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Abstract 

Statistical 1H nuclear magnetic resonance (NMR) analyses were conducted with ternary 

copolymer blends. Two out of the three monomers, acrylonitrile, styrene, and α-

methylstyrene, were subjected to radical copolymerization to synthesize three kinds of 

copolymers that were mixed to prepare binary and ternary copolymer blends. The 1H 

NMR spectral matrix for the copolymers and their blends (explanatory variables) was 

combined with the blending parameter matrix (objective variables). Cross-validation with 

the least absolute shrinkage and selection operator regression confirmed that excellent 

regression models were constructed with a dataset composed of data for eight copolymers 

and forty-five binary blends; these were used to predict the blending parameters for the 

binary blends, such as the chemical compositions and mole fractions of the component 

copolymers. Accordingly, the models were then used to predict the blending parameters 

for the ternary blends, which resulted in successful and highly accurate predictions. Other 

regularized regression models, such as Ridge regression and Elastic Net, were also 

examined. 

 

Keywords: copolymer blend/NMR/chemometrics/least absolute shrinkage and selection 
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Introduction 

Since chemometrics was established early in the 1970s, a wide range of 

multivariate analyses, particularly principal component analysis (PCA) [1, 2] and partial 

least-squares regression (PLS) [3-5], have been applied to measured data to extract 

chemical information [6, 7]. The first application of chemometrics to nuclear magnetic 

resonance (NMR) spectra, which was used to cluster the substituents on monosubstituted 

benzenes from the chemical shifts of the aryl carbons, was reported in 1983 [8]. In the 

early 1990s, PCA was introduced to classify the 1H NMR spectra of urine [9]. Now, 

multivariate analyses of biological NMR data have become recognized as metabolomics 

[10]. 

NMR spectroscopy is also a powerful tool for analyzing polymer microstructures, 

including their stereochemistries, chemical compositions, and monomer sequences [11, 

12]. The chemometric approach has been successfully applied to the NMR spectra of 

synthetic polymers [13-25]. Recently, we reported multivariate statistical analyses of the 

1H NMR spectra for binary blends (bi-blends) of copolymers prepared by emulsion 

copolymerization with two of the three monomers, acrylonitrile (AN), styrene (ST), and 

α-methylstyrene (MS) [24]. Two linear regression models, PLS and least absolute 

shrinkage and selection operator regression (LASSO) [26], were applied to the NMR 

spectral data as explanatory variables and the blending parameters (BPs) as objective 

variables. If the component copolymers in bi-blends were defined as “polymer-A” and 

“polymer-B” with priority given in the order poly(AN-co-ST) (AN/ST), poly(AN-co-MS) 

(AN/MS), and poly(MS-co-ST) (MS/ST), the predictions of BPs, such as the chemical 

compositions and mole fractions of the component copolymers, failed. A new parameter 

was introduced, and the objective variables were redefined based on the amounts of the 
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component copolymers in the blend: the component copolymers with larger and smaller 

amounts were classified as “polymer-L” and “polymer-S”, respectively. Furthermore, the 

addition of squared spectral data to the explanatory variables was required to predict the 

BPs with linear regression models based on PLS and LASSO because the newly defined 

objective variables had nonlinear relationships with the 1H NMR spectral data. After 

optimizing both the objective and explanatory variables, the BPs were successfully 

predicted. Note that LASSO showed slightly better accuracy than PLS. 

In the present study, we investigated the extent to which multivariate statistical 

analyses of 1H NMR spectral data are useful for extracting the BPs for ternary blends (ter-

blends). As with our previous work [24], three kinds of copolymers, AN/ST, AN/MS, and 

MS/ST, were synthesized by emulsion copolymerization to prepare one series of ter-

blends and three series of bi-blends. These copolymers were simply defined as “polymer-

a”, “polymer-b”, and “polymer-c”, respectively. The BPs for the ter-blends were 

successfully predicted with regularized regression analyses, such as LASSO, Ridge [27], 

and Elastic Net [28], by using the dataset for the copolymers and the bi-blends as a 

training dataset and the 1H NMR spectral data of the ter-blends as a test dataset. Note that 

no optimizations were needed for either the objective or explanatory variables. 

