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A B S T R A C T   

Backgrounds: Nonalcoholic steatohepatitis (NASH) is characterized by fat deposition, inflammation, and hepa-
tocellular damage. The diagnosis of NASH is confirmed pathologically, and hepatocyte ballooning is an 
important finding for definite diagnosis. Recently, α-synuclein deposition in multiple organs was reported in 
Parkinson’s disease. Since it was reported that α-synuclein is taken up by hepatocytes via connexin 32, the 
expression of α-synuclein in the liver in NASH is of interest. The accumulation of α-synuclein in the liver in NASH 
was investigated. Immunostaining for p62, ubiquitin, and α-synuclein was performed, and the usefulness of 
immunostaining in pathological diagnosis was examined. 
Methods: Liver biopsy tissue specimens from 20 patients were evaluated. Several antibodies against α-synuclein, 
as well as antibodies against connexin 32, p62, and ubiquitin were used for immunohistochemical analyses. 
Staining results were evaluated by several pathologists with varying experience, and the diagnostic accuracy of 
ballooning was compared. 
Results: Polyclonal α-synuclein antibody, not the monoclonal antibody, reacted with eosinophilic aggregates in 
ballooning cells. Expression of connexin 32 in degenerating cells was also demonstrated. Antibodies against p62 
and ubiquitin also reacted with some of the ballooning cells. In the pathologists’ evaluations, the highest 
interobserver agreement was obtained with hematoxylin and eosin (H&E)-stained slides, followed by slides 
immunostained for p62 and α-synuclein, and there were cases with different results between H&E staining and 
immunostaining 
Conclusion: These results indicate the incorporation of degenerated α-synuclein into ballooning cells, suggesting 
the involvement of α-synuclein in the pathogenesis of NASH. The combination of immunostaining including 
polyclonal α-synuclein may contribute to improving the diagnosis of NASH.   

1. Introduction 

Nonalcoholic fatty liver disease (NAFLD) is one of the most common 
liver diseases [1]. Nonalcoholic steatohepatitis (NASH) is the inflam-
matory subtype of NAFLD, and in addition to fatty deposits, hepato-
cellular injury, balloon-like degeneration (ballooning), and 
inflammation are seen, which may be accompanied by fibrosis. 
Although often clinically asymptomatic, over time NASH is known to 
progress to cirrhosis, end-stage liver failure, and the need for liver 
transplantation [2]. The diagnosis of NAFLD requires the absence of 

excessive alcohol consumption and imaging or histological evidence of 
≥ 5 % fat deposition in liver tissue [1]. On the other hand, the diagnosis 
of NASH requires biopsy and histological evidence of ≥ 5 % hepatic fat 
deposition, ballooning of hepatocytes, and inflammation of the hepatic 
lobules. 

The histological grade of NASH is also assessed using a scoring sys-
tem (NAFLD activity score) that includes steatosis, lobular inflamma-
tion, and ballooning [3]. Liver biopsy is currently the only accepted 
method to reliably distinguish NASH from simple fatty liver or uncom-
plicated NAFLD [1,4,5]. 
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Hepatocyte ballooning is an important finding in the pathological 
diagnosis of NASH. It is defined as enlarged hepatocytes with eosino-
philic aggregates in the cell chamber [6–9]. 

Immunostaining shows decreased CK8 and CK18, and Mallory-Denk 
bodies found in some ballooning cells are known to be positive for anti- 
p62 and anti-ubiquitin antibodies, which are thought to be associated 
with cytoskeletal damage [10–15]. However, the definition of 
ballooning is descriptive, and discrepancies in diagnosis among pa-
thologists are often problematic [16]. Immunostaining is available as an 
adjunct to pathological diagnosis, but its usefulness is uncertain, and 
many cases are currently diagnosed using hematoxylin and eosin (H&E) 
staining. 

