HETEROCYCLES, Vol. 106, No. 8, 2023, pp. 1397 -1406. © 2023 The Japan Institute of Heterocyclic Chemistry
Received, 13th June, 2023, Accepted, 3rd July, 2023, Published online, 5th July, 2023
DOI: 10.3987/COM-23-14876EFFICIENTONE-POT,THREE-STEPSYNTHESISOF1,2,3,5-TETRASUBSTITUTEDPYRROLESVIAAZA-MICHAEL

Michiyasu Nakao,* Ken Horikoshi, Syuji Kitaike, and Shigeki Sano*

ADDITION OF METHYL 3-IMINOACRYLATES

Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan, E-mail: mnakao@tokushima-u.ac.jp

Abstract – An efficient one-pot, three-step procedure for the aza-Michael addition of methyl 3-iminoacrylates with secondary amines followed by intramolecular cyclization and silylation successfully afforded novel 1,2,3,5-tetrasubstituted pyrroles in high yields.

Pyrrole is one of the most important heterocycles because of its numerous biological activities and therapeutic potentials.¹⁻³ Hence, there are many reports on the synthesis of substituted pyrroles.⁴⁻⁹ In particular, a one-pot procedure for the synthesis of substituted pyrroles and their derivatives is a useful and practical method.¹⁰⁻¹⁵ We recently demonstrated novel synthetic approaches for disubstituted and trisubstituted thiophenes based on the thia-Michael addition of allenyl esters with thiols bearing electrophilic moieties.^{16,17} In continuation of our efforts to synthesize polysubstituted heterocycles, we herein describe a novel one-pot synthesis of 1,2,3,5-tetrasubstituted pyrroles via the aza-Michael addition of methyl 3-iminoacrylates with secondary amines followed by intramolecular cyclization and silvlation. We started our investigation with the aza-Michael addition of dibenzylamine to methyl 3-iminoacrylate **3a** (Scheme 1). Methyl 3-iminoacrylate **3a** was prepared by a Wittig reaction between dimethyl (triphenylphosphoranylidene)succinate $(1)^{18,19}$ and phenyl isocyanate (2a) in CH₂Cl₂ at room temperature. The aza-Michael addition of methyl 3-iminoacrylate 3a proceeded rapidly at 0 °C in THF, affording diastereometrically pure, racemic imine 4. Unfortunately, the E/Z geometry of 4 has not been determined. Next, intramolecular cyclization of aza-Michael adduct 4 was investigated in the presence of bases (Table 1). Treatment of 4 with 1.5 equiv of sodium hydride in THF at 0 °C for 5 min resulted in the formation of 1,4,5-trisubstituted 1,3-dihydro-2*H*-pyrrol-2-one **5** in only 2% yield with the recovery of **4** (88%) (Entry 1). In the case of the reaction using *n*-butyllithium or isopropylmagnesium bromide as a base, the yield of 5 was increased to 17 and 46% (Entries 2 and 3). Each hexamethyldisilazide was found to be suitable for the intramolecular cyclization of aza-Michael adduct 4 (Entries 4–6), and sodium hexamethyldisilazide (NHMDS) provided 1,4,5-trisubstituted 1,3-dihydro-2*H*-pyrrol-2-one **5** in 86% yield (Entry 5). Finally,

the silvlation of 1,4,5-trisubstituted 1,3-dihydro-2*H*-pyrrol-2-one **5** with 3 equiv of *tert*-butyldimethylsilvl trifluoromethanesulfonate (TBDMSOTf) and 6 equiv of 2,6-lutidine in THF at 0 °C for 5 min furnished a novel 1,2,3,5-tetrasubstituted pyrrole **6** in 87% yield (Scheme 2).

Scheme 1. Synthesis of aza-Michael adduct 4

MeO ₂ C Ph N	CO ₂ Me N-Bn Bn 4	Base (1.5 mol eq) ────────── THF 0 °C, 5 min	$O = \bigcup_{\substack{N \\ Ph' \\ Bn}} CO_2Me$		
Entry	Base	Yield of 5 (%) ^{a)}	Recovery of 4 (%) ^{a)}		
1	NaH	2	88		
2	<i>n</i> -BuLi	17	ca. 54 ^{b)}		
3	<i>i</i> -PrMgBr	46	50		
4	LHMDS	72	20		
5	NHMDS	86	0		
6	KHMDS	82	0		

a) Isolated yields.

b) Small amounts of impurities were included.

