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Abstract

With the continuous development of deep learning technology, research on human-

machine emotional interaction has made significant progress. Speech is one of the critical

means of information transmission, playing an indispensable role in human life by con-

veying not only semantic but also emotional information. In recent years, emotion recog-

nition based on speech has received much attention due to the widespread application

of deep learning technology and the rise of affective computing. Accurately extracting

emotional information from speech signals is a vital issue in this field.

However, one of the significant challenges in developing high-performance speech

emotion recognition systems is the lack of sufficient data. Constructing a high-quality

emotional corpus requires a considerable investment of time and resources, including

professional actors to perform voices with various emotions in specific scenes, and effi-

cient data labeling to overcome the issue of imbalanced samples. Meanwhile, in order

to improve the accuracy of speech emotion recognition, traditional methods only extrac-

t features from local datasets, which leads to overfitting of the models due to the weak

robustness of the features. Therefore, constructing effective speech features is crucial to

improving the accuracy of speech emotion recognition systems.

In this study, we propose an integrated active learning sampling strategy and an

efficient framework to construct a speech emotional corpus effectively. Our method out-

performs other active learning algorithms by improving sampling efficiency and selecting

small category samples to be labeled with preference in imbalanced datasets. In actual

corpus construction experiments, our method can prioritize selecting small class emotion

samples, achieving an accuracy rate of 90% even with less than 50% of labeled data. This

greatly enhances the efficiency of constructing the speech emotion corpus.

Additionally, we enhance the robustness of speech features using self-supervised

learning and propose a feature fusion model (called Dual-TBNet) that consists of two

1D convolutional layers, two Transformer modules, and two bidirectional long short-

term memory (BiLSTM) modules. Our model fuses five pre-trained features and acoustic
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features using the attention mechanism to capture the correspondence between the two

features and enhance the contextual information of the fused features. In the compari-

son experiments, the Dual-TBNet model achieved a recognition accuracy and F1 score

of 95.7% and 95.8% on the CASIA dataset, 66.7% and 65.6% on the eNTERFACE05

dataset, 64.8% and 64.9% on the IEMOCAP dataset, 84.1% and 84.3% on the EMO-DB

dataset and 83.3% and 82.1% on the SAVEE dataset. The Dual-TBNet model effective-

ly fuses acoustic features of different lengths and dimensions with pre-trained features,

enhancing the robustness of the features, and achieved the best performance.

Keywords: Affective computing, Speech emotion recognition, Speech corpus construc-

tion, Active learning, Feature fusion
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1 Introduction

1.1 Motivation

The continuous development of information technology has had a profound impact

on human society, ranging from fulfilling basic survival needs to addressing spiritual

needs. The advent of artificial intelligence (AI) technology has caused a significant stir in

the era of information. Starting from the well-known achievement of Google’s AlphaGo

defeating the world Go champion in 2016 [102], which brought artificial intelligence into

the limelight, to the recent introduction of ChatGPT, which revolutionized text produc-

tivity [13], artificial intelligence technology has once again garnered attention. However,

the current state of artificial intelligence technology primarily revolves around percep-

tual intelligence, and a crucial step towards achieving cognitive intelligence lies in the

exploration of emotions.

The notion of affective computing was initially proposed by Professor Picard in

1997, and for over two decades, it has emerged as one of the foremost research areas

in human-computer interaction. The primary objective of affective computing is to e-

quip intelligent systems with the capability to recognize, perceive, and generate human

emotions [93, 94]. In recent years, with the advancement of foundational technologies

such as 5G, blockchain, and cloud computing, coupled with the initiatives of internet gi-

ants like Facebook, the concept of the metaverse has gradually gained public attention

[114, 59, 89]. The metaverse represents a digital realm constructed through technology

that enables interaction with the real world, offering opportunities for learning, living,

working, and more. For virtual characters within the metaverse to engage with humans

more realistically, they require human-like thinking and emotions. Hence, research in the

field of affective computing plays a crucial role in enhancing the interactive experience

within the metaverse.

Speech emotion recognition is a crucial research area within the field of affective

computing. As a significant mode of human communication, its objective is to identify

and analyze the emotional content embedded within speech signals. By doing so, it em-
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powers intelligent systems to enhance their service capabilities and adapt their attitudes

towards humans more effectively [31, 103, 115, 1]. Speech emotion recognition has a

wide range of applications and can have a profound impact on daily life and work. For

instance, it can greatly contribute to enhancing the driving experience and promoting road

safety by accurately detecting drivers’ emotional states [123]. In the initial diagnosis of

depression patients, speech emotion recognition can provide valuable reference informa-

tion to assist doctors in making more accurate diagnoses [44]. In the field of customer

service, recognizing customers’ speech emotions can lead to better understanding of their

needs and desires, enabling the provision of more personalized and professional services,

and ultimately improving customer satisfaction [43]. Furthermore, within online learning

and education systems, the utilization of speech emotion recognition technology to ana-

lyze students’ states during classes can assist teachers in making informed decisions and

enhancing the quality of instruction [50]. The development and application of speech e-

motion recognition technology will have a profound impact on human society. It not only

facilitates intelligent systems in better understanding and serving humans, but also pro-

vides humans with more intelligent experiences in their daily lives and work, ultimately

contributing to a better quality of life.

1.2 Significance of Research

Speech emotion recognition is an important research direction in the field of affective

computing, which can analyze emotional information in human language expression, such

as positive, negative, and neutral emotions. Deep learning models have shown excellent

performance in speech emotion recognition tasks, but obtaining these high-performance

models requires a large amount of training data, and building high-quality emotional cor-

pora is a very expensive project that requires a lot of manpower and resources [113].

Currently, there are several shortcomings in the methods used to construct datasets. First-

ly, most datasets are obtained from professional actors performing in specific scenarios,

so emotional expressions are relatively exaggerated and less natural, and cannot cover e-
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motional expressions in multiple languages and different application scenarios. Secondly,

during the annotation process of speech data, due to the uneven distribution of different

types of emotions, annotators need to listen to all speech data one by one for annotation,

resulting in high annotation costs and the inability to prioritize rare samples. In addition,

most datasets are collected in specific scenarios, which means that the accuracy of speech

emotion recognition will be influenced by different languages, speaking styles, and appli-

cation scenarios in practical application scenarios. Therefore, how to efficiently construct

speech emotion datasets is currently a challenge.

Additionally, most research in this field is based on extracting features correspond-

ing to the dataset for model training. These features only reflect the features of the current

dataset, so they have poor robustness. To improve the robustness of features, pre-trained

models can be used to extract high-dimensional feature spaces. For example, using speech

representation learning methods to build feature spaces on a large amount of speech data,

learning personalized speech features, and enhancing the robustness of speech features.

For these features, exploring fusion solutions between different categories of speech fea-

tures can effectively promote the improvement of speech emotion recognition accuracy.

1.3 Research Contents and Contributions

A speech emotion recognition system utilizes acoustic feature analysis and machine

learning technologies to identify the emotional states conveyed in speech. As shown in

Figure 1.1, the system begins by collecting speech sound waves through a microphone,

with the sound card acquiring the analog signal from the microphone. The amplitude

signal of the sound wave is then converted into a digital signal through processes like

sampling, quantization, and encoding, which is stored in a computer. The fundamental

steps of speech emotion recognition encompass feature extraction, feature processing,

and emotion classification. Feature extraction involves techniques such as pre-emphasis,

framing, windowing, and endpoint detection to break down the audio data and compute

acoustic features, including spectral features. Feature processing aims to manipulate the
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Fig. 1.1. Overall architecture of speech emotion recognition system.
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calculated features, incorporating tasks such as dimensionality reduction, compensation,

elimination of redundant information, and inclusion of supplementary features that con-

tribute to speech emotion expression. Emotion classification refers to the construction

of a speech emotion recognition model, often accomplished by partitioning the speech

dataset and employing a test set to evaluate the trained machine learning or deep learn-

ing recognition model. Through iterative adjustments, the final model is obtained. These

steps enable the speech emotion recognition system to accurately identify and categorize

emotional states within speech signals, ultimately enhancing people’s speech interaction

experience with greater intelligence.

To solve the problem of the lack of datasets in the field of SER, we designed a

framework for speech emotion corpus construction. The framework integrates the new-

ly proposed active learning strategy, and at the same time uses voice activity detection,

feature extraction and other technologies. The raw voice of our framework is not limited

to the performance of the actors, so it can be adapted to voice data collection in different

scenarios.

In addition, to solve the problem of low speech emotion recognition rate caused

by the weak robustness of acoustic features, we propose a novel feature fusion model

Dual-TBNet, which contains two Transformers and two BiLSTM structures. In addition,

to our knowledge, our work is the first to fuse self-supervised pre-trained features and

acoustic features with different segment lengths and dimension sizes for speech emotion

recognition.

The main contributions of our work are summarized as follows:

1. We propose a new active learning strategy using cross entropy distance for the sam-

pling of imbalanced datasets. Based on the new strategy, we proposed an integrated

active learning method, which can not only improve the efficiency of overall sam-

pling, but also give priority to the small class samples of imbalanced dataset.

2. We design a framework for constructing emotional speech emotional corpus. The

proposed framework can be applied to the audio collection in different scenarios.
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Regarding the lack of corpus in the field of speech emotion recognition, our work

provides an efficient method for constructing a speech emotion corpus.

3. In the exploration of acoustic features, we list and count the feature distribution

under different segment lengths and prove that the features have a very diverse dis-

tribution under the length of 200ms, which is easy to fit the network model.

4. Traditional feature fusion schemes often fuse between acoustic features. Our study is

the first in the field of speech emotion recognition to fuse pre-trained speech features

and acoustic features to improve the robustness of the features.

5. For the feature fusion method, different from the traditional simple feature con-

catenation, we propose a novel feature fusion model Dual-TBNet, which is able to

capture the correspondence between the two features with different segment lengths

and dimension sizes at an early stage and fuse the two features more effectively.

1.4 Thesis Organizations

In this doctoral thesis, we reviewed and summarized various aspects of the field of

speech emotion recognition, including speech emotion recognition models, speech emo-

tion datasets, speech features, and speech recognition models. We also proposed our own

solutions to challenges faced by this field, such as dataset construction and low accuracy

in speech recognition. The organizational structure of this thesis is as follows:

Chapter 1: Introduction

In this chapter, we talk about the motivation, significance of this research and intro-

duce the research contents and contributions of our work.

Chapter 2: Background

In this chapter, we conducted a comprehensive review of the different components

within the domain of speech emotion recognition. This included emotion description

models, speech emotion datasets, speech features, and speech emotion recognition mod-

els.



1 INTRODUCTION 9

Chapter 3: Active Learning for Speech Emotion Corpus Construction

In this chapter, to address the issues of limited availability and low efficiency in con-

structing speech emotion datasets, we proposed a comprehensive active learning strategy.

This strategy incorporated four data selection methods, namely uncertainty, representa-

tiveness, diversity, and complementarity, to identify more valuable data for annotation.

Experimental results demonstrated the superiority of our approach.

Chapter 4: Dual-Transformer-BiLSTM for Speech Emotion Recognition

In this chapter, to enhance the accuracy of speech emotion recognition, we focused

on improving the richness of speech features to enhance the robustness of the model. We

proposed a novel feature fusion architecture that integrates two Transformer and BiLST-

M modules, allowing for effective fusion of features with different dimensionalities and

lengths. Experimental results demonstrated that our approach achieved state-of-the-art

performance.

Chapter 5: Conclusion and Future work

In this chapter, we summarize the main contents of this thesis and give meaningful

directions for future work.
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2 Background

2.1 Emotion Description Models

Emotion recognition from speech is a crucial field within affective computing, aim-

ing to identify human emotions by analyzing speech signals. Human emotions, responsive

to intricate external stimuli, find expression through diverse channels such as facial ex-

pressions, voice tone, body language, and heart rate. These emotional states offer insights

into individuals’ internal psychological experiences, profoundly influencing their behav-

ior [88]. For comprehensive research in affective computing, effective modeling and

quantification of emotional states are crucial. Two primary methods stand out: categori-

cal label-based representation and continuous dimensional representation of emotions.

Categorical models of emotional description assign distinct labels to individual e-

motions, such as happy, sad, or neutral. The categorical emotion model is more similar

to the way people express themselves in daily life, it is simple and easy to understand.

However, this approach isolates emotions from each other and doesn’t capture intricate

connections between them accurately. Its capacity to convey emotions with precision and

continuity is limited. Furthermore, categorizing the entirety of human emotions using on-

ly a handful of labels proves inadequate. Moreover, discrepancies exist in how different

researchers classify categorical emotions. In the classical categorical emotional models,

the one introduced by Ekman in 1972 divides emotions into six basic categories: anger,

disgust, fear, happiness, sadness, and surprise [34]. This categorization has gained sub-

stantial recognition. Another classical model is Plutchik’s emotion wheel as shown in

Fig.2.1, classifying emotions into eight primary types, with other emotions deriving from

these. This model employs a color gradient to represent the intensity of emotions [90].

Dimensional emotional models, unlike categorical models, employ a continuous

multi-dimensional emotional space to represent emotions, offering a more nuanced un-

derstanding. Each point in this space signifies an emotion, allowing for smoother transi-

tions between emotions. Distances between emotions in this space symbolize their rela-

tionships. Dimensional models theoretically encompass the entirety of human emotions.
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Fig. 2.1. Plutchik’s wheel of emotion.
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Fontaine [38] proposed the PAD model as shown in Fig.2.2, which partitions emotional

space into three dimensions: pleasure, arousal, and dominance. The pleasure dimension

gauges pleasure levels, ranging from distress to ecstasy. The arousal dimension mea-

sures physiological and mental alertness, spanning from low arousal (sleepiness) to high

arousal (tension). Dominance measures one’s control over self and environment, varying

from submission to control. The PAD model has gained widespread acceptance among

researchers.

Fig. 2.2. PAD emotion model proposed by Fontaine.

2.2 Speech Emotional Datasets

Deep learning stands as the prevailing approach in contemporary artificial intelli-

gence research, while datasets have emerged as an essential component for enabling in-

telligent systems to simulate real-world scenarios. Various datasets exhibit distinct per-

formance levels in speech emotion recognition across diverse contexts, underscoring the

critical significance of dataset construction and utilization. Within the realm of speech
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emotion recognition, datasets are primarily categorized into three types based on their

collection and construction methods: acted datasets, elicited datasets, and natural dataset-

s.

Acted datasets, often referred to as simulated datasets, are obtained by recording

performances of actors or speakers trained to evoke specific emotions in predefined situa-

tions. The recording process of these datasets offers flexibility and control, free from con-

straints of time and location. Consequently, such datasets possess notable advantages in

terms of both quantity and quality of data. Builders can infuse these datasets with rich e-

motional content using tailored emotional scripts, rendering them suitable for a wide array

of emotional recognition and synthesis tasks. Furthermore, these datasets can effectively

mitigate issues stemming from factors like microphone distance, encoder-decoder dis-

crepancies, and noise, resulting in generally high speech quality. However, acted datasets

lack the spontaneity and authenticity of emotions found in natural settings. Thus, the

emotional speech generated tends to be more stylized, warranting careful consideration

and processing during usage. Maintaining emotional authenticity, script diversity, and

accounting for the actors’ performance skills and accents are vital considerations.

For instance, the Emotional Speech Database (EmoDB) [14], curated by the Insti-

tute of Communication Science at the Berlin University of Technology and the Fraunhofer

Institute for Open Communication Systems, is a German performance-based emotional

speech database. It comprises 535 German phrases uttered by 10 actors, encompassing

seven emotional categories: anger, disgust, fear, happiness, neutral, sadness, and surprise.

