

この10年の強風災害と新しい調査・観測手法

台風による強風屋根被害の航空機調査とその結果

Aircraft Survey of Roof Damage by Typhoon and the Results

野田 稔*1尾田 春雄*2益子 渉*3竹内 崇*4友清 衣利子*5Minoru NODAHaruo ODAWataru MASHIKOTakashi TAKEUCHIEriko TOMOKIYO

1. はじめに

2018年の台風21号 (Jebi, 以降T1821号と呼ぶ), 2019 年の台風15号 (Faxi, 以降T1915号と呼ぶ) といずれも 上陸前後まで「非常に強い」勢力を持った台風が通過 した近畿地方あるいは千葉県では甚大な被害がもたら された。この2つの台風では大阪あるいは東京という大 都市の近くを通過し, いずれも広域にわたって建物被 害が発生し, その全容を把握することには困難が伴っ た。総務省消防庁の報告書によれば, T1821号が大阪府 にもたらした建物被害 (住家+非住家) は全壊, 半壊,

ー部損壊を合わせて77,739棟に上り,全国の合計 104,437棟の74%を占めている¹⁾。また,T1915号が千葉 県にもたらした建物被害は82,262棟で,全国の合計 94,544棟の87%であり,住家の全壊,半壊数に限っても 4,912棟と全国の合計5,263棟の92%であった²⁾。1府県に これだけの被害が集中すると,短時間で被害の全容を 把握することは容易ではない。

このような状況になると、被害状況を調査するにも まず被害の集中している場所を把握して被害調査を重 点的に行う事が効率的であることは明白であるが、そ の手段の一つとして挙げられるのが、航空機調査であ る。ここでは、この2つの台風被害で実施した航空機調

* 1	高知大学 教授	noda@kochi-u.ac.jp			
Professor, Kochi University					
* 2	高知大学大学院	大学院生			

- Graduate student, Graduate School, Kochi University * 3 気象研究所
- Meteorological Research Institute
- * 4 神戸大学 助教 Assistant Professor, Kobe University
 * 5 熊本大学 准教授

Associate Professor, Kumamoto University

査について紹介し、その結果得られた成果について述 べる。また、著者がこれまでに竜巻や台風の建物被害 の調査において必要と感じたブルーシート下の被害状 況の調査手段として検討した赤外線カメラによるドロ ーン調査の可能性について紹介する。

2. 台風による屋根被害の航空機調査

2.1 T1821号による屋根被害の航空機調査

T1821号による被害が発生したのは2018年9月4日で あり,著者は発災直後に現地調査に赴いたが,あまり にも被害が多すぎて地上での調査で全貌を把握するこ とが困難であった。その後,科研費特別研究促進費研 究「平成30年台風21号による強風・高潮災害の総合研 究」(代表者:丸山敏)が採択されて,航空機調査が実 施できることになり,実際に航空機調査を実施したの は,発災から2カ月余り経過した11月13日である。この 調査では被害が集中した大阪府南部と和歌山県北部の ブルーシートが掛った建物を対象に小型航空機(セス ナ式172R型飛行機)によって高度600mから時速180km で後部座席の左右の窓に設置した4Kビデオカメラに より地上を撮影した。同時にアクションカメラ(GoPro HERO7)を吸盤で窓に固定してインターバル撮影を行 い, GPS機能により撮影時刻と撮影位置の記録を行った^{3,4)}。図1にこの調査時の飛行経路と撮影された映像から抽出されたブルーシートの位置を示す。

2.2 ブルーシートをマーカとした調査の有効性

T1821号による建物被害の航空機調査では発災後2 カ月が経過しているということもあり、ブルーシート をマーカとして抽出した建物屋根被害の情報が実際に 発生した被害を反映しているのかどうかを確認する必 要がある。特に、この撮影では飛行経路の真下の被害 状況が記録できなかったこともあり、その影響も加味 してブルーシートを介した屋根被害調査の有用性を検 証することが必要であった。そこで、図2に示すような 撮影範囲を包括するポリゴンを作成し、このポリゴン 内で目視により抽出したブルーシート数と、GISデー タより抽出されるポリゴン内に存在する建物数より、 ポリゴン外の被害状況も同程度であるという前提で撮 影対象となった地方自治体内のブルーシート数を推計 し、各地方自治体における被害建物数と比較した⁵⁾。図

