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During the Great East Japan Earthquake in 2011,
real-time estimate of the earthquake’s magnitude was
quite low, and consequently, the first report about the
tsunami also understated its severity. To solve this
issue, some proposed a massive overhaul of Japan’s
offshore tsunami observation networks and meth-
ods to predict tsunamis in real time. In this study,
we built a database containing 3,967 scenarios of
tsunamis caused by earthquakes with hypocenters
along the Nankai Trough, and tested a tsunami pre-
diction method that uses this database along with off-
shore tsunami observation networks. Thus, we found
that an uneven distribution of observation points had
a negative effect on predictive accuracy. We then used
simulated annealing to select the observation points to
be used at each observation site and found that the pre-
dictive accuracy improved while using a few selected
observation points compared to using every point.

Keywords: tsunami prediction, tsunami database, simu-
lated annealing

1. Introduction

The 2011 Great East Japan Earthquake (GEJE) and
tsunami caused enormous damage across the Tohoku re-
gion. This can be attributed in part to the real-time fore-
cast underestimating the height of the tsunami [1]. The
Japanese Meteorological Agency (JMA) releases tsunami
forecasts using a tsunami database. It calculates tsunami
propagation in advance under many scenarios and makes
its prediction by referring to the calculation that is most
likely when the tsunami occurs. At the time, the JMA
chose the most likely earthquake scenario based on a pre-
liminary value, Mj (JMA magnitude) [2, 3]. It is difficult
to adequately assess the magnitude of a massive earth-
quake with this Mj value, which was the main factor in

the forecast’s underestimation of the tsunami. Currently,
in order to avoid underestimation in its initial forecasts,
the JMA uses methods such as choosing scenarios with
high magnitude in relevant ocean regions if the magnitude
is expected to exceed 8 [4].

After the earthquake off the Pacific coast of the To-
hoku region, the need for more reliable tsunami predic-
tion systems was identified. For example, Koshimura et
al. (2014) [5] built a system that performs a high-speed
calculation of the tsunami run-up based on an estimated
seismic fault model computed right after the occurrence of
an earthquake. Further, the system can comprehensively
predict tsunami inundation with a high degree of accu-
racy in about 10 minutes, though the calculations must
still be forwarded to municipal and other disaster man-
agement agencies in real time. As interruptions or failure
in the communications network could crop up in the mo-
ments immediately after the occurrence of an earthquake,
it would be prudent to devise a handy method to make
predictions using normal computers available to munici-
pal agencies, in addition to a high-speed supercomputer
prediction system.

Although the method of using the JMA database re-
quires preparation of the database in advance, which takes
some work, there is no real-time calculation cost, and it is
easy to review the results. Furthermore, there already ex-
ist two dense ocean floor manometer networks-S-net [6],
laid along the Japan Trench, and DONET [7], laid along
the Nankai Trough-along the coast and NOWPHAS [8]
GPS wave meters roughly 20 km offshore (Fig. 1). Using
these, it is possible to see ocean movement that is directly
related to the tsunami even without estimating the mag-
nitude of the earthquake, and this system can thus yield
more reliable predictions. Takahashi et al. (2017) [9]
built a prediction system in which underestimation almost
never occurs, by choosing the scenario with the highest
tsunami height among scenarios where the average value
of the maximum absolute values of the tsunami waveform
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Fig. 1. Tsunami observation points along the Nankai
Trough. Triangles indicate prediction target sites, blue cir-
cles indicate GPS wave meters, and red circles indicate
DONET ocean floor manometers.

among all DONET observation points is close to that of
the actual tsunami. While this method specifies the scope
of the tsunami by averaging data from all the observation
points, it does not provide information related to its spatial
distribution. To solve this, Yamamoto et al. (2016) [10]
proposed a method to search for scenarios using data from
offshore observation points. Because it chooses scenarios
where the survey records from all observation points are
similar, it can choose scenarios where not only the scale
of the tsunami is similar, but also its spatial distribution.
In addition, Baba et al. (2014) [11] and Igarashi et al.
(2016) [12] have tried methods to predict tsunamis using
a database-driven machine learning approach, which di-
rectly predicts the wave height using information that can
be obtained from tsunami observation networks. Another
advantage of this method is that the machine learning (cal-
culation) model needs to be built only once, and then it
can be used to perform the calculations easily on normal
computers.