Alpha-synuclein (α-syn) is a protein present in the presynaptic ter-
minals of neurons in the central nervous system. Accumulation of α-syn 
is a key sign of Parkinson’s disease (PD), dementia with Lewy bodies 
(DLB), and multiple system atrophy (MSA), which are neuropathological 
disorders called synucleinopathies [17]. Pathologically, PD and DLB are 
characterized mainly by accumulation of α-syn in neurons, whereas in 
MSA, accumulation of α-syn is observed mainly in oligodendrocytes 
[18]. Although α-syn accumulation in the brain is a pathological feature 
of PD, several studies have identified α-syn accumulation in gastroin-
testinal areas including the liver, retina, skin, and heart, suggesting that 
PD is a multiorgan disorder [19,20]. In addition, a recent study reported 
that, in human liver tissue, cases with neuropathologically confirmed 
α-syn showed α-syn within hepatocyte structures to a higher degree than 
cases without α-syn accumulation in the brain, suggesting that the liver 
is involved in pathological α-syn metabolism [21,22]. It has been re-
ported that α-syn oligomers are incorporated into neurons and oligo-
dendrocytes via Connexin 32 (Cx32), a gap junction protein, in PD and 
MSA [22,26,27]. Hepatocytes express Cx32 and Cx26, with Cx32 ac-
counting for the majority. Previous studies have also shown that fatty 
hepatitis and fibrosis progression in NAFLD patients correlate with low 
expression of Cx32 in hepatocytes and are associated with NAFLD pro-
gression. These facts indicate that the physiological uptake and excre-
tion of α-syn via Cx32 may be impaired in the hepatocytes of NASH 
patients, but the dynamics of α-syn in the NASH liver have not yet been 
investigated. We hypothesized that ballooning, a hepatocellular 
degenerative phenomenon in NASH, may be related to the accumulation 
of α-syn. 

In this study, the accumulation of α-syn in the NASH liver was 
investigated using monoclonal and polyclonal antibodies against phos-
phorylated α-syn. The expressions of Cx32 and α-syn oligomers were 
also examined in representative NASH cases containing marked 
ballooning cells. In addition, to evaluate the usefulness of immuno-
staining in determining ballooning, immunostaining for p62 and ubiq-
uitin, as well as α-syn, was performed, and interobserver agreement 
(IOA) among multiple pathologists was evaluated. 

2. Materials and methods 

2.1. Design 

This retrospective, cohort study using formalin-fixed, paraffin- 
embedded tissue blocks. Liver biopsy tissue specimens from 20 patients 
at Tokushima University Hospital (Tokushima, Japan) who were histo-
logically diagnosed with steatohepatitis between 2010 and 2020 were 
used. 

2.2. Patients’ background characteristics 

Patients in this cohort ranged in age from 33 to 75 years, and 11 (55 
%) were female. 

NAFLD was clinically suspected as a differential diagnosis at biopsy 
in 17 patients (85 %), with other differential diagnoses including alco-
holic hepatitis (ASH), autoimmune hepatitis (AIH), and drug-induced 
hepatitis (Table 1). 

2.3. Immunohistochemistry 

Immunostaining was performed using anti-phosphorylated α-syn 
monoclonal, anti-phosphorylated α-syn polyclonal, anti-oligomer- 
specific α-syn, anti-Cx32 antibodies and anti-cytokeratin 8/18 in pa-
tients diagnosed with NASH. 

The immunostaining protocol after deparaffinization with xylene 
and rehydration in a graded ethanol bath (100 %, 95 %, 70 %) is 
described below. Immunostaining for anti-phosphorylated α-syn 
monoclonal antibody (1:1000 dilution; WAKO, Richmond, VA; 
pSyn#64), anti-phosphorylated α-syn polyclonal antibody [23–25] 
(1:4000 dilution), anti-p62 antibody (1:5000 dilution; Enzo Life Sci-
ences, Farmingdale, NY; PW9860), anti-ubiquitin antibody (1:1000 
dilution; Sigma-Aldrich, St. Louis, MO; AB1690) and anti-cytokeratin 
8/18 antibody (1:1000 dilution; Abcam, Cambridge, MA; ab17139) 
was performed using a Leica BOND-MAX™ system (Leica Biosystems, 
Wetzlar, Germany) with Bond polymer refined detection reagents (Leica 
Biosystems). For anti-oligomer-specific α-syn antibody (1:200 dilution; 
Agrisera, Vännäs, Sweden; AS13-2718) and anti-Cx32 antibody (1:200 
dilution; Invitrogen, Carlsbad, CA; 71-0600), antigen activation was 
performed at room temperature (RT) for 7 min with proteinase K solu-
tion (Nichirei Biosciences, Tokyo, Japan). After 2 h of incubation with 
these primary antibodies at RT, the secondary antibody, labeled 
Polymer-HRP Mouse/Rabbit (DakoCytomation, Glostrup, Denmark) 
was applied and incubated for 40 min at RT. HRP was colored by dia-
minobenzidine (DAB) using DAB Substrate Kit (Abcam, Cambridge, UK) 
according to the manufacturer’s instructions. 