図1 T1821号の建物屋根被害の航空機調査における 飛行軌跡と抽出されたブルーシート位置^{3,4)}

図3 T1821号におけるブルーシート数と行政に届け られた建物被害件数の関係⁵⁾

3に推計されたブルーシート数と自治体に報告された 被害件数の関係を示すが,極端に外れた2点を除いて概 ね直線関係を示すことが確認できた。従って,発災か ら2カ月経過しているものの,ブルーシートの分布によ って被害分布をある程度把握できるものと判断した。 2.3 T1915号における建物被害の航空機調査

T1915号が東京湾を通過し、千葉県を中心に被害を もたらしたのは2019年9月9日未明であり、この被害に 対する航空機調査は、特に被害が甚大とされた内房地 方を撮影するために飛行した読売新聞社の報道へり

(Eurocopter EC135P2) に同乗し,2019年9月21日に実施した。撮影はアクションカメラ(GoPro HERO7)1台を後部座席左側窓に吸盤で固定し,地上300mより1秒間隔のインターバル撮影によって地上を撮影し,同時にカメラ内蔵のGPSにより撮影の位置情報を記録した。

また、この撮影に先立つ9月19日には、自動車によっ て内房地方を直接見て回り、特に被害の目立つ場所で はドローン (DJI Mavic Pro Platinum)を用いて高度150m からの4K映像を撮影してあり、前述のヘリコプターか らの航空写真を補足する形で利用した。この調査では、 撮影できた範囲で被害を受けている建物と被害を受け ていない建物の両方を目視で読み取り、位置情報を GISの点情報として記録した⁰。図4にヘリコプターの 飛行軌跡と抽出された建物の位置情報を示す。

- 3. 被害と風速の関係性
- 3.1 被害率と風速の関係性

被災の位置情報が定まるとすぐに思いつくのが,被 害率による定量評価ではないかと思われる。そこで, 図5に示すような気象解析で得られた台風通過イベン ト中の最大風速値分布を使って,250m間隔の直交格子 メッシュによって航空機調査で視認できる各メッシュ

図4 T1915号の建物屋根被害の航空機調査における 飛行ルートと抽出された屋根被災建物の位置⁶

内のブルーシート数を同一メッシュ内の建物数で除し た被害率と、それぞれのメッシュ位置における最大風 速値との関係を図6に示す。T1821号の気象解析は、引 用文献7の手法を適用したものである。図中の○点は各 メッシュの被害率であり、●点は、2m/s間隔の風速階 級に含まれる各メッシュの建物数とブルーシート数の 関係を直線近似して求めた直線式の傾きであり、平均 被害率というべき量である。しかし、図を見ても明ら かなように同一風速における被害率のバラツキは非常 に大きく、被害率による定量評価は非常に困難である ことが分かる^{8,9}。

3.2 被害確率と風速の関係性

前述の通り,被害率という形で最大風速との関係を 示すと被害率のバラツキが大きくて関係性を見出すこ とはできなかった。そこで,注目するメッシュで被害 が存在するか否かのみを評価して,最大風速2乗値に対 する被害メッシュの累積数を評価することを考えた⁸⁾。 ここで,最大風速2乗値を用いたのは,風荷重が風速の 2乗値に比例するからであり,累積数で評価するのは, 注目する風速よりも低い風速で被害が発生したメッシ ュでは注目する風速でも当然被害は発生しているから である。この被害メッシュの累積数を被害なしメッシ ュも含めた全メッシュ数で除すことで求めた被害確率 で表し,風速二乗値との関係を各メッシュの単位面積 当たりの建物数で表される建物密度の階級ごとに示す と,図7のようになった。建物密度階級毎に示されてい る曲線は,最弱リンクモデルの破壊確率を示すWeibull 分布をX_{min}平行移動させて係数Aを乗じたものであり, 次式で定義される。

$$F(X) = A \left[1 - \exp\left\{ -\left(\frac{X - X_{\min}}{X_0}\right)^m \right\} \right]$$
(1)

