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ABSTRACT The multivibrator is an electronic circuit that has three oscillation states: astable, monostable,
and bistable; these circuits typically contain opamps. These states are often modeled using hybrid systems,
which contain characteristics of both continuous and discrete time. While an ideal opamp possesses both
continuous and discrete characteristics, actual opamps exhibit continuous properties, which necessitate in-
depth modeling. The relaxation oscillations produced by the multivibrator, characterized by periodic, rapid
state changes, are typically modeled by considering slow–fast dynamical systems. In these systems, the
phenomenon whereby the amplitude of the signal changes rapidly is referred to as a ‘‘canard explosion’’.
By considering this phenomenon, it is possible to understand the process of relaxation oscillations in the
multivibrator. In this work, we model the multivibrator by considering a slow–fast dynamical system and
observe canard explosions through numerical experiments. This study indicates that the oscillatory changes
in the multivibrator are continuous, which explains the onset of relaxation oscillations. Additionally, circuit
experiments are conducted using affordable opamps; in this experimental work, canard explosions are
observed.

INDEX TERMS Bifurcation analysis, canard, multivibrator, singular perturbation, slow–fast dynamical
systems.

I. INTRODUCTION
A multivibrator [1] is a type of electronic circuit typically
implemented using opamps. These circuits are often used as
timers or switches. Multivibrators, as the name suggests, can
generate multiple types of oscillations. The oscillation states
of the system vary depending on the circuit configuration
and are classified into three types: 1. Astable: This variety
of multivibrator continuously produces oscillations and is
commonly used as an oscillator circuit. 2. Monostable:
This system produces oscillations once and then stops. 3.
Bistable: Bistable multivibrators have two stable states, and
the oscillation state that is active is based on the initial
conditions or external inputs.

These multivibrators are often modeled as hybrid
systems. A hybrid system possesses characteristics of
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both continuous-time and discrete-time dynamical systems.
In multivibrators that are assumed to contain an ideal opamp,
the state not only undergoes continuous changes but also
experiences discrete changes due to switching. When such
circuits are modeled as a hybrid system, one can neglect
the transient responses of the oscillation states, making it
relatively easy to derive return maps.

The Astable mode of the multivibrator is often used as
a square wave oscillator. In related research on dynamical
systems, electronic fireflies [2] and their synchronization
phenomena [3] have been analyzed using square wave
oscillators. In these studies, the square wave oscillators
are examined as hybrid systems using ideal operational
amplifiers, and precise return maps have been obtained.
However, the opamps and operational amplifiers (opamps)
used in the realization of these circuits do not possess
ideal characteristics. Thus, the system must be modeled
as a continuous system when we consider actual circuit

VOLUME 12, 2024

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 471

https://orcid.org/0000-0003-2423-9625
https://orcid.org/0000-0001-5810-437X
https://orcid.org/0000-0002-8083-8174
https://orcid.org/0000-0001-6996-0577


S. Amoh et al.: Transient Responses to Relaxation Oscillations in Multivibrators

systems. Even sophisticated opamps and opamps produce
outputs with slight delays [1]. The transient responses of
the opamps within multivibrators should not be overlooked.
Monostable and bistable multivibrators are designed such
that their equilibrium state is also an equilibrium point
of the system (rather than an oscillation state being an
equilibrium point), making the analysis of state changes
relatively straightforward. However, since astable systems
continuously produce oscillations, the delay in the opamp
induces different oscillating states. It is particularly apparent
in astable multivibrators that transitions from non-oscillating
to oscillating states occur when the circuit parameters
change. At these transitions, despite the actual device having
continuous characteristics, the amplitude of the circuit output
is observed to change ‘‘discontinuously’’ from zero. One
might intuitively assume that this amplitude explosion is
continuous [4]. However, the transient response of the stable
state to such parameter changes has not been investigated
previously.

The square waves that are produced by multivibrators are
often referred to as relaxation oscillations [5]. Relaxation
oscillations involve a rapid state changewithin a certain cycle,
followed by a period in which that state is maintained. Thus,
‘‘relaxation’’ implies that both slow and fast changes are
involved in a transition between states. Such oscillations can
be explained by considering a slow–fast dynamical system
[4]. These are systems composed of two continuous-time
dynamical systems that operate on different timescales; these
systems permit both slow- and fast-state characteristics to be
investigated.

A notable phenomenon observed in slow–fast dynamics is
the canard [6]. Canards occur only in a very limited range
of parameters immediately prior to an amplitude explosion
[4], [7]. A canard is a solution that changes its amplitude
drastically in response to a small parameter change; this
kind of amplitude explosion is referred to as a canard
explosion. We also note that the term ‘‘Canard’’ is derived
from the French word for ‘‘duck’’, and it refers to the
characteristic ‘‘duck-like headed shape’’ of the trajectory
with large amplitudes. When it can be shown that the
dynamics of a multivibrator contains a canard, it is possible
to demonstrate the continuity of the amplitude change that
occurs during the relaxation oscillation.

