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A B S T R A C T   

Only 50% of patients with depression respond to the first antidepressant drug administered. Thus, 
biomarkers for prediction of antidepressant responses are needed, as predicting which patients 
will not respond to antidepressants can optimize selection of alternative therapies. We aimed to 
identify biomarkers that could predict antidepressant responsiveness using a novel data-driven 
approach based on statistical pattern recognition. We retrospectively divided patients with 
major depressive disorder into antidepressant responder and non-responder groups. Compre-
hensive gene expression analysis was performed using peripheral blood without narrowing the 
genes. We designed a classifier according to our own discrete Bayes decision rule that can handle 
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categorical data. Nineteen genes showed differential expression in the antidepressant non- 
responder group (n = 15) compared to the antidepressant responder group (n = 15). In the 
training sample of 30 individuals, eight candidate genes had significantly altered expression 
according to quantitative real-time polymerase chain reaction. The expression of these genes was 
examined in an independent test sample of antidepressant responders (n = 22) and non- 
responders (n = 12). Using the discrete Bayes classifier with the HERC5, IFI6, and IFI44 genes 
identified in the training set yielded 85% discrimination accuracy for antidepressant respon-
siveness in the 34 test samples. Pathway analysis of the RNA sequencing data for antidepressant 
responsiveness identified that hypercytokinemia- and interferon-related genes were increased in 
non-responders. Disease and biofunction analysis identified changes in genes related to inflam-
matory and infectious diseases, including coronavirus disease. These results strongly suggest an 
association between antidepressant responsiveness and inflammation, which may be useful for 
future treatment strategies for depression.   

1. Introduction 

Depression is associated with repeated relapses and remissions. The 12-month prevalence of major depressive disorder (MDD) is 
approximately 6%, and the lifetime risk of depression is 15–18% [1]. In one-third of patients, depression is chronic and refractory to 
treatment, resulting in a significant reduction in quality of life [1,2]. Selective serotonin-reuptake inhibitors (SSRIs), which are widely 
used as first-line antidepressants, have a response rate of 39.6–68.0% [2] and remission rate of 23.5% [3]. The STAR*D study, a 
large-scale practical clinical trial, reported a response rate of 48.6% and remission rate of 36.8% in patients with depression who 
received an antidepressant as their first treatment step [4]. Given the low response rates, biological indicators that can predict the 
antidepressant response are desirable. If patients with depression who will not respond to antidepressants could be identified in 
advance, alternative therapies such as electroconvulsive therapy, repetitive transcranial magnetic stimulation, or cognitive behavioral 
therapy could be implemented. 

A recent large-scale genome-wide association study (GWAS) identified three single-nucleotide polymorphisms related to antide-
pressant responsiveness, and a gene-enrichment analysis identified immune response genes [5]. However, other GWASs have reported 
that no antidepressant treatment response-related genes meeting genome-wide significance could be identified; thus, no consensus was 
established [6,7]. 

The expression of proinflammatory genes, including interleukin 1 beta (IL1B) and tumor necrosis factor alpha (TNFA), is related to 
treatment response [8]. A recent review describing antidepressant response candidate gene expression studies in peripheral blood 
revealed that mRNA levels of IL1B, IL11, TNFA, and FK506-binding protein 5 (FKBP5) may be potential predictive and mediator 
biomarkers [9]. In a comprehensive analysis without a prior hypothesis, the expression of genes related to inflammatory responses was 
increased in citalopram non-responders [10]. In another report, changes in the expression of genes involved in the immune response 
and inflammation were associated with antidepressant responses [11]. A study of plasma proteins related to treatment prognosis for 
depression indicated that cytokines, such as interleukins, are involved in treatment responsiveness [12]. However, the results of in-
dividual gene expression levels are not consistent among studies [13–16]. Therefore, further data accumulation is needed. In addition, 
to the best of our knowledge, only one study has reported the results of a comprehensive gene analysis validated by another method, 
such as quantitative real-time polymerase chain reaction (q-PCR), and in independent samples with further pathway analysis [11]. 

Thus, the present study aimed to comprehensively analyze gene expression in peripheral blood and identify biomarkers that could 
predict antidepressant treatment responsiveness using a novel data-driven approach based on statistical pattern recognition. We also 
aimed to examine the pathophysiology of the treatment response via pathway analysis of the identified genes. 