For this study, we built a database of tsunamis
caused by earthquakes with hypocenters along the Nankai
Trough. We then tested the precision of the prediction
method reported by Yamamoto et al. (2016), which can
choose a tsunami scenario from this database with a sim-
ilar scale and spatial distribution. In doing so, we discov-
ered that uneven distribution of observation points had a
negative effect. We also investigated ways to choose ob-
servation points that would be more suitable to making
predictions using this method.

2. Creating Tunami Database

2.1. Constructing Set of Hypocenter Scenarios
The long-term potential of the occurrence of earth-

quakes along the Nankai Trough has been summarized, as
well as the shape and other properties of its hypocentral
region [13]. In this context, the Nankai Trough is divided
into 18 sub-areas, which combine to form 15 hypocen-
tral regions. Based on this, Hirata et al. (2017) [14]
have created 3,967 Nankai Trough earthquake scenarios,
which consist of a base model group, expanded model
group, and reenactment model group. The models in the

Fig. 2. MW histogram of scenarios in the database.

Fig. 3. Example scenario. Yellow indicates slip patches,
orange indicates large-slip patches (2x slippage), and red in-
dicates very-large-slip patches (4x slippage).

base group place patches based on the aforementioned
15 hypocentral regions in various arrangements in accor-
dance with their “Tsunami Recipe” [15]. These are (1)
large-slip patches, where twice as much slippage occurs
over 30% of the fault, and (2) very-large-slip patches,
where four times as much slippage occurs over 10% of
the fault. The models in the expanded group consider 70
other hypocentral regions consisting of combinations of
sub-areas besides those in the base 15 and similarly place
large-slip and very-large-slip patches. Finally, the models
in the reenactment group reenact past earthquakes along
the Nankai Trough [16]. This is the dataset we have used
for our study. Fig. 2 shows an MW histogram of the sce-
narios in the database and Fig. 3 shows an example sce-
nario.

2.2. Tsunami Propagation Simulation
We performed calculations for tsunamis that might be

caused by these earthquake scenarios for Asakawa Dis-
trict (Tokushima Prefecture) and Owase City (Mie Pre-
fecture). These two locations were chosen because there
are offshore tsunami-observation networks near them, and
they are also on the west and east sides of the Kii Penin-
sula, which should result in different tsunami phenom-
ena. To estimate the initial distribution of water, which
is necessary for the propagation simulation, we used the
semi-infinite homogeneous elastic body model described
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Table 1. Conditions of calculation.

Calculation time 6 hours
Calculation interval 0.12 seconds
Rise time 60 seconds
Manning’s roughness coefficient 0.025

Fig. 4. Topographic data used for wave calculations.

in Okada (1985) [17] to calculate the crust displacement
in the ocean floor from the fault parameters. We added the
amount of contribution from the horizontal displacement
of the ocean floor slope to the vertical ocean floor dis-
placement based on Tanioka and Satake (1996) [18] and
applied Kajiura’s (1963) filter [19] to it in order to deter-
mine the tsunami’s initial height. For the sake of simplic-
ity, we did not consider fracture propagation, and we set
the rise time to 60 seconds.

We used the open-source software JAGURS [20] to cal-
culate the tsunami propagation and run-up. Non-linear
long wave equations were dispersed across a staggered
grid so that the leap-frog method could be used to find
the temporal development of the height and the flow rate.
Table 1 shows the conditions of the calculation.

We obtained the terrestrial topographical data neces-
sary for tsunami height calculations from 5mDEM, which
has been made publicly available by the Geospatial In-
formation Authority of Japan. We interpolated with
10mDEM data where 5mDEM data did not exist. We
constructed the marine topographical data primarily from
Japan Hydrographic Association’s M7000 series of digi-
tal ocean floor topographic data. For deep-sea areas with
no M7000 data, we interpolated with GEBCO (General
Bathymetric Chart of the Oceans)’s global topographic
data. We created a nested topographic grid with five lay-
ers, using time steps of 18 s, 6 s, 2 s, 2/3 s, and 2/9 s
(Fig. 4).