This work models a multivibrator as a slow–fast dynamical
system and numerically investigates the canard explosion
that occurs due to parameters changing during the relaxation
oscillation. It is found that the transition to the relaxation
oscillation of the multivibrator is continuous. We provide
an explanation for this observation based on the bifurcation
theory of dynamical systems [8], [9]. Additionally, based
on the results obtained via the numerical experiments
presented here, we conduct circuit experiments. Economical
opamps are used to observe canards easily, demonstrating the
possibility of observing this complex phenomenon without
the use of expensive equipment. In the experiments, both
canards and canard explosions are observed.

II. SLOW–FAST DYNAMICAL SYSTEMS
A slow–fast dynamical system [4] can be represented by a
system of ordinary differential equations of the form:

dx
dt

= f (x, y, λ, ϵ), ϵ
dy
dt

= g(x, y, λ, ϵ), (1)

where x ∈ Rm, y ∈ Rn, f : Rm
× Rn

× R → Rm, g :

Rm
× Rn

× R → Rn, λ ∈ R, and 0 < ϵ ≪ 1. Dividing
both sides of the second equation in (1) by ϵ, dy/dt becomes
larger than dx/dt . Therefore, in this work, x is referred to as
the slow variable and y is called the fast variable. By setting
τ = t/ϵ, we can also obtain the equivalent form of (1):

dx
dτ

= ϵf (x, y, λ, ϵ),
dy
dτ

= g(x, y, λ, ϵ). (2)

In this work, we refer to the dynamics produced by
Eqs.(1) and (2) as the slow-timescale and the fast-timescale
dynamics, respectively

Let us consider the case of the singular limit ϵ → 0. In this
limit, (1) becomes a differential-algebraic equation, which is
given by,

dx
dt

= f (x, y, λ, ϵ), 0 = g(x, y, λ, ϵ), (3)

and (2) becomes a layer equation,

dx
dτ

= 0,
dy
dτ

= g(x, y, λ, ϵ). (4)

We refer to (3) and (4) as the reduced problem. The set
defined by the second equation in (3),

C0 = {(x, y) ∈ Rm×n
: g(x, y, 0) = 0}, (5)

is referred to as the critical manifold. The flow described
in (3) can be considered to be determined by dx/dt subject
to the condition that it is bounded on C0.
Fig. 1 shows an schematic illustration example of a typical

flow within slow–fast dynamical systems for m = n = 1.
The figure is the case of van der Pol equation which is a
most classical [6] slow–fast dynamical system. We consider
f to be cubic function which is a type of y3 and g to be
a linear function. The points p− and p+ in C0,s = {p ∈

C0 : ∂g/∂y(p, 0) is not invertible} represent points where the
uniqueness of the flow is lost; these are called fold points and
satisfy the following expressions:

∂g
∂y

= 0,
∂2g
∂y2

̸= 0,
∂g
∂x

̸= 0.

In the singular limit ϵ → 0, C0 can be divided into subsets
according to C0 = C+

0,a ∪ C0,r ∪ C−

0,a ∪ C0,s. Of these
subsets, C0,a = C+

0,a ∪ C−

0,a represents the attractive part of
the critical manifold and C0,r represents the repelling part of
C0. If an equilibrium point lies on C0,a, the equilibrium point
is completely stable. When the equilibrium point is situated
on C0,r , the equilibrium point is completely unstable and
there exists a stable periodic solution. It can be seen that the
periodic solution evolves along C±

0,a and jumps to C∓

0,a when
the orbit reaches a folding point. This behavior is called a
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FIGURE 1. Schematic illustration which represents a critical manifold and
folding points. This illustration is based on the type of van der Pol
equation.

relaxation oscillation. The dynamics of this transition can be
considered to be a hybrid system based on (3) and (4), with the
reaching of the folding point being considered as the event.

One of the notable phenomena in slow–fast dynamical
systems is the canard solution [6]. The canard solution
occurs when the equilibrium point on C0,r transitions to
a relaxation oscillation via a Hopf bifurcation. In such a
system, the canard is observed only within a very small
region in the parameter space, and a amplitude of a stable
periodic solution increases explosively as a result of a small
change in the parameters. This behavior is referred to as a
canard explosion. Fig. 2 shows a schematic one-parameter
bifurcation diagram around a Hopf bifurcation. This figure
is drawn based on the illustration used in Fig. 8.3 of [4].
In this figure, the parameter A denotes the amplitude of the
attractor, A = max y − min y, where max y,min y are the
maximal and minimal value of the limit cycle. As depicted
in Fig. 2, canard explosions can be classified into two types:
(a) those associated with a supercritical Hopf bifurcation
and (b) those associated with a subcritical Hopf bifurcation.
Solid lines and dotted lines represent stable and unstable
limit cycles/equilibria, respectively. In the case of Fig. 2(b),
the tangent bifurcation is observed at the parameter where
stable and unstable periodic solutions adhere together. This
indicates that the system is bistable when the parameter is
between the tangent bifurcation and the Hopf bifurcation.