2. Methods 

2.1. Ethical approval 

This study was conducted in accordance with the principles embodied in the latest version of the Declaration of Helsinki. The Ethics 
Committee of Hiroshima University (approval number H-35), the Institutional Ethics Committee of the University of Tokushima 
Graduate School (approval number R3-24), and the Institutional Review Board of the Yamaguchi University Hospital (approval 
number H30-172) approved this study. All participants provided informed consent before participation. 

2.2. Participants 

Participant set 1: Thirty participants were recruited from the Hiroshima University Hospital and collaborating clinics between 2012 
and 2018 for the Depression Biomarker Project approved by the Ethics Committee of Hiroshima University. Patients with MDD were 
diagnosed by trained psychiatrists following the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) 
criteria using unstructured interviews, information from medical records, and use of the Mini-International Neuropsychiatric Inter-
view (M.I.N.I.) [17] by a research psychiatrist. All participants could provide written informed consent because the severity of 
depressive symptoms was moderate. No patient had taken any antidepressants for ≥1 month preceding their inclusion in the study. 
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Participant set 2: Sixteen unmedicated patients with MDD were recruited from Tokushima University Hospital between 2004 and 
2012 for the Research on Analysis of Genes for Mental Disorders study, which has been approved by the Institutional Ethics Committee 
of the University of Tokushima Graduate School. MDD was diagnosed based on the DSM-IV criteria by at least two trained psychia-
trists. None of the patients had any other psychiatric disorders (axis I or II). The exclusion criteria were the use of non-steroidal anti- 
inflammatory agents, steroids, antidepressants, or anticonvulsants at the time of blood collection. 

Participant set 3: Eighteen patients with MDD were recruited at Yamaguchi University Hospital between 2019 and 2020 using 
community posters for the Depression Stratification Project. This project was approved by the Institutional Review Board of Yama-
guchi University Hospital. The diagnosis of MDD was based on the DSM-5 criteria by trained psychiatrists. Participants were screened 
using the Japanese version of the M.I.N.I. and/or by clinical interview. The exclusion criteria included current or previous substance 
abuse/dependence, other psychotic illnesses, any neurological disease, family history of hereditary neurological disorder, endocrine 
disease, head trauma, or other severe medical conditions (e.g., liver failure). 

The depressive symptoms of all participants were assessed using the Structured Interview Guide for the Hamilton Depression Rating 
Scale (SIGH-D) [18,19] before and after treatment in accordance with the planned evaluation period (set 1: 6–8 weeks, set 2: 8 weeks, 
set 3: 4–12 weeks). Participants whose scores improved by ≥ 50% compared with their pre-treatment scores were defined as the 
responder group, and those whose scores improved by <50% were defined as the non-responder group. The demographic information 
of all participants is shown in Table 1. The main classes of antidepressants used are shown in Supplementary Table 1. 

2.3. RNA isolation from human blood samples 

Participant set 1: Total RNA was isolated from blood samples following our previous study [20]. In brief, for each participant, 7 mL 
of venous blood sample was collected in EDTA-Na2 tubes and then stored in a deep freezer at − 80 ◦C for several years. Once thawed, 
the blood samples were immediately mixed with the lysis buffer of the NucleoSpin RNA blood kit (Takara Bio, Kusatsu, Japan). RNA 
was isolated following the protocol established by the manufacturer. 

Participant sets 2 and 3: At the Tokushima University Hospital and Yamaguchi University Hospital, venous blood samples were 
collected from participants into PAXgene tubes (Becton, Dickinson and Company, Franklin Lakes, NJ, USA). RNA isolation from the 
filled PAXgene tubes was performed using the PAXgene Blood RNA Kit (Qiagen, Venlo, Netherlands) following the protocol established 
by the manufacturer. 

The quality and quantity of RNA were measured with a NanoDrop One spectrophotometer (Thermo Fisher Scientific, Waltham, MA, 
USA). The RNA integrity numbers were measured with an Agilent Bioanalyzer with the Agilent RNA 6000 nano or pico kit (Agilent 
Technologies, Santa Clara, CA, USA) following the protocol established by the manufacturer. 

2.4. RNA sequencing 

For participant set 1, sequencing libraries were constructed employing the TruSeq Stranded Total RNA with Ribo-Zero Gold LT 
sample prep kit (Illumina, San Diego, CA, USA) following the protocol established by the manufacturer. After ribosomal RNA was 
removed, reverse transcription was performed to prepare the libraries. The libraries were pooled after quantification by bioanalyzer 
analysis and fluorometry with the Qubit dsDNA HS assay kit and a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MO, 
USA). Sequencing of paired-end fragments (75 bp × 2) was performed on a NextSeq 500 sequencing platform (Illumina; BGI, Beijing, 
China) to a depth of 13–35 (average: 21) million fragments. 