 

Experimental 

Multivariate statistical analyses of 1H NMR spectral data 

Eight copolymers were prepared by changing the combinations of comonomers and 

chemical compositions (Table 1). The polymer preparation details were described in our 

previous paper [24]. 
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(Table 1) 
 

 

Forty-five bi-blends and six ter-blends were prepared by varying the species and 

fractions of the component copolymers. Fig. 1 shows a ternary composition diagram for 

the bi-blends and ter-blends, and additional details are given in Table S1. The codes for 

the bi-blends, “A_S/M”, “S_A/M”, and “M_A/S”, were assigned for the combinations of 

“AN/ST+AN/MS”, “AN/ST+MS/ST”, and “AN/MS+MS/ST”, respectively, in which the 

first symbol means the common monomeric unit. Furthermore, identification numbers 

were given with the format S_A/M_25/40, which was based on the run-numbers for the 

component copolymers in Table 1 (the bi-blends of Run 2 and Run 5 in this example) and 

the weight fraction of the first component copolymer (40% for Run 2 in this example). 

The code “ASM” was used for the ter-blends by adding both the run-numbers of the 

component copolymers and the ratio of their weight fractions in the format 

ASM_138_343 (the ter-blends of Run 1, Run 3, and Run 8 with a weight ratio of 3:4:3 in 

this example). The mole fractions for the copolymer blends were calculated as in a 

previous report [24]. 

 

 

(Fig. 1) 
 

1H NMR spectra of the copolymers and their blends were recorded with an 

ECZ400 spectrometer (JEOL Ltd., Tokyo, Japan) equipped with a 5-mm ROYAL probe 

under the following conditions: 2 wt/vol% in deuterated pyridine, 100 °C, 45° pulse 

(3.925 μs), spectral width of 7,423 Hz, 128 scans, repetition time of 9.4145 s and 32,768 



 
 

6 

data points. The free induction decays were exponentially apodized with 0.2 Hz line-

broadening and zero-filled to 65,536 points prior to the Fourier transformations. The 

signal for H2O overlapped those of the main-chain CH2 and CH groups when CDCl3 was 

used as the solvent. Therefore, deuterated pyridine was chosen as the solvent to avoid 

overlap of the H2O signal. The signal for the nondeuterated para-proton of the solvent 

(7.52 ppm) was used as an internal reference for the chemical shift. 

Bucket integration of the resonance regions for the α-CH3 group in the MS units 

and the main-chain CH2 and CH groups (0.25–3.40 ppm) was performed with intervals 

of 0.01 ppm to express each spectrum with 314 variables (JEOL Delta NMR ver. 5.2 

software). The integrated intensities were normalized so that the sum was 100. The 

spectral data were combined with the structural data to conduct regularized regressions 

with R software ver. 3.4.4 packaged in the Visual R Platform ver. 2.0 (NTT DATA 

Mathematical Systems Inc., Tokyo, Japan). 

Regularized regressions, such as LASSO, Ridge and Elastic Net, are extensions 

of ordinary least-squares regressions [26-28]. The prediction accuracy is improved by 

minimizing the objective function (E), which is expressed as: 

LASSO ∶  𝐸𝐸 =  ‖𝑦𝑦 − 𝑥𝑥𝑥𝑥‖ 2 +  𝜆𝜆�|𝑥𝑥𝑖𝑖|
𝑚𝑚

𝑖𝑖=1

       (1) 

Ridge ∶  𝐸𝐸 =  ‖𝑦𝑦 − 𝑥𝑥𝑥𝑥‖ 2 +  𝜆𝜆�𝑥𝑥𝑖𝑖
2

𝑚𝑚

𝑖𝑖=1

       (2) 