The van der Pol oscillator represents a typical slow–fast
dynamical system [6]. In the original van der Pol equation
[10], a vacuum tube amplifier is used, resulting in a critical
manifold of sigmoid shape. However, we consider a model
using a cubic function for simplicity:

dx
dt

= q−y

ϵ
dy
dt

= x −
y3

3
+ y. (6)

Fig. 3 shows an example of limit cycles and canard solutions
in a van der Pol equation for ϵ ̸= 0 (see (6)). Fig. 3(a1–a4)

FIGURE 2. Schematics of one-parameter bifurcation diagrams. Canard
explosions, i.e., the explosive amplitude changes, are shown around the
Hopf bifurcation parameter λH . (a) Represents the case of a supercritical
Hopf bifurcation and (b) shows the case of a subcritical Hopf bifurcation.
This figure is drawn based on a Fig. 8.3 from [4].

show the phase portraits of the system for ϵ = 1 and
q = 1.05, 0.987, 0.9863, and 0.5, respectively. This system
does not exhibit slow–fast characteristics. The amplitude
of the trajectory changes continuously as the parameter
changes. Fig. 3(b1–b4) are the phase portraits of the system
for ϵ = 0.1 and q = 1.05, 0.987, 0.9863, and 0.5,
respectively. It is noted that slow–fast characteristics can
be observed in this system for ϵ = 0.1. In all the
figures, regardless of the initial state, the trajectories converge
to the orbits shown in the figures for those parameters.
We note that the change in the value of q used to obtain
Figs.3(b2) and (b3) is very small, and this small change in
q leads to large changes in the behavior of the system.
This rapid amplitude change represents a canard explosion.
We classify the small-amplitude cycle immediately before
the observed canard explosion (Figs.3(b2)) as a ‘‘canard
without head’’ and the large-amplitude cycle immediately
after the explosion (Figs.3(b3)) as a ‘‘canard with head.’’ It
can be observed that even a small change in the parameters
describing the system can lead to a rapid increase in the
amplitude. In the case of van der Pol oscillator, Analytical
methods for calculating the Canard explosion parameter are
provided [11].
Fig. 4 shows the amplitude changes that are induced by

parameter variations in a van der Pol oscillator. In Fig. 4, the
grey lines q± indicate the value of q at which the equilibrium
points coincide with the fold points p±. From the figure,
it can be seen that when the equilibrium point is on C0,r ,
a Hopf bifurcation occurs and periodic solutions emerge.
Conversely, when the equilibrium point is on C0,a, the
amplitude is zero, indicating that no periodic solutions occur.
In systems that correspond to the behavior shown in Fig. 4(a),
the amplitude of the stable limit cycle changes smoothly.
However, in the slow–fast dynamical system characterized
by Fig. 4(b), the amplitude increases abruptly. Typically,
as the value of ϵ decreases, the amplitude explosion becomes
increasingly steep; this makes the rise in amplitude appear to
be discontinuous.

Another typical system inwhich canards can be observed is
the FitzHugh–Nagumo model [12]. The FitzHugh–Nagumo
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FIGURE 3. Stable equilibrium points and limit cycles in a van der Pol oscillator. (a1–a4) depict the case of ϵ = 1, and (b1–b4) show the case of ϵ = 0.1.
The trajectories obtained for the various parameters and an example of a canard are shown. We refer to (b2) as a canard without head and (b3) as a
canard with head.

FIGURE 4. Amplitude changes in a van der Pol oscillator. The system without slow–fast dynamics, shown in subfigure (a),
exhibits a smooth amplitude change, whereas in the case of the system that exhibits slow–fast dynamics (subfigure (b)), the
amplitude increases abruptly. The grey line indicates the parameter values at which the equilibrium points coincide with the
fold points p±.

model describes the electrical activity of neurons, and the
rapid changes resembling spike responses can be attributed
to the slow–fast dynamics of the system. In the coupled
FitzHugh–Nagumo model, canards are observed, and the
canard explosion is analytically determined [13]. Canards can
also be observed in discrete-time spiking neuron dynamics
[14] and self-replicating systems [15]. We also note the
existence of an interesting canard phenomenon in aircraft
trajectories reported in Ref. [16].

III. MULTIVIBRATOR
In this section, we obtain a circuit of a multivibrator
as a slow–fast dynamical system. First, we construct a
multivibrator as a hybrid system using an ideal operational

amplifier and explain how square wave oscillations are
generated. Next, we demonstrate that by using the dynamic
characteristics of the operational amplifier, the system is
constituted as a slow-fast dynamical system. Thereafter,
we describe the relationship between the modes of the
multivibrator and its equilibrium points, providing the
prerequisite knowledge necessary for subsequent numerical
calculations. We consider the circuit shown in Fig. 5.
Fig. 6 shows the output characteristics of a single-supply

opamp. The output of an ideal opamp takes the form of a step
function with an increase at vd = 0, where vd is the input
voltage difference, given by

vd = vp − vn = vp − vC . (7)
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FIGURE 5. Circuit diagram of the multivibrator considered here.

