Discovery of Novel Piperidinyl/piperazinyl-benzothiazole Derivatives as Potent and Selective PPAR δ Agonists

Contents

Abbreviations 2
Chapter 1. Introduction 5
Chapter 2. Structure-based design of novel piperidinylbenzothiazole derivatives as PPAR δ agonists utilizing a virtual screening method 9
Chapter 3. Identification of a novel piperazinylbenzothiazole derivative as potent and selective PPAR δ agonist with an HDL-C elevating effect 21
Chapter 4. Identification of a novel piperidinylbenzothiazole derivative as potent and selective PPAR δ agonist with an anti-inflammatory effect 33
Chapter 5. Summary 49
Chapter 6. Synthetic routes to piperazinyl/piperidinyl-benzothiazole derivatives and experiments 53
Acknowledgements 161
References 162
List of publications 166

Abbreviations

ADME	absorption, distribution, metabolism and excretion
ApoB100	apolipoprotein B100
ADDP	1,1'-(azodicarbonyl)dipiperidine
AUC	area under the curve
CETP	cholesteryl ester transfer protein
CHO	Chinese hamster ovary
CL ${ }_{\text {t }}$	total body clearance
$\mathrm{C}_{\text {max }}$	maximum concentration
CPK model	Corey-Pauling-Koltun model
CYP	cytochrome P450
DEAD	diethyl azodicarboxylate
DMAP	4-dimethylaminopyridine
EC_{50}	half maximum effective concentration
EDC	1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
$\mathrm{E}_{\text {max }}$	maximum efficacy
FXR	farnesoid X receptor
GCR	glucocorticoid receptor
HDL-C	high-density lipoprotein cholesterol
hERG	human ether-a-go-go-related gene
HRMS	high-resolution mass spectrometry
IL-1 β	interleukin-1 β

iv
LDL-C low-density lipoprotein cholesterol
LXR $\alpha \quad$ liver X receptor α
MCP-1 monocyte chemoattractant protein 1
$\mathrm{MsCl} \quad$ methanesulfonyl chloride
PAI-1 plasminogen activator inhibitor-1
PDB Protein Data Bank
PK pharmacokinetic
po per oral
PPAR peroxisome proliferator-activated receptor
RAR $\alpha \quad$ retinoic acid receptor α
RXR $\alpha \quad$ retinoid X receptor α
TC total cholesterol

TG triglyceride
TMSOTf trimethylsilyl trifluoromethansulfonate
TNF- $\alpha \quad$ tumor necrosis factor- α
TR $\beta \quad$ thyroid hormone receptor β
VDR vitamin D receptor

Chapter 1

Introduction

Cardiovascular diseases have remained the leading causes of death and disability worldwide. Atherosclerosis, the most common form of arteriosclerosis, is the major factor of the cardiovascular diseases and its major clinical manifestations include ischemic heart disease, ischemic stroke, and peripheral arterial disease. ${ }^{1}$ Atherosclerosis is a pattern of the disease resulting from the accumulation of atherosclerotic plaques on the inner walls of blood vessels and the subsequent inflammatory response. Based on abundant evidence from epidemic research and the benefits of statin therapy, it has been widely accepted that low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels have a great influence on the development of atherosclerosis. HDL particles, which are acceptors of cholesterol from arterial cholesterol-laden macrophage, are deeply involved in the maintenance of cholesterol balance in the arterial wall. ${ }^{2}$ Now it is evident that atherosclerosis is a chronic inflammatory disease which is induced by various risk factors such as dyslipidemia and is closely related to the effects of proinflammatory and anti-inflammatory cytokines/chemokines. ${ }^{3}$

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily that regulate energy balance by influencing the metabolism of lipids and glucose. They exist in three different isoforms: $\operatorname{PPAR} \alpha, \operatorname{PPAR} \gamma$ and $\operatorname{PPAR} \delta$ (also called PPAR β or PPAR β / δ), and are activated by fatty acids and their derivates. ${ }^{4}$ PPAR α and PPAR γ have been well studied and their synthetic agonists are widely used clinically. PPAR α is expressed mainly in high energyrequiring tissues such as brown adipose tissue, liver, kidney, heart, and skeletal muscle, and involved in regulation of fatty-acid catabolism and ketogenesis. Fibrates as synthetic ligands for PPAR α have been widely used for clinical treatment of dyslipidemia since
these drugs can effectively decrease triglyceride (TG) and LDL-C levels. ${ }^{5}$ PPAR γ is highly expressed in white and brown adipose tissues and to a lesser degree in liver, kidney, skeletal muscles, pancreas and small intestine. Since $\operatorname{PPAR} \gamma$ controls adipogenesis, insulin sensitivity, cell cycle regulation and cell differentiation, thiazolidinediones such as pioglitazone and rosiglitazone, which are known as highly potent PPAR γ agonists, have been used for the clinical treatment of type 2 diabetes. ${ }^{6}$ Although treatments with PPAR α and PPAR γ activators have mostly favorable effects on the risk factors for cardiovascular disease, they also lead to adverse effects such as rhabdomyolysis of fibrates and edema of thiazolidinediones, respectively, and therefore their clinical uses are limited in patients with complication risk. ${ }^{7}$ In contrast, there are no synthetic ligands of PPAR δ currently in clinical use.

PPAR δ is widely expressed throughout the body, especially in the organs closely associated with fatty acid metabolism. Previous reports have suggested that activation of PPAR δ leads to improved lipid profiles and reduced adiposity due to its involvement in β-oxidation and triglyceride utilization in adipocytes and myocytes. ${ }^{8}$ Although the physiological functions of PPAR δ still remain uncertain, the roles of PPAR δ have been gradually elucidated using several high-affinity synthetic PPAR δ agonists such as GW501516 from GlaxoSmithKline, MBX-8025 (Seladelpar) from Johnson \& Johnson and L-165041 from Merck (Figure 1_1). ${ }^{9}$ GW501516 was reported to increase serum HDL-C level in obese rhesus monkeys and ameliorate diet-induced obesity and insulin resistance in mice fed high-fat diets. ${ }^{10}$ In addition to its role in the control of lipid metabolism, numerous recent studies have found that PPAR δ is also involved in inflammatory mediators in endothelial cells, monocytes and macrophages and that its
agonists contribute to the anti-inflammatory effects in vitro and in vivo. ${ }^{11}$ These findings indicate that PPAR δ agonists have the potential to suppress the inflammatory response that triggers atherosclerosis. Although, to date, there is no effective and safe PPAR δ agonist available for clinical use, PPAR δ remains a promising drug target to treat metabolic diseases including atherosclerosis.

Figure 1_1. Structures of GW501516, MBX-8025 and L-165041.

Chapter 2

Structure-based design of novel piperidinylbenzothiazole derivatives as PPAR agonists utilizing a virtual screening method

To explore for novel PPAR δ agonists, the author started with identification of a potent hit compound by docking simulations and virtual screening. All docking simulations and virtual screening calculations in this study were performed by using ADAM and ADAM\&EVE systems from IMMD. ${ }^{12}$ These software have the advantages that the conformational flexibility of ligands and the local induced-fit motion of target proteins are effectively considered and correct docking modes can be predicted in the most cases, even for the ligands whose structures are very different from those of the previously cocrystallized ligands. Although a structure/shape/electrostatic similarity screening and a pharmacophore search were also carried out before to screen initial hits, the author consider that such screening steps based on the known ligand structures might filter out the promising hit compounds with entirely different scaffolds or interaction patterns from the known actives. Therefore, the author adopted the docking-based approach throughout the entire course of this study.

As a first step of this study, the author performed ADAM docking calculation of selective PPAR δ agonist GW501516 to the crystal structure of PPAR $\delta(\operatorname{PDB}$ ID $=1 \mathrm{GWX})$, which was the only experimental PPAR δ structure reported at the beginning of this study. ${ }^{13}$ The predicted docking mode indicated the importance of hydrogen bond networks with the activation function helix (AF-2 helix), which is involved in the binding of co-activators, and the neighboring helixes to show PPAR agonist activity, just like the other PPAR agonists (Figure 2_1). ${ }^{14}$ Furthermore, the tight fitting of the methylthiazole moiety to the middle of hydrophobic site of PPAR δ would contribute to the PPAR δ selectivity of GW501516, since the corresponding sites in PPAR α and PPAR γ were appreciably narrow compared to PPAR δ. Small molecule ligands with bulky structures at
the region corresponding to methylthiazole moiety of GW501516 would be hardly to bind to PPAR α and PPAR γ and express PPAR δ agonist activity. It is noticed that the calculated binding mode of GW501516 was almost consistent with the X-ray crystallographic structure $($ PDB ID $=5 \mathrm{U} 46)$ which was reported by C. C. Wu et al. ${ }^{15}$ Then, the author tried to search for new seed structures of PPAR agonists by means of the ADAM\&EVE virtual screening technique. Based on the docking simulation of GW501516, the hit criteria for virtual screening were set as follows: 1) More than two hydrogen bonds with the AF-2 helix and/or the neighboring helixes should be formed; 2) a planar ring structure such as aromatic ring should occupy the site where the trifluoromethylbenzene of GW501516 would bind; and 3) sterically bulky hydrophobic structure should occupy the site where the methylthiazole of GW501516 would bind.

Figure 2_1. Docking model of GW501516 to PPAR δ. Blue line and yellow region show backbone of PPAR δ structure and hydrophobic surface, respectively. Yellow dotted lines delineate the relation of hydrogen bond dummy atoms and original protein atoms.

Prior to the virtual screening calculation, a 3D grid was generated inside the ligand-binding region of the 1 GWX structure in the default condition, and several dummy atoms were set in order to whose match between the protein hydrogen bonding site and ligand hydrogen bonding heteroatoms or between the protein hydrophobic site and ligand hydrophobic groups. Three dummy atom positions were selected according to our hit criteria described above, i.e., at the hydrogen bonding site related to the side chains of both Y473 on the AF-2 helix and H 449 on the helix 11, at the hydrogen bonding site from the side chain of H 323 on the helix 6 and at the hydrophobic site where the trifluoromethylbenzene and methylthiazole of GW501516 would bind. Totally, about 100,000 3D ligand structural data were prepared from the in-house compound library and MAYBRIDGE catalog database by using the KEY3D program from IMMD, ${ }^{16}$ and the virtual screening calculation was performed by using the ADAM-SEARCH program, a member of the ADAM\&EVE system, in the default condition.

277 compounds were selected as hit compounds by this virtual screening, on the basis of the computational criteria (i.e., the hit criteria of hydrogen bonds and binding to the flat hydrophobic site, total energy score, molecular weight, etc.) and visual inspection (docking mode, chemical tractability, drug-likeness, intellectual property consideration, etc.). PPAR agonist activities of the selected compounds were assessed by GAL4 hybrid reporter gene assays and 37 active compounds with new scaffolds were identified. Among them, the author decided to focus on compound 2_1 even though its activity was weak (fold activation at $10 \mu \mathrm{M}: \operatorname{PPAR} \alpha 2.8, \operatorname{PPAR} \gamma 1.4$, PPAR $\delta 2.3$) (Table 2_1). The docking model of compound 2_1 to PPAR δ predicted by ADAM was further energetically minimized considering the protein atom motion around the ligand-binding site by means
of the BLUTO program from IMMD. ${ }^{17}$ The optimized model suggests that compound 2_1 should satisfy all the criteria set for the virtual screening calculation; i.e., the terminal carboxylic acid group formed hydrogen bonds with the side chains of H323, H449 and Y473, and the benzothiazole and piperazinyl ring structure bound to the hydrophobic site. The piperazinyl ring structure occupied as the same binding site as the methylthiazole of GW501516 (Figure 2_2). Thus, compound 2_1 seemed very suitable for the structure modification to improve the PPAR δ agonist activity with the selectivity over PPAR α and PPAR γ. Interestingly, its piperidine analogue 2_2 showed slightly higher potency for PPAR δ than compound 2_1 (Table 2_1). Then, the author selected compound $\mathbf{2} \mathbf{2}$ as the starting structure for further optimization. Although some compounds containing benzothiazole and phenylpropionic acid were previously reported as selective PPAR δ agonists by other groups, this starting structure has a piperidine ring as characteristic linker moiety to enhance the PPAR δ agonist activity with the selectivity over PPAR α and PPAR γ between terminal benzothiazole and the carboxylic acid moiety.

Table 2_1. The PPAR agonist activities of hit compound 2_1 and its analogue 2_2.