For participant set 2, sequencing libraries were constructed with the TruSeq RNA Library Preparation Kit v2 (Illumina), and 
sequencing was performed using ṯhe HiSeq 4000 System (Illumina; BGI, Beijing, China). 

Table 1 
Demographic characteristics of participants.   

Group Number Sex (Male/ 
Female) 

Age 
(years) 

SIGH-D- 
pre 

SIGH-D- 
post 

Equivalent dose of IMI-pre 
(mg) 

Equivalent dose of IMI- 
post (mg) 

Participant set 
1 

RES 15 8/7 36.5 ± 7.3 19.3 ±
3.3 

5.8 ± 2.8* 0 83.3 ± 47.4 

NRES 15 6/9 37.3 ± 8.7 20.7 ±
5.6 

15.4 ±
4.0 

0 110.0 ± 50.0 

Participant set 
2 

RES 11 3/8 43.3 ±
15.8 

23.8 ±
6.3 

5.7 ± 4.2* 0 100.2 ± 53.8 

NRES 5 0/5 40.6 ±
17.0 

25.4 ±
4.2 

18.6 ±
5.7 

0 127.5 ± 33.5 

Participant set 
3 

RES 11 8/3 56.0 ±
19.3 

21.3 ±
6.9 

4.4 ± 3.0* 80.7 ± 132.7 106.8 ± 79.7 

NRES 7 2/5 65.0 ±
12.7 

19.4 ±
9.4 

17.6 ±
5.9 

117.9 ± 92.9 196.4 ± 89.2 

Data are shown as mean ± standard deviation. 
*P < 0.05 (unpaired Student’s t-test). 
Abbreviations: RES, responder; NRES, non-responder; SIGH-D, Structured Interview Guide for the Hamilton Depression Rating Scale; IMI, 
imipramine. 
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Data for each sample were separated to generate FASTQ files. Next-generation sequencing data were cleaned with cutadapt 
(version 1.8.3) [21] and cmpfastq_pe.pl (http://compbio.brc.iop.kcl.ac.uk/software/cmpfastq_pe.php). After a step of quality control, 
the filtered short reads were mapped to the reference genome (hg38) with STAR (version 2.5.1b) [22]. Strand-specific or 
non-strand-specific transcripts per million were calculated for each sample with RSEM (version 1.3.3.) [23] and were then normalized 
using the trimmed mean of M value method. P-values were calculated using a likelihood ratio test. Gene functional analysis was 
performed using an ingenuity pathway analysis (Qiagen, Hilden, Germany). 

2.5. q-PCR 

cDNA synthesis and q-PCR were conducted following our previous study [20]. In brief, cDNA was synthesized with a PrimeScript 
RT reagent kit (Takara Bio, Kusatsu, Japan) with oligo (dT) primers and 1 μg of total RNA. It was then mixed with SYBR Premix Ex 
TaqII (Takara Bio, Kusatsu, Japan) and specific primers. Amplification was conducted for 50 cycles with a StepOnePlus real-time PCR 
system (Thermo Fisher Scientific, Waltham, MO, USA). Each cycle included amplification for 15 s at 95 ◦C and 1 min at 60 ◦C. The 
primers we used are presented in Supplementary Table 2. All measurements were conducted in duplicate. To quantify the levels of 
candidate gene expression and those of Beta-2-microglobulin (B2M; the internal control), a calibration curve was created with 10, 5, 
2.5, 1.25, 0.625, and 0.3125 fM synthetic DNA, which included the target sequence (Integrated DNA Technologies, Coralville, IA, 
USA). Fold change was calculated by the ratio of each gene to the B2M expression level of the internal control, with the mean value of 
the responders as 1. The synthetic DNA sequences we used are shown in Supplementary Table 3. 

2.6. Statistical analysis 

The distribution of participant age, SIGH-D score before starting treatment, antidepressant dose, and mRNA expression data from q- 
PCR were investigated with Student’s t-tests, whereas the distribution of participant sex was investigated with Fisher’s exact test with 
EZR v1.54 (http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmedEN.html) [24]. Holm’s multi-testing correction was per-
formed for the q-PCR results (Supplementary Table 4). The significance level was set to 0.05. 