Scheme 2. Synthesis of 1,2,3,5-tetrasubstituted pyrrole 6 by silylation of 1,4,5-trisubstituted 1,3-dihydro-2*H*-pyrrol-2-one 5

In pursuit of our objective of one-pot operation, we investigated the synthesis of 1,2,3,5-tetrasubstituted pyrroles **6–14** via the aza-Michael addition of methyl 3-iminoacrylates **3** with secondary amines again (Table 2). Remarkably, the reagents for intramolecular cyclization (NHMDS) and silylation (TBDMSOTf, 2,6-lutidine) were sequentially added to a mixture of methyl 3-iminoacrylate **3a** and dibenzylamine at 0 °C for 5 min intervals. The resulting mixture was stirred for an additional 5 min, resulting in the formation of 1,2,3,5-tetrasubstituted pyrrole **6** in a yield of 80% (Entry 1). The one-pot reaction of methyl 3-iminoacrylates **3b–d** and dibenzylamine was also found to afford 1,2,3,5-tetrasubstituted pyrroles **7–9** in 81–90% yields (Entries 2–4). In the reaction of **3b,d** bearing either the 4-MeOC₆H₄ group or the Bn group, aza-Michael addition required a higher reaction temperature and/or a longer reaction time, probably due to the reduced electrophilicity of methyl 3-iminoacrylates **3b** and **3d** (Entries 2 and 4). Methyl 3-iminoacrylates **3b–d** were synthesized in 35–80% yields by reacting phosphonium ylide **1** with the corresponding isocyanates **2b–d**.

R ¹	CO ₂ Me		R ² N ⁷ R ³ H (1.1 mol eq)	NHMDS (1.5 mol eq)	TBDMSO ⁻ 2,6-lutidin	Tf (3 mol eq) e (6 mol eq)	твомо	∠CO₂Me
CO ₂ Me		_	THF 0 °C, 5 min	THF 0 °C, 5 min	THF 0 °C, 5 min		► N´`N R ¹ F 6–14	N [/] II R ³
	Entry	3	R ¹	Secondary amine	R ²	R ³	Yield of 6–14 (%) ^{a)}	
	1	3a	Ph	Bn ₂ NH	Bn	Bn	80 (6)	
	2	3b	4-MeOC ₆ H ₄	Bn ₂ NH	Bn	Bn	85 (7) ^{b)}	
	3	3c	$4-FC_6H_4$	Bn ₂ NH	Bn	Bn	81 (8)	
	4	3d	Bn	Bn ₂ NH	Bn	Bn	90 (9) ^{c)}	
	5	3a	Ph	Me ₂ NH	Me	Me	89 (10)	
	6	3a	Ph	Et ₂ NH	Et	Et	89 (11)	
	7	3a	Ph	Bn NH Me	Bn	Ме	89 (12)	
	8	3a	Ph	NH	+c	$H_2 \frac{1}{4}$	66 (13)	
	9	3a	Ph	NH	(c	$H_2 {5}$	82 (14)	

Table 2. One-pot, three-step synthesis of 1,2,3,5-tetrasubstituted pyrroles 6-14

a) Isolated yields.

b) Reaction conditions of aza-Michael addition: THF, 0 °C, 30 min.

c) Reaction conditions of aza-Michael addition: THF, rt, 3 h.

The reaction of methyl 3-iminoacrylate **3a** with dimethylamine, diethylamine, and benzylmethylamine provided 1,2,3,5-tetrasubstituted pyrroles **10–12** in 89% yield (Entries 5–7). In addition, 1,2,3,5-tetrasubstituted pyrroles **13** and **14** were also obtained in 66% and 82% yields, respectively, from the one-pot reaction of methyl 3-iminoacrylate **3a** with cyclic secondary amines such as pyrrolidine and piperidine (Entries 8 and 9). The structures of novel 1,2,3,5-tetrasubstituted pyrroles **6–14** were confirmed by spectroscopic methods including ¹H and ¹³C NMR, IR, and HRMS.