Each sentence is meticulously annotated with its emotional category and intensity. This

database has gained extensive traction in emotion recognition research and development,

particularly for German emotion recognition tasks. The database’s strengths encompass

its inclusion of multiple emotional categories, diverse intensity levels of emotional ex-

pression, and reliable annotations. However, its limitations involve the exclusive focus on

German speech data and a relatively modest data volume.

The elicited dataset, often referred to as the induced dataset, distinguishes itself from

pure acted datasets. In its recording process, unexpected situations are introduced to align
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the actor’s performance with a more natural state and authentic emotional speech expres-

sion. While the elicited dataset provides a closer simulation of emotional expression in a

natural context compared to acted datasets, the presence of such settings during recording

does influence the actors. Nevertheless, being artificially generated, the elicited dataset

has a constrained variety of external scenarios, limiting the collection of emotional sam-

ples. Additionally, although the elicited dataset effectively addresses issues arising from

factors like microphone distance, encoder-decoder effects, and noise, its recording pro-

cess is somewhat less flexible than that of acted datasets. A prominent example of an

elicited dataset is the Interactive Emotional Dyadic Motion Capture dataset (IEMOCAP)

[15]. Created by the Speech Analysis and Interpretation Laboratory at the University

of Southern California, this multimodal dataset encompasses audio, video, text, and ac-

tion data. It features recordings of 10 actors in two sessions, each spanning around an

hour. Conversations within IEMOCAP predominantly delve into emotional subjects such

as daily struggles, personal experiences, and emotional events. This dataset is widely

embraced within the emotional recognition field.

In the realm of the natural dataset, emotional speech expressions are genuine and

reflect the primal and instinctual human emotions. Such datasets are rooted in real-world

settings and typically entail recordings of conversations occurring in authentic situations.

Sourcing from various contexts such as customer service phone calls, television broad-

casts, dialogues between doctors and patients in rehabilitation centers, online interviews,

and e-learning sessions, these datasets boast diverse origins. In contrast to datasets per-

formed by trained actors, natural datasets offer convenience and authentic emotional ex-

pression. Moreover, they often encompass a broad spectrum of emotional categories suit-

able for various emotional recognition tasks. However, acquiring emotional samples from

natural datasets is uncontrollable, and obtaining samples from smaller emotional cate-

gories can be challenging. Moreover, issues like noise and microphone distance in speech

collection from natural environments require subsequent processing to enhance dataset

quality and usability. An example of such a natural dataset is the FAU Aibo dataset [10],

which contains emotional speech from robots. This dataset comprises 51 instances of
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interactive speech data with Sony Aibo robots, each exhibiting different emotional states.

Compiled and organized by researchers at the Fraunhofer Institute for Applied Research

(FAU) in Germany, the dataset encompasses over 600 distinct speech segments, spanning

seven emotional states: happiness, sadness, anger, surprise, fear, boredom, and neutrality.

Through literature research and analysis, we have compiled a list of different types

of datasets used in the field of speech emotion recognition. Tab.2.1 shows the dataset-

s categorized by language, type, size, modality, and emotion categories. Based on the

statistics, it can be observed that English datasets are the mainstream in emotion recog-

nition research. In terms of dataset types, performance-based datasets account for over

60%, followed by naturalistic datasets. Regarding emotion labels, different datasets have

different classifications, generally around 6 emotion categories.

2.3 Speech Features

Speech emotion recognition constitutes a significant area of research, wherein speech

features serve as integral components of the speech system, profoundly influencing over-

all performance. To derive effective speech features, it is common practice to execute

uncomplicated preprocessing procedures on the speech signal. These operations encom-

pass conserving pivotal information while sieving out surplus data. At present, the pre-

vailing acoustic features employed in speech emotion recognition can be categorized

into two primary types: firstly, hand-crafted low-level features computed through tem-

poral and spectral algorithms, and secondly, high-level features extracted either directly

from raw signals or from low-level features through end-to-end neural network models.

Both methodologies for feature extraction have found applications across diverse emotion

recognition tasks. Hand-crafted low-level features have demonstrated efficacy in simpler

assignments, whereas high-level features obtained through end-to-end model-driven ex-

traction exhibit superior performance in more intricate undertakings.
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Tab. 2.1. The commonly used datasets for speech emotion recognition, where ’an’ represents anger, ’ha’

represents happy, ’sa’ represents sad, ’ne’ represents neutral, ’fe’ represents fear, ’su’ represents surprise,

and ’di’ represents disgust.

No Dataset Language Type Size Modalities Emotions

1 EMO-DB [14] German Acted 500 A an, ha, sa, ne, di, boredom, and fe

2 SAVEE [45] English Acted 480 A,V an, ha, ne, su, fe, di, and sa

3 eNTERFACE [79] English Elicited 1278 A,V an, ha, su, fe, di, and sa

4 IEMOCAP [15] English Elicited 10039 A,V,T an, ha, sa, ne

5 FAU-AIBO [10] German Natural 18216 A an, emphatic, ne, joy, and rest

6 AESDD [111] Greek Acted 500 A an, fe, di, sa, ha

7 MSP-PODCAST [75] English Natural 62140 A an,sa, ha, su, fe, di, contempt and

ne

8 RAVDESS [74] English Acted 7356 A ha, an, ne, su, fe, di, and calm

9 RECOLA [95] French Natural 7 hours A,V arousal degree (1-5), valence de-

gree (1-5)

10 AFEW[32] English Natural 1426 A,V an, di, fe, sa,ha, ne, and su.

11 CHEAVD [63] Chinese Natural 2600 A,V 26 Non-prototypical emotions + 6

basic emotions and sa

12 CASIA [124] Chinese Acted 12000 A ha, sa, an, su and ne

13 EHSD [8] Hindi Acted 6048 A ha, an, sa, ne, su, and sarcastic

14 IIIT-H TEMD [92] Telgu Semi-Natural 2450 A ha, an, sa, ne, su, fe, di, sarcastic,

frustrated, relaxed, worried, shy,

excited, and shout

15 IITKGP-SESC [56] Telgu Acted 12000 A ha, an, ne, su, fe, di, sarcastic, and

compassion

16 MELD [91] English Acted 13000 A,V positive, negative, and ne

17 CREMA-D [17] English Acted 7442 A,V an, ha, sa, fe, ne, and di

18 EMOVO [27] Italian Acted 588 A di, joy, fe, su, sa, joy, and ne

19 JAVED [76] Japanese Acted 100 min A,V ha, an, sa, ne, and contentment

20 KVDERW [54] Korean Natural 1246 A,V ha, an, sa,ne, su, di, and fe

21 GreThE [84] Greek Acted 500 A,V valence and arousal

22 CaFE [42] French Acted 936 A sa, ha, an, fe, di and su

23 EMOVIE [29] Chinese Acted 9724 A,V positive, negative, and ne



2 BACKGROUND 17

2.3.1 Preprocessings

In a speech emotion recognition system, effective preprocessing of the collected

dataset is essential to comprehend the speech data better and extract its features efficiently.

The goal of speech data preprocessing is multifaceted: to safeguard and amplify crucial

speech information, diminish or eliminate redundant data, and cater to various speech-

related tasks. Standard speech preprocessing operations encompass framing, windowing,

endpoint detection, normalization, noise reduction, among others. These operations prove

instrumental in diminishing redundancy, preserving pivotal details, and augmenting fea-

ture extraction performance.

Framing emerges as a fundamental technique for managing speech tasks by segment-

ing continuous speech signals into fixed-length speech segments. Given the dynamic na-

ture of speech signals, which encapsulate both emotional and textual nuances intrinsic to

human communication, it’s crucial to encapsulate these variations. Research has indicated

that employing fixed segment lengths of 20 to 30 milliseconds maintains relatively con-

sistent parameters across segmented waveforms. This approach ensures stability within

each frame, establishing this time segment as the smallest analytical unit for audio assess-

ment. Building on this foundation, common techniques like the discrete Fourier transform

can further dissect sub-waves within each frame signal, thereby deriving distinctive frame

characteristics of speech. These extracted features subsequently serve as valuable tools

for addressing subsequent speech-related tasks.

The purpose of windowing is to make the amplitude of each framed speech signal

fade to zero at both ends, which is convenient for subsequent Fourier transform process-

ing, making the peaks on the spectrum finer, and reducing spectral leakage. Usually, a

window function is used to transform the frame signal. Generally, the commonly used

Hamming window for speech windowing is expressed as follows:

ω (n) = 0.54−0.46cos
(

2πn
M−1

)
0≤ n≤M−1, (2.1)

where ω (n) represents the speech signal within a frame, and M denotes the window size.

Endpoint detection entails the identification of the initiation and termination points
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of speech within a signal segment containing spoken content. The primary objective is to

retain the voiced component of recorded speech, discard the unvoiced section, and effec-

tively harness speech information. Speech signals can be categorized into three distinct

types: voiced, unvoiced, and silence. Voiced segments encapsulate data about vocal fold

vibration, unvoiced segments capture air turbulence stemming from vocal tract constric-

tion, and silence signifies the absence of vocal tract engagement. A proficient endpoint

detection algorithm should proficiently extract continuous voiced portions while exclud-

ing unvoiced and silent portions.

Regularization stands as a pivotal process in the optimization of speech algorith-

m models. Its role encompasses mitigating the influence of outlier samples on overall

algorithm performance, curtailing the risk of speech feature overfitting, and enhancing

the model’s capacity for generalization. Among the commonly employed regularization

techniques, the z-score normalization method holds prominence. It is expressed in the

following formula, where "u" signifies the mean and "σ" denotes the standard deviation.

z =
(

x−µ

σ

)
(2.2)

In the speech signals of datasets, noise can arise due to environmental conditions or

issues with microphone quality, potentially causing a significant decrease in the accura-

cy of conventional recognition models or even rendering them unable to identify speech.

Therefore, noise reduction techniques are crucial for audio preprocessing. There are gen-

erally three approaches to noise reduction: one involves increasing the signal-to-noise ra-

tio of the input speech signal to enhance the intelligibility of the speech. Another method

involves purifying noise-contaminated speech features in the feature space of the speech

recognition system, minimizing the mismatch between the training model and the recog-

nition features. The third approach entails adjusting the parameters of the speech model

to adapt to the testing speech environment, thereby improving recognition accuracy.
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2.3.2 Handcrafted Features

Through time and frequency algorithms, manual computation and feature extraction

can be performed, typically encompassing prosodic features, spectral features, and voice

quality.

Prosodic features are unrelated to the semantic content of speech and are utilized to

convey emotions by controlling speech rhythm, tempo, pauses, stress, and more. Differ-

ent individuals expressing the same information can convey varying emotions due to di-

verse expressions, which can be effectively captured through prosodic features. Common

physical parameters of prosodic features include duration-related parameters (speech rate,

short-term zero crossing rate), fundamental frequency-related parameters (fundamental

frequency, average fundamental frequency variation range), and energy intensity-related

parameters (short-term average energy, energy variation rate, average amplitude). These

parameters are used to describe perceptible speech characteristics for humans.

When producing sound, the vocal tract acts as a filter, with its shape governing the

generated sound. Accurately modeling the shape of the vocal folds allows for precise

depiction of sound transmission. Spectral features capture the relationship between vocal

tract shape changes and phonation, providing insights into the characteristics of speech

signals in the frequency domain. Different emotions are conveyed through different fre-

quencies. Features related to the spectrum are primarily divided into linear spectral fea-

tures and cepstral features. Common linear spectral features include Linear Predictive

Coding (LPC) and Log-Frequency Power Coefficients (LFPC); common cepstral features

include Linear Predictive Cepstral Coefficients (LPCC) and Mel Frequency Cepstral Co-

efficients (MFCC).

Figure 2.3 illustrates the process of extracting MFCC features. First, the raw wave-

form undergoes preprocessing steps such as frame segmentation, pre-emphasis, and win-

dowing to reduce redundancy and enhance essential features. Next, the Fast Fourier

Transform (FFT) is used to convert the time-domain signal of each frame into the frequency-

domain signal. Due to the high computational complexity of the Discrete Fourier Trans-
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form (DFT), FFT is commonly used for spectrum calculation. Then, the absolute value

or square operation can be applied to the complex spectrum to obtain the magnitude spec-

trum or power spectrum. As phase spectrum information is limited in speech signals,

the magnitude spectrum is usually retained. Subsequently, a set of Mel triangular filters,

relevant to human auditory perception, is applied to the spectrum for filtering. This step

generates a feature widely used in the speech domain, known as Mel Spectral features

(also referred to as FBANK features). Following this, the Mel Spectral features undergo

a logarithmic operation to mimic the ear’s perception of sound energy. This amplifies

energy differences in low-energy regions, yielding the logarithmic Mel Spectral feature.

Furthermore, the logarithmic FBANK feature undergoes Discrete Cosine Transform (D-

CT), mapping the feature vector to a lower-dimensional space. This step primarily aims

to eliminate inter-feature correlation and extract the most significant feature coefficients,

known as MFCC features. To capture the dynamic variations of speech signals, first-

order and second-order differentials can be computed based on static features, referred to

as first-order and second-order dynamic features.

Voice quality is determined by the inherent physical characteristics of a sound and

serves as a measure of its purity, clarity, and uniqueness. Feature parameters that cap-

ture sound quality include resonance peak frequency, bandwidth, frequency perturbation,

amplitude perturbation, harmonic-to-noise ratio, vibrato, and glottal parameters, among

others. There exists a robust correlation between speech quality and the emotional content

conveyed by the speech.

Table 2.2 provides an overview of commonly utilized tools for extracting speech

features. Among these, the openSMILE tool [37] encompasses multiple collections of

speech emotion features, typically harnessed to derive low-level feature descriptors for

speech segments. Librosa [81], a widely adopted tool within the Python environment,

stands as a popular choice for extracting speech features and remains one of the predom-

inant tools in numerous research endeavors.
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Fig. 2.3. MFCC feature extraction process.



2 BACKGROUND 22

Tab. 2.2. Speech feature extraction tools.

Tools Platform Description

Aubio C/Python Aubio is a tool designed for the extraction of annotations from

audio signals. Its features include segmenting a sound file be-

fore each of its attacks, performing pitch detection, tapping the

beat and producing midi streams from live audio

Essentia [12] C++/Python Essentia is an open-source library and tools for audio and mu-

sic analysis, description and synthesis

Librosa [81] Python Librosa is a python package for music and audio analysis. It

provides the building blocks necessary to create music infor-

mation retrieval systems.

Madmom [11] Python Madmom is an audio signal processing library written in

Python with a strong focus on music information retrieval

(MIR) tasks.

pyAudioAnalysis [39] Python pyAudioAnalysis is a Python library for audio feature extrac-

tion, classification, segmentation and applications

Vamp-plugins C++/Python Vamp is an audio processing plugin system for plugins that ex-

tract descriptive information from audio data

Yaafe [80] Python/Matlab Yaafe is an audio features extraction toolbox.Features can be

extracted in a batch mode, writing CSV or H5 files.

OpenSMILE [37] C++/Python openSMILE (open-source Speech and Music Interpretation by

Large-space Extraction) is an open-source toolkit for audio fea-

ture extraction and classification of speech and music signals.

Praat C++ Praat is a cross-platform multi-purpose speech learning soft-

ware, mainly used for digital speech signal progress analysis,

annotation, processing and synthesis, etc.

Voicebox Matlab Voicebox is a speech processing toolbox based on MATLAB,

including speech framing, windowing, speech feature extrac-

tion, etc.
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2.3.3 Features Extracted by End-to-End Models

In recent years, within the domain of speech emotion recognition, aside from manual

extraction of low-level features, there has been a trend towards employing end-to-end neu-

ral network models to extract high-level features from raw signals or low-level features.

This approach helps overcome potential subjectivity and limitations in manual feature

extraction, thereby enhancing recognition accuracy and robustness.

