased

cardiothoracic ratio is more common and more sensitive;

however, it is less specific (24). Although these important

findings may be present in CXR images, diagnostic limitations of

the clinical and simple radiographic parameters are also observed

in the clinical setting. In this study, the assessment of CXR by

experts was not so strongly associated with outcomes.

Previously, we trained the AI model to detect an elevated

PAWP >18 mmHg (11). Theoretically, an elevated probability of

elevated PAWP based on AI can be associated with residual

pulmonary congestion and cardiac enlargement. Based on our

results, abnormal probability of elevated PAWP is associated with

larger LA volumes, relatively higher E/e′ as a marker of LV

filling pressure, higher tricuspid valve regurgitant velocity, and

the proportion of elevated LAP (Table 2). Interestingly, the LV

systolic function was not significantly associated with probability

of elevated PAWP. Therefore, this index appears to be a sensitive

marker of LV diastolic parameters in the clinical setting. Further

studies are designed to clarify the detail of the hemodynamic

mechanism for probability of elevated PAWP using simultaneous

recordings of cardiac pressures measured using invasive catheters.
Probability of elevated PAWP and outcomes

In univariate analysis, the Yale-CORE HF score, BNP level,

renal function, and elevated LAP measured by echocardiography

were associated with clinical events. The parameters are used to

predict CV events, including HF rehospitalization. After

adjustment for these known factors, the probability of elevated

PAWP based on an AI algorithm was associated with the

primary outcome. There is a possible explanation for the
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association between probability of elevated PAWP and worse

clinical outcomes. Based on our results of congestive CXR

images, probability of elevated PAWP appears to reflect elevated

LA pressures. Several studies have shown that an elevated PAWP

was associated significantly with CV events (25, 26). These

associations possibly explain the association between probability

of elevated PAWP and clinical events. More importantly, the

changes in probability of elevated PAWP between admission and

pre-discharge were also associated with clinical events. A recent

publication from PARADIGM-HF showed that signs of
TABLE 4 Multivariate associations of primary outcomes in hospitalized heart

Model 1 (χ2: 24

HR 95%CI p

Clinical parameters
Yale-CORE HF score 1.01 0.93–1.09

Log BNP 1.90 1.03–3.52

eGFR 0.99 0.97–1.00

Echocardiography
Elevated LAP 2.29 1.24–4.21

ΔProbability of elevated PAWP (per 1SD)

Probability of elevated PAWP on pre-discharge (Per 1SD)

HR, hazard ratio; CI, confidence interval; other abbreviations as in Table 1.

TABLE 3 Univariate associations of primary outcomes in hospitalized
heart failure.

HR (95%CI) p value

Characteristics
Age (years) 1.01 (0.99–1.03) 0.30

Male 0.97 (0.57–1.66) 0.92

Heart rate 0.99 (0.98–1.01) 0.25

Systolic BP 1.00 (0.99–1.01) 0.60

Yale-CORE HF score 1.08 (1.01–1.15) 0.03

Medications
ACEi or ARB 0.86 (0.50–1.48) 0.59

β-blocker 0.80 (0.43–1.49) 0.48

Diuretics 1.55 (0.80–2.99) 0.19

Laboratory data
eGFR (ml/min/1.73 m2) 0.98 (0.97–0.99) 0.003

Log BNP 2.66 (1.53–4.65) 0.001

Chest x-ray on pre-discharge
CTR 0.37 (0.01–13.08) 0.58

Lung congestion 1.73 (1.00–2.98) 0.049

Echocardiographic parameters
LVEF (%) 0.99 (0.98–1.01) 0.41

LVEDVi (ml/m2) 1.00 (0.99–1.01) 0.57

LAVi (ml/m2) 1.02 (1.00–1.03) 0.02

E/e′ ratio 1.04 (1.02–1.07) 0.001

TR-V (m/s) 1.85 (1.09–3.13) 0.02

Elevated LAP (%) 2.87 (1.59–5.18) <0.001

AI parameters
Probability of elevated PAWP on admission
(per 1SD)

1.15 (0.94–1.41) 0.17

Probability of elevated PAWP on pre-
discharge (per 1SD)

1.46 (1.23–1.72) <0.001

ΔProbability of elevated PAWP (per 1SD) 0.71 (0.55–0.92) 0.01

HR, hazard ratio; CI, confidence interval; other abbreviations as in Table 1.
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persistent congestion observed in physical examinations provided

significant independent prognostic value even beyond symptoms

and the levels of natriuretic peptides (27). When patients who do

not respond satisfactorily to HF therapy are confirmed by a pre-

discharge CXR, further administration of diuretics or other

intensive treatment for HF may be considered in the clinical

setting. We found that probability of elevated PAWP at

admission was not associated with subsequent clinical events and

therefore concluded that pre-discharge assessment should be

recommended for hospitalized HF patients in order to provide

more information about their status.
Artificial intelligence in the clinical setting