2.4. Histological evaluation 

Staining results were evaluated by several pathologists with varying 
experience using hematoxylin and eosin (H&E) staining and immuno-
staining. Liver pathologist evaluated Steatosis, lobular inflammation 
and hepatocyte ballooning using NAS score and fibrosis stage using 
Brunt’s system. H&E-stained slides were evaluated for the presence of 
ballooning with NAS score 1 or 2. Polyclonal phosphorylated α-syn, p62, 
and ubiquitin-immunostained slides were evaluated as positive or 
negative. 

2.5. Statistical analysis 

Interobserver agreement (IOA) was evaluated using Fleiss’ kappa (κ) 
correlation coefficient, with κ ≤ 0 indicating no agreement, 0.01–0.20 
no to poor, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 substantial, 
and 0.81–1.00 almost perfect agreement. The κ values were calculated 
with the “irr” package of R version 4.2.1 (R Foundation for Statistical 
Computing). 

3. Results 

3.1. Expression of phosphorylated α-syn in ballooning cells 

Immunostaining showed positive results for anti-phosphorylated 
α-syn polyclonal antibodies and negative results for anti- 
phosphorylated α-syn monoclonal antibodies in the ballooning cells of 
the NASH liver (Fig. 1A-C). Oligomer-specific α-syn antibodies were 
positive in granular form in a small number of degenerated hepatocytes 
(Fig. 1D). 

Table 1 
Patients’ clinical characteristics.  

Variable  

Female, n (%) 11 (55 %) 
Age at biopsy, (mean) 33–75(58) 
Number of NAFLD, n (%) 17 (85 %)  
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3.2. Expression of Cx32 in NASH liver 

The Cx32 antibody was positive in the form of dots on the hepatocyte 
membranes with weak degeneration. In areas of strong degeneration, 
the antibody was positive in enlarged hepatocytes, and its expression 
was attenuated in surrounding hepatocytes (Fig. 2A,B). 

3.3. Expression of p62, ubiquitin and cytokeratin 8/18 in ballooning cells 

Aggregates in ballooning cells were positive for anti-p62 and anti- 
ubiquitin antibodies, with similar localization to that of anti-α-syn 
polyclonal antibodies (Fig. 2C,D). Cytokeratin 8/18 showed attenuated 
expression in ballooning hepatocytes (Fig. 2E). 

3.4. Histological evaluation 

The evaluation by liver pathologist were 0–3 (mean 1.0) for Stea-
tosis, 0–1 (mean 0.8) for lobular inflammation, 0–2(mean 0.9) for he-
patocyte ballooning, and 0–4 (mean 2.2) for fibrosis stage 
(Supplementary Table 1). Evaluation of ballooning on H&E-stained 
slides showed that the pathologist with the most experience in liver 
diagnosis judged 14 of 20 cases to be positive, whereas pathologists with 
limited diagnostic experience judged 11–14 cases to be positive (Sup-
plementary Table 2). 

In the evaluation of polyclonal phosphorylated α-syn-immuno-
stained slides, the pathologist with the most experience in liver diag-
nosis considered 16 of 20 cases positive, whereas pathologists with 
limited diagnostic experience considered 12–15 cases positive (Figs. 3 
and 4) (Supplementary Table 3). 