FIGURE 6. Output characteristics of an opamp.

By using vd , the output of the opamp is expressed as vo =

a(vd ). In the case of an ideal opamp, a(vd ) becomes a step
function. The actual output characteristics of an opamp take
the shape of a sigmoid curve, but first, we consider the
dynamics when using an ideal opamp.

According to Kirchhoff’s law, the relationship between the
input voltage, vp and vo, can be described as follows:

vp = βvo + γE, (8)

where, we replace coefficients of (8) as:

β =

1
RF

1
RE

+
1
RF

+
1
RG

, γ =

1
RE

1
RE

+
1
RF

+
1
RG

.

Then, we have the ideal opamp output as:

vo = a(vd ) = a(βvo + γE − vC ). (9)

For the RC circuit at the bottom of the opamp, we have:

RC
dvC
dt

= vo −

(
1 +

R
RC

)
vC . (10)

From (7) to (10) and the output characteristic with step
function vo = a(vd ), we can obtain the system as the
following differential algebraic equation:

RC
dvC
dt

= vo −

(
1 +

R
RC

)
vC

vo = a(βvo + γE − vC )., (11)

Fig. 7 shows the dynamics of the multivibrator system
with opamp. For sake of simplicity, we consider the case of
RC → ∞. In this limit, the slope of f (x, y) is equal to 1. Here,
we consider the case where vd = 0, that is, the point at which
a(vd ) is discontinuous. In the case of vo = vp − vC = E ,
we have vC = (β + γ )E . Similarly, in the case of vo = 0,
we have vC = γE . When the system is considered as a hybrid
system, these values represent the points where the system
triggers an event. The dynamics will be explained using
points a, b, c, and d in the figure. Suppose the initial value is
given at point a. In this case, the state vC changes according
to the differential equation (11). Next, when vC reaches b,
a(vd ) becomes 0 and makes a discontinuous jump to c. This
corresponds to an event trigger. Subsequently, following the
differential equation, vC decreases and reaches d. When the
system reaches d, a(vd ) = E and it returns to point a. This
results in the relaxation oscillation of the multivibrator. Fig. 8
shows the time-domain response in Fig. 7. In the figure,
points a, b, c, and d corresponding to Fig. 7 are marked. It can
be observed that the mode transitions in a way that switches
for both vC and vo.

FIGURE 7. Dynamics as ϵ → 0. The critical manifold takes the form of a
sharp ‘‘Z-shape’’.

FIGURE 8. An example of the time-domain response as ϵ → 0.

In practice, opamps have an output characterized by a
steep increase (but not infinitely steep) around vd = 0; this
output has a form similar to that of a sigmoid function. The
static output characteristic of the opamp can be described as
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vo = a(vd ). Considering the dynamic output characteristic as
a first-order lag system [17], we obtain:

τ0
dvo
dt

+ vo = a(vd ), (12)

where τ0 is a time constant and a parameter that causes the
circuit to behave as a slow–fast dynamical system. In this
work, we approximate the output characteristic of the opamp
using the hyperbolic tangent function according to:

a(vd ) =
E
2
(tanhαvd + 1), (13)

where α represents the gain. Note that an ideal opamp is
characterized by τ0 = 0 in (12) and α = ∞ in (13).

From (8), (10), (12) and (13), we obtain the following
system of second-order differential equations:

dx
dt

= y−

(
1 +

R
RC

)
x

ϵ
dy
dt

=
E
2

(
tanhα(βy+ γE − x) + 1

)
− y, (14)

where vc and vo are replaced with x and y, respectively; these
substitutions are performed to obtain a notation consistent
with (1). Additionally, we re-scaled the time constant by
RCt =: t and we set ϵ = τ0/RC to match the form to (1).
The parameter ϵ includes the parameters R and C , thus for
example, changing R in equation (14) will also change ϵ.
In this study, we will fix these values of R and C . Note that
the changing RC can adjust the slow–fast dynamics easily.
Moreover, by adjusting the value of RC , the slope of the linear
equation on the right-hand side of the first equation of (14)
can be varied, allowing the position of the equilibrium points
to be easily manipulated. Unless otherwise noted, in this
work, we set R = 100[k�], C = 10[µF], RE = 1[k�],
RF = 1.5[k�], RG = 67[�], and E = 5[V].
Fig. 9 shows a classification of the locations in which

the equilibrium points can be generated. In the case of an
equilibrium point being generated at C0,a, as shown in 1⃝ and
3⃝ in Fig. 9, the equilibrium point is completely stable. On the
other hand, when an equilibrium point is generated on C0,r ,
as shown in 2⃝ in Fig. 9, it may become an unstable equi-
librium point via a Hopf bifurcation; the classification of this
equilibrium point depends on the value of ϵ. This corresponds
to the cause in which relaxation oscillations are observed.
In other words, the characteristics of the multivibrator can
be adjusted by changing the position of the equilibrium
point.