ここで, X₀, mはそれぞれWeibull分布のスケールパラメ ータと形状パラメータである。

最弱リンクモデルは複数の輪をつないだチェーンを 引張った時の張力とチェーンの破壊確率の関係を示し たものであるが、ここでは注目する評価メッシュ内の 建物一つ一つがチェーンの輪に相当し、輪の内部に生 じる応力値が輪の強度を上回って壊れる様子が、各建 物に生じる風荷重が各建物の強度を上回って壊れる様 子と等価であると考えた。また、評価メッシュに吹い たと考えられる最大風速の二乗値がチェーンの張力に 相当すると考えている。

この考え方に基づくと、最大風速二乗値と被害確率 の間にはWeibull分布に沿う関係性が認められた。

図7 T1821号およびT1915号における建物屋根被害発 生確率と最大風速二乗値との関係^{8,9)}

T1915号の被害については、大阪府南部ほどの密集地 が存在しないため、建物密度の階級値の上限は大阪府 南部よりも低いが、建物密度階級値毎の被害確率の値 はWeibull分布に良く合うものとなっている。

ここで,式(1)の各パラメータと建物密度との関係を 示すと,図8のようになった。図中の曲線は,建物密度 γの関数として設定した近似関数であり,各Weibullパ ラメータについて以下のように定義した。

$$X_0(\gamma) = \alpha_{X_0} \exp\left(-\beta_{X_0} \cdot \gamma\right) \tag{2}$$

$$m(\gamma) = \alpha_m \exp(-\beta_m \cdot \gamma) \tag{3}$$

$$A(\gamma) = \alpha_A \{1 - \exp(-\beta_A \cdot \gamma)\}$$
(4)

T1821号による大阪府南部およびT1915号による千 葉県内房におけるWeibullパラメータの近似関数の各 係数は表1のようになった。被害確率の上限を決める *a*_AはT1915号ではほぼ1なのに対して,T1821号では0.8 程度となっているが,これは前者が発災後すぐに調査 したのに対して,後者は発災後2カ月が経過しており, 軽微な被害はすでに復旧され,ブルーシートで識別で きる被害数が実際よりも減少したことに起因するもの と考えられる。

一方,被害開始風速に関連するX_{min}は設計風速が低い大阪南部の方が低い値となっており、大阪府南部, 千葉県内房の粗度区分をそれぞれIIIおよびIIと仮定して高さ10mの設計風速を求めると,それぞれ28.6m/s, 42.0m/sとなり,被害開始風速の大小関係と設計風速の 大小関係は対応しているようである。ただ,X_{min}を風

(b) T1915号千葉県内房

図8 T1821号における大阪府南部の建物屋根被害発 生確率-最大風速二乗値のWeibullパラメータと建物 密度との関係^{8,9}

速に直すと,前者が11.5m/s,後者が12.4m/sと設計風速 に比べかなり低いこともあり,他の係数も含めて,ど のように決まるかについて理論的な検討が別途必要で ある。しかし,表1に求められたWeibullパラメータを使 って,最大風速2乗値と建物密度から求めた被害確率分 布は,図9に示すようにいずれの台風被害においても実 測の被害確率に良く合うものとなっており,実測の被 害確率と,対応する最大風速2乗値および建物密度から

表1 被害確率のWeibullパラメータの近似関数係数^{8,9)}

Weibullパラメータ	係数	T1821号	T1915号
X_{\min}		132	154
V	α_{X_0}	140	777
Λ ₀	β_{X_0}	91	145
	α_m	2.2	0.98
m	β_m	63	6.0
Λ	α_A	0.80	0.99
A	βA	1200	1276

図9 T1821号およびT1915号における建物屋根被害発 生確率分布pと実測値Pdとの比較^{8,9)}

⁽a) T1821号大阪府南部 (b) T1915号千葉県内房 図10 T1821号およびT1915号におけるWeibull分布値p と実測値Pdの相関関係^{8,9)}