A common approach to feature extraction involves extracting valuable information

from raw speech signals, as demonstrated in [58], where a combination of Convolutional

Neural Networks (CNNs) and Long Short-Term Memory networks (LSTMs) is employed

to directly model raw speech signals. Results indicate that features captured from raw

speech can achieve recognition performance similar to handcrafted features. However,

directly modeling raw audio signals may not capture more intricate speech features due

to information redundancy. Thus, some researchers utilize convolutional neural networks

on speech spectrograms to extract higher-dimensional features. The most commonly used

neural network architecture is CNN+RNN, where CNN captures local speech features,

while RNN captures contextual relationships between speech features. In the study[67],

using MFCC spectral features as a base, CNN+LSTM modules and triplet loss functions

achieved state-of-the-art performance on the IEMOCAP dataset. To further capture re-

lationships between speech sequences and identify crucial parts of the data, researchers

introduced attention mechanisms, enabling models to automatically focus on distinct parts

of speech sequences and allocate varying weights to each part [21, 130, 117]. In essence,

neural network feature extraction methods bypass the intricate process of manual feature

extraction, thereby enhancing the accuracy of speech emotion recognition.

Due to the labor-intensive process of constructing speech datasets, existing datasets

often have limited sample sizes. When training neural networks on constrained datasets,

there is a risk of underfitting, leading to inadequate accuracy in emotion recognition. To

address this issue, recent research has focused on speech representation learning. Speech

representation learning involves self-supervised methods that learn latent relationships
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between speech frames within large-scale datasets, aiming to capture higher-dimensional

speech features.

Speech self-supervised learning primarily includes contrastive prediction and au-

toregressive predictive coding methods. Contrastive prediction methods involve using

autoregressive models to predict future data, thereby learning speech feature represen-

tations. Initially, speech signals are divided into overlapping frames, and autoregres-

sive models are then used to predict the features of the next frame. During training,

contrastive prediction maximizes the similarity between the next frame and other future

frames, commonly utilizing contrastive loss functions to learn high-quality, expressive,

higher-dimensional speech feature representations [87]. Autoregressive predictive coding

seeks to learn the structure and representation of speech signals through autoregressive

models, often trained using cross-entropy loss functions. This method recursively pre-

dicts each sample point of the speech signal, progressively learning the structure and

representation of the speech signal, resulting in high-quality speech representations [26].

Moreover, there are BERT-based masked reconstruction algorithms utilized for advanced

speech feature learning [66, 65, 25].

Furthermore, from another perspective, speech features can also be classified. Ta-

ble 2.3 summarizes the classification of speech features. Beyond traditionally manually

extracted low-level features and currently popular deep learning techniques extracting

high-level features, based on the length of the speech signal, speech features can also be

classified into local features and global features. Local features focus on extracting local-

ized information at the frame level, while global features encompass fusion and statistical

analysis of features across the entire speech segment. Based on signal representation, they

can be categorized as time-domain features, frequency-domain features corresponding to

energy, and time-frequency features combining both.
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Tab. 2.3. Summary of commonly used feature classification methods.

Classification Method Type

Traditional Classification Prosodic features, spectral features and sound quality

Feature Extraction Low-level features and end-to-end features

Speech Signal Length Local features and global features

Signal Representation Time-domain features, frequency-domain features and time-frequency feature

2.4 Speech Emotion Recognition Model

2.4.1 Traditional Machine Learning

Traditional classifiers commonly used for speech emotion recognition encompass

Gaussian Mixture Models (GMMs), Support Vector Machines (SVMs), and Hidden Markov

Models (HMMs), among others. When employing SVMs for speech emotion recognition,

it is customary to extract features such as MFCC and energy, representing prosodic as-

pects of the speech signal, and employ them as input for SVM classification. SVMs map

these features to a higher-dimensional space to ascertain an optimal hyperplane that ef-

fectively separates speech data belonging to distinct emotional states. The training of

SVM models necessitates a labeled dataset of speech data annotated with emotional la-

bels, thereby segmenting the speech data into different emotion categories based on these

labels. By adjusting SVM hyperparameters and utilizing appropriate kernel functions,

the optimal classifier can be identified. For example, in [82], the SVM algorithm was

harnessed for speech emotion recognition, achieving a 68% accuracy on the Berlin Emo-

tional Speech Database utilizing 24 MFCC features. Recent studies frequently integrate

SVM as an integral component of speech emotion recognition systems, enhancing overall

system performance [35, 125, 46].

When exploiting HMMs for speech emotion recognition, a prevalent strategy in-

volves segmenting the speech signal into discrete time frames and extracting features like

MFCC and energy for each frame. These sequences of features serve as observation se-

quences for the HMM. In this framework, each emotional state is treated as a hidden state
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within the HMM, and classification entails leveraging transition probabilities, observation

probabilities, and initial probabilities across the various emotional states [49, 109].

Gaussian Mixture Models (GMMs), well-known statistical models, find utility in

tasks like probability density estimation and clustering. In the context of speech emotion

recognition via GMMs, the acoustic features of speech are fed into the GMM as inputs.

The GMM model separates speech data from different emotional states by learning the

probability density distribution of the training dataset. During the training of the GMM

model, speech data is categorized into different emotional classes based on emotion la-

bels, and statistical methods such as Maximum Likelihood Estimation are employed to

estimate the mean values and covariance matrices of Gaussian distributions correspond-

ing to each emotional state. During prediction, the trained GMM model can be applied to

classify new speech signals and discern their associated emotional classes [47, 86].

2.4.2 Deep Learning

In the field of speech emotion recognition, deep learning models have been wide-

ly applied and achieved remarkable performance across various datasets. Among them,

Convolutional Neural Networks (CNNs) are commonly used models that extract frequen-

cy and temporal features from audio signals through convolutional layers, capturing local

audio information. Hence, they are suitable for short-term speech emotion classifica-

tion tasks. Conversely, Recurrent Neural Networks (RNNs) utilize recurrent layers to

capture temporal dynamics within the signal, granting them stronger capabilities in han-

dling temporal information, thus being suited for long-term speech emotion classification

tasks. Long Short-Term Memory networks (LSTMs), an advancement of RNNs, intro-

duce memory cells and gating mechanisms, effectively addressing the vanishing gradient

problem in traditional RNN models and improving the accuracy of speech emotion recog-

nition.

Self-attention mechanisms are deep learning components that have gained wide adop-

tion in recent years to acquire richer context information from speech signals. By com-

puting weighted sums of self-generated information for each input position, this mech-
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anism obtains feature vector representations, intensifying the representation of relevant

information while suppressing irrelevant information. This empowers the model to more

accurately capture contextual information within speech signals. Additionally, Gener-

ative Adversarial Networks (GANs) have been applied to speech emotion recognition,

employing adversarial frameworks to iteratively enhance both the generator and discrim-

inator, thereby bolstering model robustness and generalization.

With the evolution of neural networks, various network variants have emerged to

enhance speech emotion recognition performance. For example, Bidirectional LSTM

networks consist of two RNN models—one processing input sequences in the forward di-

rection and the other in reverse. Gated Recurrent Unit networks (GRUs), akin to LSTMs

but with fewer parameters and faster computation speeds, perform well in short-sequence

speech emotion recognition tasks. Emotion recognition models based on Variational Au-

toencoders (VAEs) compress and reconstruct data by learning latent distributions of data.

Additionally, unsupervised transfer learning can lead to superior performance with limited

annotated data, while simultaneously reducing training time and computational resources.

Deep learning offers several advantages over traditional machine learning. Tradi-

tional methods relying on feature extraction and classifiers necessitate manual feature

design, whereas deep learning can automatically learn valuable features from raw speech

signals, reducing reliance on domain expertise and manual processing. As speech signal

quality might be influenced by factors like environmental noise and speaker variations,

deep learning models can adaptively learn and address these variations, enhancing model

robustness. Deep learning models demonstrate strong generalization abilities, perform-

ing well in new speech emotion recognition tasks, even when differences exist between

training and testing data.

Table 2.4 presents the pros and cons of various algorithms, encompassing both tra-

ditional machine learning and deep learning algorithms, while also summarizing speech

features utilized in previous literature. From the table, it’s evident that traditional machine

learning algorithms typically employ manually designed prosodic features as inputs. In

[18], the authors proposed an approach that combines ranking and classification, utiliz-
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ing openSMILE to extract acoustic and linguistic features for emotion recognition. By

training SVM models, a 6.6% improvement in speech emotion recognition accuracy was

achieved on the FAU AIBO dataset. Deep learning algorithms, on the other hand, further

leverage spectral features for feature extraction. In [127], a Deep Convolutional LSTM

(DC-LSTM) model utilizing multi-scale convolutional layers was introduced to classi-

fy and predict features of speech signals across multiple frequency components. This

model achieved state-of-the-art results on the AFEW5.0 and BAUM-1s datasets. More-

over, an increasing number of studies are integrating deep learning and traditional ma-

chine learning methods to enhance the efficiency of speech emotion recognition systems

[68, 35, 125].
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Tab. 2.4. Advantages, disadvantages between different algorithms.

Algorithm Advantages Disadvantages

SVM Able to address issues such as small sam-

ple size, high dimensionality, and non-linearity;

Strong generalization ability; Avoidance of net-

work structure selection

Sensitive to missing data; No universal solution

for non-linear problems; Long training time.

HMM Suitable for analyzing short-term stationary

speech signals

Limited ability to process massive data

GMM High fitting performance for speech emotion data Needs to store parameters of each dimension and

Gaussian component; Strong dependence on train-

ing data; Computationally complex

KNN Simple and effective; Low cost of retraining; Suit-

able for automatic classification of class domains

with large sample sizes

Class domains with small sample sizes are prone

to misclassification; Weak output interpretability;

High computational cost

ELM Strong generalization ability; Fast learning speed,

accurate prediction, and reduced computational

burden

The calculation of the output layer decision values

depends entirely on the labels

CNN Strong ability to extract abstract features; Possess-

es characteristics of intra-class convergence and

inter-class divergence

DNN Able to simulate any function and has strong emo-

tion representation capability

LSTM Possesses memory characteristics and can effec-

tively learn inter-frame correlations

Requires a large amount of resources and time to

establish the model, needs a large amount of da-

ta to train the model, and parameters such as the

number of hidden nodes and layers need to be re-

peatedly debugged

GAN Strong perception ability for underlying probabil-

ity distributions of raw data

GCN Capturing global features in a graph-based form
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3 Active Learning for Speech Emotion Corpus Construction

3.1 Introduction

Speech plays a crucial role in human society since it is one of the information con-

veyed by human communication. With the joint efforts of researchers in recent decades,

speech emotion recognition has been rapidly developed [4, 85, 108], especially the emer-

gence of machine learning in recent years has greatly promoted this boom [105, 53, 126].

Machine learning relies on large amounts of data for training, which makes the datasets

in the current research on speech emotion recognition become precious and indispens-

able. The construction of corpus labeled data samples is a huge project with extremely

high cost, which often requires countless manpower and material resources. It not only

requires professional actors to record, but also the recorded voice fragments have to be

manually screened and annotated.

The current methods of constructing datasets usually have the following shortcom-

ings: 1. Most of the datasets are obtained by professional actors performing in a given

scene, so the scene is relatively single, the emotional performance is relatively exagger-

ated, and the naturalness is not high. 2. In the process of labeling speech utterances, due

to the uneven distribution of different types of emotions, it is impossible to prioritize the

screening of rare samples. The annotator is required to listen to all the speech utterances

one by one, and the labelling cost is high. 3. Datasets are mostly collected in specific

scenarios. In actual application scenarios, the accuracy of speech emotion recognition

will be low due to different languages, different speaking styles, and different application

scenarios.

Lack of emotion corpus restricts the development of deep learning in the field of

speech emotion recognition. To cope with the problem of insufficient datasets, researcher-

s often use data enhancement in speech emotion experiments to increase the number of

corpus samples [9, 20, 36], which expands the amount of data. Since the target voice is

generated by the algorithm, it is impossible to ensure the quality of the voice. There are

also some studies [104, 128, 77, 129] that make up for the shortcomings of the corpus
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through the form of cross-corpus, but it can’t solve the problems fundamentally because

of insufficient datasets. In the process of constructing the corpus, some tools for labelling

emotion types were invented [28, 83, 95], which improved the efficiency of constructing

the corpus to some extent but required the annotator to listen to the voice from the be-

ginning to the end. Therefore, how to construct a corpus suitable for specific application

scenarios quickly, efficiently and at low cost is the focus of this paper.

In classification tasks, supervised learning usually relies on many manually labeled

training samples, and the process of labeling samples is very expensive [57]. The emer-

gence of active learning has played a significant role in reducing the cost of marking.

It is mainly composed of five core parts, including: unlabeled sample pool, screening

strategy, labeling experts in related fields, labeled sample pool, and target classification

model. Active learning combines the above five parts into the same process, and updates

the performance of the classification model, unlabeled sample pool, and labeled data set

in an iterative training method until the target model reaches the preset performance or no

longer provides labeled data.

Regarding active learning research, the most important thing is how to choose the

most valuable samples for labeling [99, 40, 98]. There are some classic sampling strate-

gies developed so far, such as the random sampling strategy [97], which mainly randomly

selects a certain proportion of samples from unlabeled samples and provides them to the

model. Uncertain sampling strategy [60], mainly by combining the characteristics of the

sample itself, calculating and selecting the least easily distinguishable sample, the sample

with the best value. QBC query strategy [100], this algorithm will train multiple classi-

fiers from different perspectives, and jointly screen samples for labeling experts. Active

learning has attracted the attention of many researchers, and many methods have been

expanded on this basis. For example, Density [33] uses a density map to find the most

representative sample for labeling from all unlabeled samples. LAL [55] uses the pre-

trained regression model to calculate the sample prediction error to determine the sample

to be labelled. Query [48] finds the most informative and representative samples, and

provides them to the annotators for labelling.
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Over the years, active learning has been widely used in different fields. Goudjjl et al.

[41] combined active learning with the SVM model, and selectively selected informative

samples to train the SVM model, which achieved excellent results in text classification.

Yan et al. [119] addressed the problem of difficult sample labeling in long text classi-

fication, combined with active learning to screen long text samples with high labeling

value, and condenses the long text into words to facilitate labeling by the annotator. The

papers[116, 120] combined active learning and deep learning to improve the efficiency of

image segmentation and labeling in the biological field. Cao et al. [19] combined active

learning and the CNN model to label complex spectral pictures. In the field of speech e-

motion recognition, Mohammed et al. [2] proposed an iterative fast converging incremen-

tal adaptation algorithm that combines active learning and supervised domain adaptation

to address the lack of generalization of speech emotion classifiers in real applications.

Mohammed et al. [3] also used greedy sampling and DNN model to conduct speech e-

motion recognition experiments, and the results show that active learning can improve

the performance when the training set is limited. Vaaras et al. [110] combined CPC and

various dimensionality reduction methods to explore the performance of clustering-based

active learning under different feature conditions.

According to our knowledge, there is not much research and application for the im-

provement of the efficiency of labeling samples in the construction of speech emotion

datasets. In this work, we present an active learning method to improve the construction

efficiency of speech emotion data sets in the labelling process of constructing the emotion

corpus. Our method is divided into the following steps. First, use a small number of

labeled samples to train a logistic regression classifier, predict all unlabeled samples, and

use the predicted probability to find the samples with the most unclear category, which

we call uncertainty sampling. Then, use the feature relationship of all unlabeled samples

to find the sample at the feature center in the feature space, and filter out the most a rep-

resentative sample, which is representative sampling. Next calculate the feature distance

between the unlabeled sample and the labeled sample one by one and select the samples

that are different from the labelled samples, which is diversity sampling. Finally, by us-
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ing the probability of the unlabeled data and labeled data, select the unlabeled samples

which make all categories have the same distribution. Therefore, the samples selected

by our method have the characteristics of strong uncertainty, strong class representative-

ness, strong feature diversity, and strong complementarity between classes. Compared

with other active learning algorithms, the experimental results show that our algorithm is

significantly better than other algorithms in screening small class samples.