Cmpd	Fold activation at $10 \mu \mathrm{M} / 1 \mu \mathrm{M}$	

CHO cells were transiently co-transfected with GAL4-hPPAR/mPPAR hybrid expression vector and pG5-Luc reporter vector. ${ }^{18}$ Cells were cultured with each compound or DMSO. After 24-28 hr, luciferase activities were measured. Fold activation is shown above relative to DMSO-treated cells.

Figure 2_2. Docking models of compound 2_1 (stick) to PPAR δ. Thin orange lines show GW501516 structure. Yellow dotted lines represent hydrogen bonds.

As the first strategy for the structure optimization, the author tried to introduce an aromatic ring to the chain part between the piperidine ring and the carboxylic acid. The purposes were; 1) to decrease the entropic loss on conformational flexibility of the long chain part in binding to the protein, 2) to improve the intermolecular van der Waals interaction by increasing volume of that part, 3) to remove the ester group which would be undesirable in terms of metabolic stability. In vitro activities of synthesized compounds were measured by reporter gene assay and their transactivation activities for all PPAR subtypes in human at concentrations of $1 \mu \mathrm{M}$ were summarized in Table 2_2. The author assessed their activities for mouse PPAR δ (mPPAR δ) in addition to that for human PPAR δ (hPPAR δ) to evaluate the HDL-C elevation effects in a mice model. Compound $\mathbf{2} \mathbf{3} \mathbf{3}$ with the benzoic acid did not improve PPAR δ agonist activity, whereas 2_4 and 2_5 with the phenylacetic acid showed greater enhancement of the fold activation for PPAR δ (hPPAR δ fold activation at $1 \mu \mathrm{M}: 14.6$ for 2_4; 14.4 for 2_5). Although the hPPAR δ agonist potencies of the phenylacetic acid derivatives 2_4 and 2_5 showed the similar values, the fold activation value for mPPAR δ of $\mathbf{2} \mathbf{5}$ having an ethylene-oxy linker was higher than
that of 2_4 having a methylene-oxy linker (mPPAR δ fold activation at $1 \mu \mathrm{M}: 7.0$ for $\mathbf{2} \mathbf{4}$; 11.0 for $\mathbf{2} \mathbf{5}$). As a consequence, compound $\mathbf{2} \mathbf{5}$ containing a phenylacetic acid moiety and an ethylene-oxy linker had agonist potencies for both hPPAR δ and mPPAR δ and was selected as a lead scaffold. In contrast, compound 2_6 containing a phenylpropionic acid, which is one methylene longer than a phenylacetic acid, displayed only weak PPAR δ agonist activity.

Table 2_2. Activity of compounds 2_2-6 in cell-based transactivation assay against PPARs.
Cold activation at $1 \mu \mathrm{M}$

CHO cells were transiently co-transfected with GAL4-hPPAR/mPPAR hybrid expression vector and pG5-Luc reporter vector. ${ }^{18}$ Cells were cultured with each compound or DMSO. After $24-28 \mathrm{hr}$, luciferase activities were measured. Fold activation is shown above relative to DMSO-treated cells.

The docking model of $\mathbf{2} \mathbf{5}$ with PPAR δ suggested the tight hydrogen boding networks with the important sites from the AF-2 and surrounded helixes, especially H323, H449 and Y473, as a result of the appropriate position of its carboxylic acid moiety due to the introduction of a benzene ring (Figure 2_3, right). Meanwhile for compounds 2_3, the carboxylic acid was less likely to reach the hydrogen bonding sites around the AF-2 helix and didn't have enough hydrophobic interaction in the docking model (Figure 2 3, left), and actually it displayed only weak activity. The docking model suggested that a little difference in position of the benzene ring could have a profound effect on the hydrophobic interaction. Therefore, introduction of a substituent into the benzene ring was considered effective to optimize the hydrogen bond length and improve PPAR δ agonist activity.

Figure 2_3. Docking models of compound 2_3 (left) and 2_5 (right) to PPAR δ. Yellow dotted lines delineate hydrogen bonds.

First, methyl group was introduced to probe a best position to increase the activity. 2-Methylphenylacetic acid 2_7 lost all of agonist activities of PPARs. By contrast, other methyl-substituted phenylacetic acids 2_8-10, especially 4-Methylphenylacetic acid 2_8, showed higher PPAR δ agonist potency than compound 2.5 (hPPAR $\delta \mathrm{EC}_{50}: 16.4 \mathrm{nM}$ for

2_8; 92.9 nM for 2_9; 110 nM for 2_10). This suggested that a substitution in 4-position on the benzene ring was preferable to increase PPAR δ binding activity. The following exploration of 4-position revealed that the substituent should be of modest size according to the PPAR δ agonist activities of compound 2_11 $\left(\mathrm{R}=4\right.$-chloro, $\left.\mathrm{EC}_{50}=19.1 \mathrm{nM}\right)$ and 2_12 $\left(\mathrm{R}=4\right.$-ethyl, $\left.\mathrm{EC}_{50}=120 \mathrm{nM}\right)$. It is notable that the most potent PPAR δ agonist 2_8 had selectivity against PPAR α (38-fold) and PPAR γ (33-fold).

Table 2_3. Activity of compounds 2_5 and 2_7-12 in cell-based transactivation assay against PPARs.

CHO cells were transiently co-transfected with GAL4-hPPAR/mPPAR hybrid expression vector and pG5-Luc reporter vector. ${ }^{18}$ Cells were cultured with each compound or DMSO. After $24-28 \mathrm{hr}$, luciferase activities were measured. EC_{50} value was calculated as the concentration of the test compound to give half the maximal fold increase. When the maximal fold increase was below 2 -fold, EC_{50} was not calculated ("NC" in the table).

The author also confirmed the docking mode of 2_8 with PPAR δ and its image was shown in Figure 2_4. It suggested that the methyl group of its benzene ring occupied the vacant hydrophobic pocket of the receptor and its phenylacetic acid moiety formed the hydrogen bonds with H323, H449 and Y473.

Figure 2_4. The docking model of compound 2_8 to PPAR δ. Yellow dotted lines delineate hydrogen bonds.

Compound 2_8 was evaluated for metabolic stability, CYP inhibition, solubility and pharmacokinetic studies, and all of the values were acceptable as a lead compound. (Table 2_4). 2_8 was also applied to in vivo evaluation in mice. Male db/db mice were dosed orally once daily (q.d.) for 8 days with $30 \mathrm{mg} / \mathrm{kg}$ of 2_8 and GW501516, respectively. The results are summarized in Table 2_5. GW501516 is known to increase HDL-C levels and to lower serum TG levels moderately in the model through activating PPAR δ. In this study, 2_8 showed a little increase of HDL-C level and more prominent effects on the reduction of plasma TG and blood glucose levels than GW501516. These results suggest that 2_8 has potential to deliver significant therapeutic benefits for the treatment of dyslipidemia and hypertriglyceridemia.

Table 2_4. ADME data of compound 2_8.

Cmpd	Metabolic stability ${ }^{\text {a }}$ (\%)		Remaining activity of $\mathrm{CYP}^{\text {b }}$ (\%)				Solubility ${ }^{\text {c }}(\mu \mathrm{M})$	PK parameters ${ }^{\text {d }}$	
	Rat	Human	1A2	2C9	2D6	3A4		$\mathrm{CL}_{\mathrm{t}}(\mathrm{mL} / \mathrm{min} / \mathrm{kg})$	$\mathrm{T}_{1 / 2}(\mathrm{hr})$
2_8	101	96	92	58	94	>99	21.8	14.3	1.8

CL_{t} : total clearance
${ }^{a}$ Metabolic stability in liver microsome was determined as remaining percentage of compound after 0.5 hr .
${ }^{b}$ Remaining activity at $20 \mu \mathrm{M}$ was determined by enzyme assay (\% of control).
${ }^{c}$ Kinetic solubility at pH 6.8 was determined by HPLC.
${ }^{d}$ Compounds were administered as a mixture of four compounds. Rat, $\mathrm{n}=2$.

Table 2_5. Activity of compound 2_8 on HDL-C, TG and glucose in $\mathrm{db} / \mathrm{db}$ mice model.

Cmpd	$\begin{aligned} & \text { HDL-C } \\ & \text { (\% Initial) } \end{aligned}$		$\begin{gathered} \mathrm{TG} \\ (\mathrm{mg} / \mathrm{dL}) \end{gathered}$		Glucose (mg/dL)	
Control	103.5 ± 3.2		162.8 ± 21.4		737 ± 52	
GW501516	132.9 ± 2.7	*	82.4 ± 7.4	**	493 ± 60	**
2_8	118.0 ± 3.5	**	63.9 ± 22.9	**	415 ± 48	*

Dose: $30 \mathrm{mg} / \mathrm{kg} \mathrm{q} . \mathrm{d} ., 8$ days, $\mathrm{n}=6$ mice per group. ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01$ compared to vehicle-treated group (Dunnett's multiple comparison test).

In summary, the author obtained a new series of small molecule PPAR δ agonists containing piperidinylbenzothiazole structure through the virtual screening and the subsequent structure optimization, which showed high PPAR δ agonist activity and selectivity over PPAR α and $\operatorname{PPAR} \gamma$. Compound 2_8 had good ADME profiles and showed in vivo efficacy to increase HDL-C level in $\mathrm{db} / \mathrm{db}$ mice model.

Chapter 3

Identification of a novel piperazinylbenzothiazole derivative as potent and selective PPAR agonist with an HDL-C elevating effect

In chapter 2, the author described the discovery of 2-(1-piperidinyl)-1,3benzothiazole derivatives as a new series of PPAR δ agonists by using docking-based virtual screening techniques. A subtype-selective PPAR δ agonist 2_8 was obtained as a result of the structure-activity relationship study, but the author believed that there still remained a margin for improvement in its potency and selectivity. Docking images of lead compound 2_8 and its piperazine analogue 3_1 to the ligand binding domain of hPPAR δ indicated that one side of central piperidine/piperazine ring could fit into the bottom hydrophobic surface of the binding pocket and there was an unoccupied space on the opposite side (Figure 3_1, left). Thus, the author considered that introduction of a hydrophobic group into the central six-membered ring could enhance binding activity of PPAR δ. In addition, the author obtained another scaffold 3_12 having a methylene linker, instead of an ethylene-oxy linker, between the piperidine ring and the phenylacetic acid moiety of 2_8 by the virtual screening. The docking simulation of compound 3_12 suggested that it would efficiently fit into the cavity of PPAR δ as well as the ethyleneoxy linker derivatives (Figure 3_1, right). Therefore, the author introduced various substituents into the 2- or 3-position of the piperidine/piperazine ring in both of the scaffolds and evaluated their substituent effects on PPAR δ activity and selectivity.

Figure 3_1. Docking models of compound 2_8 (green), compound 3_1 (left, gray) and compound 3_12 (right, gray) to $\mathrm{hPPAR} \delta(\mathrm{PDB} \mathrm{ID}=1 \mathrm{GWX})$.