We output the time-series change in height at target
sites for prediction for Owase and Asakawa and at off-
shore tsunami observation points (Fig. 1) and created a
database from these values. Here, the time-series change
in height measured by the manometer takes into account
the crust displacement caused by the earthquake. We con-

verted water height into pressure at an assumed rate of
1 cm to 1 hPa.

3. Prediction of Coastal Tsunami Height by
Tsunami Database Search

3.1. Method of Scenario Search Based on Multi-
Index Method

Yamamoto et al. (2016) [4] have proposed a method
whereby maximum value of the absolute of tsunami wave-
form observed at each observation point is used to choose
the scenario in the database that most closely matches the
tsunami. This method uses the following three indices.
If we write the absolute maximum height of the tsunami
observed at the i-th observation point ri as OOO(ri) and the
absolute maximum height of the tsunami in the scenario
taken from the database as CCC(ri), it gives us the following:

R =

n

∑
i=1

OOO(ri)CCC (ri)√
n

∑
i=1

OOO2 (ri)

√
n

∑
i=1

CCC2 (ri)

. . . . . . . (1)

where n is the number of observation points. This equa-
tion is the cosine similarity between the vectors OOO (the ob-
served event) and CCC (the scenario taken from the tsunami
database). For example, when R = 1, the distribution of
the absolute maximum tsunami height values of one vec-
tor is a constant factor of height values of the other. Thus,
using the R index makes it possible to choose the scenario
with the most closely matching slip patch regardless of
the scale.

Next, we will consider the following two variance re-
ductions to help us find the tsunami that is most similar in
scale:

VRO = 1−

n

∑
i=1

(O(ri)−C (ri))
2

n

∑
i=1

O2 (ri)
. . . . . . (2)

VRC = 1−

n

∑
i=1

(O(ri)−C (ri))
2

n

∑
i=1

C2 (ri)
. . . . . . (3)

Both these indices are 1 when the two vectors O
(the observed event) and C (the scenario taken from the
tsunami database) are equal and decrease as the vectors
diverge. Yamamoto et al. (2016) [10] claim that by
choosing a scenario where both VRO (Variance Reduction
normalized with Observed data) and VRC (Variance Re-
duction normalized with Calculated data) exceed a given
threshold, the largest and smallest estimates can be as
inputs, the maximum and minimum values of the water
height and the water pressure waveform that would be ob-
tained at the observation points over the 5-second period
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Fig. 5. Result of the LOOCV test using the database-driven
search method. The arrow shows the case with the most in-
accurate prediction.

after the occurrence of an earthquake and set an initial
threshold of 0.9 for VRO and VRC, to be lowered in in-
crements of 0.8, 0.7 and 0.1 if no scenarios exceeded the
threshold. This process narrows the scenarios down to
several that are close in scale to the tsunami. For this pa-
per, we have chosen one scenario among these where the
value of R is the greatest, under the assumption that the
scenario whose tsunami distribution most closely resem-
bles the tsunami will best express the coastal damage.

3.2. Testing Scenario Search Method Based on the
Multi-Index Method

We performed leave-one-out cross-validation
(LOOCV) to test the predictive accuracy of this method
based on the multi-index method. Specifically, the test
was aimed to remove a given scenario from the database
and see how accurately that scenario could be predicted
with the remaining scenarios when it occurred. Predictive
accuracy was evaluated using the root-mean-square error
(RMSE) between the predicted and actual values for
the maximum tsunami height for Asakawa and Owase.
Fig. 5 shows the results of the test. The RMSE values
for both Owase and Asakawa were within 1m, with a
few appearing to be greatly inaccurate. Fig. 6 shows
the result of the most inaccurate prediction (indicated
in Fig. 5 with an arrow). Fig. 6a shows the actual fault
scenario and Fig. 6b shows the scenario chosen based
on the multi-index method. While these two scenarios
share similar fault shapes, they differ in the way that the
slip patch juts out into the waters off the coast of Owase.
In this case, there is no problem with the tsunami height
prediction for Asakawa; however, the correct height
at Owase has been greatly overestimated. We suppose
that the selection of a scenario such as this, which is
inappropriate for Owase, is due to an uneven distribution
of observation points. As shown in Fig. 1, there are fewer
observation points near Owase than there are to the west
of the Kii Peninsula, which makes it more likely that
the algorithm used in this study will choose a scenario
with a similar tsunami distribution to the west of the Kii
Peninsula. From this, one can surmise that when the