To solve the problem of the lack of datasets in the field of SER, we designed a

framework for speech emotion corpus construction. The framework integrates the new-

ly proposed active learning strategy, and at the same time uses voice activity detection,

feature extraction and other technologies. The raw voice of our framework is not limited

to the performance of the actors, so it can be adapted to voice data collection in differ-

ent scenarios. The framework first splits long raw data into segments by using endpoint

detection. After simple filtering, uses openSMILE [37] feature extraction tool to extract

the features of all filtered segments as unlabeled datasets. Finally, by using the proposed

active learning method, screen out the samples for labelling. The framework can be ap-

plied to data collection in different voice scenarios, and has the characteristics of high

naturalness, flexibility, and high efficiency. In this work, we take TV drama videos as the

data source. After subjective listening and discriminating experiments, our scheme has

achieved excellent results.

3.2 Methodology

In our work, we propose an integrated active learning method. The proposed method

includes a commonly used logistic regression pre-classifier and four sampling strategies,

uncertain sampling, representative sampling, diverse sampling and complementary sam-

pling. Especially for complementary sampling, it is able to preferentially select rare sam-

ples and provide them to the annotator for labeling according to the distribution of the

current samples.

For the logical classifier, suppose we have a total data set C with K categories. The
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dataset C contains the labeled data set L and the unlabeled data set U , namely C = L+U,

where L = {(Xi,Yi), ...,(Xm,Ym)}. Xi ∈ RN represents the features of the sample with

N dimensions; Yi ∈ Bkrepresents the category of sample with K dimensions, and each

dimension represents a different category value.

We train K binary logistic regression models for K different categories:

Fk : RN → B (3.1)

Therefore, for each binary logistic regression, we can get:

Yk = fk(X) =
1

1+ exp(−Wk ∗X)
(3.2)

Among them, Wk is the weight of each logistic regression classification model, Yk is

the probability of the logistic regression of the k-th category of each binary classification,

and its value is between 0 and 1, and then Pk is used to represent Yk in the following paper.

Uncertain sampling is mainly used for sampling ambiguous sample points at the

decision boundary, which helps to clarify the decision boundary. Therefore, combined

with the predicted probability of the sample, we use cross entropy to find the largest

uncertain sample point. The following is the calculation formula for uncertain sampling.

For sample X, the cross entropy H of each category is calculated separately, and the

largest cross entropy is selected as the uncertainty value of the sample. We will sort all

the samples and select the samples with the greatest uncertainty for subsequent sampling.

U(X) = max{H (Pk) |k = 1, ...,K} (3.3)

H(Pk) =−Pk logPk− (1−Pk) log(1−Pk) (3.4)

Representative sampling is a kind of sampling that can best represent all unlabeled

sample points. The sample point closest to the center of the unlabeled samples will be

selected through the distance calculation of all sample features as the most representative

sample point for labeling. In the following formula, for each unlabeled sample X, the

feature distances of N dimensions between X and all other unmarked sample points will

be calculated, and the average value is calculated as the feature similarity of the sample
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points.

R(X) =
1

|U|−1 ∑
X ′∈U−X

−Diseu(X ,X ′) (3.5)

Diseu(X ,X ′) =

√
N

∑
i=1

(Xi−X ′i )2 (3.6)

Diversity sampling is mainly to find the unlabeled sample point closest to the feature

center of all labeled samples. We assume that the feature center of the labeled sample is

the boundary center of feature diversity, so that by looking for the closest to the feature

center can effectively reduce the overfitting of the trained model. We use the following

formula to calculate and find the point with the smallest feature distance between the

unlabled sample X and all the labeled points X’.

D(X) = min
X ′∈L

Diseu(X ,X ′) (3.7)

Complementary sampling can give preference to samples of small categories as

much as possible, so that the overall category distribution of labeled data will become

similar. Cross entropy is used to measure the similarity of the distribution using the cate-

gory probability, the smaller the value, the more similar the distribution. In the following

formula, P represents the sum of the category distribution with the probability of unla-

beled points and the category of all labelled points, and Q is a reference, which represents

the distribution of K same proportions, (1/K, ...,1/K). When the sum of the distribu-

tion of the unlabeled point we selected and all labelled points is close to the Q of the

equal distribution, the cross-entropy value is the smallest, then the unlabeled points will

be selected for labelling.

D(X) = min
X ′∈L

Disce(P(L(X)),Q) (3.8)

L(X) = L∪ (X ,Y ) (3.9)

Disce(P,Q) =−
K

∑
i=1

Qi logPi (3.10)

When speech emotion recognition is applied in a specific scene, it is usually nec-

essary to construct an emotion corpus corresponding to the specific scene, which often
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Fig. 3.1. Flow chart of the speech emotion corpus construction.

consumes large costs. To solve this problem, we propose a framework for constructing

speech emotion corpus based on our active learning strategies.

The framework is shown in Fig.3.1. The audio processing part is mainly divided

into three steps. First, the voice is split into segments through voice activity detection.

Since the segments are split from the original data, data cleaning and manual filtering are

required. After simple filtering, all the segments will be extracted for features.

For the labelling process, sample selection is an important part of active learning. It

consists of five components, labeled data set, unlabeled data set, classifier, annotator, and

selection strategy. All the features we get from the audio processing part will be divided

into unlabeled data and labeled data. First, manually annotate a part of the samples. The

classifier trained with this data will do a preliminary pre-classification of other unlabeled

data and send all the feature values and probability values into the core selection strategy.

Our method will repeatedly filter out a batch of high-quality data, let the annotator label,

and the annotator will update the labelled data and unlabeled data respectively, then carry

out the next round of screening. After several times of manual labeling, the finally trained

target classifier replaces the manual labeling, so as to achieve the purpose of saving cost.
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In the entire speech emotion corpus construction framework, the original audio source

can be combined with the current application scenario, not only can be obtained from the

network video, but also the audio from a specific scene can be recorded, which greatly

improves the flexibility of the data source. For the voice activity detection part, we use

the auditok tool to split the utterance into segments. In the feature extraction part, we use

the openSMILE speech feature extraction tool to extract low-level descriptors of acoustic

features as language features.

3.3 Active Learning Comparative Experiment

3.3.1 Datasets

To verify the effectiveness of our proposed active learning strategy in imbalanced

class datasets, we selected 13 imbalanced class datasets which are commonly used in

machine learning experiments and speech emotion recognition filed. Tab.3.1. shows the

description of the used dataset in detail, which contains the name of the dataset, the num-

ber of instance, class and feature, the detail in different classes. Aggregation, Blood,

Diabetes, qsar-biodeg, Vote, Vowel WBC and Thyroid are UCI data sets [52]. SAVEE

[45], EMO-DB, CASIA [124],eNTERFACE05 [79] and IEMOCAP [15] are speech e-

motional datasets. Since CASIA, eNTERFACE05 and IEMOCAP datasets are not so

imbalanced datasets, we manually selected a part and processed them into CASIA_im,

eNTERFACE05_im and IEMOCAP_im as imbalanced datasets.

3.3.2 Baseline

In addition, we also compared our proposed method with five baseline active learning

strategies as follows:

1. QBC [100]: Active learning that trains multiple classifiers from different perspec-

tives, and jointly select the samples for labeling.

2. Random: Random sampling, randomly selecting samples that need to be labeled

from the sample pool to be labeled
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Tab. 3.1. Detail description of the 16 datasets used in the experiment.

Dataset Instance Class Feature Detail

SAVEE 480 7 62 60;60;60;60;120;60;60

EMO-DB 535 7 62 127;81;46;69;71;79;62

CASIA 6000 5 62 1200;1200;1200;1200;1200

CASIA_im 1400 5 62 100;100;1000;100;100

eNTERFACE05 1257 6 62 210;210;210;209;209;209

eNTERFACE05_im 610 6 62 40;60;80;100;150;180

IEMOCAP 4983 4 62 1051;1707;1161;1064

IEMOCAP_im 1600 4 62 300;1000;200;100

Aggregation 788 7 3 45;170;102;273;34;130;34

Blood 748 2 5 570;178

Diabetes 768 2 9 500;268

qsar-biodeg 1055 2 42 356;699

Vote 435 2 17 267;168

Vowel 871 6 4 72;89;172;151;207;180

WBC 683 2 9 444;239

Thyroid 215 3 6 150;35;30
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3. Unc [60]: Uncertainty sampling, select the most uncertain sample considered by the

model.

4. Density [33]: Using a density map to find the most representative sample for labeling

from all unlabeled samples

5. LAL [55]: LAL uses the pre-trained regression model to calculate the sample pre-

diction error to determine the samples for labeling.

3.3.3 Evaluation Metrics

For the evaluation index of the experiment, we used the macro-average F1 value to

measure the prediction effect of different methods. The F1 value is the harmonic average

of the model’s accuracy and recall, which indicates the two prediction performances of

the model as follows:

F1 =
2∗ (Precision∗Recall)

Precision+Recall
(3.11)

3.3.4 Experimental Results

In the experiment, we used the Alipy [122] active learning tool developed by Huang

Shengjun’s team. A total of 5 active learning algorithms were used in our experiments

on 13 imbalanced datasets. Fig.3.2 is the result of our experiment, where the horizontal

axis represents the number of labelled samples, and the vertical axis represents the results

of the macro average F1 value in the test set using the labelled samples, of which the

test set accounts for 30%. The different colored lines in the figure represent the results

of different algorithms. The red line is our proposed method and our method achieved

excellent results, whether it is a two-class or multi-class imbalanced dataset.

To further illustrate the effectiveness of our method in imbalanced sample selec-

tion, we selected the results on the dataset qsar-biodeg and the multi-class Vowel dataset.

Fig.3.3 shows the results on the qsar-biodeg dataset. The horizontal axis represents the to-

tal number of samples selected, and the vertical axis represents the number of samples in

different classes. The labels 0 and 1 represent two different types of samples. The dataset
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Fig. 3.2. Comparison of different active learning methods on 13 datasets using the macro-average F1 value.
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qsar-biodeg contains two classes with a ratio of 1:2. In the selection of random sampling

(d), the selected sample has a uniform proportion, which best shows the proportion of the

data set itself. (a)(b)(c)(e) methods do not calculate the class ratio of labelled samples, so

they cannot achieve the balance of overall samples. Our algorithm (f) can give priority

to the balance between different classes and select rare samples so that the proportions of

different samples are close to each other.

Also in the multi-class emotional data set EMO-DB, as shown in Fig.3.4. Due to the

limited number of labeled samples, the trained classification decision boundary cannot

accurately determine the feature space of the category. Our method fully considers the

category distribution of the labeled samples, so it can prioritize the selection of samples

with rare classes to ensure that the selected sample classes are balanced.

3.4 Speech Emotion Corpus Construction Experiment

3.4.1 Datasets

To evaluate the performance of our proposed method in the construction of speech e-

motion dataset, we perform the selection experiment on several speech emotional dataset-

s. This experiment uses the following datasets commonly used in the field of SER. Each

dataset represents a fixed speech annotation scene, so we can better test the annotation

effect of our method on the speech emotion datasets.

1. CASIA [124]: A dataset constructed by the China Institute of Automation Science in

2005, which was recorded in a pure environment by 4 professional sound recorders,

two men and two women. There are 5 emotions including happiness, sadness, anger,

surprise, and neutrality.

2. EMO-DB [78]: A German emotional speech corpus recorded by the Technical Uni-

versity of Berlin, with 10 actors (5 males and 5 females) performing 7 emotions on

10 sentences (5 long and 5 short). The selection of corpus text follows the principle

of semantic neutrality and no emotional tendency. Voice recording is done in a pro-

fessional recording studio, requiring actors to reminisce their own real experience or
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Fig. 3.3. Selection of samples of different categories in the binary class dataset qsar-biodeg.
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Fig. 3.4. Selection of samples of different categories in the multi-classification data set EMO-DB.
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experience to brew emotions before interpreting a specific emotion to enhance the

realism of emotions.

3. eNTERFACE05 [79]: It is an audition emotion dataset that contains six emotions

such as anger, disgust, fear, happiness, sadness, and surprise. The dataset contains a

total of 1166 video sequences. Of these 1166 video sequences, 264 female record-

ings (23%) and 902 male recordings (77%).

4. IEMOCAP [15]: Collected by the Sail Laboratory of the University of Southern

California, it is a database of actions, multiple modes and multiple peaks. Completed

by 10 actors and actresses, the dataset is about 12 hours of audiovisual data, which

contains 10 emotions such as anger, neutrality, and excitement.

5. SAVEE [45]: The database contains a total of 480 British English audios from 4

male actors. These recordings have 7 different emotions: angry, disgusted, scared,

happy, sad, surprised, neutral.

The detail description of emotion datasets used are shown in Tab.3.1.

3.4.2 Experiments and Results

We conducted two sets of experiments respectively. In the first group of experiments,

the number of samples to be queried is fixed to 20 each query. In the second group of

experiments, the samples to be selected are fixed to 5 percentage each query. We use

macro average F1 valuation to measure our method. The train set and test set of each

experiment were randomly divided five times, so the experimental results were averaged.

Tab.3.2 and Tab.3.3 show the selection efficiency results of our experiments respec-

tively, the number 1 to 10 represent annotation times. The number 1 represents the initial

labeling round. We observe that the trained classifier is positively correlated with the

number of labeled samples, but the efficiency of proposed method is affected by the sam-

ple size of datasets. For example, the total size of CASIA and IEMOCAP data sets are

6000 and 4983, when the number of labelled samples is about 20%, the classifier will
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have a good performance. For the datasets eNTERFACE05, EMO-DB and SAVEE, the

total sample size is small, and the classifier can chive better results when the number of

labelled samples is about 40

Based on the above experiments, we used our proposed framework to construct a

lightweight speech emotional dataset. The speech audio was derived from Chinese TV

dramas. After the processing of video-to-audio, voice activity detection, and simple filter-

ing, 1151 speech segments were filtered out as the unlabeled pool. We divide emotion into

four classes: angry, happy, neutral, and hurt. Using the proposed active learning method,

we labelled a total of 404 samples on 20 rounds, and finally, get the dataset shown in

Tab.3.4.

Tab. 3.4. The results of actual speech emotion dataset construction.

Anger Happy Neutral Sad Total

Labeled Sample 50 32 298 24 404

Prediction Sample 16 16 712 3 747

Total Sample 66 48 1010 27 1151

Due to the selection of our proposed active learning strategies, many small-class

samples are preferentially selected. The subjective audiometric test shows that when the

amount of labelled data is less than 50%, the accuracy rate can reach 90%.

3.5 Discussion

3.5.1 Query Strategy Combination

To verify the efficiency of different strategy combinations, we randomly combined

strategies into the following models, where C is a single complementary sampling, U+C

is a combination of uncertainty sampling and complementary sampling, and R+C is a

combination of representative sampling + Complementary sampling, D+C is combination

of diversity sampling and complementary sampling, and U+R+D+C is a fusion of four

sampling strategies.



3 ACTIVE LEARNING FOR SPEECH EMOTION CORPUS CONSTRUCTION 48

We counted the average of the first 5 querying accuracy values. Tab.3.5 shows the

comparison results of different strategy combinations. U+R+D+C model achieves best

performance, where U+R+D is used to improve the accuracy of overall dataset, and C is

used to give the priority of selecting the small-class samples.

Tab. 3.5. The average accuracy performance of different strategy combinations.