Scheme 3 illustrates a reaction pathway for the synthesis of 1,2,3,5-tetrasubstituted pyrrole **6**, including both stepwise and one-pot approaches. Aza-Michael addition of dibenzylamine to methyl 3-iminoacrylate **3a** resulted in the formation of aza-Michael adduct **4**. Subsequently, intramolecular cyclization of **4** promoted by NHMDS afforded 1,4,5-trisubstituted 1,3-dihydro-2*H*-pyrrol-2-one **5**. Finally, the enolizable carbonyl oxygen of **5** was silylated with TBDMSOTf mediated by 2,6-lutidine, resulting in the formation of 1,2,3,5-tetrasubstituted pyrrole **6**. The reaction pathway can also account for the formation of 1,2,3,5-tetrasubstituted pyrroles **7–14** through a reaction similar to that of methyl 3-iminoacrylate **3** with secondary amines.

Scheme 3. Reaction pathway for the formation of 1,2,3,5-tetrasubstituted pyrrole 6

In conclusion, we have succeeded in developing an efficient one-pot, three-step synthesis of novel 1,2,3,5-tetrasubstituted pyrroles 6-14 via the aza-Michael addition of methyl 3-iminoacrylates 3 with secondary amines followed by intramolecular cyclization and silylation. This method will be valuable for the rapid and practical synthesis of functionalized tetrasubstituted pyrroles.

EXPERIMENTAL

All melting points were determined using a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were obtained with a JASCO FT/IR-6200 IR Fourier transform spectrometer. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded with a JEOL JNM-ECZL500R. Chemical shifts are given in δ values (ppm) using TMS as an internal standard. HRMS (ESI) data were recorded with a Waters LCT Premier spectrometer. Elemental combustion analyses were performed with a J-SCIENCE LAB JM10. All reactions were monitored by TLC employing 0.25 mm silica gel plates (Merck 5715; 60 F₂₅₄). Column chromatography was carried out on silica gel [Silica Gel PSQ 60B (Fuji Silysia Chemical)]. Anhydrous CH₂Cl₂ and THF were used as purchased from Kanto Chemical. All other reagents were used as purchased.

Dimethyl 2-[(Phenylimino)methylene]succinate (3a)

To a solution of dimethyl 2-(triphenylphosphoranylidene)succinate $(1)^{18,19}$ (1.22 g, 3.00 mmol) in anhydrous CH₂Cl₂ (5 mL) was added phenyl isocyanate (**2a**) (390 µL, 3.60 mmol) at room temperature under argon. After stirring for 2 h, the reaction mixture was purified by column chromatography [Silica Gel PSQ 60B: *n*-hexane–AcOEt (5:1)] to afford **3a** (556 mg, 75%).

Pale yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 3.32 (s, 2H), 3.72 (s, 3H), 3.75 (s, 3H), 7.33–7.45 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 30.4, 52.0, 52.2, 60.1, 124.9, 128.8, 129.7, 137.1, 169.1, 171.3, 179.7; IR (neat) 2952, 2044, 1741, 1704, 1592, 1490, 1437, 1279, 1200, 1176, 1154, 1108 cm⁻¹; HRMS (ESI): *m/z* [M + Na]⁺ calcd for C₁₃H₁₃NO₄Na: 270.0742; found: 270.0751.

Dimethyl 2-{[(4-Methoxyphenyl)imino]methylene}succinate (3b)

White powder (Et₂O–*n*-hexane); mp 46–47 °C; ¹H NMR (500 MHz, CDCl₃) δ 3.30 (s, 2H), 3.72 (s, 3H), 3.73 (s, 3H), 3.83 (s, 3H), 6.90–6.94 (m, 2H), 7.33–7.38 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 30.6, 52.0, 52.3, 55.6, 59.8, 114.8, 126.7, 129.2, 160.0, 169.5, 171.6, 178.0; IR (KBr) 2952, 2845, 2043, 1732, 1688, 1583, 1509, 1442, 1290, 1248, 1215, 1178, 1113, 1020 cm⁻¹; HRMS (ESI): *m/z* [M + Na]⁺ calcd for C₁₄H₁₅NO₅Na: 300.0848; found: 300.0843. Anal. Calcd for C₁₄H₁₅NO₅: C, 60.64; H, 5.45; N, 5.05. Found: C, 60.64; H, 5.55; N, 5.15%.