Elastic Net ∶  𝐸𝐸 =  ‖𝑦𝑦 − 𝑥𝑥𝑥𝑥‖ 2 +  𝜆𝜆 �𝛼𝛼�|𝑥𝑥𝑖𝑖|
𝑚𝑚

𝑖𝑖=1

+ (1 − 𝛼𝛼)�𝑥𝑥𝑖𝑖
2

𝑚𝑚

𝑖𝑖=1

�        (3) 

where y denotes a dataset of material data (the chemical compositions and mole fractions 

of the component copolymers in this study); x denotes a dataset of bucket integral values; 
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b denotes a dataset of regression coefficients; bi denotes the ith regression coefficient; λ 

denotes a regularization parameter; and α denotes a tuning parameter. The second term 

on the right-hand side is a penalty for increasing the coefficient values. The sum of the 

absolute values of the ith regression coefficients was used for LASSO, whereas the sum 

of the squared values of the ith regression coefficients was used for Ridge. The Elastic 

Net penalty was composed of a combination of the LASSO and Ridge penalties. The 

contributions were determined by the tuning parameter α: Elastic Net provides the same 

result as LASSO when α is unity and the same as Ridge when α is zero. Note that in 

LASSO, meaningful variables are selected from many predictors by setting bi to zero, 

which results in a decreased number of variables used in the regression (df) with an 

increase in λ value. A fivefold cross-validation (CV) was used to optimize both the λ and 

α values by minimizing the mean absolute error. 

 

Results and Discussion 

1H NMR spectra of the component copolymers, bi-blends and ter-blends 

The signals observed at 0.25–3.40 ppm in the 1H NMR spectra of the component 

copolymers were assigned to the α-CH3 groups in the MS units and the main-chain CH2 

and CH groups (Fig. 2 (a)–(c); Runs 2, 6, and 7 in Table 1). The combinations of the 

monomers used significantly affected the spectral patterns. However, the chemical 

composition could not be determined because the broadened and overlapped signals made 

it difficult to assign and quantify the signals for each monomeric unit. The spectra of the 

bi-blends were broadened more than those of their component copolymers [Fig. 2(d)–(f)], 

likely because the spectra for those two copolymers were superimposed. In addition, the 

spectrum of the ter-blend was so broadened [Fig. 2 (g)] that it was indistinguishable from 
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those of the bi-blends. Therefore, it was practically impossible to determine which 

component copolymers were contained and how much of each copolymer was added just 

by looking at the spectra. 

 

 

(Fig. 2) 
 

Definition of the BPs for the ter-blends 

In our previous study [24], the three kinds of copolymers were categorized either 

as “polymer-A” or “polymer-B” to determine the BPs for the bi-blends. This awkward 

definition induced a contradiction in the blending fractions depending on the combination 

of copolymers, and optimizations of the explanatory and objective variables were 

required to predict the BPs. In the present study, however, the three kinds of copolymers, 

AN/ST, AN/MS, and MS/ST, are simply defined as “polymer-a”, “polymer-b” and 

“polymer-c”, respectively. The BPs defined for the bi-blends were extended to those for 

the ter-blends. Multiplication of the chemical composition and mole fraction of a certain 

component copolymer corresponds to the chemical composition derived from the 

component copolymer in the ter-blends. Accordingly, the averaged chemical composition 

in the ter-blends can be defined with Equations (4) and (5): 

 

 Comp = (Compa × fa) + (Compb × fb) + (Compc × fc) (4) 

 fa + fb + fc = 1 (5) 

 

where Comp denotes the averaged chemical compositions of the AN, MS, or ST 

monomeric units in the copolymer blends; Compa, Compb, and Compc denote the 
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chemical compositions of the component copolymers named “polymer-a”, “polymer-b” 

and “polymer-c”, respectively; and fa, fb, and fc denote the mole fractions of polymer-a, 

polymer-b and polymer-c, respectively, in the blends (Scheme 1). 

 

 

(Scheme 1) 

 

Prediction of the BPs for the bi-blends by LASSO 

 The Comp values for the bi-blends can be expressed with the abovementioned 

definitions, in which one of the mole fractions is set to zero. At first, therefore, fivefold 

CVs of LASSO were conducted with the dataset combining the bucket-integral values 

and the Comp values of the eight copolymers and the forty-five bi-blends. Note that the 

Comp values of the eight copolymers were the same as the chemical compositions. The 

predicted values agreed well with the theoretical values calculated from the weight 

fractions of the component copolymers with high coefficient-of-determination (R2) values 

over 0.98 (Fig. S1). This was not surprising, because the Comp values should be the same 

as the values calculated with the previous definition, “polymer-A” and “polymer-B” [24]. 