Initially, the author confirmed that piperazine analog 3_1 exhibited agonist activity for PPAR δ, although slightly inferior to that of lead compound 2_8, and that the piperidine moiety could be replaced with a piperazine structure. In comparison with lead compound 2_8, methylpiperazine derivative 3_2 showed improved PPAR δ agonist activity and selectively. Interestingly, replacement of the methyl group by the chlorine group at the same position in the right benzene moiety of $\mathbf{3} _\mathbf{2}$ also increased activity for mouse PPAR δ and compound 3_3 exhibited excellent selectivity for PPAR δ. On the other hand, compound 3_4, which is a stereoisomer of $\mathbf{3} _\mathbf{3}$, showed lower PPAR δ activity than 3_3. The author made a piperidine derivative $3 _5$ to investigate influence on the alkyl side chain arrangement, and it revealed that the PPAR δ agonist activity of $\mathbf{3}$ _ 5 was similar to that of piperazine derivative $\mathbf{3} \mathbf{3}$ with considering that $\mathbf{3} \mathbf{5}$ was prepared as a mixture of stereoisomers. Thus, the subsequent structure-activity relationship study was performed by using the piperazine scaffold in terms of synthetic easiness. Next, the author investigated the effect of substituted position and stereoisomer of methyl group on the piperazine ring. Although PPAR δ agonist activities of 3-methylpiperazine derivatives 3_6
and 3_7 had almost the same as those of 3_3 and 3_4 respectively, 3_6 and 3_7 showed low selectivities against $\operatorname{PPAR} \gamma$. For this reason, it is suggested that (S)-2-alkylpiperazine derivative is appropriate in terms of PPAR δ agonist activity and selectivity. Further investigation of alkyl side chains at this position demonstrated that (S)-2-ethylpiperazine analogue 3_8 has higher PPAR δ activity than 3_3. In contrast, (S)-2-isobutylpiperazine analogue 3_9 showed significant decreased PPAR δ activity, therefore methyl and ethyl groups could fit the binding cavity well. A docking image of compound $\mathbf{3}$ _ 8 to PPAR δ supported this experimental fact. It suggested that the (S)-ethyl group tightly fitted to the hydrophobic cavity and more bulky alkyl chains caused large conformational changes in the central piperazine moiety in order to avoid intersect with the cavity surface (Figure 32 , left). In addition, it seemed to be difficult to extend (R)-alkyl chains in the narrow space around the opposite hydrophobic surface (Figure 3_2, right). Meanwhile, 6trifluoromethylbenzothiazole derivatives 3_10 and 3_11, which were designed to enhance the hydrophobic interaction in the left benzothiazole moiety, showed better potency as PPAR δ agonists and kept excellent selectivity against hPPAR α and hPPAR γ. Since (S)-2ethylpiperazine derivatives like $\mathbf{3}$ _11 showed higher $\mathrm{E}_{\max }$ values of PPAR δ activity than GW501516, they are considered as full PPAR δ agonists. In contrast, there is a possibility that (S)-2-methylpiperazine derivatives like 3_10 are partial agonists for hPPAR δ.

Table 3_1. Agonistic activities of compounds 2_8 and 3_1-11 in cell-based transactivation assay against PPARs.

Cmpd	R^{4}	R^{3}	R^{2}	R^{1}	X	Transactivation $\mathrm{EC}_{50}(\mathrm{nM})$					
						hPPAR δ ($\mathrm{E}_{\text {max }}$)	$\begin{gathered} \mathrm{hPPAR} \alpha \\ \left(\mathrm{E}_{\max }, \mathrm{h} \alpha / \mathrm{h} \delta\right) \end{gathered}$	hPPAR γ ($\mathrm{E}_{\text {max }}, \mathrm{h} \gamma \mathrm{h} \delta$)	mPPAR δ ($\mathrm{E}_{\text {max }}$)	mPPAR α ($\mathrm{E}_{\mathrm{max}}, \mathrm{m} \alpha / \mathrm{m} \delta$)	$\begin{gathered} \mathrm{mPPAR} \gamma \\ \left(\mathrm{E}_{\max }, \mathrm{m} \gamma / \mathrm{m} \delta\right) \end{gathered}$
2 _8	Cl	H	H	Me	CH	$\begin{gathered} 16 \\ (16.2) \end{gathered}$	$\begin{gathered} 637 \\ (8.0,39) \end{gathered}$	$\begin{gathered} 542 \\ (9.0,33) \end{gathered}$	$\begin{gathered} 71 \\ (20.0) \end{gathered}$	$\begin{gathered} 1126 \\ (15.5,16) \end{gathered}$	$\begin{gathered} 744 \\ (10.2,10) \end{gathered}$
3_1	Cl	H	H	Me	N	$\begin{gathered} 33 \\ (14.4) \end{gathered}$	-	-	$\begin{gathered} 110 \\ (25.3) \end{gathered}$	-	-
3 2	Cl	H	(S)-Me	Me	N	$\begin{gathered} 5.4 \\ (15.8) \end{gathered}$	$\begin{gathered} 1400 \\ (3.4,259) \end{gathered}$	$\begin{gathered} 1100 \\ (14.2,204) \end{gathered}$	$\begin{gathered} 25 \\ (21.7) \end{gathered}$	$\begin{gathered} 4900 \\ (6.9,196) \end{gathered}$	$\begin{gathered} 500 \\ (8.2,20) \end{gathered}$
3_3	Cl	H	(S)-Me	Cl	N	$\begin{gathered} 5.0 \\ (15.5) \end{gathered}$	$\begin{gathered} 1000 \\ (3.4,200) \end{gathered}$	$\begin{gathered} 800 \\ (8.2,160) \end{gathered}$	$\begin{gathered} 12 \\ (23.2) \end{gathered}$	$\begin{gathered} 7100 \\ (8.3,592) \end{gathered}$	$\begin{gathered} 900 \\ (6.0,75) \end{gathered}$
3_4	Cl	H	(R)-Me	Cl	N	$\begin{gathered} 16 \\ (19.8) \end{gathered}$	$\begin{gathered} 900 \\ (3.8,56) \end{gathered}$	$\begin{gathered} 440 \\ (12.6,28) \end{gathered}$	$\begin{gathered} 47 \\ (28.3) \end{gathered}$	$\begin{gathered} 3200 \\ (21.0,68) \end{gathered}$	$\begin{gathered} 200 \\ (6.4,4) \end{gathered}$
3_5	Cl	H	Me	Cl	CH	$\begin{gathered} 19 \\ (19.9) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (3.0, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 1400 \\ (14.5,75) \end{gathered}$	$\begin{gathered} 47 \\ (28.7) \end{gathered}$	$\begin{gathered} 3600 \\ (14.2,76) \end{gathered}$	$\begin{gathered} 1000 \\ (11.4,22) \end{gathered}$
3 [6	Cl	(R)-Me	H	Cl	N	$\begin{gathered} 7.9 \\ (21.9) \end{gathered}$	$\begin{gathered} 200 \\ (5.1,25) \end{gathered}$	$\begin{gathered} 16 \\ (16.0,2) \end{gathered}$	$\begin{gathered} 46 \\ (27.6) \end{gathered}$	$\begin{gathered} 3900 \\ (12.5,85) \end{gathered}$	$\begin{gathered} 4.1 \\ (5.7,<1) \end{gathered}$
3_7	Cl	(S)-Me	H	Cl	N	$\begin{gathered} 17 \\ (23.9) \end{gathered}$	$\begin{gathered} 520 \\ (5.6,31) \end{gathered}$	$\begin{gathered} 480 \\ (13.0,28) \end{gathered}$	$\begin{gathered} 27 \\ (27.9) \end{gathered}$	$\begin{gathered} 13000 \\ (16.7,481) \end{gathered}$	$\begin{gathered} 150 \\ (5.2,6) \end{gathered}$
3_8	Cl	H	(S)-Et	Cl	N	$\begin{gathered} 2.7 \\ (24.6) \end{gathered}$	$\begin{gathered} 310 \\ (5.4,115) \end{gathered}$	$\begin{gathered} 710 \\ (24.9,263) \end{gathered}$	$\begin{gathered} 5.8 \\ (31.3) \end{gathered}$	$\begin{gathered} 3400 \\ (6.1,586) \end{gathered}$	$\begin{gathered} 390 \\ (17.5,67) \end{gathered}$
3_9	Cl	H	(S) $-i-\mathrm{Bu}$	Cl	N	$\begin{gathered} 17 \\ (23.2) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (3.1, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 1100 \\ (15.0,65) \end{gathered}$	$\begin{gathered} 61 \\ (28.3) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (4.6, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 660 \\ (13.2,11) \end{gathered}$
3_10	CF_{3}	H	(S)-Me	Cl	N	$\begin{gathered} 1.5 \\ (15.1) \end{gathered}$	$\begin{gathered} 730 \\ (4.7,487) \end{gathered}$	$\begin{gathered} 890 \\ (15.0,593) \end{gathered}$	$\begin{gathered} 6.9 \\ (34.0) \end{gathered}$	$\begin{gathered} 2700 \\ (7.2,391) \end{gathered}$	$\begin{gathered} 240 \\ (10.1,35) \end{gathered}$
3_11	CF_{3}	H	(S)-Et	Cl	N	$\begin{gathered} 3.6 \\ (24.6) \end{gathered}$	$\begin{gathered} 400 \\ (5.8,111) \end{gathered}$	$\begin{gathered} 370 \\ (16.3,103) \end{gathered}$	$\begin{gathered} 6.1 \\ (31.7) \end{gathered}$	$\begin{gathered} 2500 \\ (8.0,410) \end{gathered}$	$\begin{gathered} 240 \\ (10.1,39) \end{gathered}$
GW501516						$\begin{gathered} 9.5 \\ (16.8) \end{gathered}$	$\begin{gathered} 2200 \\ (4.0,232) \end{gathered}$	$\begin{gathered} 4400 \\ (2.3,463) \end{gathered}$	$\begin{gathered} 76 \\ (23.9) \end{gathered}$	$\begin{gathered} 6100 \\ (10.4,80) \end{gathered}$	$\begin{gathered} 3500 \\ (2.8,46) \end{gathered}$

CHO cells were transiently co-transfected with GAL4-hPPAR/mPPAR hybrid expression vector and pG5-Luc reporter vector. ${ }^{18}$ Cells were cultured with each compound or DMSO. After $24-28 \mathrm{hr}$, luciferase activities were measured. EC_{50} value was calculated as the concentration of the test compound to give half the maximal fold increase. When the maximal fold increase was below 2 -fold, EC_{50} was not calculated ("NC" in the table). $\mathrm{E}_{\text {max }}$ means maximal fold increase value relative to DMSO-treated cells. Compound $\mathbf{3} \mathbf{5} 5$ is a mixture of stereoisomers.

Figure 3_2. Docking images of compound 3_8 to PPAR δ (PDB ID = 1GWX) from two directions. The (S)-ethyl group of its piperazine ring is displayed by the CPK model.

Next, the author replaced an ethylene-oxy linker between the piperazine ring and the phenylacetic acid moiety with a methylene linker. A series of compounds having methylene linkers were synthesized and their agonist activities for all PPAR subtypes were summarized in Table 3_2. Since compound 3_12 with the unsubstituted piperazine ring showed similar agonist activities as the lead compound 2_8, the author next synthesized four isomers 3_13-16 with mono methylated piperazine rings and discovered that all of them had superior PPAR δ agonist activities to the unsubstituted piperazine compound 3_12. When compared their activities of PPAR α and PPAR γ between the two compounds having a methyl group on the same side of their piperazine ring, 3_15 and 3_16 showed a tendency to have larger half maximal effective concentration (EC_{50}) values and smaller maximal increase values ($\mathrm{E}_{\max }$) of PPAR α and PPAR γ than 3 _13 and 3_14 respectively. Therefore, the author assumed that alkylation on 3-position of the piperazine moiety was preferable in this scaffold in terms of the selectivities against PPAR α and PPAR γ unlike the ethylene-oxy linker scaffold. Subsequently, the author examined the effects of sterically bulky substituents at 3-position of the piperazine ring to agonist potency and selectivity against PPARs by introducing ethyl, isopropyl or
isobutyl group instead of the methyl group on the piperazine ring (3_17-22). Consequently, all of the compounds except 3_21 showed higher PPAR δ activity than the corresponding methylated isomer 3_15 and 3_16. As to their selectivity against PPAR γ, (S)-isopropylpiperazine derivative 3_19 and (R)-isobutylpiperazine derivative 3_22 exhibited significant lower efficacy for $\operatorname{PPAR} \gamma$ activation than their respective stereoisomers. Because of this, the author selected 3_19 and 3_22 for further evaluation in addition to 3_10 and 3_11 with ethylene-oxy linkers. Docking simulation suggested that (S)-isopropyl group of $\mathbf{3}$ _19 and (R)-isobutyl group of $\mathbf{3} \mathbf{2 2}$ fit to hydrophobic surface of PPAR δ in the same region by varying the twist angle of the piperazine ring with inversion of the benzothiazole moiety (Figure 3_3). This result is in agreement with the concept of ligand design focused on introduction of a hydrophobic group into the unoccupied space. It is considered that the methylene linker scaffold can accept relatively large substituents unlike the ethylene-oxy linker scaffold as mentioned above and both of its R - and S-isomers have the potential to fit the hydrophobic surface.

Figure 3_3. Docking models of compound 3_19 (green) and compound 3_22 (magenta) to PPAR δ (PDB $\mathrm{ID}=1 \mathrm{GWX})$.

Table 3_2. Agonistic activities of compounds 3_12-22 in cell-based transactivation assays against
PPARs.