Dimethyl 2-{[(4-Fluorophenyl)imino]methylene}succinate (3c)

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 3.32 (s, 2H), 3.73 (s, 3H), 3.75 (s, 3H), 7.08–7.14 (m, 2H), 7.38–7.43 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 30.4, 52.2, 52.4, 60.5, 116.7 (d, ²*J*_{C,F} = 23.0 Hz), 126.9 (d, ³*J*_{C,F} = 8.8 Hz), 133.1 (d, ⁴*J*_{C,F} = 3.2 Hz), 162.5 (d, ¹*J*_{C,F} = 249.5 Hz), 169.1, 171.4, 180.2 (d,

 ${}^{6}J_{C,F} = 1.7$ Hz); IR (neat) 2954, 2040, 1741, 1703, 1597, 1505, 1438, 1280, 1227, 1177, 1158, 1107 cm⁻¹; HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₃H₁₂FNO₄Na: 288.0648; found: 288.0639.

Dimethyl 2-[(Benzylimino)methylene]succinate (3d)

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 3.14 (s, 2H), 3.68 (s, 3H), 3.70 (s, 3H), 4.85 (s, 2H), 7.31–7.40 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 30.1, 51.8, 52.1, 54.9, 58.2, 127.8, 128.1, 128.7, 135.6, 169.9, 171.5, 176.4; IR (neat) 2952, 2060, 1741, 1699, 1438, 1281, 1197, 1173, 1118 cm⁻¹; HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₄H₁₅NO₄Na: 284.0899; found: 284.0884.

Dimethyl 2-(N,N-Dibenzyl-N'-phenylcarbamimidoyl)succinate (4)

To a solution of **3a** (41.9 mg, 0.170 mmol) in anhydrous THF (1.3 mL) was added dibenzylamine (35.7 μ L, 0.186 mmol) at 0 °C under argon. After stirring for 5 min, the reaction mixture was treated with 1/15 mol/L phosphate buffer (pH 7.0, 10 mL) and then extracted with CHCl₃ (20 mL x 3). The extract was dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo*. The oily residue was purified by column chromatography [Silica Gel PSQ 60B: *n*-hexane–AcOEt (5:1)] to afford **4** (71.9 mg, 96%). Colorless amorphous solid; ¹H NMR (500 MHz, CDCl₃) δ 2.52 (dd, *J* = 4.5, 16.8 Hz, 1H), 3.02 (dd, *J* = 0.2, 16.8 Hz, 1H), 2.50 (a, 2H), 2.58 (a, 2H), 4.40, 4.55 (m, 2H), 4.60 (d, *L* = 16.2 Hz, 2H), 6.74, 6.78 (m, 2H), 5.50 (m, 2

9.2, 16.8 Hz, 1H), 3.50 (s, 3H), 3.58 (s, 3H), 4.49–4.55 (m, 3H), 4.60 (d, J = 16.2 Hz, 2H), 6.74–6.78 (m, 2H), 6.97–7.01 (m, 1H), 7.22–7.26 (m, 5H), 7.27–7.30 (m, 3H), 7.33–7.37 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 33.9, 41.2, 50.3, 52.0, 52.5, 121.7, 122.3, 127.2, 127.4, 128.5, 128.9, 137.6, 149.9, 154.4, 170.8; IR (KBr) 2952, 1737, 1613, 1592, 1437, 1222, 1170 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₇H₂₉N₂O₄: 445.2127; found: 445.2119.

Methyl 2-(Dibenzylamino)-5-oxo-1-phenyl-4,5-dihydro-1*H*-pyrrole-3-carboxylate (5)

To a solution of 4 (65.2 mg, 0.147 mmol) in anhydrous THF (1.1 mL) was added NHMDS (1 mol/L in THF, 220 μ L, 0.220 mmol) at 0 °C under argon. After stirring for 5 min, the reaction mixture was treated with 1/15 mol/L phosphate buffer (pH 7.0, 40 mL) and then extracted with CHCl₃ (25 mL x 3). The extract was dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo*. The oily residue was purified by column chromatography [Silica Gel PSQ 60B: *n*-hexane–AcOEt (5:1)] to afford **5** (51.8 mg, 86%).