Then, five CVs were performed with LASSO to predict the BPs for the bi-blends. 

As mentioned above, for example, the composition of AN derived from polymer-a in the 

bi-blends can be expressed as ANa × fa. Therefore, the chemical compositions derived 

from the component copolymers (Compa × fa, Compb × fb, and Compc × fc) and the mole 

fractions (fa, fb and fc) were used as the objective variables. Fig. 3 shows the relationships 

between the predicted and theoretical values for the chemical compositions derived from 

the individual component copolymers and the mole fractions. Excellent relationships 
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were observed with R2 values over 0.98, regardless of the BPs. It was therefore assumed 

that simple categorization of the three kinds of copolymers into “polymer-a”, “polymer-

b”, and “polymer-c” resulted in the construction of straightforward regression models 

with which to predict the BPs with high accuracy. Consequently, optimizations of neither 

the objective variables nor explanatory variables were needed. 

 

 

(Fig. 3) 
 

Prediction of the BPs for the ter-blends with LASSO 

As with the bi-blends, the theoretical values for the ter-blends were calculated 

from the weight fractions of the three component copolymers. First, the Comp values 

were predicted by LASSO. Considering that excellent regression models were 

constructed with the dataset composed of eight copolymers and forty-five bi-blends, the 

prediction was carried out by using the dataset for the copolymers and the bi-blends as 

the training dataset. The Comp values were successfully predicted with R2 values over 

0.95, regardless of the monomeric unit (Fig. 4). 

 

 

(Fig. 4) 

 

Next, the chemical compositions derived from the component copolymers 

(Compa × fa, Compb × fb, Compc × fc) and the mole fractions (fa, fb and fc) for the ter-

blends were predicted with LASSO by using the dataset for the copolymers and the bi-

blends as the training dataset. Excellent relationships were obtained with R2 values over 
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0.93, regardless of the BPs (Fig. 5), indicating that the BPs for the ter-blends were also 

predicted with practical accuracies. It should be noted that the predictions of the BPs for 

the ter-blends were carried out without adding the data for the ter-blends in the training 

dataset. 

 

 

(Fig. 5) 
 
Prediction of the BPs for the ter-blends with Ridge regression and Elastic Net 

Instead of LASSO, Ridge and Elastic Net were used to predict the BPs for the 

bi-blends. As with LASSO, good relationships were obtained with high R2 values, 

regardless of the regression used (Figs. S2 and S3). Therefore, the BPs for the ter-blends 

were also predicted with Ridge and Elastic Net by using the datasets for the copolymers 

and the bi-blends as the training dataset. Table 2 summarizes the R2 values obtained with 

Ridge and Elastic Net together with those obtained with LASSO. The R2 values obtained 

with Ridge were lower than those obtained with LASSO, except for the chemical 

composition of the MS unit derived from polymer-b (MSb) in the ter-blends. The R2 

values obtained with Elastic Net were comparable to those obtained with LASSO. These 

results indicated that the use of LASSO or Elastic Net gave better predictions of the BPs 

for the ter-blends from the 1H NMR spectral data for at least the copolymer blends 

examined in this study. 

 

(Table 2) 
 

Conclusions 

Statistical structural analyses of ternary copolymer blends were conducted by 
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LASSO with the dataset comprising the 1H NMR spectral data as explanatory variables 

and the BPs as objective variables. Definitions of the three kinds of copolymers as 