Cmpd	R^{3}	R^{2}	Transactivation $\mathrm{EC}_{50}(\mathrm{nM})$					
			hPPAR δ ($\mathrm{E}_{\text {max }}$)	$\begin{gathered} \mathrm{hPPAR} \alpha \\ \left(\mathrm{E}_{\max }, \mathrm{h} \alpha / \mathrm{h} \delta\right) \end{gathered}$	$\begin{gathered} \mathrm{hPPAR} \gamma \\ \left(\mathrm{E}_{\max }, \mathrm{h} \gamma / \mathrm{h} \delta\right) \end{gathered}$	$\underset{\left(\mathrm{E}_{\text {max }}\right)}{\mathrm{mPPAR} \delta}$	mPPAR α ($\mathrm{E}_{\text {max }}, \mathrm{m} \alpha / \mathrm{m} \delta$)	mPPAR γ ($\mathrm{E}_{\text {max }}, \mathrm{m} \gamma / \mathrm{m} \delta$)
3_12	H	H	$\begin{gathered} 20.9 \\ (13.4) \end{gathered}$	$\begin{gathered} 1100 \\ (4.0,53) \end{gathered}$	$\begin{gathered} 2100 \\ (3.1,100) \end{gathered}$	$\begin{aligned} & 110 \\ & (19) \end{aligned}$	$\begin{gathered} 3000 \\ (6.6,27) \end{gathered}$	$\begin{gathered} 3300 \\ (3.2,30) \end{gathered}$
3_13	H	(R)-Me	$\begin{gathered} 9.9 \\ (15.5) \end{gathered}$	$\begin{gathered} 1400 \\ (6.6,141) \end{gathered}$	$\begin{gathered} 1400 \\ (10.6,141) \end{gathered}$	$\begin{gathered} 34 \\ (22.1) \end{gathered}$	$\begin{gathered} 8000 \\ (19.0,235) \end{gathered}$	$\begin{gathered} 1400 \\ (7.8,41) \end{gathered}$
3_14	H	(S)-Me	$\begin{gathered} 6.9 \\ (19.5) \end{gathered}$	$\begin{gathered} 350 \\ (7.8,51) \end{gathered}$	$\begin{gathered} 1200 \\ (6.5,174) \end{gathered}$	$\begin{gathered} 28 \\ (22.1) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.1, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 1600 \\ (7.5,57) \end{gathered}$
3_15	(S)-Me	H	$\begin{gathered} 10 \\ (14.0) \end{gathered}$	$\begin{gathered} 1800 \\ (6.3,175) \end{gathered}$	$\begin{gathered} 3100 \\ (3.5,301) \end{gathered}$	$\begin{gathered} 39 \\ (20.4) \end{gathered}$	$\begin{gathered} 3900 \\ (9.0,100) \end{gathered}$	$\begin{gathered} 2700 \\ (3.1,69) \end{gathered}$
3_16	(R)-Me	H	$\begin{gathered} 6.2 \\ (13.5) \end{gathered}$	$\begin{gathered} 1600 \\ (6.3,258) \end{gathered}$	$\begin{gathered} 1200 \\ (6.1,194) \end{gathered}$	$\begin{gathered} 24 \\ (20.8) \end{gathered}$	$\begin{gathered} 3700 \\ (1.7,152) \end{gathered}$	$\begin{gathered} 1800 \\ (6.0,74) \end{gathered}$
3_17	(S)-Et	H	$\begin{gathered} 6.2 \\ (25.0) \end{gathered}$	$\begin{gathered} 1100 \\ (4.2,177) \end{gathered}$	$\begin{gathered} 1900 \\ (11.0,306) \end{gathered}$	$\begin{gathered} 26 \\ (30.8) \end{gathered}$	$\begin{gathered} 3800 \\ (9.1,146) \end{gathered}$	$\begin{gathered} 670 \\ (6.6,26) \end{gathered}$
3_18	(R)-Et	H	$\begin{gathered} 3.1 \\ (25.7) \end{gathered}$	$\begin{gathered} 530 \\ (7.6,171) \end{gathered}$	$\begin{gathered} 430 \\ (21.7,139) \end{gathered}$	$\begin{gathered} 6.2 \\ (33.1) \end{gathered}$	$\begin{gathered} 8500 \\ (2.8,1371) \end{gathered}$	$\begin{gathered} 40 \\ (6.8,6) \end{gathered}$
3_19	$(S)-i-\operatorname{Pr}$	H	$\begin{gathered} 4.1 \\ (18.6) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (2.9, \mathrm{NC}) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (3.0, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 12 \\ (25.0) \end{gathered}$	$\begin{gathered} 2000 \\ (10.3,167) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (2.4, \mathrm{NC}) \end{gathered}$
3_20	(R)-i-Pr	H	$\begin{gathered} 3.7 \\ (13.1) \end{gathered}$	$\begin{gathered} 390 \\ (3.6,105) \end{gathered}$	$\begin{gathered} 270 \\ (6.3,73) \end{gathered}$	$\begin{gathered} 7.5 \\ (14.6) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.3, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 230 \\ (6.3,31) \end{gathered}$
3_21	(S)-i-Bu	H	$\begin{gathered} 19 \\ (13.6) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.4, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 1500 \\ (6.8,79) \end{gathered}$	$\begin{gathered} 79 \\ (17.9) \end{gathered}$	$\begin{gathered} 5800 \\ (4.5,73) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (5.2, \mathrm{NC}) \end{gathered}$
3_22	(R)-i-Bu	H	$\begin{gathered} 4.3 \\ (17.5) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.6, \mathrm{NC}) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (3.5, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 6.9 \\ (24.8) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.4, \mathrm{NC}) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (4.3, \mathrm{NC}) \end{gathered}$

CHO cells were transiently co-transfected with GAL4-hPPAR/mPPAR hybrid expression vector and pG5-Luc reporter vector. ${ }^{18}$ Cells were cultured with each compound or DMSO. After $24-28 \mathrm{hr}$, luciferase activities were measured. EC_{50} value was calculated as the concentration of the test compound to give half the maximal fold increase. When the maximal fold increase was below 2 -fold, EC_{50} was not calculated ("NC" in the table). $\mathrm{E}_{\text {max }}$ means maximal fold increase value relative to DMSO-treated cells.

As previously stated, the suitable alkylated position of the piperazine ring was different between the two chemotypes in terms of subtype selectivity; 2-position of the ethylene-oxy linker compounds and 3-position of the methylene linker compounds. Their docking images suggest that the carboxyl group acts as a pivot point in ligand binding at the receptor pocket and locates an alkyl group of the piperazine ring near the distinctive cavity with the same distance from it (Figure 3_4). Since the cavities of PPAR α and $\operatorname{PPAR} \gamma$ are relatively narrow, it is considered that the synthetic compounds having suitable substituents showed not only high PPAR δ agonist activity but also good selectivities against PPAR α and PPAR γ. This result is consistent with the description in the previous section that the tight H -bonding networks between the carboxylic acid group and the three side chains of H323, Y473 and H449 were important for PPAR δ agonist activity.

Figure 3_4. The positional relationships between the alkyl groups and the carboxyl moieties of 3_11 with an ethylene-oxy linker (cyan) and 3_19 with a methylene linker (green).

The pharmacokinetic (PK) properties of compound 3_10, 3_11, 3_19 and 3_22 were evaluated in rats (Table 3_3). The methylene linker compounds, 3_19 and 3_22, demonstrated higher maximum concentration $\left(\mathrm{C}_{\max }\right)$ values after oral administration and more favorable oral exposure at a dose of $1 \mathrm{mg} / \mathrm{kg}$ than the ethylene-oxy linker compounds.

Table 3_3. Pharmacokinetic profiles of 3_10, 3_11, 3_19 and 3_22.

Cpmd	iv, $0.5 \mathrm{mg} / \mathrm{kg}, \mathrm{n}=2{ }^{\text {a }}$			po, $1 \mathrm{mg} / \mathrm{kg}, \mathrm{n}=2^{\text {b }}$		
	AUC ($\mu \mathrm{g} * \mathrm{~h} / \mathrm{mL}$)	$\mathrm{CL}_{\mathrm{t}}(\mathrm{mL} / \mathrm{min} / \mathrm{kg})$	$\mathrm{T}_{1 / 2}$ (h)	AUC ($\mu \mathrm{g}$ * h / mL)	$\mathrm{C}_{\text {max }}(\mu \mathrm{g} / \mathrm{mL})$	$\mathrm{F}^{c}(\%)$
3_10	0.190	45.6	1.4	0.101	0.011	26.4
3_11	0.399	21.5	2.7	0.151	0.010	18.9
3_19	26.74	0.31	9.5	45.90	2.051	85.8
3_22	5.677	1.47	6.7	7.145	0.895	62.9

${ }^{a}$ Dosed as a solution of test compounds in N, N-dimethylacetamide/propylene glycol $=1 / 2$.
${ }^{b}$ Dosed as a suspension of test compounds in 0.5% methylcellulose (MC, 400 cP).
${ }^{c}$ Oral bioavailability.

Human apolipoprotein B100 and cholesteryl ester transfer protein double transgenic (hApoB100/hCETP-dTg) mice were used to investigate the in vivo efficacy of 3_10, 3_11, 3_19 and 3_22 on serum HDL-C level. This model exhibits hypercholesterolemia with human-like serum HDL-C/non-HDL-C distribution and is known to reflect human pathology well. The four compounds or GW501516 at the dose of $3 \mathrm{mg} / \mathrm{kg}$ or vehicle (0.5% methylcellulose) was orally administered to the mice oncedaily for 8 days, and then the serum levels of HDL-C, total cholesterol (TC) and non-HDL-C were assessed (Table 3_4). The non-HDL-C level was calculated by subtracting HDL-C from TC. As reported previously, GW501516 increased HDL-C level in this study ($p<0.05$). The four compounds also elicited HDL-C elevation compared to the vehicle
control group, and especially $\mathbf{3} \mathbf{1 1}$ and $\mathbf{3}$ _19 exhibited higher HDL-C level than that of GW501516 ($p<0.01$). Since the TC level in mice treated with these compounds was lower than that in vehicle control mice, it was suggested that these PPAR δ agonists specifically increased HDL-C and improved hypercholesterolemia in the mouse model.

Table 3_4. In vivo efficacy of $\mathbf{3} _\mathbf{1 0}, \mathbf{3} _\mathbf{1 1}, \mathbf{3} _\mathbf{1 9}, \mathbf{3} _\mathbf{2 2}$ and GW501516.

Cmpd	Serum lipid levels (\% control)					
	HDL-C		TC		non-HDL-C	
3_10	113 ± 7.3		76 ± 5.3		80 ± 15.1	
3_11	156 ± 8.4	**	94 ± 5.7		82 ± 13.5	
3_19	188 ± 9.0	**	72 ± 4.7	**	56 ± 7.6	**
3_22	145 ± 12.7	*	83 ± 5.5	*	75 ± 8.7	*
GW501516	141 ± 10.6	*	83 ± 3.7	*	67 ± 11.1	**

Mice ($n=6 /$ group) were orally dosed with the compounds ($3 \mathrm{mg} / \mathrm{kg}$) once daily for 8 days. Data are presented as mean \pm SE. The values were calculated as percentage compared to the control group (0.5% methylcellulose $(400 \mathrm{cP}), 10 \mathrm{~mL} / \mathrm{kg}$). Significance was calculated by one-way analysis of variance (ANOVA) followed by Dunnett's test (${ }^{* *} p<0.01, * p<0.05$ vs control).

In summary, based on the insight that compound 2_8 would not utilize hydrophobic interaction effectively with the binding site surrounding its piperidine moiety, the author designed piperazinylbenzothiazole derivatives which had various alkyl side chains on 2- or 3-position of their center piperazine rings. As a result, the author confirmed that the additional alkyl groups intensified their interactions with the hydrophobic surface of PPAR δ and found that the distance between the alkyl group and the carboxyl moiety was important for subtype selectivity. Among them, methylene linker compound 3_19 displayed a significant upregulation of HDL-C level in rodent model and therefore has potential to be an efficient treatment agent for hypercholesterolemia.

Chapter 4

Identification of a novel piperidinylbenzothiazole derivative as potent and selective PPAR agonist with an anti-inflammatory effect

In chapter 2 and 3, the author described the discovery of piperidinyl/piperazinyl benzothiazole derivatives as a new series of PPAR δ agonists. Compound $\mathbf{3} \mathbf{1 9}$ which has isopropyl group on the 3-position of its center piperazine ring showed high agonist activity for PPAR δ and subtype selectivity and also led to significant elevation of the HDL-C level in a mouse model. Although the effect of side chain introduction on 2- or 3position of the center piperazine ring was clarified, the author thought that further exploration of other modification points was necessary to identify the best PPAR δ agonist.