Colorless amorphous solid; ¹H NMR (500 MHz, CDCl₃) δ 3.56 (s, 2H), 3.76 (s, 3H), 4.06 (s, 4H), 6.99–7.03 (m, 2H), 7.12–7.15 (m, 4H), 7.28–7.35 (m, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 37.4, 51.0, 54.9, 87.9, 127.7, 128.3, 128.5, 128.63, 128.65, 129.3, 135.1, 136.6, 158.5, 163.6, 174.9; IR (KBr) 2947, 1740, 1687, 1578, 1224, 1096 cm⁻¹; HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₆H₂₄N₂O₃Na: 435.1685; found: 435.1673.

Methyl 5-[(*tert*-Butyldimethylsilyl)oxy]-2-(dibenzylamino)-1-phenyl-1*H*-pyrrole-3-carboxylate (6)

To a solution of **5** (35.8 mg, 0.0868 mmol) in anhydrous THF (1 mL) were added TBDMSOTf (59.8 μ L, 0.260 mmol) and 2,6-lutidine (60.6 μ L, 0.521 mmol) at 0 °C under argon. After stirring for 5 min, the reaction mixture was treated with 1/15 mol/L phosphate buffer (pH 7.0, 20 mL) and then extracted with CHCl₃ (20 mL x 3). The extract was dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo*. The oily residue was purified by column chromatography [Silica Gel PSQ 60B: *n*-hexane–AcOEt (30:1)] to afford **6** (39.9 mg, 87%).

Pale yellow oil; ¹H NMR (500 MHz, CDCl₃) δ –0.02 (s, 6H), 0.63 (s, 9H), 3.90 (s, 3H), 4.16 (brs, 4H), 5.63 (s, 1H), 6.40–6.45 (m, 2H), 6.87–6.92 (m, 4H), 7.14–7.23 (m, 8H), 7.29–7.34 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ –5.1, 17.6, 25.1, 51.0, 56.9, 88.3, 106.8, 126.8, 127.6, 127.9, 129.2, 129.4, 135.3, 138.0, 138.8, 139.1, 165.2; IR (neat) 2950, 2930, 2858, 1704, 1578, 1532, 1439, 1319, 1305, 1254, 1223, 1098, 1051 cm⁻¹; HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₃₂H₃₈N₂O₃SiNa: 549.2549; found: 549.2539. Anal. Calcd for C₃₂H₃₈N₂O₃Si: C, 72.97; H, 7.27; N, 5.32. Found: C, 72.77; H, 7.48; N, 5.22%.

Typical procedure for the one-pot, three-step synthesis of 1,2,3,5-tetrasubstituted pyrroles 6–14

To a solution of **3a** (59.7 mg, 0.242 mmol) in anhydrous THF (1.8 mL) was added dibenzylamine (50.9 μ L, 0.266 mmol) at 0 °C under argon. After stirring for 5 min, NHMDS (1 mol/L in THF, 362 μ L, 0.362 mmol) was added, followed by an additional 5 min of stirring, TBDMSOTf (167 μ L, 0.724 mmol) and 2,6-lutidine (169 μ L, 1.45 mmol) were then added. After stirring for 5 min, the reaction mixture was treated with 1/15 mol/L phosphate buffer (pH 7.0, 10 mL) and then extracted with CHCl₃ (20 mL x 3). The extract was dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo*. The oily residue was purified by column chromatography [Silica Gel PSQ 60B: *n*-hexane–AcOEt (30:1)] to afford **6** (102 mg, 80%).