At present, many AI imaging studies estimate diagnostic accuracy

using sensitivity and specificity (28), while there is limited data

available to assess clinical outcomes. To help progress the study of

AI in medical images it is necessary to assess the effects on clinically

meaningful endpoints to improve applicability and allow effective

deployment into clinical practice (29). In addition, it is essential to

AI research to consistently use out-of-sample external validation

and well-defined patient cohorts to augment the quality and

interpretability of AI. In the present study we investigated an

independent cohort with a previously published application of an

AI model for probability of elevated PAWP used to provide

prognostic value in patients with HF. We hope that AI imaging may

be used in the near future not only for diagnostic accuracy but also

for clinical utility (e.g., prediction of prognosis).
Clinical utility of probability of elevated
PAWP

The results of this study suggest that the probability of elevated

PAWP based on AI algorithm provides incremental value to

known parameters including clinical data, laboratory data and

echocardiography. To our knowledge, this study is the first to

examine the clinical efficacy of AI algorithms in HF patients and

their relationship to cardiac events during follow-up. The

probability of elevated PAWP will be significant in that it is

simple, reproducible, measurable at almost all institutes and
failure.

.4) Model 2 (χ2: 31.4) Model 3 (χ2: 41.1)

value HR 95%CI p value HR 95%CI p value

0.86 1.02 0.94–1.10 0.70 1.01 0.93–1.09 0.86

0.04 1.99 1.07–3.70 0.03 1.97 1.11–3.50 0.02

0.08 0.99 0.98–1.00 0.16 0.99 0.98–1.01 0.23

0.008 2.19 1.19–4.03 0.012 1.97 1.07–3.62 0.03

0.73 0.57–0.95 0.017

1.39 1.17–1.65 <0.001
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FIGURE 4

Representative cases with Grad-CAM images. Chest x-rays were visualized using Grad-CAM, with the yellow and red areas showing regions that the deep
learning model considered important for probability of elevated PAWP.

FIGURE 3

Incremental value of echocardiographic parameters. These figures illustrate the global χ2 of sequential Cox models that incorporated several clinical
parameters. eGFR, estimate glomerular filtration rate; BNP, brain natriuretic peptide; LAP, left atrial pressure; HF, heart failure; HR, hazard ratio.
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reflects prognostic power in heart failure. Model performance on

prediction is significant at pre-discharge and poor at admission.

The results are consistent with the finding that rehospitalization

is less likely if congestion is well controlled (30). This model may

play an important role as a guide for treatment of residual

congestion in HF. Our data suggested that the changes in

probability of elevated PAWP on x-rays during hospitalization

may reflect the course of treatment for heart failure. We expect

that it can be modeled and validated with multicenter data and

used in clinical settings in the future.
Limitations

The present study has several limitations. First, this was a single

tertiary heart centers study with a small sample size in Japan.

Therefore, the generalizability of the study findings was limited.

On the other hand, we believed that the single-center study

would have less biases than a study with a larger sample size,

such as those caused by disparities in treatment effectiveness or a

wide range of etiologies. Because there were so few events in the

sample, there is a chance that the model will be overfit. Second,

the cut-off value for abnormal probability of elevated PAWP

(50%) was determined by our previous paper, thus, the accurate

cut-off values may not be well organized in the different cohort.

The validity and reliability of AI algorithms should improve in

the near future with advances in machine learning and

augmented data set. The study period was from 2013 to 2017.

Some HF pharmacotherapies such as SGLT-2 inhibitors were not

available routinely. Because this study was designed to evaluate

the performance of AI for risk stratification of HF, it was not

possible to assess this AI model in patients without HF. These

limitations suggest that the current study should be considered as

hypothesis-generating. Additional research is required to quantify

the likelihood of elevated PAWP more fully in a multi-center

large cohort that includes healthy populations.
Conclusions

CXR assessment using the AI model may provide important

incremental prognostic value for predicting readmission and

cardiac mortality risk assessment in patients with HF compared

with doctor-interpreted pulmonary congestion. The results may

help to enhance the accuracy of prediction models used to

evaluate the risk of clinical outcomes in HF, potentially resulting

in more informed clinical decision-making and better care for

patients.
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