Figure 4_1. Docking images of compound 2_11 to hPPAR α (PDB ID = 1I7G, a), hPPAR γ (PDB ID = 1FM6, b) and hPPAR δ (PDB ID $=1 \mathrm{GWX}, \mathrm{c}$). The Leu residues forming the hydrophobic surface are represented by the CPK model.

Docking images of lead compound 2_11 to hPPARs are shown in Figure 4_1. All hPPARs contains a Leu residue as a component of the upper hydrophobic pocket of 2_11, but the amino acid residues on their back are Met for hPPAR α / γ and Val for hPPAR δ. Therefore, hPPAR δ was expected to have a larger hydrophobic pocket than those of hPPAR α / γ due to the extrusion of Leu by their Met side chains. Focusing on this point, the author considered that introduction of a bulky hydrophobic group into 4-position of the central piperidine ring of $\mathbf{2} \mathbf{1 1}$ could enhance the binding activity of PPAR δ and at the same time its selectivity in comparison with PPAR α and PPAR γ.

As listed in Table 4_1, various alkyl groups were initially introduced to the 4position of piperidine based on the docking mode of 2_11. The efficiency and selectivity of the synthesized compounds were evaluated by reporter gene assays to measure their transactivation activities for all subtypes of human and mouse PPARs. First, the author evaluated an ethyl derivative $\mathbf{4} \mathbf{1}$ and found it to have lower $\mathrm{E}_{\max }$ values of hPPAR α / γ and higher selectivity than 2_11. This result added support to the assumption that the hydrophobic pocket around its piperidine moiety is important for PPAR subtype selectivity. Unfortunately, no significant improvement was noted in hPPAR δ activity (4_1: $\left.\mathrm{EC}_{50}=13 \mathrm{nM}\right)$. To increase the agonist activity for hPPAR δ of this chemotype, the ethyl group of compound $\mathbf{4}$ _1 was replaced with longer linear alkyl groups. The author found that n-propyl (4_2) and n-butyl (4_3) analogs had higher binding affinity toward hPPAR $\delta\left(\mathbf{4}\right.$ 2: $\left.: \mathrm{EC}_{50}=9.2 \mathrm{nM}, \mathbf{4} \mathbf{3}: \mathrm{EC}_{50}=8.4 \mathrm{nM}\right)$ than $\mathbf{4} _\mathbf{1}$ and confirmed that a hydrophobic chain in 4-position of the piperidine ring was also favorable for increasing hPPAR δ activity. Next, the effect of branched chains on the activity and selectivity was investigated. Isopropyl (4_4), isobutyl (4_5), sec-butyl (4_6) analogs showed lower EC 50 values for $\mathrm{hPPAR} \delta\left(\mathbf{4} \mathbf{4}: \mathrm{EC}_{50}=7.5 \mathrm{nM}, \mathbf{4} \mathbf{5}: \mathrm{EC}_{50}=5.9 \mathrm{nM}, \mathbf{4} \mathbf{6}: \mathrm{EC}_{50}=4.5 \mathrm{nM}\right)$ than corresponding compounds having linear alkyl groups and had good subtype selectivity from the viewpoint of $\mathrm{E}_{\max }$ values in comparison with PPAR α / γ. In particular, $4 _6$ with a sec-butyl group demonstrated the lowest EC_{50} value of PPAR δ among the compounds described above. The branched structure near the substitution point was considered to contribute the subtype selectivity, because in comparison with the other linear structures, it had a tendency to exist in the equatorial conformation due to steric hindrance and positioned the side chain toward the hydrophobic cavity.

Table 4_1. Agonistic activities of compounds 2_11 and 4_1-10 in cell-based transactivation assay against PPARs.

Cmpd	R	X	Transactivation $\mathrm{EC}_{50}(\mathrm{nM})$					
			hPPAR δ ($\mathrm{E}_{\text {max }}$)	hPPAR α ($\mathrm{E}_{\text {max }}, \mathrm{h} \alpha / \mathrm{h} \delta$)	hPPAR γ ($\mathrm{E}_{\text {max }}, \mathrm{h} \gamma / \mathrm{h} \delta$)	$\underset{\left(\mathrm{E}_{\max }\right)}{\mathrm{mPPAR} \delta}$	mPPAR α ($\mathrm{E}_{\max }, \mathrm{m} \alpha / \mathrm{m} \delta$)	mPPAR γ ($\mathrm{E}_{\text {max }}, \mathrm{m} \gamma / \mathrm{m} \delta$)
2_11	H	4-Cl	$\begin{gathered} 19 \\ (15.0) \end{gathered}$	$\begin{gathered} 603 \\ (12.0,32) \end{gathered}$	$\begin{gathered} 987 \\ (18.0,52) \end{gathered}$	$\begin{gathered} 49 \\ (20.0) \end{gathered}$	$\begin{gathered} 1720 \\ (12.0,35) \end{gathered}$	$\begin{gathered} 744 \\ (17.0,15) \end{gathered}$
4_1	Et	4-Cl	$\begin{gathered} 13 \\ (13.5) \end{gathered}$	$\begin{gathered} 900 \\ (2.1,68) \end{gathered}$	$\begin{gathered} 770 \\ (4.9,58) \end{gathered}$	$\begin{gathered} 160 \\ (22.9) \end{gathered}$	$\begin{gathered} 1900 \\ (9.1,12) \end{gathered}$	$\begin{gathered} 1200 \\ (4.2,7.9) \end{gathered}$
4_2	$n-\mathrm{Pr}$	4-Cl	$\begin{gathered} 9.2 \\ (22.3) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (2.6, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 880 \\ (4.5,96) \end{gathered}$	$\begin{gathered} 33 \\ (31.1) \end{gathered}$	$\begin{gathered} 1800 \\ (21.4,55) \end{gathered}$	$\begin{gathered} 230 \\ (4.7,6.8) \end{gathered}$
4_3	$n-\mathrm{Bu}$	4-Cl	$\begin{gathered} 8.4 \\ (18.2) \end{gathered}$	$\begin{gathered} 770 \\ (3.0,92) \end{gathered}$	$\begin{gathered} 660 \\ (6.8,79) \end{gathered}$	$\begin{gathered} 20 \\ (26.7) \end{gathered}$	$\begin{gathered} 1300 \\ (22.0,66) \end{gathered}$	$\begin{gathered} 450 \\ (5.2,22) \end{gathered}$
4_4	i-Pr	4-Cl	$\begin{gathered} 7.5 \\ (16.8) \end{gathered}$	$\begin{gathered} 270 \\ (1.4,36) \end{gathered}$	$\begin{gathered} 690 \\ (3.2,92) \end{gathered}$	$\begin{gathered} 170 \\ (26.2) \end{gathered}$	$\begin{gathered} 5300 \\ (4.4,31) \end{gathered}$	$\begin{gathered} 910 \\ (2.9,5.2) \end{gathered}$
$4 _5$	$i-\mathrm{Bu}$	$3-\mathrm{Cl}$	$\begin{gathered} 5.9 \\ (21.6) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (2.0, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 460 \\ (4.5,78) \end{gathered}$	$\begin{gathered} 14 \\ (26.9) \end{gathered}$	$\begin{gathered} 2600 \\ (7.7,190) \end{gathered}$	$\begin{gathered} 400 \\ (4.3,29) \end{gathered}$
4_6	$s e c-B u$	$3-\mathrm{Cl}$	$\begin{gathered} 4.5 \\ (14.6) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.9, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 230 \\ (2.2,51) \end{gathered}$	$\begin{gathered} 26 \\ (22.7) \end{gathered}$	$\begin{gathered} 3200 \\ (2.8,120) \end{gathered}$	$\begin{gathered} 420 \\ (2.2,16) \end{gathered}$
4_7		$3-\mathrm{Cl}$	$\begin{gathered} 7.1 \\ (13.7) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.3, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 220 \\ (2.6,31) \end{gathered}$	$\begin{gathered} 16 \\ (28.8) \end{gathered}$	$\begin{gathered} 2900 \\ (7.9,190) \end{gathered}$	$\begin{gathered} 1100 \\ (3.1,69) \end{gathered}$
4_8		$3-\mathrm{Cl}$	$\begin{gathered} 11 \\ (22.8) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.6, \mathrm{NC}) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (2.5, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 29 \\ (29.2) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.9, \mathrm{NC}) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (2.2, \mathrm{NC}) \end{gathered}$
4_9		4-Cl	$\begin{gathered} 20 \\ (17.4) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.4, \mathrm{NC}) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.4, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 67 \\ (21.5) \end{gathered}$	$\begin{gathered} 6000 \\ (9.7 .90) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.3, \mathrm{NC}) \end{gathered}$

CHO cells were transiently co-transfected with GAL4-hPPAR/mPPAR hybrid expression vector and pG5-Luc reporter vector. ${ }^{18}$ Cells were cultured with each compound or DMSO. After $24-28 \mathrm{hr}$, luciferase activities were measured. EC_{50} value was calculated as the concentration of the test compound to give half the maximal fold increase. When the maximal fold increase was below 2 -fold, EC_{50} was not calculated ("NC" in the table). $\mathrm{E}_{\text {max }}$ means maximal fold increase value relative to DMSO-treated cells.

Subsequently, the author evaluated agonist activities of compounds having a cyclic aliphatic group at the 4-position of their piperidine ring. Cyclopentyl analog 4_7 unfortunately demonstrated slightly lower hPPAR δ activity and lower selectivity against mPPAR α / γ than the sec-butyl analog 4_6. On the other hand, cyclohexyl analog 4_8 almost entirely suppressed binding activities to PPAR α / γ in both species. The author described in chapter 2 that a chlorine or methyl group at the 3- or 4-position was acceptable for the benzene ring substituent in the right part of the molecules to fit the narrow hydrophobic pocket. For this reason, the 4-Cl analog of 4_8 was also synthesized and evaluated, showing that the 3-position substitution was indeed appropriate for the binding affinity as 4_9 showed lower PPAR δ activity than 4_8.

Cyclohexyl analog 4_8 had both high agonist activity for PPAR δ and enough selectivity against PPAR α / γ, whereas it showed high inhibition of cytochrome P450 (CYP) 2C9 activity and low metabolic stability in human liver microsomes (Table 4_2). Because these issues were caused by its high hydrophobicity ($\operatorname{CLogP}=8.8$), the author accordingly designed a series of compounds containing a polar functional group as the side chain in order to reduce the hydrophobicity and to help resolve those issues. Since it was predicted that the tip of the side chain had a hydrophobic interaction with the receptor, the carbon atom near the piperidine ring was selected as the position of aza-replacement as listed in Table 4_2. The author initially replaced the cyclohexane of $\mathbf{4} \mathbf{8}$ with a piperidine and found that 4-piperidinyl derivative $\mathbf{4} \mathbf{1 0}(\mathrm{CLogP}=4.4)$ improved CYP2C9 inhibition and metabolic stability. It is worthy of note that the agonist activity for PPAR δ and subtype selectivity of $\mathbf{4} \mathbf{1 0}$ did not decrease much compared to $\mathbf{4} \mathbf{8}$. With this finding, the author synthesized its analogs having seven- or five-membered heterocyclic amine
and investigated their physicochemical and metabolic properties. Homopiperidinyl analog $\mathbf{4} \mathbf{1 1}$ showed higher CYP2C9 inhibition and lower metabolic stability in human liver microsomes than 4_10. On the other hand, pyrrolidinyl analog $\mathbf{4} \mathbf{1 2}$ exhibited the best properties among the above compounds including hPPAR δ activity. 2Methylpyrrolidinyl analog 4_13, which has a slightly higher hydrophobicity than 4_12, showed high agonist activity for PPAR δ and selectivity to PPAR α / γ, but had low metabolic stability similar to $\mathbf{4} \mathbf{1 0}$. In the case of a cleaved structure in the pyrrolidine ring of 4_12, dimethylamine derivative $\mathbf{4} \mathbf{1 4}$ was inferior to $\mathbf{4} \mathbf{1 2}$ in hPPAR δ activity, CYP2C9 inhibition and metabolic stability. Therefore, it was considered that the pyrrolidine ring fitted suitably in the hydrophobic pocket of PPAR δ and contributed to the hydrophobic balance of the entire molecule.

Table 4_2. Agonistic activities and metabolic properties of compounds 4_8 and 4_10-14.