2.7. Data analysis 

2.7.1. Classifier design by discrete bayes decision rule 
The discrete Bayes classifier handles discrete data. x1 and x2 are two markers and their range is exclusively divided into divisions. 
Suppose that x1 has two divisions and x2 has three divisions. Moreover, the discretized data of a patient belong to the first division 

x1(1) in marker x1 and the third division x2(3) in marker x2 That is, x =
(
x1(1) , x2(3)

)
. Then, P

(
x1(1) |ω1

)
and P

(
x2(3) |ω1

)
are defined as 

follows: 

P
(
x1(1) |ω1

)
=

n1
1(1)

n1
1(1) + n1

2(3)

and 

P
(
x2(3) |ω1

)
=

n1
2(3)

n1
1(1) + n1

2(3)

where n1
1(1) denotes the number of training samples for ω1 belonging to the division x1(1) and n1

2(3) denotes the number of the training 
samples for ω1 belonging to the division x2(3) Then, the class-conditional probability P

(
x1(1) , x2(3)|ω1

)
for fx1 is given by 

P
(
x1(1) , x2(3)|ω1

)
= P

(
x1(1) |ω1

)
P
(
x2(3) |ω1

)

Using n2
1(1) and n2

2(3) for ω2, we similarly get 

P
(
x1(1) |ω2

)
=

n2
1(1)

n2
1(1) + n2

2(3)

and  

P
(
x2(3) |ω2

)
=

n2
2(3)

n2
1(1) + n2

2(3)

P
(
x1(1) , x2(2)|ω2

)
for ω2 is also given by 

P
(
x1(1) , x2(3)|ω2

)
= P

(
x1(1) |ω2

)
P
(
x2(3) |ω2

)

The posterior probabilities of classes ωi are given as follows: 
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P(ωi|x) =
P
(
x1(1) , x2(3)|ωi

)

P
(
x1(1) , x2(3)|ω1

)
+ P

(
x1(1) , x2(3)|ω2

)

In this study, we assumed that in the a priori probability, P(ωi),P(ω1) = P(ω2). The patient was then assigned to the class with the 
maximum posterior probability. For additional details, refer to previous studies [25,26]. 

2.7.2. Marker selection 
The following eight candidate genes were used to predict antidepressant response: ISG15, RSAD2, HERC5, IFIT1, IFI6, IFI44, IFI44L, 

and IFIT3. Among them, the combination of two markers was selected under conditions and examined. There were 30 training samples 
from participant set 1 and 34 test samples from participant sets 2 and 3. Note that marker selection was performed using only training 
samples. 

We used the leave-one-out method [27] to identify an optimal combination of markers. According to the leave-one-out method, one 
training sample was selected as a sub-test sample from the 30 training samples and the remaining 29 training samples were assigned as 
sub-training samples (Supplementary Figure 1). 

In pattern recognition fields, markers cannot be selected based on their individual effectiveness. Therefore, the combination of 
markers should be carefully selected. For this purpose, we first selected one combination of two markers. The discrete Bayes classifier 
was designed using 29 sub-training samples, and the re-substitution estimate for the candidate marker combination was obtained by 
reclassifying the 29 sub-training samples. 

Next, feature criteria were calculated. Note that one sub-test sample was not used. This process was then repeated until all 
candidate marker combinations (8C2 = 28) had been evaluated. Among the 28 two-marker combinations, one marker combination 
with either maximal sensitivity subject to a specificity of ≥50% or a maximal F1 measure was selected to predict antidepressant 
response. Using the leave-one-out method, the above process was repeated 30 times (i.e., until each training sample had been selected 
once only as a sub-test sample). As a result, the most frequent combination of two markers identified in the leave-one-out loop was 
considered the optimal combination of markers. When the number of markers was three, marker selection was conducted again ac-
cording to the same procedure. 

3. Results 

To identify genetic markers predictive of treatment response, we first conducted a genome-wide gene expression analysis without 
an a priori hypothesis. Among the untreated patients with MDD of participant set 1, we retrospectively assessed the treatment response 
after 6–8 weeks and divided them into the treatment responder (n = 15) and treatment non-responder groups (n = 15). We then 
performed RNA-Seq analysis using RNA obtained before starting treatment. Patient demographic data are shown in Table 1. There 
were no differences in sex, age, SIGH-D score before starting treatment, or antidepressant dose at the time of treatment response 
determination between groups. The SIGH-D score after treatment was significantly lower in the responder group than in the non- 
responder group (P = 3.22E-08). 