In our proposed model, by varying the value of RC , the
slope of f (x, y) is changed. This results in the multivibrator
depicted in Fig. 5 exhibiting two modes: one mode remains
at a stable equilibrium point, whereas the other mode exhibits
rectangular oscillations.

It is interesting to consider when the equilibrium point is
near one of the two singular points, p±; we show an example
illustrating this situation in Fig. 10. As indicated by one of
the dashed lines in the figure, is it possible for the trajectory
to exhibit small amplitudes? The relaxation oscillation of

FIGURE 9. Classification of the positions of the equilibrium and singular
points, p±.

the multivibrator starts drawing suddenly large amplitudes
as shown by the solid line. During the process of the
equilibrium point moving from C−

0,a to C0,r , a square-wave
oscillation suddenly emerges. This implies that despite the
continuous variation in the parameters defining the system,
the amplitude changes discontinuously. This ‘‘transient
response due to parameter variation’’ can be explained by
considering the canard explosion in slow–fast dynamical
systems.

FIGURE 10. An schematic illustration of the situation when the
equilibrium point is near one of the two singular points.

IV. NUMERICAL ANALYSIS
In slow–fast dynamical systems, due to the disparity in
the timescales, ordinary numerical integration methods
often suffer from a loss of accuracy or even generate
fake chaotic trajectories (trajectories that do not actually
exist) [18]. Analytical methods using singular perturbation
theory [19] are available, but in this study, a classical
numerical method of the dynamical systems e.g. a shooting
method and a numerical continuation method are used,
and we discuss the existence of canard explosions from
the perspective of bifurcation theory. It is thus necessary
to use appropriate numerical integration methods and uti-
lize methods such as multi-precision arithmetic in order
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to ensure sufficient accuracy. Here, we use the Runge–
Kutta–Fehlberg method to perform the necessary numerical
integration.

In this section, we compute numerically the canard
explosion points [20] and canard solutions. On the faster
timescale, we consider the following planar system [7]:

dx
dτ

= ϵf (x, y, λ, ϵ)

dy
dτ

= g(x, y, λ, ϵ) (15)

where f and g are C∞-class function, λ ∈ R is a parameter,
and 0 < ϵ ≪ 1. We assume that C0 is locally parabolic and
the minimum is coincident with the origin, (0, 0). We call the
origin a fold point, and this point satisfies:

g(0, 0, λ, 0) = 0,
∂g
∂y

(0, 0, λ, 0) = 0,

∂2g
∂y2

(0, 0, λ, 0) ̸= 0,
∂g
∂x

(0, 0, λ, 0) ̸= 0, (16)

for λ ̸= 0. We can obtain the slow flow on C0 by
differentiating x = ϕ(y) with respect to t = τϵ:

dy
dt

=
f (ϕ(x), y, λ, 0)
dϕ/dt(y)

, (17)

where the function x = ϕ(y) for ϕ : U → R, U is
sufficiently small neighborhood of y = 0. The slow flow is
singular at the origin for λ ̸= 0 since dϕ/dt(0) = 0 and
f (0, 0, λ, 0) ̸= 0. We assume a non-degenerate canard point,
which is an equilibrium point located on the origin, for λ = 0.
A canard point satisfies the following additional conditions:

f (0, 0, 0, 0) = 0,
∂f
∂x

(0, 0, 0, 0) ̸= 0,
∂f
∂λ

(0, 0, 0, 0) ̸= 0.

(18)

This gives us a well-defined slow flow on C0 for λ ̸= 0. Near
a non-degenerate canard point, we have a normal form [21]:

dx
dτ

= ϵ(yh4(x, y, λ, ϵ) − λh5(x, y, λ, ϵ) + xh6(x, y, λ, ϵ)),

dy
dτ

= −xh1(x, y, λ, ϵ) + y2h2(x, y, λ, ϵ) + ϵh3(x, y, λ, ϵ),

(19)

where

h3(x, y, λ, ϵ) = O(x, y, λ, ϵ),

hj(x, y, λ, ϵ) = 1 + O(x, y, λ, ϵ), j = 1, 2, 4, 5, 6. (20)

We obtain the Hopf bifurcation parameter λH and the canard
explosion parameter λc as [7]:

λH = −KH ϵ + O(ϵ3/2), (21)

λc = − (KH + Kc) ϵ + O(ϵ3/2), (22)

where KH and Kc is are real numbers defined by h1–h6. Refer
to the reference [7] for a detailed definition of KH and Kc.
It can be seen that the equilibrium is stable for λ < λH
and unstable for λ > λH . The type of Hopf bifurcations

can be identified by considering the sign of Kc; supercritical
bifurcations exist for Kc < 0, and Kc > 0 indicates
a subcritical bifurcation. We see that another expression
relating λH and λc can be obtained:

λc = λH − Kcϵ + O(ϵ3/2). (23)

We can obtain the Hopf bifurcation parameter, λH , via
conventional numerical methods. Thus, given Kc, the canard
explosion parameter λc can be obtained.