Cmpd	R	Transactivation $\mathrm{EC}_{50}(\mathrm{nM})$						CLogP ${ }^{\text {a }}$	CYP inhibition ${ }^{\text {b }}(\mu \mathrm{M})$				Metabolic stability ${ }^{\text {c (\%) }}$	
		hPPAR δ ($\mathrm{E}_{\text {max }}$)	hPPARa ($\mathrm{E}_{\text {max }}, \mathrm{h} \alpha / \mathrm{h} \delta$)	hPPAR γ ($\mathrm{E}_{\max }, \mathrm{h} \gamma / \mathrm{h} \delta$)	mPPAR δ ($\mathrm{E}_{\text {max }}$)	mPPAR α ($\mathrm{E}_{\max }, \mathrm{m} \alpha / \mathrm{m} \delta$)	mPPAR γ ($\mathrm{E}_{\text {max }}, \mathrm{m} \gamma / \mathrm{m} \delta$)		1A2	2C9	2D6	3 A 4	Human	Rat
4_8		$\begin{gathered} 11 \\ (22.8) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.6, \mathrm{NC}) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (2.5, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 29 \\ (29.2) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.9, \mathrm{NC}) \end{gathered}$	$\underset{(2.2, \mathrm{NC})}{\mathrm{NC}}$	8.8	>20	10	>20	>20	31	79
4_10	$\xi-N$	$\begin{gathered} 15 \\ (17.5) \end{gathered}$	$\stackrel{\mathrm{NC}}{(1.4, \mathrm{NC})}$	$\begin{gathered} 1000 \\ (2.9,71) \end{gathered}$	$\begin{gathered} 41 \\ (27.6) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.4, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 96 \\ (2.8,2.4) \end{gathered}$	4.4	>20	>20	>20	>20	48	83
4_11		$\begin{gathered} 22 \\ (16.1) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.2, \mathrm{NC}) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.7, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 86 \\ (23.8) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.3, \mathrm{NC}) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.8, \mathrm{NC}) \end{gathered}$	4.9	>20	18	>20	>20	38	85
4_12	$-N^{-}$	$\begin{gathered} 10 \\ (22.6) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (2.0, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 1200 \\ (4.9,120) \end{gathered}$	$\begin{gathered} 33 \\ (36.6) \end{gathered}$	$\begin{gathered} 4600 \\ (4.7,140) \end{gathered}$	$\begin{gathered} 2400 \\ (5.4,74) \end{gathered}$	3.8	>20	>20	>20	>20	78	89
4_13		$\begin{gathered} 9.7 \\ (17.5) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.7, \mathrm{NC}) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (2.7, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 22 \\ (25.1) \end{gathered}$	$\begin{gathered} 7000 \\ (7.3,320) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (2.5, \mathrm{NC}) \end{gathered}$	4.2	>20	>20	>20	>20	49	73
4_14	$\xi-N$	$\begin{gathered} 30 \\ (13.8) \end{gathered}$	$\stackrel{\mathrm{NC}}{(1.4, \mathrm{NC})}$	$\begin{gathered} \mathrm{NC} \\ (3.5, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 45 \\ (18.2) \end{gathered}$	$\stackrel{\mathrm{NC}}{(1.3, \mathrm{NC})}$	$\begin{gathered} \mathrm{NC} \\ (3.5, \mathrm{NC}) \end{gathered}$	4.3	>20	14	>20	>20	52	86

${ }^{a}$ CLogP value was calculated using ChemDraw version 21.0 (PerkinElmer, Waltham, MA, USA).
${ }^{b}$ CYP inhibition was determined by the decrease in metabolites of probe substrates (\% of control).
${ }^{c}$ Metabolic stability in liver microsome was determined as the remaining percentage of compound after 0.5 h .

Next, the Cl group of the benzothiazole moiety of $\mathbf{4} \mathbf{1 2}$ was replaced with a CF_{3} group according to the Topliss scheme, which led to $\mathbf{4} \mathbf{1 5}$ with slightly improved the PPAR δ agonist activity and metabolic stability of 4_12 (Table 4_3). ${ }^{19}$ Compound 4_15 had sufficient PPAR δ agonist activity and subtype selectivity with good CYP inhibition and metabolic stability. However, it revealed that $\mathbf{4} \mathbf{1 5}$ strongly inhibited human ether-a-go-go-related gene (hERG) channel currents (78% at $1 \mu \mathrm{M}$). It is well-known that highly hydrophobic compounds having a basic group increase the likelihood of hERG channel inhibitor to cause arrhythmias via QT prolongation. ${ }^{20}$ Therefore, the author first modified the pyrrolidine moiety of $\mathbf{4} \mathbf{1 5}$ by introducing an oxygen atom to decrease its basicity. Morpholine derivative $\mathbf{4} 16$ could significantly reduce the hERG inhibitory activity (15% at $1 \mu \mathrm{M}$), but its CYP2C9 inhibition reappeared. Alternatively, pyrrolidone analog 4 _17 also showed low hERG inhibition $(11 \%$ at $1 \mu \mathrm{M})$, but it unfortunately reduced PPAR δ activity. Since it was difficult to achieve both reduction of hERG inhibition and other properties by reducing the basicity of the pyrrolidine ring, the author next modified its other hydrophobic moiety. With the substitution in the right part of the molecule, 3-Me and 4-Me derivatives, $\mathbf{4} \mathbf{1 8}$ and 4_19, did not show significant improvement in the hERG inhibition even though their CLogP values were lower than that of 4_15. On the other hand, introducing a nitrogen atom into the benzothiazole ring in the left part of the molecule contributed to reducing the hydrophobicity of the entire molecule (CLogP $=$ 3.0) without loss of PPAR δ agonist activity. 4-Aza-benzothiazole derivative 4_20 exhibited a lower hERG inhibition value (42% at $1 \mu \mathrm{M}$) than $\mathbf{4} \mathbf{1 5}$, which met the criteria. This is considered to be due to the polarity of the aromatic ring being restricted by an electron-withdrawing substituent like the CF_{3} group, and the hydrophobicity required for
interaction with the receptor being maintained. It was also confirmed that $\mathbf{4} \mathbf{2 0}$ did not induce QT prolongation in an anaesthetized guinea pig model. Lastly, the influence of the substitution position in the right benzene moiety was examined once again, revealing that 4-Cl analog $\mathbf{4} \mathbf{2 1}$ had lower PPAR δ agonist activity and subtype selectivity than the $3-\mathrm{Cl}$ analog 4_20 though it also reduced hERG inhibition. It is considered that $\mathbf{4 _ 2 0}$ is comparable to GW501516, which is a strong and subtype-selective PPAR δ agonist and was used as a positive control in our study, in point of PPAR δ agonist activity and selectivity. As a result, compound 4_20, which showed high PPAR δ activity and subtype selectivity and also had excellent properties for the other evaluation tests, was selected as a candidate compound for our preclinical study.

Since many receptors belonging to the nuclear receptor superfamily recognize the same response elements, it was important to check that compound $\mathbf{4} \mathbf{2 0}$ did not show any binding affinity to them before in vivo evaluation. The author also investigated the agonist activities of $\mathbf{4} \mathbf{2 0}$ over seven other nuclear receptors (LXR α, RXR α, TR β, RAR α, FXR, VDR and GCR) and confirmed its receptor specificity (Table 4_4).

Table 4_3. Agonistic activities, metabolic properties and hERG inhibition of compounds 4_15-21 and GW501516.

Cmpd	Y	Z	R	X	Transactivation $\mathrm{EC}_{50}(\mathrm{nM})$						CLogP	CYP inhibition ($\mu \mathrm{M}$)				Metabolic stability (\%)		hERG inhibition (\%)
					$\underset{\left(\mathrm{E}_{\max }\right)}{\mathrm{hPPAR} \delta}$	hPPAR α ($\mathrm{E}_{\text {max }}, \mathrm{h} \alpha \mathrm{h} \delta$)	$\underset{\left(\mathrm{E}_{\mathrm{mp}, \mathrm{~h} \gamma / \mathrm{h} \delta)} \gamma\right.}{ }$	$\underset{\left(\mathrm{E}_{\max }\right)}{\mathrm{mPPAR} \delta}$	$\begin{gathered} \operatorname{mPPAR} \alpha \\ \left(\mathrm{E}_{\max }, \mathrm{m} \alpha / \mathrm{m} \delta\right) \end{gathered}$	$\underset{\left(\mathrm{E}_{\text {naxe }} \mathrm{mp} \text { mp } \mathrm{m}\right)}{ }$		1A2	2C9	2D6	3 A 4	Human	Rat	
4_15	CF_{3}	CH		$3-\mathrm{Cl}$	$\begin{gathered} 9.3 \\ (24.0) \end{gathered}$	$\underset{(2.9,59)}{550}$	$\begin{gathered} 1700 \\ (4.5,180) \end{gathered}$	$\begin{gathered} 14 \\ (33.6) \end{gathered}$	$\begin{gathered} 4900 \\ (6.3,360) \end{gathered}$	$\begin{gathered} 1200 \\ (4.3,88) \end{gathered}$	4.0	>20	>20	>20	>20	88	104	78
4_16	CF_{3}	CH		$3-\mathrm{Cl}$	$\stackrel{22}{22}$	$\begin{gathered} \mathrm{NC} \\ (2.8, \mathrm{NC}) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (4.7, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 120 \\ (42.9) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.8, \mathrm{NC}) \end{gathered}$	$\underset{(4.2, \mathrm{NC})}{\mathrm{NC}}$	3.4	>20	11	>20	>20	95	97	15
4_17	CF_{3}	CH		$3-\mathrm{Cl}$	$\begin{gathered} 150 \\ (11.4) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (1.6, \mathrm{NC}) \end{gathered}$	$\underset{(1.3, \mathrm{NC})}{\mathrm{NC}}$	$\begin{gathered} 410 \\ (22.3) \end{gathered}$	$\underset{(1.7, \mathrm{NC})}{\mathrm{NC}}$	$\underset{(1.5, \mathrm{NC})}{\mathrm{NC}}$	5.2	-	-	-	-	98	98	11
4_18	Cl	CH		3-Me	$\begin{gathered} 9.1 \\ (29.4) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (3.3, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 1500 \\ (6.3,165) \end{gathered}$	$\begin{gathered} 34 \\ (36.7) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (3.9, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 1800 \\ (6.3,53) \end{gathered}$	3.4	>20	>20	>20	>20	86	84	67
4_19	Cl	CH		4-Me	$\begin{gathered} 6.2 \\ (26.4) \end{gathered}$	$\begin{gathered} \mathrm{NC} \\ (3.5, \mathrm{NC}) \end{gathered}$	$\begin{gathered} 1600 \\ (6.6,258) \end{gathered}$	$\begin{gathered} 28 \\ (33.4) \end{gathered}$	$\begin{gathered} 3600 \\ (7.9,129) \end{gathered}$	$\underset{(4.8, \mathrm{NC})}{\mathrm{NC}}$	3.4	>20	>20	>20	8	75	81	78
4_20	CF_{3}	N		$3-\mathrm{Cl}$	$\begin{gathered} 3.6 \\ (18.9) \end{gathered}$	$\begin{gathered} 4300 \\ (1.3,1200) \end{gathered}$	$\begin{gathered} 4900 \\ (2.9,1360) \end{gathered}$	$\begin{gathered} 18 \\ (28.7) \end{gathered}$	$\begin{gathered} 3100 \\ (1.5,172) \end{gathered}$	$\begin{gathered} 3900 \\ (3.1,217) \end{gathered}$	3.0	>20	>20	>20	>20	88	91	42
4_21	CF_{3}	N		4-Cl	$\stackrel{22}{(12.3)}$	$\begin{gathered} 6400 \\ (5.8,290) \end{gathered}$	$\begin{gathered} 3500 \\ (6.7,160) \end{gathered}$	$\begin{gathered} 70 \\ (19.8) \end{gathered}$	$\begin{gathered} 17000 \\ (9.6,243) \end{gathered}$	$\begin{gathered} 3100 \\ (6.8,44) \end{gathered}$	2.8	-	-	-	-	-	-	44
GW501516					$\begin{gathered} 9.5 \\ (16.8) \end{gathered}$	$\begin{gathered} 2200 \\ (4.0,232) \end{gathered}$	$\begin{gathered} 4400 \\ (2.3,463) \end{gathered}$	$\begin{gathered} 76 \\ (23.9) \end{gathered}$	$\begin{gathered} 6100 \\ (10.4,80) \end{gathered}$	$\begin{gathered} 3500 \\ (2.8,46) \end{gathered}$	5.8	>20	>20	>20	>20	94	83	-

CLogP value was calculated using ChemDraw version 21.0 (PerkinElmer, Waltham, MA, USA). CYP inhibition was determined by the decrease in metabolites of probe substrates (\% of control).
Metabolic stability in liver microsome was determined as the remaining percentage of compound after 0.5 h . hERG inhibition was measured at $1 \mu \mathrm{M}$ in HEK293 cells expressing hERG channels using an automated patch clamp system.