When we compared responders and non-responders, we identified 19 genes (P < 0.01 and a fold change of >1.5; Table 2). Among 
the 19 genes, the top 10 genes with an average count of 50 or more were validated using q-PCR. We found significant expression 
changes in eight genes (P < 0.05) (Fig. 1); however, OAS3 did not show significant changes according to q-PCR (P = 0.08), and 

Table 2 
Genes with altered expression in non-responders of participant set 1 compared with those in responders based on RNA-Seq.  

Gene Gene name Participant set 1 

Log FC P-value 

OAS3 2’-5’-Oligoadenylate synthetase 3 0.864 0.0001 
ISG15 ISG15 ubiquitin-like modifier 0.923 0.0001 
RSAD2 Radical S-adenosyl methionine domain containing 2 0.905 0.0001 
HERC5 HECT and RLD domain containing E3 ubiquitin protein ligase 5 0.795 0.0002 
IFIT1 Interferon-induced protein with tetratricopeptide repeats 3 1.161 0.0002 
SIGLEC1 Sialic acid-binding Ig-like lectin 1 1.178 0.0003 
IFI6 Interferon-alpha inducible protein 6 0.908 0.0005 
GYPE Glycophorin E (MNS blood group) − 0.6 0.0007 
IFI44 Interferon-induced protein 44 0.704 0.0012 
IFI44L Interferon-induced protein 44 like 0.997 0.0013 
IFIT3 Interferon-induced protein with tetratricopeptide repeats 3 0.799 0.0018 
LRRC2 Leucine-Rich repeat containing 2 0.707 0.0021 
EPHX1 Epoxide hydrolase 1 0.631 0.0023 
RAP1GAP RAP1 GTPase activating protein 1.959 0.0023 
RPS26 Ribosomal protein S26 1.012 0.0025 
OASL 2’-5’-Oligoadenylate synthetase like 0.641 0.0025 
ACCS 1-Aminocyclopropane-1-carboxylate synthase homolog (inactive) − 0.736 0.0034 
MGC70870 C-terminal-binding protein 2 pseudogene − 0.731 0.005 
SLC14A1 Solute carrier family 14 member 1 (Kidd blood group) 0.696 0.0071 

Abbreviations: FC, fold change. 
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Fig. 1. Comparison of candidate gene expression between responders and non-responders in participant set 1.1A-1I represent gene expression levels 
of OAS3, ISG15, RSAD2, HERC5, IFIT1, IFI6, IFI44, IFI44L, and IFIT3, respectively. Data are shown as mean ± standard deviation. Each vertical axis 
indicates a fold change. *P < 0.05 (unpaired Student’s t-test) and #P = 0.08 for RES versus NRES. Details of the p-values are shown in Supple-
mentary Table 4. Abbreviations: RES, responder; NRES, non-responder; q-PCR, qualitative real-time polymerase chain reaction. 
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SIGLEC1 was not successfully amplified using q-PCR. Thus, the remaining eight genes were selected as candidate predictive markers of 
antidepressant responsiveness. 

We then examined the untreated patients with MDD from an independent institution (participant set 2), whom we retrospectively 
divided into a treatment response group (n = 11) and treatment-resistance group (n = 5) after 8 weeks and performed comprehensive 
expression analysis without an a priori hypothesis using RNA-Seq data obtained before starting the treatment. The demographic data 
are presented in Table 1. There were no differences in sex, age, SIGH-D score before treatment initiation, or antidepressant dose at the 
time of treatment response determination after treatment between groups. The SIGH-D score after treatment was significantly lower in 
the responder group than in the non-responder group (P = 1.64E-05). The P-values and fold changes of eight candidate genes from 
participant set 1 are shown in Supplementary Table 5. We also identified 87 genes that met the criteria of P-values of <0.01 and fold 
changes of >1.5 in the responders compared with those in the non-responders according to the genome-wide gene expression analysis 
without an a priori hypothesis (Supplementary Table 6). 

Furthermore, among the patients with MDD from another independent institute (participant set 3), we retrospectively examined 
the treatment response after 4–12 weeks and divided the patients into the responder (n = 11) and non-responder (n = 7) groups. The 
demographic data are provided in Table 1. There were no differences in sex, age, SIGH-D score before treatment, or antidepressant 
dose between groups. q-PCR was performed for these eight candidate genes identified from participant set 1 (Supplementary Figure 2). 