求めたWeibull分布から被害確率の相関関係も図10に 示すように極めて良好な関係が得られている。

4. 屋根被害調査における赤外線カメラ利用の可能性

台風や竜巻等による建物の突風被害に共通するのは, 屋根被害を中心として,被災後に速やかに屋根にブル ーシートが掛けられる点である。1棟1棟を訪れ,建物 の持ち主にヒアリングすると同時に被害状況を確認さ せていただくことが被害調査の基本ではあるものの, 一度掛けたブルーシートをめくって被害状況を確認さ せていただくのは被災者にとっても負担となるため, 避けられるのであれば避けたいプロセスである。最近 は,赤外線カメラを搭載したドローンも存在し,可視 光線以外の情報も取得できるようになってきているこ とから,ブルーシートの赤外線の透過特性を調べ,赤 外線カメラを用いてブルーシート下の状況を把握する 可能性について検討した結果¹⁰⁾を紹介する。

図11に市販の0.2mm厚のブルーシート1枚の波長毎 の透過率,反射率を測定した結果を示す。この結果よ り,遠赤外線に相当する4~1000µmにおける透過率は 平均で17%を示しており,特に10µm前後の透過率は 40%程度に達していることが分かる。一方で遠赤外線 の反射率は0.5%程度であり,太陽光に含まれる遠赤外 線は,反射せずにその40%程度がブルーシートを通過 しており,ブルーシートの下の物体で反射した結果が ブルーシートを再度通過して見える可能性が極めて高 いことを示している。

そこで、図12に示すような南側に33°の勾配を持た せた瓦葺およびスレート葺の部分屋根模型を作製し、 図13に示すように、それぞれ屋根葺き材を欠損させた り斜めに配置したりして疑似的な破損状況を再現した。 その模型を、屋根葺き材から50mm程度離して1枚また は2枚重ねのブルーシートで覆い、これをドローンに積 載した赤外線カメラで撮影する実験を行った。

撮影に用いた赤外線カメラはFLIR製ドローン用赤 外線カメラ(Zenmuse XT2,測定波長7.5~13.5mm)で あり、大型ドローン(DJI Matrice200)に搭載して撮影 高度や撮影角度を変え、ブルーシートで覆われた屋根 部分模型の可視光画像と赤外線画像を同時に撮影した。

図14に瓦葺部分模型の撮影結果を示す。可視光画像 では平面的なブルーシートが映っているのみであるが, 赤外線画像で見ると,その下に存在する瓦葺屋根模型 がはっきりと映っている。2枚重ねの部分(写真右下の 範囲)では1枚重ねの部分に比べて鮮明さに欠ける部分 はあるものの瓦の配列などはしっかりと把握できる画 像であることが分かる。また、図15にスレート葺屋根 部分模型を撮影した画像を示すが、こちらも可視光画 像では全く分からないブルーシート下の様子が、赤外 線画像でははっきりと確認できる画像が得られている。

今回用意した条件下では,ブルーシートに遮られて 可視光では見えない屋根部分が,遠赤外線領域を撮影 可能な赤外線カメラによって撮影可能であり,ブルー

図11 市販ブルーシート(0.2mm厚)の透過率特性 (徳島大学ポストLEDフォトニクス研究所測定)¹⁰⁾

図12 屋根部分模型¹⁰⁾

図14 瓦葺部分模型の撮影結果¹⁰

(a) 可視光画像(b) 赤外線画像図15 スレート葺屋根部分模型の撮影結果¹⁰⁾

シートで覆われたままの状態で屋根の破損状況が把握 できる可能性があることが明らかになった。このこと は、被災者に撮影許可のみ頂ければ、被災者の手を煩 わせることなく建物被害の状況を詳細に把握できるよ うになる可能性を示唆している。さらに、被災調査を 目的とするドローンの飛行許可について、有人航空機 と同様に地権者の飛行許可を受ける必要がなくなれば、 ドローンによる容易な被害調査が一般化し、可視光画 像以外の撮影による情報の詳細な抽出も可能となる。

今後は、赤外線画像に対するブルーシートの種類や 厚さなどの影響や屋根葺き材の種類などによる写り方 の違いなどについて詳細に検討することで、赤外線画 像による調査方法の実用化を目指したい。