When the system is written in a form with strong nonlin-
earity, it is difficult to apply the method of transformation
to the normal form described here. Therefore, to avoid
equation transformations, Kuehn developed a method to
numerically calculate λc using the first Lyapunov coefficient
[20]. The first Lyapunov coefficient, l1, is equal to Kc scaled
by a constant, meaning we can obtain λc by computing
l1 numerically. However, there are several definitions of
the first Lyapunov method [8], [22]. This is due to the
background in traditional dynamical systems theory, where
the sign of the first Lyapunov coefficient is important,
and the actual value of the coefficient does not need to
be considered. Therefore, the scaling factor ρ will change
depending on the type of first Lyapunov coefficient used.
In this work, we use Kuznetsov’s convention and notate it
lKu1 [8].

We assume that the equilibrium point (x∗, y∗) of (2) is
under Hopf bifurcation and is translated to coincide with the
origin with the coordinate change z = (x− x∗, y− y∗)⊤, and
we thus obtain:

dz
dt

= Mz+ F(z) (24)

with F(z) = O(||z||2) andM ∈ R(m+n)×(m+n). This form (24)
is the linearization around the equilibrium point of (2), M is
the Jacobian matrix around the equilibrium point. Taking a
Taylor series expansion of the nonlinear term F , we have,

dz
dt

= Mz+
1
2
B(z, z) +

1
6
C(z, z, z), (25)

where the multilinear functions B and C are defined as,

Bi(u, v) =

n∑
j,k=1

∂2Fi(ξ )
∂ξj∂ξk

∣∣∣∣∣∣
ξ=0

ujvk , (26)

Ci(u, v,w) =

n∑
j,k,l=1

∂3Fi(ξ )
∂ξj∂ξk∂ξl

∣∣∣∣∣∣
ξ=0

ujvkwl (27)

where B(u, v) and C(u, v,w) are symmetric multilinear
vector functions of u, v,w ∈ R(m+n), Fi denotes the i-th
element of the function F. In the case of a planar system,
we thus obtain a simple form of lKu1 :

lKu1 =
1

2ω2
0

ℜ(ig20g11 + ω0g21), (28)

where ω0 is given by the eigenvalues of the matrix M ,
λ1,2 = ±iω0, g20 = p̄⊤B(q, q), g11 = p̄⊤B(q, q̄), and
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g21 = p̄⊤C(q, q, q̄). ℜ takes the real part of complex number.
p, q ∈ C(m+n) are eigenvectors of λ1 and the transpose M⊤,
respectively. These are chosen such that they satisfy p̄⊤q = 1.
Note thatM has the pure imaginary eigenvalues 0+ iω0 since
we consider the equilibrium point which undergoes Hopf
bifurcation.

The first Lyapunov coefficient, lKu1 , has the following
property [4], [20]:

lKu1 = ρ̄Kc + O(
√

ϵ), (29)

where ρ̄ is the positive scaling factor. We then obtain an
expression for λc,

λc = λH − ρlKu1 ϵ + O(ϵ3/2), (30)

where ρ = 1/ρ̄. In (30), we can obtain the scaling factor
ρ by calculating λH and λc. λH can be obtain by numerical
bifurcation analysis which we show later at (31). Also,
we can obtain approximated values of λc with numerical
continuation method. We show the specific scaling factor
ρ in the numerical analysis later. In this paper we treat RC
as the role of λ.

The Hopf bifurcation parameter, λH , is obtained by solving
the following conditions to obtain the parameters of an
equilibrium point and λH , (x∗, y∗, λH ), numerically:

f (x∗, y∗, λH , ϵ) = 0

g(x∗, y∗, λH , ϵ) = 0

det(2J ⊙ I ) = 0, (31)

where J denotes the Jacobian matrix of (f , g)⊤ with
respect to (x, y)⊤, ⊙ denotes the bialternate product [23],
and I is the (m + n) × (m + n) identity matrix. Here,
we use Newton’s method to solve the Hopf bifurcation
condition.