Table 4_4. Activation of nuclear receptors by $\mathbf{4} \mathbf{2 0}$ in transactivation assays using plasmid-introduced CHO-K1 cells.

Receptor	Concentration of 4_20 ($\mu \mathrm{M}$)														
	0.1			0.3			1			3			10		
LXR α	0.9	\pm	0.2	1.0	\pm	0.2	1.0	\pm	0.1	1.1	\pm	0.2	1.4	\pm	0.3
RXR α	2.0	\pm	0.1	2.1	\pm	0.1	2.3	\pm	0.2	2.5	\pm	0.1	3.3	\pm	0.3
$\text { TR } \beta$	0.5	\pm	0.1	0.6	\pm	0.1	0.7	\pm	0.1	0.8	\pm	0.1	1.2	\pm	0.2
$\operatorname{RAR} \alpha$	1.0	\pm	0.4	1.2	\pm	0.3	1.0	\pm	0.3	1.3	\pm	0.2	1.5	\pm	0.5
FXR	1.5	\pm	0.4	1.4	\pm	0.4	1.5	\pm	0.3	1.7	\pm	0.3	2.4	\pm	0.6
VDR	0.4	\pm	0.0	0.5	\pm	0.0	0.5	\pm	0.1	0.7	\pm	0.1	0.9	\pm	0.0
GCR	2.3	\pm	0.1	2.4	\pm	0.0	2.4	\pm	0.0	2.7	\pm	0.2	3.4	\pm	0.4

Values are fold activation (\% of positive control) expressed as the mean \pm S.E. $(\mathrm{n}=3)$. Fold activation values by positive control substances $(1 \mu \mathrm{M})$ were 200.1 ± 53.7 for $\mathrm{LXR} \alpha, 64.0 \pm 1.7$ for $\mathrm{RXR} \alpha, 361.2 \pm 90.7$ for $\mathrm{TR} \beta, 133.3 \pm 31.0$ for RAR $\alpha, 110.1 \pm 42.6$ for FXR, 269.0 ± 60.2 for VDR, and 57.4 ± 9.0 for GCR, respectively. Positive control substances were T0901317 for LXR α, 9-cisretinoic acid for $\operatorname{RXR} \alpha$ and $\operatorname{RAR} \alpha, 3,3^{\prime}, 5$-triiodo-L-thyronine sodium salt for $\operatorname{TR} \beta$, chenodeoxycholic acid for FXR, $1 \alpha, 25-$ dihydroxyvitamin D_{3} for VDR, and dexamethasone for GCR, respectively.

The docking image of compound $\mathbf{4 _ 2 0}$ to hPPAR δ revealed that its pyrrolidinyl group fitted into the hydrophobic pocket while avoiding the Leu side chain (Figure 4_3). The docking score, calculated using Glide, was smaller than that of lead compound 2_11 (4_20: $\left.\Delta \mathrm{G}=-13 \mathrm{kcal} / \mathrm{mol}, \mathbf{2} _\mathbf{1 1}: \Delta \mathrm{G}=-11 \mathrm{kcal} / \mathrm{mol}\right)$. This added support to the agonist design which was mentioned above that introduction of the pyrrolidinyl group into the central piperidine ring of $\mathbf{2} \mathbf{1 1}$ would enhance the binding activity of PPAR δ.

Figure 4_3. Docking images of compound 4_20 to hPPAR δ (PDB ID = 1GWX) from two directions. Leu 330 of hPPAR δ is represented by the CPK model.

The pharmacokinetic (PK) properties of compound 4_20 was evaluated in mouse, rat and dog (Table 4_5). The clearance $\left(\mathrm{CL}_{\mathrm{t}}\right)$ values in rodents were lower than that of dog (mouse $3.16 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$; rat $7.99 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$; dog $15.4 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$) and therefore the corresponding half-life ($\mathrm{T}_{1 / 2}$) was longer in rodents than dog (mouse 8.37 h ; rat 3.43 h ; dog 0.6 h). Although the oral bioavailability (F) varied among animal species (mouse: 96.7%, rat: 38.0%, dog: 26.9%), the author decided these values were acceptable for in vivo efficacy study.

Table 4_5. Pharmacokinetic profiles of 4_20.

Species	iv $^{a}(0.1 \mathrm{mg} / \mathrm{kg}, \mathrm{n}=3)$			$\mathrm{po}^{b}(1 \mathrm{mg} / \mathrm{kg}$ (mouse, rat), $0.3 \mathrm{mg} / \mathrm{kg}(\mathrm{dog}), \mathrm{n}=3)$			
	AUC ($\mu \mathrm{g} * \mathrm{~h} / \mathrm{mL}$)	$\mathrm{CL}_{\mathrm{t}}(\mathrm{mL} / \mathrm{min} / \mathrm{kg})$	$\mathrm{T}_{1 / 2}(\mathrm{~h})$	AUC ($\mu \mathrm{g} * \mathrm{~h} / \mathrm{mL}$)	$\mathrm{C}_{\text {max }}(\mu \mathrm{g} / \mathrm{mL})$	$\mathrm{T}_{\text {max }}(\mathrm{h})$	F (\%)
mouse ${ }^{\text {c }}$	0.528	3.16	8.37	5.105	0.310	3.0	96.7
rat ${ }^{d}$	0.21 ± 0.023	7.99 ± 0.88	3.43 ± 1.35	1.050 ± 0.580	0.082 ± 0.034	4.67 ± 3.06	38.0 ± 21.0
$\mathrm{dog}^{\text {d }}$	0.11 ± 0.019	15.4 ± 2.50	0.6 ± 0.3	0.0852 ± 0.0212	0.0167 ± 0.0048	0.7 ± 0.3	26.9 ± 2.4

${ }^{a}$ Dosed as a solution of test compounds in N, N-dimethylacetamide/propylene glycol = 1/2.
${ }^{b}$ Dosed as a suspension of test compounds in 0.5% methylcellulose (MC, 400 cP).
${ }^{c}$ The PK parameters were calculated using the mean plasma concentrations of 3 mice at each time-point.
${ }^{d}$ Data are presented as mean \pm SD.

The author evaluated serum parameters including monocyte chemoattractant protein 1 (MCP-1), which is considered to play an important role in recruitment of monocytes into atherosclerotic lesions, ${ }^{21}$ in LDLr-KO mice fed with western diet. This model has been used extensively as an animal model of atherosclerosis induced by dyslipidemia and chronic inflammation. ${ }^{22}$ It has been reported that PPAR δ may modulate the progression of atherosclerosis via its anti-inflammatory effect, as well as its modulating effect on lipid metabolism. ${ }^{23}$ Groups treated with $\mathbf{4} \mathbf{2 0}$ showed relatively low levels of serum MCP-1 compared with the vehicle-treated group (Table 4_6).

Table 4_6. Effect of $\mathbf{4} \mathbf{2 0}$ on serum MCP-1 in LDLr-KO mice.

Treatment		n	$\begin{gathered} 3 \mathrm{w} \\ (\mathrm{pg} / \mathrm{mL}) \end{gathered}$	$\begin{gathered} 6 \mathrm{w} \\ (\mathrm{pg} / \mathrm{mL}) \end{gathered}$		$\begin{gathered} 12 \mathrm{w} \\ (\mathrm{pg} / \mathrm{mL}) \end{gathered}$	$\begin{gathered} 18 \mathrm{w} \\ (\mathrm{pg} / \mathrm{mL}) \end{gathered}$		
Contr	Vehicle)	15	154.0 ± 10.4		164.6 ± 14.1	365.2 ± 26.1		191.9 ± 19.3	
4_20	$0.03 \mathrm{mg} / \mathrm{kg}$	15	121.3 ± 9.7		134.0 ± 14.9	261.9 ± 27.0	**	143.9 ± 9.7	*
4_20	$0.1 \mathrm{mg} / \mathrm{kg}$	15	110.3 ± 13.5	**	129.6 ± 10.2	269.1 ± 24.5	*	127.3 ± 9.4	**
4_20	$0.3 \mathrm{mg} / \mathrm{kg}$	14	99.9 ± 4.3	***	129.5 ± 10.0	268.1 ± 20.8	*	162.6 ± 13.3	

Mice were orally dosed with the compounds or vehicle (0.5% methylcellulose 400 cP) once daily. Values are the mean \pm S.E. of 14 15 mice. ${ }^{*} \mathrm{p}<0.05, * * \mathrm{p}<0.01, * * * \mathrm{p}<0.001$ compared to vehicle-treated group (Dunnett's multiple comparison test).

Compound 4_20 was also examined to confirm the long-term effects on atherosclerotic lesion progression in the aorta. Aortic lesion areas (lesion\% to total aortic surface) in 4_20-treated groups were significantly smaller by 56.4% and 56.7% compared with the vehicle-treated group at the doses of 0.1 and $0.3 \mathrm{mg} / \mathrm{kg}$, respectively (Figure 4_4). It was previously reported that, using LDLr-KO mice whose atherosclerosis was accelerated by angiotensin II, GW0742, a PPAR δ agonist, suppressed atherosclerosis accompanied by the reduction of inflammatory markers such as MCP-1 and PAI-1 in blood, and MCP-1, TNF- α and IL-1 β expression in atherosclerotic lesions with no significant effect on serum cholesterol profiles. ${ }^{24}$ This present findings are consistent with these previous reports. Thus, it is considered that $\mathbf{4 _ 2 0}$, a selective PPAR δ agonist, also inhibited the progression of atherosclerosis through a similar anti-inflammatory mechanism.

Figure 4_4. Effect of $\mathbf{4} \mathbf{2 0}$ on aortic lesion area in LDLr-KO mice.

Vehicle (0.5% methylcellulose solution) or $\mathbf{4 _ 2 0}(0.03,0.1$ or $0.3 \mathrm{mg} / \mathrm{kg} / \mathrm{day})$ was orally administered to $14-15$ mice per treatment group once daily for 18 weeks. Values are the mean \pm S.E. of $14-15$ mice. ${ }^{* *} \mathrm{p}<0.001$ compared to vehicle-treated control group (Dunnett's multiple comparison test).

As previously reported, $\mathbf{4} \mathbf{2 0}$ induced reduction of the serum MCP-1 level and suppression of the atherosclerotic lesion progression with elevation of the serum HDL-C level in the hApoB100/hCETP-dTg mouse model with human-like dyslipidemia. ${ }^{25}$ In this model, 4_20-treated groups exhibited significant increase of the serum HDL-C level without influencing the non-HDL-C level at the doses of 0.1 and $0.3 \mathrm{mg} / \mathrm{kg}$ compared to the vehicle-treated group (133-134\% vs control). On the other hand, treatment with 4_20 had limited effects on the serum HDL-C and non-HDL-C levels in the LDLr-KO mouse model, and there was no significant difference between control and 4_20-treated groups after 18 weeks of treatment (Table 4_7 and Table 4_8). These results led to the conclusion that $\mathbf{4} \mathbf{2 0}$ also showed an inhibitory effect on the progression of atherosclerotic lesion area without influencing the serum HDL-C and non-HDL-C levels in the LDLr-KO mouse model. Thus, $\mathbf{4} \mathbf{2 0}$ has an anti-inflammatory potency independent of the effect on
lipids and has a beneficial effect against the lesion progression even at remarkably low doses, suggesting it may become a useful treatment option for preventing cardiovascular events.

Table 4_7. Serum HDL-C level of $\mathbf{4} \mathbf{2 0}$ in LDLr-KO mice and hApoB100/hCETP-dTg mice.