In the evaluation of p62-immunostained slides, the pathologist with 
the most experience in liver diagnosis judged 16 of 20 cases to be pos-
itive, whereas pathologists with limited diagnostic experience judged 
15–16 cases to be positive (Supplementary Table 4). 

In the evaluation of ubiquitin-immunostained slides, the pathologist 
with the most experience in liver diagnosis considered 9 of 20 cases 

positive, whereas pathologists with limited diagnostic experience 
considered 8–11 cases positive (Supplementary Table 5). 

The IOA among pathologists was 0.73 for H&E-stained slides, 0.62 
for polyclonal phosphorylated α-syn-immunostained slides, 0.62 for 
p62-immunostained slides, and 0.30 for ubiquitin-immunostained slides 
(Table 2). 

4. Discussion 

In the pathological diagnosis of NASH, hepatocyte ballooning is an 
important histological finding. However, the definition of ballooning 
formation on H&E staining is descriptive, and the mechanism by which 
ballooning occurs is controversial. In the present study, it was shown 
that α-syn is positive in ballooning cells, and the association between 
degenerating cells and Cx32 expression was evaluated. In addition, the 
usefulness of immunostaining for determining ballooning in the patho-
logical diagnosis of NASH was examined. 

It is known that α-syn accumulates in neurons and oligodendrocytes 
in PD and other neuropathological diseases. Several studies have also 
confirmed accumulation of α-syn in multiple organs in PD [18–20]. It 
has been reported that α-syn oligomers are incorporated into neurons 
and oligodendrocytes via Cx32, a gap junction protein, in PD and MSA 
[22,26,27]. Hepatocytes express Cx32 and Cx26, with Cx32 accounting 
for the majority. In contrast, most nonparenchymal cells, such as stellate 
cells and Kupffer cells, have Cx43 [28–34]. Connexin expression in the 
liver is known to be altered by differentiation and dedifferentiation. 
Liver progenitor cells predominantly possess Cx43, which is known to be 
converted to Cx26 and Cx32 during differentiation into hepatocytes 
[35–37] In addition, the reverse process is observed in progressive liver 
injury, such as hepatic fibrosis and hepatitis [38]. 

Gap junction proteins, including Cx32, are involved in innate im-
mune responses, and several studies have shown that Cx32 plays an 
important role in injury formation in liver disease models [39–43]. 
Previous studies have also shown that steatohepatitis and fibrosis pro-
gression in NAFLD patients correlate with low expression of Cx32 in 

Fig. 1. Phosphorylated α-syn immunostaining in NASH liver. A, H&E-stained slides show degeneration and ballooning of hepatocytes. B, aggregates in ballooning 
cells are positive for phosphorylated α-syn polyclonal antibody. C, no positive results with phosphorylated α-syn monoclonal antibody are seen. D, granular ag-
gregates in some hepatocytes and ballooning cells are positive for oligomer-specific α-syn antibodies. 
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hepatocytes and are associated with NAFLD progression [44]. In the 
present study, Cx32, which is normally expressed in the hepatocyte 
membrane in granular form, was attenuated in NASH, and there was a 
mixture of strongly positive and mostly negative cells. In addition, he-
patocytes showing ballooning were found to have strong Cx32 expres-
sion in a portion of the plasma membrane. These results are consistent 
with previous reports and suggest that abnormal Cx32 expression may 
disrupt the normal α-syn traffic in hepatocytes. In addition, polyclonal 
antibodies against α-syn were positive for intracytoplasmic aggregates 
in degenerated hepatocytes, and oligomer-specific α-syn antibodies 
were also positive in a small number of degenerated hepatocytes. One of 
the reasons why no positive images were observed with α-syn mono-
clonal antibodies in the present study is that the α-syn accumulated in 
ballooning cells may be denatured α-syn, in which the recognition 
epitope of the monoclonal antibody is missing or modified. The present 
results indicate that some of the denatured α-syn taken up into the he-
patocyte by the heterogeneously distributed Cx32 may remain in the 
hepatocyte in an oligomerized state, and that some of these denatured 
proteins may be involved in autophagy mediated by p62 or proteolysis 
mediated by ubiquitin. This is the first time that a protein has been 
shown to be degraded in the liver. 