We show the actual procedure to obtain the canard
explosion parameter λc below.
1) Obtain the Hopf bifurcation parameter λH . We use the

shooting method with (31).
2) Calculate the first Lyapunov coefficient l1 at the Hopf

bifurcation.
3) Compute the maximal canard parameter λc with the

(30).
Note that the scaling factor ρ is obtained in advance
by numerically as we described before. To obtain the
scaling factor ρ, we use ϵ = 0.001. In this paper we
use the approximated parameter λc = 104130.3954 at
ϵ = 0.001 which is obtained from continuation of
periodic orbits using Runge-Kutta-Fehlberg method, the
Hopf bifurcation parameter λH = 105543.3018 with
ω0 = 0.157901 which is obtained from the shooting
method with (31). The first Lyapunov coefficient at the Hopf
bifurcation is lKu1 = 0.87939173. Then we have ρ =

203231491.0351 and able to calculate the canard explosion
set with (30). This scale ρ changes with the parameter
selected as λ. In this case, we have chosen the parameter

FIGURE 11. (RC , 1/ϵ) bifurcation diagram.

FIGURE 12. (RC , A) bifurcation diagram. 1/ϵ = 300.

RC , which takes on large values, resulting in a large scale
as well.

In slow–fast dynamical systems, it is difficult to compute
λc; this calculation typically involves numerical integration,
and it is difficult due to the precision requirements of
the integrator because of the slow–fast characteristics [18].
Kuehn’s first Lyapunov coefficient method [20] offers
the advantage of involving only algebraic operations and
permits the computation of λc without utilizing numerical
integration.

Fig. 11 shows the (RC , 1/ϵ) bifurcation diagram. The set
represented by the curve labelled H corresponds to the Hopf
bifurcation, while C± represent the sets of canard explosion
points near the singular points, p±. The gray lines in the figure
represent the parameter values at which the equilibrium and
singular points coincide. The locations of p± are obtained by
solving the following condition for (x∗, y∗, λ0) by Newton’s
method:

f (x∗, y∗, λ0, 0) = 0

g(x∗, y∗, λ0, 0) = 0
∂g
∂y

(x∗, y∗, λ0, 0) = 0, (32)
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FIGURE 13. Examples of canards in a multivibrator: (a) a canard without head, (b) fake chaos near the canard explosion point, (c) a canard with head. In
(b), due to the strong slow–fast dynamics, the accuracy of the numerical integration decreases, leading to the observation of fake chaos. The data shown
in this figure is obtained for ϵ = 0.001.

where λ0 is the parameter which the equilibrium point coin-
cide to fold point. In this case, it is λ0 = R+

C ,R−

C . We obtain
the equilibrium point (x∗, y∗) which coincides to a fold point
and the parameter λ0 at the same time by solving the objective
function.We show the actual values:R−

C = 106.0540876[k�]
and its location is (x∗, y∗) = (x0, y0) = (0.7282, 0.3748),
R+

C = 11.1570095[k�] and its location is (x0, y0) =

(4.2717, 0.4287), where (x0, y0) shows a fold point. In the
parameter region within the Hopf bifurcation through C±,
unstable equilibria and stable periodic solutions emerge. The
stable periodic solutions are characterized by small ampli-
tudes immediately after the Hopf bifurcation, but the canard
explosion at C± induces a rapid increase in their amplitude.
Further changes in the parameter values lead to relaxation
oscillations.

Fig. 12 shows the one-parameter bifurcation diagram of the
amplitudes of periodic solutions; this figure corresponds to
1/ϵ = 300 in Fig. 11. The amplitude A is the difference
of the maximal and minimal values of limit cycles as
same as Fig. 2. The gray lines in Fig. 12, labelled R±

C ,
represent the parameter that a equilibrium point coincides
to a fold point, and the magenta lines C± represent the
canard explosion parameter, as is the case in Fig. 11. The
amplitude can be seen to increase rapidly when the Hopf
bifurcation occurs. It appears in Fig. 12 that the precision
of C+ is poor, but, as mentioned above, the precision
improves as ϵ decreases. Indeed, small values of ϵ lead to
sharp increases in the amplitude. The relaxation oscillation
observed in the multivibrator can then be attributed to canard
explosions that are present for sufficiently small values
of ϵ.

The classification of canards as ‘‘canards with head’’
and ‘‘canards without head’’ can be determined by whether
the limit cycle contains points with zero curvature or
not [24].

Consider the planar system given in (1). Trajectories can
be obtained by eliminating time, t , from the equation,

g(x, y, ϵ)
dx
dy

= ϵf (x, y, ϵ). (33)

Differentiating this expression with respect to y gives,

dx
dy

d
dy
g(x, y, ϵ) +

d2x
dy2

g(x, y, ϵ) = ϵ
d
dy
f (x, y, ϵ). (34)

The trajectories with zero curvature thus satisfy,

f (x, y, ϵ)
d
dy
g(x, y, ϵ) − g(x, y, ϵ)

d
dy
f (x, y, ϵ) = 0. (35)

By plotting the set that satisfies (35) on the x-y plane, it is
possible to determine whether the limit cycle has points with
zero curvature.