5. まとめ

台風による強風被害の発生は、一般的に広域にわた って膨大な建物が一斉に被害を受けることが多く、そ の被害状況を迅速に集約するためには、航空機調査に より被害調査を行う事は極めて重要である。また, T1821号、T1915号で実施した航空機調査の結果からは、 気象解析で得られる台風通過時の最大風速の情報と被 害確率との間にWeibull分布に沿う関係性が認められ ることが示され、これらの関係性を用いれば、個別の 建物の被害の有無は判断できないものの、最大風速と その場所の建物密度によって場所場所の被害発生確率 を求められる可能性が示唆された。これは、現在、情 報提供されている台風通過時の大まかな最大風速と暴 風圏,強風圏に含まれる範囲に加えて、台風通過地域 に対する強風ハザードの程度を一般市民に分かりやく 伝える手段ともなり得る。そのためにも、気象解析の 風速情報と被害発生確率との関係性について一般性を 持たせることが急がれる。

一方,台風被害に限らず建物被害,特に屋根被害を 受けた建物はブルーシートによって被害部分が覆われ てしまうため,被災状況の把握に時間を要しているが, 赤外線カメラとドローンの組み合わせによって,ブル ーシート下の建物破損状況を容易に把握できる可能性 があり,赤外線画像による被害調査の手法を確立する ためにも今後さらに詳細な検討が必要である。

謝辞

ここで紹介した成果は,特別研究促進費(18K19953), 日本風工学会突発災害調査費,高知大学防災推進セン タープロジェクト研究経費の支援を受け得られた。建 物のGISデータについては、東京大学CSIS共同研究 No.608 (Zmap TOWN II(2016年度Shape版)「大阪府およ び和歌山県データセット」提供)の助成を受けた。 T1915号の航空機調査では読売新聞東京本社、赤外線 撮影では㈱エレパに協力いただいた。ブルーシートの 光学特性測定は徳島大学ポストLEDフォトニクス研究 所の協力を受けた。ここに記し、謝意を表す。

参考文献

- 総務省消防庁応急対策室,「平成30年度台風21号による被害及び消防機関等の対応状況(第10報)」,(2019)
- 総務省消防庁応急対策室、「令和元年房総半島台 風による被害及び消防機関等の対応状況(第41報)」、 (2020)
- 野田 稔,友清 衣利子,竹内 崇,「大阪府南部・ 和歌山県北部におけるT1821号による強風被害の 航空調査」,日本風工学会2019年度年次研究発表 会概要集,pp.105-106,(2019)
- 野田 稔,友清 衣利子,竹内 崇,「航空調査で明ら かになったT1821号による大阪南部の住宅被害分布」, 2019年日本建築学会大会梗概集,pp.155-156,(2019)
- 5) 尾田春雄, 野田 稔, 「強風被害を対象とした航空 調査におけるブルーシート観測の有用性」,2021年 度土木学会四国支部第27回技術研究発表会概要集, 2pages, (2021)
- 6) 友清 衣利子,野田 稔,岩下 久人,「2019年台風 第15号の強風被害分布」,令和元年度科学研究費 助成事業特別研究促進費・令和元年台風15号によ る停電の長期化に伴う影響と風水害に関する総合 調査研究成果報告書,pp.3-1-12,(2020)
- 7) 益子 渉、「令和元年房総半島台風に伴う強風の特徴」、
 202年度日本気象学会秋季大会講演予稿集、(2020)
- 尾田 春雄,益子 渉,友清 衣利子,野田 稔,「平 成30年台風21号における強風被害発生確率モデル の提案」,日本風工学会2021年度年次研究発表会 概要集,pp.139-140,(2021)
- 尾田 春雄,野田 稔,「最弱リンクモデルに基づく強風被害発生確率モデルの適用」,2021年度日本 建築学会大会(東海)学術講演会梗概集,構造I, pp.77-78,(2021)
- 野田 稔,尾田 春雄,「赤外線カメラを用いたブ ルーシート下の屋根被害評価の試行」,2021年度日 本建築学会大会(東海)学術講演会梗概集,構造I, pp.73-74,(2021)