C U+C R+C D+C U+R+D+C

SAVEE 0.305±0.03 0.326±0.04 0.295±0.05 0.296±0.03 0.291±0.03

EMO-DB 0.451±0.05 0.476±0.05 0.439±0.03 0.472±0.03 0.455±0.03

CASIA_im 0.691±0.04 0.684±0.02 0.68±0.03 0.68±0.03 0.666±0.04

eNTERFACE05_im 0.265±0.03 0.271±0.02 0.267±0.02 0.271±0.04 0.286±0.03

IEMOCAP_im 0.45±0.03 0.465±0.05 0.458±0.04 0.448±0.05 0.455±0.03

Aggregation 0.548±0.06 0.542±0.01 0.555±0.03 0.536±0.05 0.564±0.02

Blood 0.527±0.06 0.532±0.07 0.574±0.07 0.517±0.06 0.584±0.06

Diabetes 0.691±0.03 0.688±0.02 0.659±0.04 0.694±0.02 0.672±0.03

qsar-biodeg 0.79±0.03 0.796±0.02 0.791±0.03 0.802±0.03 0.805±0.03

Vote 0.923±0.02 0.923±0.01 0.933±0.02 0.924±0.02 0.932±0.02

Vowel 0.681±0.03 0.656±0.04 0.687±0.03 0.684±0.05 0.679±0.04

WBC 0.941±0.02 0.934±0.02 0.936±0.01 0.941±0.02 0.916±0.02

Thyroid 0.919±0.05 0.919±0.05 0.924±0.06 0.921±0.04 0.928±0.04

3.5.2 Ratio Value

The Ratio value represents the proportion of samples to be retained after querying by

the four strategies. To further explore the efficiency of different ratio values, we perform

the experiments with parameters 0.5, 0.6, 0.7, 0.8, and 0.9. As the Tab.3.6 shown, we

observed that the ratio value around 0.8 can achieve better results.

3.5.3 Algorithm Running Speed

We reported the average CPU time of each query time for the datasets with different

sample sizes. Fig.3.5 shows the running speed of our proposed method under the CentOS
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Tab. 3.6. The accuracy performance of different Ratio values in the average of first 5 queries.

R_0.5 R_0.6 R_0.7 R_0.8 R_0.9

SAVEE 0.317±0.06 0.313±0.04 0.299±0.06 0.311±0.04 0.319±0.03

EMO-DB 0.439±0.01 0.448±0.03 0.434±0.01 0.46±0.05 0.437±0.05

CASIA_im 0.589±0.03 0.653±0.02 0.68±0.03 0.679±0.03 0.679±0.04

eNTERFACE05_im 0.305±0.03 0.306±0.06 0.305±0.03 0.29±0.03 0.291±0.03

IEMOCAP_im 0.476±0.02 0.479±0.02 0.468±0.02 0.478±0.02 0.457±0.02

Aggregation 0.504±0.03 0.523±0.04 0.563±0.03 0.571±0.03 0.559±0.04

Blood 0.591±0.02 0.599±0.03 0.588±0.03 0.594±0.04 0.571±0.05

Diabetes 0.597±0.05 0.605±0.04 0.626±0.05 0.635±0.04 0.641±0.05

qsar-biodeg 0.808±0.02 0.807±0.02 0.813±0.02 0.799±0.02 0.8±0.01

Vote 0.902±0.04 0.907±0.04 0.91±0.03 0.916±0.02 0.922±0.02

Vowel 0.657±0.05 0.686±0.03 0.692±0.04 0.706±0.06 0.696±0.04

WBC 0.894±0.03 0.893±0.04 0.907±0.06 0.925±0.02 0.929±0.02

Thyroid 0.841±0.07 0.864±0.07 0.86±0.08 0.884±0.04 0.857±0.03

system with the machine configured as Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz.

The horizontal axis represents the number of queries, and the vertical axis represents

the running time of each query. The CASIA and IEMOCAP datasets are too large and

consume more time, and other data sets are kept within 100s.

3.5.4 Necessity of Constructing Speech Emotion Dataset

The extracted features of voice collected in different scenarios have different feature

spaces. In the application of the specific scene, it is very important and necessary to

construct a new dataset. To verify our thinking, we selected 4 datasets, each of which has

4 common emotions, Anger, Happy, Neutral, and Sad. We divide the training set and the

test set with the ratio of 8:2 and train the classifier on each dataset. Then we used the four

classifiers to view the performance of the four datasets.

Fig.3.6 shows the cross-prediction results for four datasets. We observe that the

classifier trained on its own dataset has the best performance, but performs poorly on
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Fig. 3.5. The running speed of 10 queries on 5 speech emotional datasets.

Fig. 3.6. The cross-prediction results on four datasets.
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other datasets, which means that the contextual speaking styles in different scenarios will

affect the recognition accuracy. Therefore, in the field of SER, it is very necessary to

construct new corpus under different application scenarios.

3.6 Summary

To solve the high cost of the speech emotion corpus construction, especially for

the problem of difficulty in sampling small-class samples, we propose an integrated ac-

tive learning strategy and designed a framework for the construction of speech emotion

dataset. In comparison experiments with other active learning strategies, our proposed

active learning method achieved the best performance for sampling on different datasets,

especially for the selection of small-class samples, which is significantly better than other

methods. In another actual dataset construction experiment, our method in the process of

constructing the dataset, when the total number of labeled samples is less than 50%, the

recognition accuracy of emotion classes reaches more than 90%.
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4 Dual-Transformer-BiLSTM for Speech Emotion Recognition

4.1 Introduction

In the feature construction process of speech emotion recognition, it is usually neces-

sary to learn features from a large amount of speech data. However, in the case of a small

number of samples in the speech emotion dataset, the extracted features will be over-fitted

by the neural network model due to poor robustness, so the model cannot obtain a high e-

motion recognition accuracy. Speech self-supervised learning [70] is to find a higher-level

information expression from massive speech, not limited to a single sample, and can be

used for a variety of downstream tasks related to speech. The speech pre-trained features

extracted by the speech pre-training model can represent the general features of speech,

which can effectively improve the robustness of features. In recent years, in the field of

speech signal processing, the speech representation obtained by unsupervised training on

large-scale data sets through transfer learning technology has a greater performance in

downstream tasks than traditional features that focus on a single sample.

Acoustic features are typically manually designed and based on signal processing.

The advantages of acoustic features are their simplicity, effectiveness, and ease of cal-

culation. The traditional manual extraction of acoustic features for modeling research

is still the current mainstream. Some classic machine learning models, such as SVM,

k-nearest neighbors(KNN), GMM, etc., often use acoustic features to classify emotions

[106, 5]. Low-level descriptors (LLDs) are difficult to express contextual information in

the temporal domain without incorporating a time-series model. [16] explored the use of

different types of acoustic features and their influence on the LSTM time series network,

and achieved excellent results. Issa [51] taked the acoustic features of audio MFCC and

mel spectrum as input, and uses CNN neural network to achieve high emotion recogni-

tion rate on three data sets. Although CNN/RNN/LSTM models can capture higher-level

features, they do not have the ability to pay attention between features. Therefore, Li

[61] proposed the BiLSTM-DSA model, a BiLSTM with a self-attention mechanism, to

improve the robustness of the acoustic features of the model.
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The feature extraction process usually requires human experience and domain knowl-

edge, which may introduce bias to the dataset and task and may not fully capture the

dynamic characteristics of speech signals. Pre-trained features are automatically learned

through neural networks, typically using large-scale speech datasets. Compared to acous-

tic features, pre-trained features can better capture the dynamic characteristics and con-

textual information of speech signals, with better representation and generalization abili-

ties. Speech self-supervised learning has the following categories. One is self-supervised

learning with the idea of contrast prediction [87], which uses an autoregressive model to

predict the future of the latent space to learn advanced representations. Schneider [96] us-

es this idea to encode the upper part of the speech in combination with multi-layer CNN,

and predicts the lower part of the speech by comparison .Another type is self-supervised

learning using autoregressive predictive coding. Unlike the left-to-right prediction of

contrast prediction, it can predict information at any location through context. Chung

[26] used the autoregressive model to encode the context information of the past acous-

tic sequence of speech to predict the future frame information of the speech. There is

also a way to encode speech information in a way of masking reconstruction, especially

in recent years, the bert-based model learns the learning of high-dimensional informa-

tion of speech [25, 65, 66].However, pre-trained features may face domain shift issues,

where their performance may degrade on different datasets. Therefore, combining and

fusing both types of features can increase their robustness and enhance the performance

of speech recognition systems [72].

Among the current feature fusion methods in the field of speech emotion recognition,

most methods fuse features after processing speech features through a multi-layer network

[23, 131, 118]. These methods cannot capture the correspondence between the speech

features in the early stage, so causing the loss of corresponding information of speech

features. There are also some studies that try to fuse the features as early as possible

[112, 131]. These methods only use concatenation methods and cannot effectively learn

the correspondence between different types of features. In addition, due to the different

segment lengths and dimensions of the features, part of the information contained will be
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forcibly converted into a uniform dimension for fusion, resulting in loss of information

and making it difficult to achieve efficient feature fusion.

Therefore, in order to solve the problem of low speech emotion recognition rate

caused by the weak robustness of acoustic features, we propose a novel feature fusion

model Dual-TBNet, which contains two Transformers and two BiLSTM structures. In

addition, to our knowledge, our work is the first to fuse self-supervised pre-trained fea-

tures and acoustic features with different segment lengths and dimension sizes for speech

emotion recognition. Experiments show that our model achieves higher speech emotion

recognition rate on 5 speech emotion data sets.

4.2 Methodology

As shown in Fig.4.1, the entire framework mainly includes a feature construction

part and a feature fusion part. The feature construction part includes the acoustic features

and pre-trained features. The model part includes two 1D convolution modules, two

Transformer-based feature fusion modules and two BiLSTM modules, as well as the final

fully connected layer and Softmax classification module.

The 1D convolutional layer can effectively align features of different lengths and

dimensions and convert them into the same dimension. Acoustic features and pre-trained

features will first be processed by 1D convolutional layers, and the two features will be

converted into vectors with the same dimensions. And then feed the output result into the

Transformer attention fusion model for further fusion. The Transformer network structure

is entirely composed of the Attention mechanism, which increases the training speed and

can effectively capture the relationship between the input units. We use the self-attention

mechanism in Transformer to capture the correspondence between acoustic features and

pre-trained features. Then, the fused features are fed into BiLSTM to further learn the

contextual relationship. Finally, the fully connected layers and softmax layers are used

for emotional classification.
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Fig. 4.1. Overall architecture for fusing pre-trained features and acoustic features.
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Fig. 4.2. Feature distribution calculation process for exploring the diversity of acoustic features.

4.2.1 Feature Extraction

In the research, we use five speech pre-trained models, Tera [65], Audio Albert [25],

NPC [64], Wav2Vec [96] and Vq-wav2vec [7] combined with acoustic features to im-

prove the accuracy of speech emotion recognition. TERA is a self-supervised speech pre-

training method, which is used for pre-training on a large number of unlabeled speech by

masking the speech spectrum along three orthogonal axes to obtain Transformer encod-

ing model. AUDIO ALBERT uses the ALBERT self-supervised learning model, which

is trained on large-scale speech data sets, and can be used for feature extraction of down-

stream tasks such as speech-related tasks, or as a fine-tuning participation model training.

NPC is also a self-supervised learning method. It only relies on the partial information

of the speech to represent the speech in a non-autoregressive manner. Wav2vec uses con-

trastive loss as the loss function for training, and the final representation can replace the

acoustic feature. Vq-wav2vec adds a quantization module to wav2vec to improve the

performance of the model.

For the acoustic features, each utterance is segmented into several sub-segments with



4 DUAL-TRANSFORMER-BILSTM FOR SPEECH EMOTION RECOGNITION 57

a fixed time length. We used the openSMILE tool to extract the acoustic features of each

sub-segment to the dimension of 1582, constructing a total of n ∗ 1582 feature blocks,

where n is the number of sub-segments after different speech segments. Acoustic features

can represent the static characteristics of a certain segment of speech, but cannot represent

the context information of entire utterance.

4.2.2 Acoustic Feature Statistics

As shown in Fig.4.2, to explore the effect of segmentation time on the model, we

divided each utterance into several speech segments by taking 100ms, 200ms, 300ms,

400ms and 500ms as time units and use the standard deviation to calculate the distribution

of the 1582 features of a speech file in different length segments.

Eq.4.1 is the standard deviation calculation formula, n represents the number of seg-

ments of the speech divided by the specified time length, x̄ represents the average value of

one of 1582 features, and xi represents the features of different segments. σ represents the

distribution of the value of the feature over the time length. The larger the value, the more

diverse the feature distribution. By using the statistic method, to calculate the distribution

of the feature value in different time lengths. The more diverse the distribution of feature

values, the better the recognition results of the model [132]. We found that the features of

the same dimension are very diversely distributed in the 200ms segments. So we use the

200ms features as our acoustic features.

σ =

√
∑

n
i=1 (xi− x̄)2

n
(4.1)

4.2.3 Model Structure

In Fig.4.3, the attention mechanism in Transformer can focus on the correspondence

between speech segments. Therefore, with the help of this mechanism, it can fully pro-

mote the full fusion of acoustic features and pre-trained features. In our experiment, we

use a 6-layer Transformer encoder to fuse the features. The attention mechanism in the
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Fig. 4.3. Feature fusion Transformer for fusing acoustic features and pre-trained features.

traditional Transformer is represented by Eq.4.2, Q(Query) represents the query vector,

and K(Key)V (Value) represents the vector being queried. QKV are derived from the mod-

el’s input vector through three different matrix multiplication linear transformations.

Attention (Q,K,V ) = Softmax
(

QKT
√

dk

)
V (4.2)

In our method, since pre-trained features and acoustic features have different max-

imum lengths and dimensions, we first use 1D convolutional network to convert the a-

coustic features and pre-trained features to the same dimensional features. Then use

the one feature as query Q, and the another feature as K and V , and fuse them by us-

ing the Eq.4.3. Xα and Xβ respectively represent the acoustic features and pre-trained

features. We define the Querys as Qα = XαWQα
, Keys as Kβ = XβWKβ

and Values as

Vβ = XβWVβ
. The adaptation from pre-trained features(PF) to acoustic features(AF) is

presented as AFβ→α

(
Xα ,Xβ

)
.
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AFβ→α

(
Xα ,Xβ

)
= Softmax

(
QαKT

β√
dk

)
Vβ

= Softmax

(
XαWQα

W T
Kβ

XT
β√

dk

)
XβWVβ

(4.3)

In contrast, the adaptation from acoustic features(AF) to pre-trained features(PF) is

presented as PFα→β

(
Xα ,Xβ

)
in Eq.4.4. Through the two Transformer fusion structures,

the features can be fully fused and then fed to the BiLSTM model.

PFα→β

(
Xα ,Xβ

)
= Softmax

(
Qβ KT

α√
dk

)
Vα

= Softmax

(
XβWQβ

W T
Kα

XT
α√

dk

)
XαWVα

(4.4)

In Fig.4.4, we use the BiLSTM structure to further learn the front and back spatial

information fused by Transformer to enhance the robustness of features. BiLSTM is com-

posed of two reverse LSTM networks. LSTM is a long and short-term memory network,

a structure further optimized on the basis of RNN. LSTM can learn what information to

remember and what information to forget through the training process, and solves the

problem of gradient explosion and gradient disappearance caused by the RNN as the sen-

tence length is too long. LSTM is often used in tasks with time series context information

such as text data and speech data. Since it is unable to encode the information from the

back to the front of the sentence, BiLSTM uses two LSTM structures in the opposite

direction [101].