To test this hypothesis, in addition to observing the uptake of foreign 
α-syn over time in cultured hepatocytes overexpressing Cx32, it is 
necessary to observe the dynamics of α-syn in vivo using NASH model 

mice. We have previously reported several mouse models of NASH 
[45–47]. 

However, it is very difficult to recognize ballooning cells in any of 
these models, and the histological picture is different from that of human 
NASH. We are currently planning an experimental design in which 
ballooning cells are induced by intravenous administration of α-syn to 
increase the influx of foreign α-syn into the liver. 

Evaluation by several pathologists with different levels of experience 
interpreting H&E staining and immunostaining showed that the H&E- 
stained slides had the highest IOA, followed by α-syn and p62-stained 
slides, with similar values. However, in some cases, the pathologist 
evaluation on the H&E-stained slides did not agree with that on the 
immunostained slides. Fig. 3 showed a case in which the H&E-stained 
slide was evaluated as negative for ballooning, but the immunostained 
slide was evaluated as positive. The clinical diagnosis of this case was 
NAFLD, suggesting the possibility of early NASH. Histology showed only 
fatty deposits and mild hepatocellular swelling (Fig. 3A), but immuno-
stained slides were positive for aggregates within the enlarged hepato-
cellular chambers (Fig. 3B-D). These differences in evaluations suggest 
that, even in the early stage of NASH with little histological changes, the 
diagnosis may be possible in some cases by adding immunostaining. 
Fig. 4 shows a case that tested positive for ballooning on the H&E- 
stained slide but was negative on the immunostained slide. The clinical 
diagnosis of this case was eating disorder and drug-induced 

Fig. 2. Cx32, p62, ubiquitin and Cytokeratin 
CAM5.2 immunostaining in NASH liver. A, 
mildly degenerated hepatocytes are dot-like 
positive for Cx32 at the plasma membrane 
(arrow). B, enlarged hepatocytes are positive 
for Cx32 at the plasma membrane, whereas the 
expression of Cx32 is attenuated in the sur-
rounding hepatocytes. C, aggregates in 
ballooning hepatocytes are positive for p62. D, 
Ubiquitin shows a similar localization to p62. E, 
cytokeratin 8/18 showed attenuated expression 
in ballooning hepatocytes.   
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steatohepatitis, and NAFLD and ASH were negative. Histologically, the 
patient showed severe steatohepatitis, with numerous enlarged hepa-
tocytes and swelling degeneration, similar to ballooning (Fig. 4A). 
However, immunostained slides showed that intracytoplasmic aggre-
gates were not positive (Fig. 4B-D). Therefore, the use of 

immunostaining in the diagnosis of drug-induced steatohepatitis cases 
with a histology very similar to NASH and ASH may contribute to 
improve diagnostic accuracy. 

This study has several limitations. First, it was conducted using cases 
from a single institution in Japan, and evaluations were performed by a 

Fig. 3. A, H&E staining shows mild degeneration of hepatocytes, but ballooning is indistinct. B-D, the cytoplasm of enlarged hepatocytes is positive (arrow) for 
phosphorylated α-syn (B), p62 (C), and ubiquitin (D). 

Fig. 4. A, H&E staining shows fatty deposits, hepatocyte degeneration, and ballooning-like changes. B-D, phosphorylated α-syn (B), p62 (C), and ubiquitin (D) 
are negative. 
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limited number of pathologists at the same institution; therefore, the 
results may not be generalizable, and further studies with larger sample 
sizes are needed. 

Second, this study used only biopsy material and, therefore, only 
evaluated a portion of the liver; NASH is a diffuse liver injury, and the 
degree of liver injury may vary depending on the biopsy site. Thus, it is 
necessary to evaluate specimens including surgical materials for a more 
accurate study. 

In summary, intrahepatic aggregates with ballooning are positive for 
α-syn and may be involved in the pathogenesis of NAFLD. Immuno-
staining including α-syn may be useful in the pathological diagnosis of 
NASH. 
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