Fig. 6. Most inaccurate prediction. When the earthquake in
(a) occurred, the scenario in (b) was chosen. Values shown in
figures are maximum tsunami wave height in each prediction
target site.

observation points are distributed unevenly, insufficiently
observed areas may not necessarily receive the most
accurate predictions. In other words, it is necessary to
change the arrangement of observation points for each
prediction target site. Moreover, the method of choosing
the one scenario that is most similar to a given earthquake
means choosing a scenario whose overall tendencies
resemble that earthquake. However, as differences in the
location of the local large-slip patch cause the predicted
height to vary greatly, as shown in Fig. 6, it may be
possible to make more accurate predictions by not only
changing the arrangement of observation points, but also
choosing different scenarios for each prediction site.

3.3. Choosing Observation Points Using Simulated
Annealing

Because it seems better not to use all observation
points, we used simulated annealing, a method used in op-
timization problems, to select the observation points that
are best suited for database-driven prediction. The follow-
ing is a simple description of the process:

1. Generate an initial solution x and define the initial
temperature t.

2. Run the following operations in a loop until the ter-
minating condition is satisfied:

A. Choose a solution x′ at random among the neigh-
boring solutions N(x) of the initial solution
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B. Set Δ = f (x′)− f (x), where f (x) is the evaluated
value for the solution x (smaller is better)

C. Move from x to x′ with a probability of 1 if Δ ≤
0 (better solution) or a probability of et if Δ > 0
(worse solution)

3. If the algorithm’s terminating condition is satisfied,
apply a cooling rate to t to lower the temperature and
return to step 2.

For our purposes, solutions were expressed using the
values 1 and 0 to represent usage and non-usage, respec-
tively, of each of the 57 observation points. The initial
solution was generated randomly, and neighboring solu-
tions were defined as those where the value for one of the
observation points was the opposite of that in the current
solution. We used LOOCV RMSEs for the evaluated val-
ues and a cooling rate of 0.95. After evaluating the initial
solution and all of its neighboring solutions, we set the
initial temperature such that the acceptance probability of
a worse solution was 0.4, in accordance with Johnson et
al. (1989) [14], to reduce the calculation time. We set the
terminating condition of the loop as acceptance of the nth
solution, where n was the number of neighboring solu-
tions. Neighboring solutions were not generated at ran-
dom each time but rather taken from a list of neighboring
solutions that we created and shuffled. The list of neigh-
boring solutions was regenerated upon the acceptance of a
solution in order to see all neighboring solutions. If no so-
lution was accepted even after iterating through the entire
list, a solution was chosen with a Roulette wheel whose
size corresponded to the number of all transition proba-
bilities in the list of neighbors. This was done in order to
continue the search to some extent even at low tempera-
tures. The algorithm’s terminating condition was main-
tained until cooling was applied 140 times.

The number of iterations (that is, the number of times
step 2 in the preceding algorithm was repeated) and the
evaluated value of the best solution obtained up to each
iteration is shown in Fig. 7. Calculations were performed
with four different seed values for both Asakawa and
Owase. The process concluded for Owase after 80 iter-
ations and for Asakawa after 100 iterations.

Figure 8 shows the optimal solutions obtained through
simulated annealing, which mostly resulted in the selec-
tion of observation points near the prediction site, though
some more distant points were selected as well. We in-
terpret this to mean that basically, this method works well
if there is good information in the vicinity of the predic-
tion site, but it is also necessary to know whether the fault
is far from the site and, if so, its arrangement. Calcula-
tions were performed with four different seed values, all
of which resulted in the selection of observation points
mostly near the prediction site, though with all values, we
observed that some more distant points were selected as
well.