Methyl 5-[(*tert*-Butyldimethylsilyl)oxy]-2-(dibenzylamino)-1-(4-methoxyphenyl)-1*H*-pyrrole-3carboxylate (7)

Pale yellow oil; ¹H NMR (500 MHz, CDCl₃) δ –0.02 (s, 6H), 0.65 (s, 9H), 3.84 (s, 3H), 3.90 (s, 3H), 4.15 (brs, 4H), 5.61 (s, 1H), 6.29–6.33 (m, 2H), 6.70–6.74 (m, 2H), 6.90–6.94 (m, 4H), 7.15–7.20 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ –5.1, 17.7, 25.2, 51.0, 55.6, 56.9, 88.2, 106.6, 113.1, 126.8, 127.9, 128.3, 129.4, 130.1, 138.2, 139.0, 139.2, 159.0, 165.2; IR (neat) 2952, 2931, 2858, 1703, 1578, 1532, 1515, 1441, 1384, 1316, 1298, 1222, 1098, 1052 cm⁻¹; HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₃₃H₄₀N₂O₄SiNa: 579.2655; found: 579.2696.

Methyl 5-[(*tert*-Butyldimethylsilyl)oxy]-2-(dibenzylamino)-1-(4-fluorophenyl)-1*H*-pyrrole-3carboxylate (8)

Colorless plates (Et₂O–*n*-hexane); mp 131–132 °C; ¹H NMR (500 MHz, CDCl₃) δ –0.01 (s, 6H), 0.64 (s, 9H), 3.91 (s, 3H), 4.17 (brs, 4H), 5.63 (s, 1H), 6.26–6.32 (m, 2H), 6.84–6.94 (m, 6H), 7.15–7.22 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ –5.1, 17.6, 25.1, 51.0, 57.1, 88.4, 107.1, 114.7 (d, ²*J*_{C,F} = 22.6 Hz), 126.9, 128.0, 129.3, 130.8 (d, ³*J*_{C,F} = 8.7 Hz), 131.3 (d, ⁴*J*_{C,F} = 3.3 Hz), 138.0, 138.8, 139.0, 161.9 (d, ¹*J*_{C,F} = 246.9 Hz), 165.2; IR (KBr) 2957, 2930, 2856, 1702, 1578, 1535, 1514, 1457, 1441, 1386, 1316, 1236, 1217, 1149, 1103, 1049 cm⁻¹; HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₃₂H₃₇FN₂O₃SiNa: 567.2455; found: 567.2490. Anal. Calcd for C₃₂H₃₇FN₂O₃Si: C, 70.56; H, 6.85; N, 5.14. Found: C, 70.43; H, 6.93; N, 5.17%.

Methyl 1-Benzyl-5-[(tert-butyldimethylsilyl)oxy]-2-(dibenzylamino)-1H-pyrrole-3-carboxylate (9)

White powder (Et₂O–*n*-hexane); mp 91–92 °C; ¹H NMR (500 MHz, CDCl₃) δ 0.05 (s, 6H), 0.72 (s, 9H), 3.87 (s, 3H), 4.16 (brd, 4H), 4.53 (s, 2H), 5.57 (s, 1H), 6.73–6.77 (m, 2H), 7.00–7.05 (m, 4H), 7.08–7.13 (m, 1H), 7.14–7.20 (m, 8H); ¹³C NMR (125 MHz, CDCl₃) δ –5.0, 17.8, 25.4, 43.5, 50.9, 57.4, 87.5, 106.3, 125.5, 126.5, 126.9, 128.0, 128.3, 129.5, 138.0, 138.1, 138.4, 139.1, 165.2; IR (KBr) 2929, 2859, 1704, 1578, 1528, 1461, 1443, 1388, 1258, 1233, 1216, 1175, 1093, 1074, 1028 cm⁻¹; HRMS (ESI): *m/z* [M + Na]⁺ calcd for C₃₃H₄₀N₂O₃SiNa: 563.2706; found: 563.2654. Anal. Calcd for C₃₃H₄₀N₂O₃Si: C, 73.29; H, 7.46; N, 5.18. Found: C, 73.13; H, 7.46; N, 5.21%.