4.3 Experimental Setup

4.3.1 Datasets

In the experiment, we used 5 kinds of data sets, CASIA, eNTERFACE05, IEMO-

CAP, EMO-DB, and SAVEE. The specific division of the datasets used in the experiment

is shown in Tab.4.1. The total number of utterances in the five datasets, CASIA, eN-

TERFACE05, IEMOCAP, EMO-DB, and SAVEE, are 6000, 1257, 4660, 535, and 480,
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Fig. 4.4. BiLSTM module for capturing contextual information.

respectively. We divided the datasets into training, validation, and test sets in a ratio

of approximately 8:1:1. However, due to the presence of overly long utterances in the

IEMOCAP dataset, we removed these samples from the comparison experiments.

Tab. 4.1. The division of training set, validation set and test set of 5 kinds of data sets.

Total train valid test

CASIA 6000 5440 280 280

eNTERFACE05 1257 1017 120 120

IEMOCAP 4660 3705 464 491

EMO-DB 535 426 40 69

SAVEE 480 408 36 36

4.3.2 Baseline Models

In order to compare the performance of different feature fusion models, we designed

a total of four feature fusion models. The details of the four special fusion models are

shown in Fig.4.5.

1. TB_af: The TB_af model contains two 1D convolutional layers, a Transformer fea-

ture fusion module and BiLSTM module. Acoustic features are used for Q query

vectors, and pre-trained features are used for KV vectors.
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2. TB_pf: The TB_pf model is similar to the TB_af model. The only difference is that

TB_pf uses pre-trained features for the Q query vector, and acoustic feature features

for the KV vectors.

3. DT: The DT model contains two 1D convolutional layers, two Transformer feature

fusion modules and two common Transformer modules. Acoustic features and pre-

trained features are respectively used as Q query vectors, and finally output to two

Transformers for further fusion.

4. Dual-TBNet: DBual-TBNet is our proposed model, which is similar to the DT net-

work. The only difference is that after the features are fused with the output of the

two common Transformer, the context information is further learned through two

BiLSTM modules.

For the feature input of all models, we use acoustic features to fuse with Tera, Audio

albert, NPC, Wave2vec and Vqwav2vec pre-trained features. Each model will have 5 fea-

ture fusion combinations, and finally 20 sets of experiments to compare the final speech

recognition performance.

4.3.3 Evaluation Metrics

In this experiment, for the results of speech emotion recognition, we used two evalu-

ation metrics, namely F1 and Ac. The F1 is the weighted average of precision and recall,

and the F1 formula is expressed as Eq.4.5. Among them, TP (True Positive) indicates that

the model prediction result is positive, and the sample is also positive, TN (True Negative)

indicates that the model prediction result is positive, but the sample is negative, FP (False

Positive) indicates that the prediction is negative, and the sample is positive, FN (False

Negative) indicates that the prediction is negative, and the sample is also negative.

F1 =
2∗T P

2∗T P+FP+FN
(4.5)

Ac is the classification accuracy score, which refers to the percentage of all classifi-

cations that are correct. The Eq.4.6 is as follows:
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Fig. 4.5. Four baseline models for feature fusion experimental comparison.



4 DUAL-TRANSFORMER-BILSTM FOR SPEECH EMOTION RECOGNITION 63

Ac =
T P+T F

T P+T F +FP+FN
(4.6)

4.4 Experimental Results

4.4.1 Acoustic Feature Statistical Results

Tab.4.2 shows the statistical results of feature diversity under different time segments

using the standard deviation as the measurement standard. For all data sets, nearly half

of the samples have more diverse distributions of features in the case of the 200ms time

length and the length is the best for the recognition accuracy of the time series model

[73]. Therefore, we use 200ms as the time segmentation length to extract static acoustic

features.

Tab. 4.2. The statistical results of the feature diversity of 5 data sets under different time lengths.

100ms 200ms 300ms 400ms 500ms

CASIA 660 3298 562 621 859

eNTERFACE05 347 525 95 129 161

IEMOCAP 1448 2065 348 365 757

EMO-DB 58 383 38 14 42

SAVEE 71 205 47 48 109

4.4.2 Emotion Recognition Results and Discussion

Tab.4.3 to Tab.4.6 respectively show the recognition results of the four models using

five kinds of feature combinations. The 4 tables correspond to four fusion models respec-

tively. Each table shows the Ac and F1 values with five pre-trained features and acoustic

features on 5 data sets.

From the table, we observe that for all feature combination schemes, the recognition

results of Tera and acoustic feature fusion schemes are better than Audio Albert, NPC,
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Tab. 4.3. The results of Dual-TBNet model with different pre-trained features and acoustic features, where

A presents acoustic features.

A+NPC A+AAlBert A+Wav2vec A+Vqwav2vec A+Tera

Ac F1 Ac F1 Ac F1 Ac F1 Ac F1

CASIA 0.882 0.881 0.918 0.918 0.886 0.886 0.846 0.846 0.957 0.958

eNTERFACE05 0.533 0.513 0.575 0.567 0.558 0.552 0.517 0.495 0.667 0.656

IEMOCAP 0.554 0.547 0.629 0.627 0.623 0.617 0.556 0.555 0.648 0.649

EMO-DB 0.565 0.504 0.725 0.723 0.754 0.738 0.812 0.811 0.841 0.843

SAVEE 0.722 0.677 0.722 0.71 0.778 0.769 0.639 0.64 0.833 0.821

Tab. 4.4. The results of TB_af model with different pre-trained features and acoustic features.

A+NPC A+AAlBert A+Wav2vec A+Vqwav2vec A+Tera

Ac F1 Ac F1 Ac F1 Ac F1 Ac F1

CASIA 0.796 0.799 0.821 0.821 0.779 0.781 0.796 0.796 0.825 0.826

eNTERFACE05 0.525 0.501 0.525 0.511 0.533 0.511 0.533 0.523 0.467 0.44

IEMOCAP 0.55 0.544 0.578 0.574 0.578 0.574 0.568 0.567 0.556 0.553

EMO-DB 0.536 0.495 0.507 0.455 0.551 0.481 0.565 0.502 0.522 0.463

SAVEE 0.639 0.63 0.722 0.695 0.583 0.547 0.639 0.618 0.611 0.607

Tab. 4.5. The results of TB_pf model with different pre-trained features and acoustic features.

A+NPC A+AAlBert A+Wav2vec A+Vqwav2vec A+Tera

Ac F1 Ac F1 Ac F1 Ac F1 Ac F1

CASIA 0.861 0.861 0.914 0.915 0.857 0.859 0.843 0.843 0.943 0.942

eNTERFACE05 0.45 0.422 0.592 0.579 0.525 0.516 0.525 0.516 0.558 0.532

IEMOCAP 0.57 0.571 0.576 0.566 0.635 0.634 0.599 0.595 0.642 0.64

EMO-DB 0.522 0.469 0.725 0.717 0.797 0.798 0.696 0.697 0.754 0.757

SAVEE 0.556 0.48 0.611 0.589 0.611 0.52 0.639 0.594 0.722 0.726
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Tab. 4.6. The results of DT model with different pre-trained features and acoustic features.

A+NPC A+AAlBert A+Wav2vec A+Vqwav2vec A+Tera

Ac F1 Ac F1 Ac F1 Ac F1 Ac F1

CASIA 0.879 0.878 0.893 0.893 0.882 0.883 0.839 0.84 0.911 0.91

eNTERFACE05 0.5 0.475 0.508 0.497 0.492 0.486 0.467 0.442 0.5 0.491

IEMOCAP 0.568 0.562 0.56 0.557 0.65 0.649 0.566 0.566 0.589 0.585

EMO-DB 0.507 0.505 0.667 0.667 0.623 0.584 0.623 0.591 0.58 0.569

SAVEE 0.472 0.404 0.639 0.634 0.611 0.605 0.639 0.635 0.611 0.605

Wav2vec and Vq-wav2vec. Tera is a new generation of pre-trained model based on BERT,

which has a stronger advantage for capturing the information between speech data frames.

In the case of the same feature fusion scheme, the result of TB_pf is better than

the result of TB_af. Different from TB_af, TB_pf uses pre-trained features as Q query

vector, which has better performance for model recognition. Comparing TB_pf and DT,

TB_pf is also better than DT model, because BiLSTM further extracts the fusion context

information in the output layer. The Dual-TBNet model performs best among all mod-

els, not only has the attention mechanism but also uses BiLSTM to capture contextual

information, fully fusion of pre-trained features and acoustic features. Tera’s pre-trained

features are more suitable for model recognition. In general, our proposed model achieved

the accuracy of 95.7%, 66.7%, 64.8%, 84.1%, and 83.3% on the 5 data sets of CASIA,

eENTERFACE05, IEMOCAP, EMO-DB, and SAVEE, respectively.

To analyze the performance of our Dual-TBNet model with Tera and acoustic fea-

tures on different types of emotion across five datasets, as shown in Tab.4.7, we conducted

a statistical analysis on all categories using precision(P), recall(R), and F1 score(F1). We

also plotted a confusion matrix in Fig.4.6, which provides a more visual representation

of the performance of emotion recognition. In the CASIA data set, happy, neutral, and

sad all achieved 98% recognition rate. Due to similar emotional polarity, some samples

of anger and surprise were incorrectly identified as happy. Our model performs well on

the Chinese act-based dataset. In the data set of eENTERFACE05, the recognition re-
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Fig. 4.6. Confusion matrix of Dual-TBNet emotion recognition results on CASIA, eNTERFACE05, IEMO-

CAP, EMO-DB, SAVEE datasets.

sults of Disgust and Fear are poor due to the imbalance of the categories of the data set.

The neutral emotion prediction results in the IEMOCAP data set are the best. Although

the EMO-DB and SAVEE data sets have a small sample size, they also achieve a high

accuracy rate.

To compare with previous studies, we collected the data results of researches in the

field of speech emotion recognition in the past three years. As shown in Tab.4.8, we

list the emotion recognition results of different studies according to the different datasets.

From the table, we can find that the models with attention mechanism have achieved good

results. Among them, our proposed model achieves state-of-the-art results on the CASIA

and SAVEE datasets, and achieves mid-to-upper results on eNTERFACE05, IEMOCAP,

and EMO-DB. CASIA is a Chinese speech emotion dataset, and SAVEE is an English

dataset, both recorded in a pure environment and composed of many short sentences. For

such data, our model has the best results. For speech datasets collected in natural environ-
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Tab. 4.7. Performance of the Dual-TBNet on different emotions in CASIA, eNTERFACE05, IEMOCAP,

EMO-DB, and SAVEE datasets.

IEMOCAP CASIA eNTERFACE05 EMO-DB SAVEE

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Angry 0.7 0.62 0.66 1 0.93 0.96 0.65 0.85 0.74 0.75 0.75 0.75 0.8 1 0.89

Sad 0.74 0.64 0.69 0.98 0.98 0.98 0.65 0.85 0.74 1 1 1 1 0.5 0.67

Neutral 0.57 0.71 0.63 0.98 0.98 0.98 - - - 0.92 0.75 0.83 0.8 1 0.89

Excited 0.66 0.59 0.63 - - - - - - - - - - - -

Happy - - - 0.86 0.98 0.92 0.67 0.8 0.73 0.82 0.82 0.82 0.8 1 0.89

Disgust - - - - - - 0.64 0.45 0.53 1 1 1 1 0.5 0.67

Fear - - - - - - 0.83 0.5 0.62 0.9 0.9 0.9 0.75 0.75 0.75

Surprise - - - 0.98 0.91 0.94 0.61 0.55 0.58 - - - 1 0.75 0.86

Bored - - - - - - - - - 0.64 0.88 0.74 - - -

Tab. 4.8. Performance comparison between the proposed model with other models on the CASIA, eNTER-

FACE05, IEMOCAP, EMO-DB and SAVEE emotion corpus.

Models CASIA eNTERFACE05 IEMOCAP EMO-DB SAVEE

CNN+LSTM [30] - - 0.775 0.785 0.781

RNN+Attenttion [61] - - 0.643 0.861 -

3DRNN+Attention [22] - - 0.647 0.828 -

CNN(Spectrogram and Phoneme Features) [121] - - 0.64 - -

CNN(Phonological Features) [112] - - 0.6002 - -

SVM+SISMOTE [71] 0.902 - - 0.8582 0.75

DenseNet-GRU [24] 0.8 - - - -

FaceNet [69] 0.9 - 0.689 - -

SVM+Decision Tree [107] 0.853 - - 0.858 -

SVM [6] - 0.564 - 0.815 0.7563

CNN+Frequential Attention [62] - 0.758 0.804 0.833 0.565

Dual-TBNet 0.957 0.667 0.648 0.841 0.833
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ment such as eNTERFACE05, IEMOCAP, our model also achieves good performance.

4.5 Summary

To improve the accuracy of speech emotion recognition on limited datasets, we use

the pre-trained features learned on large-scale datasets by self-supervised learning to en-

hance the robustness of acoustic features. Furthermore, we propose a new feature fu-

sion model called Dual-TBNet, which mainly consists of dual Transformer and BiLSTM

modules. With the help of attention mechanism and bidirectional time series module,

our model can fully learn the corresponce information betwwen acoustic features and

pre-trained features with different segment lengths and dimension sizes.

A total of four fusion models are designed to fuse five pre-trained features and a-

coustic features. Among them, the Dual-TBNet model achieve 95.7%, 66.7%, 64.8%,

84.1% and 83.3% accuracy in the comparative experiments of CASIA, eNTERFACE05,

IEMOCAP, EMO-DB and SAVEE datasets respectively.
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5 Conclusion and Future Work

5.1 Conclusion

Speech emotion recognition can help us better understand and interpret the emotional

states expressed by people in verbal communication. Emotion is an essential component

of human interaction, as it can influence our behavior, attitudes, and decisions. By ac-

curately recognizing and understanding emotions in speech, we can gain deeper insights

into others’ inner feelings, thus establishing stronger interpersonal relationships.

Currently, there are several challenges in constructing such datasets. Firstly, collect-

ing emotional data requires the participation of many subjects, which requires a lot of

time and manpower resources. Additionally, since emotion is a subjective experience, the

quality and quantity of the data collected depend on the participants’ emotional expres-

sion. Secondly, to train machine learning models, emotional data needs to be labeled with

emotional categories. Annotators need to listen to all speech materials one by one, which

is a costly process and cannot prioritize rare samples. Thirdly, emotional data is often im-

balanced, as some emotions may be more common than others, leading to a shortage of

samples for certain categories in the dataset. This may result in poor model performance

when predicting less common emotions. Fourthly, the data collected is often specific to

certain scenarios, which affects the accuracy of speech emotion recognition in differen-

t languages, speaking styles, and application scenarios. Therefore, the dataset needs to

include participants with different languages, cultural backgrounds, ages, genders, and

personalities. Finally, the accuracy of speech emotion recognition is affected by many

factors, such as audio quality, speaker pronunciation and language habits, environmental

noise, etc.

Most current research in this field is based on extracting speaker-specific features for

model training. These features only reflect the characteristics of the current dataset, and

therefore have poor robustness. In order to improve feature robustness, future research

can combine the use of pre-training models to extract high-dimensional feature spaces.

For example, using speech representation learning methods to construct feature spaces on
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massive speech data, to learn personalized speech features and enhance the robustness of

speech features. In addition, with the continuous deepening of research on speech fea-

tures, various emotion-related features have been proposed. For these features, exploring

fusion schemes between different categories of speech features can effectively promote

the improvement of speech emotion recognition accuracy.

To address the two challenges in the field of speech emotion recognition mentioned

above, we conducted research on the following aspects to promote its development.

1. We propose an effective active learning strategy to overcome challenges related to

limited dataset availability and construction efficiency. By incorporating uncertain-

ty, representativeness, diversity, and complementarity data selection methods, the

proposed strategy identifies valuable data for annotation, resulting in superior out-

comes.