Marker selection was then performed for eight candidate genes. In marker selection, feature criteria, such as accuracy, sensitivity, 
and F1 measure, were estimated using the discrete Bayes classifier designed with training samples from participant set 1. Varying the 
number of markers from two to three, all combinations of these eight genes were evaluated in the training samples. According to the 
feature criteria, two combinations were selected (Table 3). The two combinations were evaluated using this discrete Bayes classifier in 
the independent test samples from participant sets 2 and 3 (Table 3). The combination of HERC5 and IFI6 demonstrated high accuracy 
(79%). The combination of HERC5, IFI6, and IFI44 exhibited the highest accuracy (sensitivity of 91%, specificity of 75%, and accuracy 
of 85%). 

Finally, for functional analysis, we performed pathway analysis using 19 candidate genes identified in the comprehensive analysis 
of participant set 1. In the ingenuity canonical pathway, interferon signaling (P = 1.38E-08) and the role of hypercytokinemia/ 
hyperchemokinemia in the pathogenesis of influenza (P = 4.79E-07) were significantly enhanced in non-responders relative to re-
sponders (Supplementary Table 7). Similar results were obtained using the 87 genes identified in participant set 2, an independent 
sample (Supplementary Table 8). These results suggested that markedly enhanced cytokine levels and interferon signaling were 
present in the antidepressant non-responder group. 

In the analysis of diseases and biofunctions, the altered expression of genes associated with inflammatory and infectious diseases, 
including replication of hepatitis C (participant set 1; P = 5.81E-07, participant set 2; P = 4.24E-07) and coronavirus disease (COVID- 
19) (participant set 1; P = 2.7E-11, participant set 2; P = 3.95E-10), was observed (Supplementary Tables 9 and 10). 

4. Discussion 

Immune responses and inflammation have been implicated in the pathogenesis of MDD. We performed a comprehensive gene 
expression analysis without an a priori hypothesis using blood samples from patients with MDD who were not yet taking antide-
pressants associated with treatment response. The expression levels of the identified genes were validated using q-PCR. Gene 
expression was further validated using independent samples by RNA sequencing (participant set 2) or q-PCR (participant set 3). 
Although we could not compare gene expression levels directly among samples from different facilities owing to different protocols for 
RNA purification and analysis, we could separate responders from non-responders with a discrimination accuracy of 85% using a 
combination of three genes, HERC5, IFI6, and IFI44, for independent test samples. Most importantly, we could classify the treatment 
response in completely independent test samples obtained from different facilities using genes identified in training samples via the 
data-driven approach. Our results suggested that the combination of these genes could be used as a predictive marker of treatment 
response. In recent depression treatment guidelines, antidepressant medication is only one option for first-line treatment, as is psy-
chological therapy [28,29]. Prediction of potential antidepressant non-responders can be useful for a shared decision-making process. 
During the treatment selection phase, psychological therapy alone or in combination of psychological treatment and pharmacotherapy 
may be chosen, or electroconvulsive therapy may be recommended for cases of more severe depression. 

We performed pathway analysis using identified gene sets and found that gene expression related to hypercytokinemia and 
interferon signaling was increased in non-responders. These results are in line with those of previous reports that inflammatory signals 
are involved in antidepressant responsiveness [8–11]. 

Table 3 
Discrimination performance for identifying responders in training and test samples.   

Combination of 
markers 

Accuracy Sensitivity Specificity Precision F1 
measure 

Discrimination performance for training samples (participant set 1) 
RES; n = 15, NRES; n = 15 

HERC5, IFI6 0.83 0.93 0.73 0.78 0.85 
HERC5, IFI6, IFI44 0.90 0.93 0.87 0.88 0.90 

Discrimination performance for test samples (participant sets 2 and 
3) RES; n = 22, NRES; n = 12 