Figure 9 shows the result of the LOOCV predictions of
the maximum tsunami height based on database searches
using the observation points chosen through simulated an-
nealing. Compared to the original predictions that used all

焼きなまし法による観測点の選択

焼きなまし法による解の改善の様子．
尾鷲，浅川ともに つのランダムシードで探
索を行った

最も予測が外れたケース．
の地震が発生した場合， のシナリオが選

対象地点での最大

Fig. 7. Finding the optimal solution using simulated an-
nealing. Four searches were performed for both Owase and
Asakawa with random seed values.

of the observation points, the RMSE for Owase was 44%
lower and the RMSE for Asakawa was 35% lower, indi-
cating vastly improved predictive accuracy. In the case of
an earthquake whose original prediction was most inac-
curate when all observation points were used (Fig. 6(a)),
using only observation points for Owase resulted in the
selection of the scenario shown in Fig. 10. The cho-
sen scenario had a large-slip patch near Owase that was
similar to the actual earthquake, which indicates that dif-
ferences in large-slip patches near prediction sites have
a significant effect on predicted tsunami heights. More-
over, for the same earthquake, the algorithm chose the
scenario in Fig. 6(b) when only observation points cho-
sen for Asakawa were used. Thus, we have determined
that when searching a database of scenarios that use off-
shore observation points to predict tsunamis, changing the
observation points used for each site and allowing differ-
ent scenarios to be chosen for each site results in improved
predictive accuracy.

4. Summary

We built a database comprising 3,967 earthquake sce-
narios with hypocenters along the Nankai Trough and
tested the accuracy of database-driven tsunami prediction
using offshore observation networks. The use of all ob-
servation points to make predictions returned poor results
for areas with a sparse collection of observation points;
therefore, we performed another analysis wherein the ob-
servation points to be used for each prediction target area
were chosen by simulated annealing, and it was also pos-
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Fig. 8. Observation points suitable for database-driven
tsunami height prediction using offshore observation net-
works. Triangles indicate prediction target sites, circles in-
dicate selected observation points, and x’s indicate unse-
lected observation points. The upper figure shows observa-
tion points for Owase, and the lower figure shows observa-
tion points for Asakawa.

Fig. 9. Result of LOOCV test for the database-driven search
method where only observation points chosen through sim-
ulated annealing were used.

sible to choose different earthquake scenarios for each
area. Consequently, we found that using only a small
number of selected observation points rather than using
all of them vastly improved predictive accuracy in some
cases. In this paper, we analyzed a method to predict
a tsunami five minutes after the occurrence of an earth-
quake. Sequentially updating the prediction every sub-
sequent minute after the earthquake may improve preci-
sion , as the method would search for scenarios as the
tsunami phenomenon becomes clearer and clearer. How-
ever, since we believe that choosing scenarios with a close
distribution of tsunami heights near the prediction target
site results in high precision, we do not think that the com-
bination of observation points adapted to the prediction

Fig. 10. Scenario chosen for the earthquake in Fig. 6a when
only observation points chosen for Owase were used. Value
in figure denotes maximum tsunami height in Owase.

would change dramatically even if the prediction timing
were changed.

Furthermore, while the method proposed in this paper
was applied to an existing observation network, it can also
be used to review the distribution of observation points
when a new marine observation network is built.

If a new observation network needs to be built around
a certain area, several potential observation points should
be arranged around that area and a tsunami database based
on various fault scenarios must be created for potential
observation points and tsunami height prediction points.
If you perform the analysis from section 3.3 on the data
derived from those scenarios, with the RMSE of all obser-
vation points as the evaluation function, you can exclude
potential observation points that do not contribute to the
improved predictive accuracy. Finally, it is possible to
determine an efficient arrangement of observation points
by reviewing the results along with other constraints and
requirements, such as the expenses required to build the
network.
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