2. We present a novel feature fusion architecture that combines two Transformer and

BiLSTM modules. This architecture enhances the accuracy of speech emotion recog-

nition by enriching the richness and robustness of speech features. Experimental

evaluations demonstrate the state-of-the-art performance achieved by the proposed

approach.

5.2 Future Work

The architecture of the active learning method we proposed is serial, which cannot

achieve parallel operations. In the future, we will try a parallel sampling architecture to

further improve the overall running speed of the method. Additionally, the sampling al-

gorithm we propose combines the logistic regression classifier for sample selection. In

the future, we will explore other classification models to improve the sampling efficiency.

Moreover, in the actual application of active learning, we will further explore the appli-

cation of active learning methods in the construction of multimodal emotional corpus to

adapt to the increasingly complex mass data.

For the speech emotion recognition model, our Dual-TBNet model is in the form of
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a frozen pre-trained model to extract the speech feature information. In the future, we will

try to add the pre-trained model to our framework to fine-tune the model. In addition, we

will further explore the accuracy of speech emotion recognition under natural conditions.
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[4] Mehmet Berkehan Akçay and Kaya Oğuz. Speech emotion recognition: Emotion-

al models, databases, features, preprocessing methods, supporting modalities, and

classifiers. Speech Communication, 116:56–76, 2020.

[5] Mohammed Jawad Al Dujaili, Abbas Ebrahimi-Moghadam, and Ahmed Fatlawi.

Speech emotion recognition based on svm and knn classifications fusion. Interna-

tional Journal of Electrical and Computer Engineering, 11(2):1259, 2021.

[6] J Ancilin and A Milton. Improved speech emotion recognition with mel frequency

magnitude coefficient. Applied Acoustics, 179:108046, 2021.

[7] Alexei Baevski, Steffen Schneider, and Michael Auli. vq-wav2vec: Self-supervised

learning of discrete speech representations. arXiv preprint arXiv:1910.05453,

2019.

[8] Sweeta Bansal and Amita Dev. Emotional hindi speech database. In 2013 Interna-

tional Conference Oriental COCOSDA held jointly with 2013 Conference on Asian

Spoken Language Research and Evaluation (O-COCOSDA/CASLRE), pages 1–4.

IEEE, 2013.



References 74

[9] Fang Bao, Michael Neumann, and Ngoc Thang Vu. Cyclegan-based emotion style

transfer as data augmentation for speech emotion recognition. In INTERSPEECH,

pages 2828–2832, 2019.

[10] Anton Batliner, Stefan Steidl, and Elmar Nöth. Releasing a thoroughly annotated

and processed spontaneous emotional database: the FAU Aibo Emotion Corpus. In

Laurence Devillers, Jean-Claude Martin, Roddy Cowie, Ellen Douglas-Cowie, and

Anton Batliner, editors, Proc. of a Satellite Workshop of LREC 2008 on Corpora

for Research on Emotion and Affect, pages 28–31, Marrakesh, 2008.

[11] Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Florian Krebs, and Gerhard

Widmer. Madmom: A new python audio and music signal processing library.

In Proceedings of the 24th ACM international conference on Multimedia, pages

1174–1178, 2016.

[12] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez Gutiérrez, Sankalp Gulati, Her-

rera Boyer, Oscar Mayor, Gerard Roma Trepat, Justin Salamon, José Ricardo Za-

pata González, Xavier Serra, et al. Essentia: An audio analysis library for music

information retrieval. In Britto A, Gouyon F, Dixon S, editors. 14th Conference of

the International Society for Music Information Retrieval (ISMIR); 2013 Nov 4-8;

Curitiba, Brazil.[place unknown]: ISMIR; 2013. p. 493-8. International Society for

Music Information Retrieval (ISMIR), 2013.

[13] Tom B Brown, Benjamin Mann, Nick Ryder, Meghana Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Girish Shyam, Gaurav Sastry, Alexander

Askell, et al. Language models are few-shot learners. In International Conference

on Learning Representations, 2020.

[14] Felix Burkhardt, Astrid Paeschke, Miriam Rolfes, Walter F Sendlmeier, Benjamin

Weiss, et al. A database of german emotional speech. In Interspeech, volume 5,

pages 1517–1520, 2005.



References 75

[15] Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower,

Samuel Kim, Jeannette N Chang, Sungbok Lee, and Shrikanth S Narayanan. Iemo-

cap: Interactive emotional dyadic motion capture database. Language resources

and evaluation, 42(4):335–359, 2008.

[16] Sung-Woo Byun and Seok-Pil Lee. A study on a speech emotion recognition sys-

tem with effective acoustic features using deep learning algorithms. Applied Sci-

ences, 11(4):1890, 2021.

[17] Houwei Cao, David G Cooper, Michael K Keutmann, Ruben C Gur, Ani Nenkova,

and Ragini Verma. Crema-d: Crowd-sourced emotional multimodal actors dataset.

IEEE transactions on affective computing, 5(4):377–390, 2014.

[18] Houwei Cao, Ragini Verma, and Ani Nenkova. Combining ranking and classifica-

tion to improve emotion recognition in spontaneous speech. In Interspeech 2012,

pages 358–361. ISCA, September 2012.

[19] Xiangyong Cao, Jing Yao, Zongben Xu, and Deyu Meng. Hyperspectral image

classification with convolutional neural network and active learning. IEEE Trans-

actions on Geoscience and Remote Sensing, 58(7):4604–4616, 2020.

[20] Aggelina Chatziagapi, Georgios Paraskevopoulos, Dimitris Sgouropoulos, Geor-

gios Pantazopoulos, Malvina Nikandrou, Theodoros Giannakopoulos, Athanasios

Katsamanis, Alexandros Potamianos, and Shrikanth Narayanan. Data augmenta-

tion using gans for speech emotion recognition. In Interspeech, pages 171–175,

2019.

[21] Mingyi Chen, Xuanji He, Jing Yang, and Han Zhang. 3-D Convolutional Recurrent

Neural Networks With Attention Model for Speech Emotion Recognition. IEEE

Signal Processing Letters, 25(10):1440–1444, October 2018.

[22] Mingyi Chen, Xuanji He, Jing Yang, and Han Zhang. 3-d convolutional recurrent

neural networks with attention model for speech emotion recognition. IEEE Signal

Processing Letters, 25(10):1440–1444, 2018.



References 76

[23] Qiupu Chen and Guimin Huang. A novel dual attention-based blstm with hybrid

features in speech emotion recognition. Engineering Applications of Artificial In-

telligence, 102:104277, 2021.

[24] Siyuan Cheng, Dongya Zhang, and Didi Yin. A densenet-gru technology for chi-

nese speech emotion recognition. In International Conference on Frontiers of Elec-

tronics, Information and Computation Technologies, pages 1–7, 2021.

[25] Po-Han Chi, Pei-Hung Chung, Tsung-Han Wu, Chun-Cheng Hsieh, Yen-Hao

Chen, Shang-Wen Li, and Hung-yi Lee. Audio albert: A lite bert for self-supervised

learning of audio representation. In 2021 IEEE Spoken Language Technology

Workshop (SLT), pages 344–350. IEEE, 2021.

[26] Yu-An Chung, Wei-Ning Hsu, Hao Tang, and James Glass. An unsupervised

autoregressive model for speech representation learning. arXiv preprint arX-

iv:1904.03240, 2019.

[27] Giovanni Costantini, Iacopo Iaderola, Andrea Paoloni, and Massimiliano Todisco.

Emovo corpus: an italian emotional speech database. In International Conference

on Language Resources and Evaluation (LREC 2014), pages 3501–3504. European

Language Resources Association (ELRA), 2014.

[28] Roddy Cowie, Ellen Douglas-Cowie, Susie Savvidou*, Edelle McMahon, Martin

Sawey, and Marc Schröder. ’feeltrace’: An instrument for recording perceived

emotion in real time. In ISCA tutorial and research workshop (ITRW) on speech

and emotion, 2000.

[29] Chenye Cui, Yi Ren, Jinglin Liu, Feiyang Chen, Rongjie Huang, Ming Lei, and

Zhou Zhao. Emovie: A mandarin emotion speech dataset with a simple emotional

text-to-speech model. arXiv preprint arXiv:2106.09317, 2021.

[30] Ranjana Dangol, Abeer Alsadoon, PWC Prasad, Indra Seher, and Omar Hisham

Alsadoon. Speech emotion recognition using convolutional neural network and



References 77

long-short termmemory. Multimedia Tools and Applications, 79(43):32917–32934,

2020.

[31] Javier de Lope and Manuel Graña. An ongoing review of speech emotion recogni-

tion. Neurocomputing, 2023.

[32] Abhinav Dhall, Roland Goecke, Simon Lucey, and Tom Gedeon. Collecting

large, richly annotated facial-expression databases from movies. IEEE multime-

dia, 19(03):34–41, 2012.

[33] Sandra Ebert, Mario Fritz, and Bernt Schiele. Ralf: A reinforced active learning

formulation for object class recognition. In 2012 IEEE Conference on Computer

Vision and Pattern Recognition, pages 3626–3633. IEEE, 2012.

[34] Paul Ekman, Wallace V Friesen, Maureen O’sullivan, Anthony Chan, Irene

Diacoyanni-Tarlatzis, Karl Heider, Rainer Krause, William Ayhan LeCompte, Tom

Pitcairn, Pio E Ricci-Bitti, et al. Universals and cultural differences in the judg-

ments of facial expressions of emotion. Journal of personality and social psychol-

ogy, 53(4):712, 1987.

[35] Mehmet Bilal Er. A Novel Approach for Classification of Speech Emotions Based

on Deep and Acoustic Features. IEEE Access, 8:221640–221653, 2020.

[36] Caroline Etienne, Guillaume Fidanza, Andrei Petrovskii, Laurence Devillers, and

Benoit Schmauch. Cnn+ lstm architecture for speech emotion recognition with

data augmentation. arXiv preprint arXiv:1802.05630, 2018.

[37] Florian Eyben, Martin Wöllmer, and Björn Schuller. Opensmile: the munich ver-

satile and fast open-source audio feature extractor. In Proceedings of the 18th ACM

international conference on Multimedia, pages 1459–1462, 2010.

[38] Johnny RJ Fontaine, Klaus R Scherer, Etienne B Roesch, and Phoebe C

Ellsworth. The world of emotions is not two-dimensional. Psychological science,

18(12):1050–1057, 2007.



References 78

[39] Theodoros Giannakopoulos. pyaudioanalysis: An open-source python library for

audio signal analysis. PloS one, 10(12):e0144610, 2015.

[40] RA Gilyazev and D Yu Turdakov. Active learning and crowdsourcing: A survey

of optimization methods for data labeling. Programming and Computer Software,

44(6):476–491, 2018.

[41] Mohamed Goudjil, Mouloud Koudil, Mouldi Bedda, and Noureddine Ghoggali.

A novel active learning method using svm for text classification. International

Journal of Automation and Computing, 15(3):290–298, 2018.

[42] Philippe Gournay, Olivier Lahaie, and Roch Lefebvre. A canadian french emotion-

al speech dataset. In Proceedings of the 9th ACM multimedia systems conference,

pages 399–402, 2018.

[43] Wenjing Han, Tao Jiang, Yan Li, Björn Schuller, and Huabin Ruan. Ordinal learn-

ing for emotion recognition in customer service calls. In ICASSP 2020-2020 IEEE

international conference on acoustics, speech and signal processing (ICASSP),

pages 6494–6498. IEEE, 2020.

[44] Lasse Hansen, Yan-Ping Zhang, Detlef Wolf, Konstantinos Sechidis, Nicolai Lade-

gaard, and Riccardo Fusaroli. A generalizable speech emotion recognition model

reveals depression and remission. Acta Psychiatrica Scandinavica, 145(2):186–

199, 2022.

[45] Sanaul Haq, Philip JB Jackson, and J Edge. Speaker-dependent audio-visual emo-

tion recognition. In AVSP, volume 2009, pages 53–58, 2009.

[46] Jia-Hao Hsu, Ming-Hsiang Su, Chung-Hsien Wu, and Yi-Hsuan Chen. Speech

Emotion Recognition Considering Nonverbal Vocalization in Affective Conver-

sations. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

29:1675–1686, 2021.



References 79

[47] Hao Hu, Ming-Xing Xu, and Wei Wu. GMM Supervector Based SVM with Spec-

tral Features for Speech Emotion Recognition. In 2007 IEEE International Con-

ference on Acoustics, Speech and Signal Processing - ICASSP ’07, pages IV–413–

IV–416, Honolulu, HI, April 2007. IEEE.

[48] Shengjun Huang, Rong Jin, and Zhihua Zhou. Active learning by querying infor-

mative and representative examples. Advances in neural information processing

systems, 23, 2010.

[49] Yusuke Ijima, Makoto Tachibana, Takashi Nose, and Takao Kobayashi. Emo-

tional speech recognition based on style estimation and adaptation with multiple-

regression HMM. In 2009 IEEE International Conference on Acoustics, Speech

and Signal Processing, pages 4157–4160, Taipei, Taiwan, April 2009. IEEE.

[50] Maryam Imani and Gholam Ali Montazer. A survey of emotion recognition meth-

ods with emphasis on e-learning environments. Journal of Network and Computer

Applications, 147:102423, 2019.

[51] Dias Issa, M Fatih Demirci, and Adnan Yazici. Speech emotion recognition with

deep convolutional neural networks. Biomedical Signal Processing and Control,

59:101894, 2020.

[52] Bache K and Lichman M. UCI machine learning repository, 2013.

[53] Ruhul Amin Khalil, Edward Jones, Mohammad Inayatullah Babar, Tariqullah Jan,

Mohammad Haseeb Zafar, and Thamer Alhussain. Speech emotion recognition

using deep learning techniques: A review. IEEE Access, 7:117327–117345, 2019.

[54] Trinh Le Ba Khanh, Soo-Hyung Kim, Gueesang Lee, Hyung-Jeong Yang, and Eu-

Tteum Baek. Korean video dataset for emotion recognition in the wild. Multimedia

Tools and Applications, 80(6):9479–9492, 2021.

[55] Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning

from data. Advances in neural information processing systems, 30, 2017.



References 80

[56] Shashidhar G Koolagudi, Sudhamay Maity, Vuppala Anil Kumar, Saswat

Chakrabarti, and K Sreenivasa Rao. Iitkgp-sesc: speech database for emotion anal-

ysis. In International conference on contemporary computing, pages 485–492.

Springer, 2009.

[57] Sotiris B Kotsiantis, Ioannis Zaharakis, P Pintelas, et al. Supervised machine learn-

ing: A review of classification techniques. Emerging artificial intelligence appli-

cations in computer engineering, 160(1):3–24, 2007.

[58] Siddique Latif, Rajib Rana, Sara Khalifa, Raja Jurdak, and Julien Epps. Direct

Modelling of Speech Emotion from Raw Speech. In Interspeech 2019, pages 3920–

3924. ISCA, September 2019.

[59] Lik-Hang Lee, Tristan Braud, Pengyuan Zhou, Lin Wang, Dianlei Xu, Zijun Lin,

Abhishek Kumar, Carlos Bermejo, and Pan Hui. All one needs to know about

metaverse: A complete survey on technological singularity, virtual ecosystem, and

research agenda. arXiv preprint arXiv:2110.05352, 2021.

[60] David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for super-

vised learning. In Machine learning proceedings 1994, pages 148–156. Elsevier,

1994.

[61] Dongdong Li, Jinlin Liu, Zhuo Yang, Linyu Sun, and Zhe Wang. Speech emotion

recognition using recurrent neural networks with directional self-attention. Expert

Systems with Applications, 173:114683, 2021.

[62] Shuzhen Li, Xiaofen Xing, Weiquan Fan, Bolun Cai, Perry Fordson, and Xiang-

min Xu. Spatiotemporal and frequential cascaded attention networks for speech

emotion recognition. Neurocomputing, 448:238–248, 2021.