Methyl 5-[(tert-Butyldimethylsilyl)oxy]-2-(dimethylamino)-1-phenyl-1H-pyrrole-3-carboxylate (10)

Colorless plates (CHCl₃–*n*-hexane); mp 84–85 °C; ¹H NMR (500 MHz, CDCl₃) δ 0.06 (s, 6H), 0.72 (s, 9H), 2.65 (s, 6H), 3.81 (s, 3H), 5.53 (s, 1H), 7.19–7.22 (m, 2H), 7.32–7.37 (m, 1H), 7.39–7.43 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ –5.1, 17.7, 25.2, 42.7, 50.8, 87.2, 103.5, 127.4, 128.2, 128.3, 135.9, 137.8, 141.2, 164.9; IR (KBr) 2947, 2859, 1710, 1578, 1545, 1444, 1325, 1227, 1207, 1079 cm⁻¹; HRMS (ESI): *m/z* [M + Na]⁺ calcd for C₂₀H₃₀N₂O₃SiNa: 397.1923; found: 397.1939. Anal. Calcd for C₂₀H₃₀N₂O₃Si: C, 64.13; H, 8.07; N, 7.48. Found: C, 63.98; H, 8.01; N, 7.42%.

Methyl 5-[(*tert*-Butyldimethylsilyl)oxy]-2-(diethylamino)-1-phenyl-1*H*-pyrrole-3-carboxylate (11)

Colorless plates (*t*-BuOMe–*n*-hexane); mp 47–49 °C; ¹H NMR (500 MHz, CDCl₃) δ 0.06 (s, 6H), 0.71 (s, 9H), 0.83 (t, *J* = 7.2 Hz, 6H), 2.99 (q, *J* = 7.2 Hz, 4H), 3.79 (s, 3H), 5.59 (s, 1H), 7.18–7.21 (m, 2H), 7.31–7.35 (m, 1H), 7.37–7.42 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ –5.0, 13.7, 17.7, 25.2, 47.2, 50.7, 87.7, 105.4, 127.4, 128.1, 129.0, 135.9, 138.0, 139.4, 164.9; IR (KBr) 2969, 2933, 2862, 1711, 1538,

1223, 1187, 1091 cm⁻¹; HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₂H₃₄N₂O₃SiNa: 425.2236; found: 425.2197. Anal. Calcd for C₂₂H₃₄N₂O₃Si: C, 65.63; H, 8.51; N, 6.96. Found: C, 65.42; H, 8.52; N, 7.00%.

Methyl2-[Benzyl(methyl)amino]-5-[(*tert*-butyldimethylsilyl)oxy]-1-phenyl-1H-pyrrole-3-carboxylate (12)

Pale yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 0.06 (s, 6H), 0.71 (s, 9H), 2.64 (s, 3H), 3.85 (s, 3H), 4.07 (s, 2H), 5.58 (s, 1H), 6.78–6.81 (m, 2H), 7.08–7.13 (m, 5H), 7.38–7.42 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ –5.0, 17.7, 25.2, 40.2, 50.9, 59.4, 87.6, 105.3, 126.6, 127.6, 127.9, 128.3, 128.5, 128.8, 135.8, 137.9, 139.1, 140.6, 165.0; IR (neat) 2949, 2930, 2887, 1707, 1578, 1543, 1440, 1254, 1226, 1074 cm⁻¹; HRMS (ESI): *m/z* [M + Na]⁺ calcd for C₂₆H₃₄N₂O₃SiNa: 473.2236; found: 473.2267.

Methyl 5-[(*tert*-Butyldimethylsilyl)oxy]-1-phenyl-2-(pyrrolidin-1-yl)-1*H*-pyrrole-3-carboxylate (13)

Colorless plates (*t*-BuOMe–*n*-hexane); mp 60–61 °C; ¹H NMR (500 MHz, CDCl₃) δ 0.06 (s, 6H), 0.74 (s, 9H), 1.73–1.77 (m, 4H), 3.05–3.09 (m, 4H), 3.79 (s, 3H), 5.55 (s, 1H), 7.20–7.22 (m, 2H), 7.30–7.35 (m, 1H), 7.37–7.41 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ –5.0, 17.8, 25.3, 26.1, 50.7, 51.4, 87.2, 103.1, 127.3, 128.0, 128.2, 136.0, 138.0, 138.7, 164.8; IR (KBr) 2932, 2858, 1704, 1577, 1536, 1438, 1416, 1323, 1252, 1225, 1094 cm⁻¹; HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₂₂H₃₂N₂O₃SiNa: 423.2080; found: 423.2065.