“polymer-a”, “polymer-b” and “polymer-c” resulted in the construction of 

straightforward regression models with which to predict the chemical compositions 

derived from the component copolymers and the mole fractions. This indicated that the 

use of LASSO could be expanded to include structural analyses of ternary copolymer 

blends. Note that the predictions were conducted with the data for eight copolymers and 

forty-five bi-blends used as the training dataset: the data for the ter-blends were not 

necessary for the predictions. In addition to LASSO, Ridge and Elastic Net were 

employed to predict the BPs. Elastic Net predicted the BPs with accuracies comparable 

to those of LASSO, whereas Ridge exhibited poor prediction accuracies. Further work is 

now underway to examine the extent to which regularized regression is useful in 

extracting the BPs for copolymer blends containing terpolymers by using 1H and/or 13C 

NMR spectral data as the explanatory variables. 
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Figure Legends 

 
Fig. 6. Ternary composition diagrams for the copolymers and their blends. The symbols 
■, ■, and ■ denote the plots of AN/ST, AN/MS, and MS/ST, respectively. (a) The symbol 
○ denotes plots of the bi-blend series. (b) The symbol ● denotes plots of the ter-blends. 
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Fig. 7. 1H NMR spectra of the component copolymers (a) AN/ST (Run 2), (b) AN/MS 
(Run 6), and (c) MS/ST (Run 7); the bi-blends (d) A_SM_26/50, (e) S_A/M_27/50, and 
(f) M_A/S_67/50; and the ter-blend (g) ASM_268_352, as measured in deuterated 
pyridine at 100 °C. The resonance region for the α-CH3 groups in the MS units and the 
main-chain CH2 and CH groups (0.25–3.40 ppm), emphasized in red, was used to conduct 
the chemometric analyses. 
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Scheme 2. Definition of the BPs in the ter-blends. 
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Fig. 8. Relationships of (a) the AN composition, (b) the MS composition, and (c) the ST 
composition derived from polymer-a (▼, ■), polymer-b (▼, ▲), and polymer-c (■, ▲) 
and (d) the mole fraction of polymer-a (●), polymer-b (●) and polymer-c (●), respectively, 
in the bi-blends predicted by LASSO with theoretical values. 
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Fig. 9. Relationships of the Comp values for AN (▽), MS (), and ST (□) in the ter-
blends predicted by LASSO with the theoretical values. 
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Fig. 10. Relationships of (a) the AN composition, (b) the MS composition, and (c) the ST 
composition derived from polymer-a (▼, ■), polymer-b (▼, ▲), and polymer-c (■, ▲), 
and (d) the mole fractions of polymer-a (●), polymer-b (●) and polymer-c (●), 
respectively, in the ter-blends predicted by LASSO with the theoretical values. 
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Table 3. Copolymer samples used as component copolymers. 

Run 
Chemical composition/mol% 

Mn
b 

× 10–4 Mw/Mn
b in the feed in the copolymera 

AN MS ST AN MS ST 
1 60.0  40.0 57.2  42.8 4.6 2.8 
2 40.0  60.0 39.8  60.2 4.0 7.0 
3 61.0 39.0  53.9 46.1  5.6 2.7 
4 50.0 50.0  49.3 50.7  5.6 2.4 
5 45.9 54.1  44.4 55.6  4.0 2.6 
6 35.8 64.2  37.4 62.6  3.9 2.4 
7  27.4 72.6  27.7 72.3 3.4 2.2 
8  55.0 45.0  50.0 50.0 2.1 2.5 

a Determined by gas chromatography. 
b Determined by size-exclusion chromatography (with THF, polystyrene standards). 

 

Table 4. R2 values for predictions of the BPs for the ter-blends with Ridge, Elastic Net, 
and LASSO using a dataset for the copolymers and the bi-blends as the training dataset. 

 R2 values 

 Ridge  Elastic Net  LASSO 

 α=0  0.19 0.20 0.32 0.57 0.84 0.86 0.95 0.96 1.00  α=1 

ANa×fa 0.969   0.973         0.974 

ANb×fb 0.966  0.984          0.987 

MSb×fb 0.966       0.968     0.938 

MSc×fc 0.931     0.989       0.990 

STa×fa 0.955      0.981      0.980 

STc×fc 0.895        0.966    0.966 

fa 0.966    0.975        0.974 

fb 0.974          0.980  0.980 

fc 0.928         0.975   0.975 
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