[63] Ya Li, Jianhua Tao, Linlin Chao, Wei Bao, and Yazhu Liu. Cheavd: a chinese

natural emotional audio–visual database. Journal of Ambient Intelligence and Hu-

manized Computing, 8(6):913–924, 2017.



References 81

[64] Alexander H Liu, Yu-An Chung, and James Glass. Non-autoregressive predictive

coding for learning speech representations from local dependencies. arXiv preprint

arXiv:2011.00406, 2020.

[65] Andy T Liu, Shang-Wen Li, and Hung-yi Lee. Tera: Self-supervised learning of

transformer encoder representation for speech. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 29:2351–2366, 2021.

[66] Andy T Liu, Shu-wen Yang, Po-Han Chi, Po-chun Hsu, and Hung-yi Lee. Mock-

ingjay: Unsupervised speech representation learning with deep bidirectional trans-

former encoders. In ICASSP 2020-2020 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 6419–6423. IEEE, 2020.

[67] Jiawang Liu and Haoxiang Wang. A Speech Emotion Recognition Framework

for Better Discrimination of Confusions. In Interspeech 2021, pages 4483–4487.

ISCA, August 2021.

[68] Jiaxing Liu, Zhilei Liu, Longbiao Wang, Lili Guo, and Jianwu Dang. Speech E-

motion Recognition with Local-Global Aware Deep Representation Learning. In

ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP), pages 7174–7178, Barcelona, Spain, May 2020. IEEE.

[69] Shuhua Liu, Mengyu Zhang, Ming Fang, Jianwei Zhao, Kun Hou, and Chih-Cheng

Hung. Speech emotion recognition based on transfer learning from the facenet

framework. The Journal of the Acoustical Society of America, 149(2):1338–1345,

2021.

[70] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie

Tang. Self-supervised learning: Generative or contrastive. IEEE Transactions on

Knowledge and Data Engineering, 2021.

[71] Zhen-Tao Liu, Bao-Han Wu, Dan-Yun Li, Peng Xiao, and Jun-Wei Mao. Speech

emotion recognition based on selective interpolation synthetic minority over-

sampling technique in small sample environment. Sensors, 20(8):2297, 2020.



References 82

[72] Zheng Liu, Xin Kang, and Fuji Ren. Improving speech emotion recognition by

fusing pre-trained and acoustic features using transformer and bilstm. In Intelligent

Information Processing XI: 12th IFIP TC 12 International Conference, IIP 2022,

Qingdao, China, May 27–30, 2022, Proceedings, pages 348–357. Springer, 2022.

[73] Zheng Liu, Fuji Ren, and Xin Kang. Research on the effect of different speech

segment lengths on speech emotion recognition based on lstm. In Proceedings of

2019 the 9th International Workshop on Computer Science and Engineering, pages

491–499. WCSE, 2019.

[74] Steven R Livingstone and Frank A Russo. The ryerson audio-visual database of

emotional speech and song (ravdess): A dynamic, multimodal set of facial and

vocal expressions in north american english. PloS one, 13(5):e0196391, 2018.

[75] Reza Lotfian and Carlos Busso. Building naturalistic emotionally balanced speech

corpus by retrieving emotional speech from existing podcast recordings. IEEE

Transactions on Affective Computing, 10(4):471–483, 2017.

[76] Nurul Lubis, Randy Gomez, Sakriani Sakti, Keisuke Nakamura, Koichiro Yoshino,

Satoshi Nakamura, and Kazuhiro Nakadai. Construction of japanese audio-visual

emotion database and its application in emotion recognition. In Proceedings of

the Tenth International Conference on Language Resources and Evaluation (L-

REC’16), pages 2180–2184, 2016.

[77] Hui Luo and Jiqing Han. Nonnegative matrix factorization based transfer subspace

learning for cross-corpus speech emotion recognition. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 28:2047–2060, 2020.

[78] Kasiprasad Mannepalli, Panyam Narahari Sastry, and Maloji Suman. A novel adap-

tive fractional deep belief networks for speaker emotion recognition. Alexandria

Engineering Journal, 56(4):485–497, 2017.



References 83

[79] Olivier Martin, Irene Kotsia, Benoit Macq, and Ioannis Pitas. The enterface’05

audio-visual emotion database. In 22nd International Conference on Data Engi-

neering Workshops (ICDEW’06), pages 8–8. IEEE, 2006.

[80] Benoit Mathieu, Slim Essid, Thomas Fillon, Jacques Prado, and Gaël Richard.

Yaafe, an easy to use and efficient audio feature extraction software. In ISMIR,

volume 2010, pages 441–446. Citeseer, 2010.

[81] Brian McFee, Colin Raffel, Dawen Liang, Daniel P Ellis, Matt McVicar, Eric Bat-

tenberg, and Oriol Nieto. librosa: Audio and music signal analysis in python.

In Proceedings of the 14th python in science conference, volume 8, pages 18–25,

2015.

[82] A. Milton, S. Sharmy Roy, and S. Tamil Selvi. SVM Scheme for Speech Emotion

Recognition using MFCC Feature. International Journal of Computer Application-

s, 69(9):34–39, May 2013.

[83] Jon D Morris. Observations: Sam: the self-assessment manikin; an efficient cross-

cultural measurement of emotional response. Journal of advertising research,

35(6):63–68, 1995.

[84] Maria Moutti, Sofia Eleftheriou, Panagiotis Koromilas, and Theodoros Gian-

nakopoulos. A dataset for speech emotion recognition in greek theatrical plays.

arXiv preprint arXiv:2203.15568, 2022.

[85] Mumtaz Begum Mustafa, Mansoor AM Yusoof, Zuraidah M Don, and Mehdi

Malekzadeh. Speech emotion recognition research: an analysis of research focus.

International Journal of Speech Technology, 21(1):137–156, 2018.

[86] Daniel Neiberg and Kjell Elenius. Automatic recognition of anger in spontaneous

speech. In Interspeech 2008, pages 2755–2758. ISCA, September 2008.

[87] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with

contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.



References 84

[88] Andrew Ortony and Terence J Turner. What’s basic about basic emotions? Psy-

chological review, 97(3):315, 1990.

[89] Sang-Min Park and Young-Gab Kim. A metaverse: taxonomy, components, appli-

cations, and open challenges. IEEE access, 10:4209–4251, 2022.

[90] Robert Plutchik. The nature of emotions: Human emotions have deep evolution-

ary roots, a fact that may explain their complexity and provide tools for clinical

practice. American scientist, 89(4):344–350, 2001.

[91] Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik

Cambria, and Rada Mihalcea. Meld: A multimodal multi-party dataset for emotion

recognition in conversations. arXiv preprint arXiv:1810.02508, 2018.

[92] Banothu Rambabu, Kishore Kumar Botsa, Gangamohan Paidi, and Suryakanth V

Gangashetty. Iiit-h temd semi-natural emotional speech database from professional

actors and non-actors. In Proceedings of the 12th Language Resources and Evalu-

ation Conference, pages 1538–1545, 2020.

[93] Fuji Ren. Affective information processing and recognizing human emotion. Elec-

tronic notes in theoretical computer science, 225:39–50, 2009.

[94] Fuji Ren and Yanwei Bao. A review on human-computer interaction and intelli-

gent robots. International Journal of Information Technology & Decision Making,

19(01):5–47, 2020.

[95] Fabien Ringeval, Andreas Sonderegger, Juergen Sauer, and Denis Lalanne. Intro-

ducing the recola multimodal corpus of remote collaborative and affective interac-

tions. In 2013 10th IEEE international conference and workshops on automatic

face and gesture recognition (FG), pages 1–8. IEEE, 2013.

[96] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli.

wav2vec: Unsupervised pre-training for speech recognition. arXiv preprint arX-

iv:1904.05862, 2019.



References 85

[97] Greg Schohn and David Cohn. Less is more: Active learning with support vector

machines. In ICML, volume 2, page 6. Citeseer, 2000.

[98] Christopher Schröder and Andreas Niekler. A survey of active learning for text

classification using deep neural networks. arXiv preprint arXiv:2008.07267, 2020.

[99] Burr Settles. Active learning literature survey. 2009.

[100] H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee.

In Proceedings of the fifth annual workshop on Computational learning theory,

pages 287–294, 1992.

[101] Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of

lstm and bilstm in forecasting time series. In 2019 IEEE International Conference

on Big Data (Big Data), pages 3285–3292. IEEE, 2019.

[102] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and

tree search. Nature, 529(7587):484–489, 2016.

[103] Youddha Beer Singh and Shivani Goel. A systematic literature review of speech

emotion recognition approaches. Neurocomputing, 2022.

[104] Peng Song. Transfer linear subspace learning for cross-corpus speech emotion

recognition. IEEE Trans. Affect. Comput., 10(2):265–275, 2019.

[105] Peng Song and Wenming Zheng. Feature selection based transfer subspace learn-

ing for speech emotion recognition. IEEE Transactions on Affective Computing,

11(3):373–382, 2018.

[106] Linhui Sun, Sheng Fu, and Fu Wang. Decision tree svm model with fisher feature

selection for speech emotion recognition. EURASIP Journal on Audio, Speech, and

Music Processing, 2019(1):1–14, 2019.



References 86

[107] Linhui Sun, Qiu Li, Sheng Fu, and Pingan Li. Speech emotion recognition based on

genetic algorithm–decision tree fusion of deep and acoustic features. ETRI Journal,

2022.

[108] Monorama Swain, Aurobinda Routray, and Prithviraj Kabisatpathy. Databases,

features and classifiers for speech emotion recognition: a review. International

Journal of Speech Technology, 21(1):93–120, 2018.

[109] Monorama Swain, Subhasmita Sahoo, Aurobinda Routray, P. Kabisatpathy, and

Jogendra N. Kundu. Study of feature combination using HMM and SVM for mul-

tilingual Odiya speech emotion recognition. International Journal of Speech Tech-

nology, 18(3):387–393, September 2015.

[110] Einari Vaaras, Manu Airaksinen, and Okko Räsänen. Analysis of self-supervised

learning and dimensionality reduction methods in clustering-based active learning

for speech emotion recognition. arXiv e-prints, pages arXiv–2206, 2022.

[111] Nikolaos Vryzas, Rigas Kotsakis, Aikaterini Liatsou, Charalampos A Dimoulas,

and George Kalliris. Speech emotion recognition for performance interaction.

Journal of the Audio Engineering Society, 66(6):457–467, 2018.

[112] Wei Wang, Paul A Watters, Xinyi Cao, Lingjie Shen, and Bo Li. Significance

of phonological features in speech emotion recognition. International Journal of

Speech Technology, 23(3):633–642, 2020.

[113] Yan Wang, Wei Song, Wei Tao, Antonio Liotta, Dawei Yang, Xinlei Li, Shuyong

Gao, Yixuan Sun, Weifeng Ge, Wei Zhang, et al. A systematic review on affective

computing: Emotion models, databases, and recent advances. Information Fusion,

83:19–52, 2022.

[114] Yuntao Wang, Zhou Su, Ning Zhang, Rui Xing, Dongxiao Liu, Tom H Luan, and

Xuemin Shen. A survey on metaverse: Fundamentals, security, and privacy. IEEE

Communications Surveys & Tutorials, 2022.



References 87

[115] Taiba Majid Wani, Teddy Surya Gunawan, Syed Asif Ahmad Qadri, Mira Karti-

wi, and Eliathamby Ambikairajah. A comprehensive review of speech emotion

recognition systems. IEEE Access, 9:47795–47814, 2021.

[116] Shuai Xie, Zunlei Feng, Ying Chen, Songtao Sun, Chao Ma, and Mingli Song.

Deal: Difficulty-aware active learning for semantic segmentation. In Proceedings

of the Asian Conference on Computer Vision, 2020.

[117] Yue Xie, Ruiyu Liang, Zhenlin Liang, Chengwei Huang, Cairong Zou, and

Bjorn Schuller. Speech Emotion Classification Using Attention-Based LST-

M. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

27(11):1675–1685, November 2019.

[118] Haiyang Xu, Hui Zhang, Kun Han, Yun Wang, Yiping Peng, and Xiangang

Li. Learning alignment for multimodal emotion recognition from speech. arX-

iv preprint arXiv:1909.05645, 2019.

[119] Yifan Yan, Shengjun Huang, Shaoyi Chen, Meng Liao, and Jin Xu. Active learning

with query generation for cost-effective text classification. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 34, pages 6583–6590, 2020.

[120] Lin Yang, Yizhe Zhang, Jianxu Chen, Siyuan Zhang, and Danny Z Chen. Sugges-

tive annotation: A deep active learning framework for biomedical image segmen-

tation. In International conference on medical image computing and computer-

assisted intervention, pages 399–407. Springer, 2017.

[121] Promod Yenigalla, Abhay Kumar, Suraj Tripathi, Chirag Singh, Sibsambhu Kar,

and Jithendra Vepa. Speech emotion recognition using spectrogram & phoneme

embedding. In Interspeech, volume 2018, pages 3688–3692, 2018.

[122] Tang Yingpeng, Li Guoxiang, and Huang Shengjun. ALiPy: Active learning in

python. Technical report, Nanjing University of Aeronautics and Astronautics, Jan-

uary 2019. available as arXiv preprint https://arxiv.org/abs/1901.03802.



References 88

[123] Sebastian Zepf, Javier Hernandez, Alexander Schmitt, Wolfgang Minker, and Ros-

alind W Picard. Driver emotion recognition for intelligent vehicles: A survey. ACM

Computing Surveys (CSUR), 53(3):1–30, 2020.

[124] JTFLM Zhang and Huibin Jia. Design of speech corpus for mandarin text to speech.

In The Blizzard Challenge 2008 workshop, 2008.

[125] Shiqing Zhang, Aihua Chen, Wenping Guo, Yueli Cui, Xiaoming Zhao, and Limei

Liu. Learning Deep Binaural Representations With Deep Convolutional Neural

Networks for Spontaneous Speech Emotion Recognition. IEEE Access, 8:23496–

23505, 2020.

[126] Shiqing Zhang, Shiliang Zhang, Tiejun Huang, and Wen Gao. Speech emotion

recognition using deep convolutional neural network and discriminant temporal

pyramid matching. IEEE Transactions on Multimedia, 20(6):1576–1590, 2017.

[127] Shiqing Zhang, Xiaoming Zhao, and Qi Tian. Spontaneous Speech Emotion

Recognition Using Multiscale Deep Convolutional LSTM. IEEE Transactions on

Affective Computing, 13(2):680–688, April 2022.

[128] Weijian Zhang and Peng Song. Transfer sparse discriminant subspace learning

for cross-corpus speech emotion recognition. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 28:307–318, 2019.

[129] Weijian Zhang, Peng Song, Dongliang Chen, Chao Sheng, and Wenjing Zhang.

Cross-corpus speech emotion recognition based on joint transfer subspace learning

and regression. IEEE Transactions on Cognitive and Developmental Systems, 2021.

[130] Ziping Zhao, Yu Zheng, Zixing Zhang, Haishuai Wang, Yiqin Zhao, and Chao

Li. Exploring Spatio-Temporal Representations by Integrating Attention-based

Bidirectional-LSTM-RNNs and FCNs for Speech Emotion Recognition. In In-

terspeech 2018, pages 272–276. ISCA, September 2018.



References 89

[131] Chunjun Zheng, Chunli Wang, and Ning Jia. An ensemble model for multi-level

speech emotion recognition. Applied Sciences, 10(1):205, 2020.

[132] Fuji Ren Zheng Liu and Xin Kang. Research on the effect of different speech

segment lengths on speech emotion recognition based on lstm. In 9th International

Workshop on Computer Science and Engineering, pages 491–499, 2019.