Fig. 13 shows periodic orbits near the canard explo-
sion. Fig. 13(a) represents a ‘‘canard without head’’, and
Fig. 13(c) shows a ‘‘canard with head’’. The parameters for
Figs. 13(a) and (c) are RC = 104.131[k�] and RC =

104.130[k�], respectively, with ϵ = 0.001. It can be
seen that the amplitude increases significantly even though
the slope of f (x, y) = 0 changes only very slightly.
The curves labelled Iϵ in Fig. 13 represent the set of
solutions where the curvature of the trajectory is 0. It can
be seen that the headless canard does not intersect with Iϵ ,
whereas the headed canard does. Fig. 13(b) represents a
case close to the canard explosion point. Here, we observe
a fake chaotic trajectory, which occurs due to the slow–fast
dynamics. This is because the accuracy of the numerical
integration decreases. The multivibrator model proposed in
this study is a two-dimensional autonomous system, and
such trajectories are not permissible. These fake chaotic
trajectories will be confirmed in the subsequent circuit
experiments.
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FIGURE 14. Canards observed in an experimental circuit. We capture the data using an Agilent DSO1024A oscilloscope. The sampling rate used to
obtain the data presented here was 12.5 kHz. 8192 data points are plotted in each subfigure.

V. CIRCUIT IMPLEMENTATION
In the above numerical simulations, we observed that the
multivibrator considered here undergoes a transition from
a stable state to a relaxation oscillation, and canards are
observed during this process. The region in the parameter
space in which canards can be observed is small, but canards
have been observed [25] in multiple nonlinear electronic
circuits [26]. To validate the findings of the numerical
work presented here, we implemented the multivibrator
in a circuit and demonstrated the occurrence of canard
explosions experimentally. Here, we aim to demonstrate
the occurrence of canards in the real circuit response

of the multivibrator and capture the topological changes
due to the canard explosion, a characteristic of slow-fast
dynamical systems. Since our goal is not to precisely
replicate the canards as shown in numerical calculations,
we do not verify errors in components such as resistance
elements.

Due to the large value of α in (13), the actual components
of the opamp induce a sharp Z-shape in the curve of C0,
and the amplitude explosion after the Hopf bifurcation is
very pronounced. Furthermore, we note that the time-delay
characteristic corresponding to ϵ is determined by the slew
rate of the opamp; this value is sufficiently small. In the
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numerical calculations presented in the previous section, RG
was set to be smaller than RE and RF to reduce the severity
of the Z-shape and to make the change in the slope of C0 near
p± more gradual. This makes it possible to observe canards
over a relatively wide range of parameter values.

Here, the circuit is implemented according to Fig. 5,
using an Analog Devices OP177 opamp, which has a
relatively low slew-rate; this means the system is more
susceptible to canards than it would be using high slew-
rate opamps. This low-cost opamp has a gradual output
characteristic, which makes it suitable for confirming
canards. We note that it would be very challenging to
observe canard explosions in systems containing high-
performance opamps. However, even in the case of ide-
alized opamps, numerical simulations have predicted the
existence of canards within a very limited range of
parameters.

Fig. 14 shows the circuit response of an experimentally
realized multivibrator. It is interesting to observe the
variations in the response of the circuit for different values
of ϵ. However, since we cannot directly control the time
constants of the opamp, we adjust C to modify the slow–fast
characteristics of the system. The rows of the figure show
the variation in the observed trajectories for a fixed value
of C as a result of changes in RC . As RC changes, the
system transitions from being characterized by a canard
without head via a canard explosion to being characterized
by a canard with head (relaxation oscillations). The columns
in Fig. 14 show the variations in the trajectories that
occur as a result of changes in the value of C for a
fixed value of RC . As C increases, the movement along
the slow-variable direction becomes slower, resulting in
more pronounced slow–fast characteristics, while the fast
movement along the fast-variable direction becomes more
emphasized. Both the headless and headed canards shown
in the previous section are visible in (a2) and (b2) due to
the slight parameter variations induced by small external
noise. The multivibrator is a planar system, thus, such
trajectories are not possible in the absence of external
noise.

VI. CONCLUSION
In this work, we constructed a multivibrator as a slow–fast
dynamical system, which exhibited responses typical of
slow–fast systems. The proposed multivibrator allows for
easy adjustment of the slow–fast characteristics bymodifying
the circuit components. Furthermore, the position of the
equilibrium point of the system can be easily changed.
The Hopf bifurcation set was obtained via conventional
numerical computations. The set of canard explosion points
was obtained using a method based on the first Lyapunov
coefficient which only requires non-complicated numerical
computation. Both the numerical simulations and circuit
experiments undertaken here demonstrate the existence of
canard explosions in the system. As future work, the series

of numerical methods presented in this paper will be
applied to other slow–fast dynamical systems. This includes
applications to higher-dimensional systems where the fast
dynamics involve two or more. In these higher-dimensional
systems, analytical solutions are challenging, underscoring
the importance of numerical computations.
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