HERC5, IFI6 0.79 0.91 0.58 0.80 0.85 
HERC5, IFI6, IFI44 0.85 0.91 0.75 0.87 0.89 

Abbreviations: RES, responder; NRES, non-responder. 
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The gene clusters associated with hypercytokinemia and interferon signaling were significantly increased in treatment non- 
responders in three independent sample groups, and this provides a basis for speculating on the pathological mechanisms underly-
ing antidepressant responsiveness. Interferon signaling induces depression and may be associated with increases in cytokine levels. For 
example, in patients with hepatitis C who were depressed after receiving interferon-alpha, increased spinal fluid IL-6 and monocyte 
chemotactic protein 1 levels were noted. Spinal fluid IL-6 was also negatively correlated with 5-hydroxyindole acetic acid, a serotonin 
metabolite [30]. Interferon-alpha has also been reported to cause reduced serum brain-derived neurotrophic factor levels, which may 
contribute to the mechanism underlying depression [31]. Peripheral interferon increased the expression of interferon-stimulated genes 
such as Rsad2, Isg15, and Ifit3 in the cortical microglia of mice and induced microglial activation [32]. In humans, microglia are 
considered to play crucial roles in various psychiatric disorders, including depression [33]. 

Regarding inflammatory cytokines and treatment responsiveness, as mentioned in the Introduction, several studies have demon-
strated increased inflammatory cytokine levels in treatment-resistant depression. Therefore, the administration of anti-inflammatory 
agents has been proposed as a potential novel treatment for MDD. For example, depressive-like behavior and impaired neurogenesis in 
the hippocampus induced by interferon-alpha can be improved by minocycline administration in mice [34]. In humans, a large 
meta-analysis of randomized controlled trials (RCTs) of anti-inflammatory treatments reported the antidepressant effects of 
non-steroidal anti-inflammatory drugs (NSAIDs) and anti-inflammatory drugs [35–37]. Moreover, the tolerability of NSAIDs was 
reported to be superior to that of a placebo [37]. In contrast, large RCTs have yielded negative results on the preventive effect of small 
doses of aspirin on depression [38]. Thus, anti-inflammatory drugs are considered to have promising antidepressant effect; however, 
the selection of target patients is also important. For example, if the gene expression changes identified in this study are established as 
biomarkers and anti-inflammatory drugs are introduced after the identification of patients who are likely to be resistant to treatment, 
more effective therapeutic interventions are possible. 

Notably, COVID-19 was identified in the analysis of diseases and biofunctions. It has been reported that 23.0% of COVID-19 pa-
tients had pre-existing depression [39]. Patients with psychiatric disorders, including depression, have increased mortality, hospi-
talization, and intensive care unit admission after severe acute respiratory coronavirus 2 infection [40]. It has also been reported that 
the levels of inflammatory markers, including IL-6, are increased in patients with COVID-19 [41]. The involvement of immune 
dysfunction in the development of depression has also been proposed [42]. Recently, OAS3, a gene identified in this study, was noted to 
be associated withCOVID-19 severity according to a GWAS analysis [43]. COVID-19-induced depression may be a factor affecting 
antidepressant resistance. In contrast, SSRIs may prevent the development of COVID-19 [44]. It will be important to monitor whether 
COVID-19 patients with depression respond well to antidepressants. 

This study has several limitations. Firstly, the number of cases was small. However, depression is not a homogeneous disease but a 
heterogeneous syndrome. We previously reported that DNA methylation and gene expression profiles differ according to age of onset 
and sex [45–48]. Rather than merely increasing the number of participants, it is also important to collect more distinctive and uniform 
cases in future studies. In this study, reproducible changes in gene expression were identified in patients from three independent 
institutes focusing on antidepressant responsiveness. The second limitation was that this was an observational study rather than a 
double-blind interventional study with a placebo; hence, the effects of a placebo and nocebo on treatment response cannot be ignored. 
Thirdly, it was difficult to standardize the classes and dosages of antidepressants and match the timing of assessment because this study 
was conducted in a real-world clinical practice setting to reduce the burden on patients. However, the fact that we were able to identify 
reproducible treatment response markers among patients may be a strength of this study. To address these limitations, multicenter, 
double-blinded, large-scale interventional studies need to be conducted. The fourth limitation is that the methods of RNA purification 
and expression analysis differed among institutions. In our previous study, when RNA-Seq was conducted with RNA purified using 
different methods, significant differences in housekeeping gene expressions were identified [20]. It is necessary to standardize RNA 
purification methods and establish discrimination criteria at each institution for clinical application as predictive markers of treatment 
responses. The final limitation is that only RNA analysis was performed. A more robust biomarker could be identified by setting up a 
complex biomarker with plasma or DNA methylation. 

Despite these limitations, the results of this study form the basis for the development of predictive markers of the therapeutic 
response to depression and may provide insights into the development of novel therapeutic strategies for depression, such as anti- 
inflammatory drugs. 
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