Methyl 5-[(tert-Butyldimethylsilyl)oxy]-1-phenyl-2-(piperidin-1-yl)-1H-pyrrole-3-carboxylate (14)

Colorless plates (Et₂O–*n*-hexane); mp 68–69 °C; ¹H NMR (500 MHz, CDCl₃) δ 0.06 (s, 6H), 0.72 (s, 9H), 1.24–1.30 (m, 4H), 1.34–1.41 (m, 2H), 2.94–2.99 (m, 4H), 3.80 (s, 3H), 5.52 (s, 1H), 7.18–7.21 (m, 2H), 7.32–7.36 (m, 1H), 7.38–7.42 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ –5.0, 17.7, 24.0, 25.2, 26.1, 50.7, 51.0, 87.1, 103.6, 127.3, 128.1, 128.6, 135.8, 137.9, 141.0, 165.0; IR (KBr) 2936, 2857, 1709, 1533, 1439, 1328, 1219, 1094 cm⁻¹; HRMS (ESI): *m*/*z* [M + Na]⁺ calcd for C₂₃H₃₄N₂O₃SiNa: 437.2236; found: 437.2194.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Number JP20K06940.

REFERENCES

- 1. V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman, and P. Sharma, RSC Adv., 2015, 5, 15233.
- G. L. Petri, V. Spanò, R. Spatola, R. Holl, M. V. Raimondi, P. Barraja, and A. Montalbano, *Eur. J. Med. Chem.*, 2020, 208, 112783.
- 3. N. Jeelan Basha, S. M. Basavarajaiah, and K. Shyamsunder, *Mol. Divers.*, 2022, 26, 2915.

- 4. D. D. Xuan, Curr. Org. Chem., 2020, 24, 622.
- 5. S. Iqbal, H. Rasheed, R. J. Awan, R. J. Awan, A. Mukhtar, and M. G. Moloney, *Curr. Org. Chem.*, 2020, **24**, 1196.
- 6. P. N. Rakendu, T. Aneeja, and G. Anilkumar, Asian J. Org. Chem., 2021, 10, 2318.
- 7. S. C. Philkhana, F. O. Badmus, I. C. Dos Reis, and R. Kartika, Synthesis, 2021, 53, 1531.
- 8. B. Borah, K. D. Dwivedi, and L. R. Chowhan, RSC Adv., 2021, 11, 13585.
- T. Shi, G. Yin, X. Wang, Y. Xiong, Y. Peng, S. Li, Y. Zeng, and Z. Wang, *Green Synth. Catal.*, 2023, 4, 20.
- 10. Z.-R. Guan, S. Liu, Z.-M. Liu, and M.-W. Ding, Synthesis, 2019, 51, 2402.
- V. A. Mamedov, E. A. Khafizova, N. E. Algaeva, S. K. Latypov, and O. G. Sinyashin, *J. Org. Chem.*, 2020, **85**, 9887.
- M.-H. Hsu, M. Kapoor, T. K. Pradhan, M.-H. Tse, H.-Y. Chen, M.-J. Yan, Y.-T. Cheng, Y.-C. Lin, C.-Y. Hsieh, K.-Y. Liu, and C.-C. Han, *Synthesis*, 2021, 53, 2212.
- 13. X. Mengxin, M. R. Lambu, and Z. M. A. Judeh, J. Org. Chem., 2022, 87, 12115.
- 14. J.-U. Park, L.-Z. Huang, H.-J. Cho, B. Y. Park, and J. H. Kim, J. Org. Chem., 2023, 88, 585.
- 15. S. Yaragorla, A. Doma, and R. Tangellapally, Synthesis, 2023, 55, 1298.
- 16. M. Nakao, M. Toguchi, Y. Shimabukuro, and S. Sano, Tetrahedron. Lett., 2020, 61, 152271.
- 17. M. Nakao, M. Toguchi, K. Horikoshi, S. Kitaike, and S. Sano, Heterocycles, 2022, 104, 379.
- 18. F. Compernolle, G. Joly, K. Peeters, S. Toppet, and G. Hoornaert, Tetrahedron, 1997, 53, 12739.
- 19. S. M. M. Rodrigues, V. Palaretti, V. Nardini, M. G. Constantino, and G. V. J. da Silva, J. Mol. Struct., 2013, 1051, 276.