Treatment		LDLr-KO mice				hApoB100/hCETP-dTg mice		
		n	3w (mg/dL)		18w (mg/dL)	n	3w (mg/dL)	
Contro	ehicle)	15	105.7 ± 2.0		98.2 ± 2.8	12	47.1 ± 1.3	
4_20	$0.1 \mathrm{mg} / \mathrm{kg}$	15	114.8 ± 1.9	*	99.0 ± 3.3	12	62.8 ± 1.3	***
4_20	$0.3 \mathrm{mg} / \mathrm{kg}$	14	116.6 ± 1.8	**	90.5 ± 3.6	12	63.0 ± 1.0	***

Mice were orally dosed with the compounds or vehicle (0.5% methylcellulose 400 cP) once daily. Values are presented as mean $\pm \mathrm{SE}$ of $14-15$ or 12 mice. ${ }^{*} \mathrm{p}<0.05, * * \mathrm{p}<0.01, * * * \mathrm{p}<0.001$ compared to vehicle-treated group (Dunnett's multiple comparison test).

Table 4_8. Serum non-HDL-C level of $\mathbf{4} \mathbf{2 0}$ in LDLr-KO mice and hApoB100/hCETP-dTg mice.

Treatment		LDLr-KO mice			hApoB100/hCETP-dTg mice	
		n	$3 \mathrm{w}(\mathrm{mg} / \mathrm{dL})$	18w (mg/dL)	n	3 w (mg/dL)
Control (Vehicle)		15	1531.9 ± 65.3	1871.6 ± 64.2	12	328.0 ± 15.9
4_20	$0.1 \mathrm{mg} / \mathrm{kg}$	15	1353.3 ± 52.4	1610.8 ± 120.1	12	311.2 ± 11.0
4_20	$0.3 \mathrm{mg} / \mathrm{kg}$	14	1437.9 ± 54.3	1828.3 ± 97.8	12	302.3 ± 9.7

Mice were orally dosed with the compounds or vehicle (0.5% methylcellulose 400 cP) once daily. Values are presented as mean $\pm \mathrm{SE}$ of 14-15 or 12 mice.

In summary, based on information of the docking poses of PPAR isoforms and the lead compound 2_11, cyclic aliphatic groups were introduced into the central piperidine ring to raise the hPPAR δ activity and subtype selectivity. Insertion of a nitrogen atom into the cyclic side-chain led to clear improvement in CYP inhibition and metabolic stability by a decrease in hydrophobicity. Furthermore, the aza-replacement in the left benzothiazole moiety was effective for reducing hERG channel inhibition that causes arrhythmias. Consequently, 4-(1-pyrrolidinyl)piperidine derivative 4_20 was identified
as a potent and selective PPAR δ agonist with excellent ADME properties. 4_20 strongly suppressed the atherosclerosis progression by $50-60 \%$ and lowered the serum level of MCP-1 in LDLr-KO mice. These findings indicate that $\mathbf{4} \mathbf{2 0}$ has anti-inflammatory potency and should be a valuable agent to help create novel therapeutics to prevent cardiovascular events.

Chapter 5

Summary

In this research, the author discovered novel PPAR δ agonists having piperidinylor piperazinyl-benzothiazole structures and proved their serum HDL-C elevating and arterial anti-inflammatory effects in vivo. To explore for novel PPAR δ agonists, the author initially identified the potent hit compound 2_1 from about 100,000 3D ligand structural data using docking simulations and virtual screening. Based on information of the docking poses of PPAR isoforms and the identified compounds, the author designed two chemotypes aiming at utilization of the relatively large hydrophobic pocket of PPAR δ : alkyl substitution on the side of the piperazine ring and introduction of a cyclic amine at 4-position of the piperidine ring.

Among piperazinyl-benzothiazole derivatives having various alkyl chains on the 2- or 3-position of their central 6 -membered rings, compound 3 _11 with a 2 -(S)-ethyl group and compound 3_19 with a 3-(S)-isopropyl group were identified as highly potent and selective PPAR δ agonists. From the SAR study of this scaffold, it was found that the carboxyl group acted as a pivot point in ligand binding at the receptor pocket and located an alkyl group of the piperazine ring near the distinctive cavity. Compound 3_19 also exhibited a significant upregulation of serum HDL-C level in a rodent model of hypercholesterolemia.

4,4-Disubstituted piperidinyl-benzothiazole derivatives were also designed to enhance the subtype selectivity utilizing the difference in size of the binding cavities of PPAR α, PPAR γ and PPAR δ. Compound 4_8 which have a cyclohexyl group at 4-position of the piperidine ring showed both high agonist activity for PPAR δ and enough selectivity against PPAR α / γ, whereas it had problems due to its high hydrophobicity. Insertion of a nitrogen atom into the cyclic side-chain led to clear improvement in CYP inhibition and
metabolic stability by the decrease in hydrophobicity. Furthermore, the aza-replacement in the left benzothiazole moiety was effective for reducing hERG channel inhibition that causes arrhythmias. Consequently, 4-(1-pyrrolidinyl)piperidine derivative 4_20 was identified as a potent and selective PPAR δ agonist with excellent ADME properties. Compound 4_20 strongly suppressed the atherosclerosis progression by $50-60 \%$ and lowered the serum level of MCP-1 in LDLr-KO mice. This knowledge should be a valuable tool for drug discovery research.

Chapter 6

Synthetic routes to piperidinyl/piperazinyl-benzothiazole derivatives and experimentals

The synthesis of derivative 2_2 is shown in Scheme 6_1. Intermediate 6_2a was prepared from commercially available 4-piperidineethanol (6_1a) and 2,6dichlorobenzothiazole. 6_2a was esterified with mono-tert-butyl succinate to afford tertbutyl ester 6_3, which was subsequently hydrolyzed to give derivative 2_2. The virtual screening-hit compound 2_1 was commercially available.

Scheme 6_1. Synthetic route to derivative 2_2. Reagents and conditions: (a) 2,6-dichlorobenzothiazole, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $60^{\circ} \mathrm{C}$; (b) mono-tert-butyl succinate, EDC•HCl, DMAP, DMF, rt; (c) 4 M HCl in 1,4-dioxane, rt.

Synthetic routes to derivatives 2_3-6 are shown in Scheme 6_2. Similar to the method above, intermediate 6_2b was prepared from commercially available 4piperidinemethanol (6_1b). The hydroxyl group of $\mathbf{6}$ _2a-b were replaced by chloride to give alkyl chloride 6_4a-b, and then they were coupled with various phenols to afford ethyl esters 6_5a-d. The intermediate esters were hydrolyzed to corresponding carboxylic acids 2_3-6.

Scheme 6_2. Synthetic routes to derivatives 2_3-6. Reagents and conditions: (a) 2,6-dichlorobenzothiazole, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $60^{\circ} \mathrm{C}$; (b) $\mathrm{SOCl}_{2}, 60^{\circ} \mathrm{C}$; (c) phenols, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, $60^{\circ} \mathrm{C}$; (d) $2 \mathrm{M} \mathrm{aq} \mathrm{NaOH}, \mathrm{MeOH}, 60^{\circ} \mathrm{C}$.

Preparation of derivatives 2_7-12 are depicted in Scheme 6_3. Mitsunobu reaction between piperidineethanol 6_2a and several substituted phenols gave ethers 6_6a-f. Hydrolysis of ethyl esters 6_6a and 6_6c-e with 2 M aqueous NaOH afforded corresponding carboxylic acids 2_7 and 2_9-11. On the other hand, nitriles 6_6b and 6_6f were converted into carboxylic acids 2_8 and 2_12 by base or acid treatment.

Scheme 6_3. Synthetic routes to derivatives 2_7-12. Reagents and conditions: (a) phenols, ADDP, $\mathrm{P}(n \text {-Bu })_{3}, \mathrm{THF}$, rt; (b) 2 M aq $\mathrm{NaOH}, \mathrm{MeOH}, 60^{\circ} \mathrm{C}$; (c) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, EtOH, $80^{\circ} \mathrm{C} /$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$, $80^{\circ} \mathrm{C}$.

As shown in Scheme 6_4, derivative 3_1 was synthesized similar to the method described above. Intermediate 6_8 was prepared from commercially available 1piperazineethanol (6_7) and 2,6-dichlorobenzothiazole. The hydroxyl group of 6_7 was replaced by chloride to give alkyl chloride 6_9, and then it was coupled with methyl 2-(3-hydroxy-4-methylphenyl)acetate to afford methyl ester 6_10. The intermediate ester was hydrolyzed to carboxylic acid 3_1.

Scheme 6_4. Synthetic route to derivative 3_1. Reagents and conditions: (a) 2,6-dichlorobenzothiazole, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $60{ }^{\circ} \mathrm{C}$; (b) $\mathrm{SOCl}_{2}, 6{ }^{\circ} \mathrm{C}$; (c) methyl 2-(3-hydroxy-4-methylphenyl)acetate, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, $60^{\circ} \mathrm{C}$; (d) 2 M aq $\mathrm{NaOH}, \mathrm{MeOH}$, rt.

Synthetic routes to derivatives 3_2-4 and 3_8-11 are shown in Scheme 6_5. Commercially available 2,6-dichlorobenzothiazole (6_11a) or 2-chloro-6trifluoromethylbenzothiazole (6_11b) was coupled with various unprotected piperazines, which were commercially available, to give intermediates 6_12a-f. Each secondary amine of piperazine $\mathbf{6}$ _12a-f was made to react with methyl 2-bromoacetate, and then their ester groups were reduced by lithium aluminium hydride $\left(\mathrm{LiAlH}_{4}\right)$ under ice cooling to afford alcohols 6_14a-f respectively. Reactions of methyl 2-(3-hydroxy-4methylphenyl)acetate or methyl 2-(4-chloro-3-hydroxyphenyl)acetate were followed by conversion to mesylates using methanesulfonyl chloride (MsCl) to provide corresponding
methyl esters 6_15a-g. Finally, their ester groups were hydrolyzed under basic condition to obtain carboxylic acids 3_2-4 and 3_8-11.

Scheme 6_5. Synthetic routes to derivatives 3_2-4 and 3_8-11. Reagents and conditions: (a) piperazines, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt- $50^{\circ} \mathrm{C}$; (b) methyl 2-bromoacetate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $60^{\circ} \mathrm{C}$; (c) LiAlH_{4}, THF, $0^{\circ} \mathrm{C}$; (d) MsCl , TEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}$; (e) corresponding 3-hydroxyphenylacetic acid methyl esters, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 6{ }^{\circ} \mathrm{C}$; (f) 2 M aq NaOH , THF, MeOH , rt.

Synthesis of piperidine derivative 3_5 was commenced from 1-Boc-3-methyl-4piperidone (6_16) as shown in Scheme 6_6. The Horner-Wadsworth-Emmons reaction of commercially available $\mathbf{6} \mathbf{1 6}$ with trimethyl phosphonoacetate gave α, β-unsaturated ester $\mathbf{6}$ _17 as a mixture of stereoisomers ($E: Z=$ ca. $4: 3$). This was followed by hydrogenation of the olefin and reduction with LiAlH_{4} to provide alcohol 6_19. Deprotection of Boc group of $\mathbf{6} \mathbf{1 9}$ followed by the reaction with 2,6dichlorobenzothiazole gave $\mathbf{6}$ _20. After mesylation of the hydroxyl group using MsCl , it was coupled with methyl 2-(4-chloro-3-hydroxyphenyl)acetate, which was followed by hydrolysis of the methyl ester resulting in carboxylic acid 3_5 as a mixture of stereoisomers.

Scheme 6_6. Synthetic route to derivative 3_5. Reagents and conditions: (a) trimethyl phosphonoacetate, NaOMe , THF, rt; (b) Pd/C, H_{2}, MeOH, rt; (c) LiAlH_{4}, THF, $0^{\circ} \mathrm{C}$; (d) 4 M HCl in 1,4-dioxane, rt; (e) 2,6dichlorobenzothiazole, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $60{ }^{\circ} \mathrm{C}$; (f) MsCl, TEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (g) methyl 2-(4-chloro-3hydroxyphenyl)acetate, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, $60^{\circ} \mathrm{C}$; (h) 2 M aq NaOH , THF, MeOH , rt.

In the case of derivatives 3_6-7 with substituents at 3-position of piperazine ring, the initial coupling reactions were performed with Boc-protected piperazines to afford 6_22a-b, and following deprotection reactions of the Boc groups by HCl solution gave intermediates 6_23a-b. The secondary amines of piperazines 6_23a-b were coupled with methyl 2-bromoacetate, and then their ester groups were reduced by LiAlH_{4}, mesylated using MsCl and coupled with methyl 2-(4-chloro-3-hydroxyphenyl)acetate to afford methyl esters $\mathbf{6} \mathbf{1 5 h} \mathbf{- i}$. Their ester groups were hydrolyzed under basic condition to give carboxylic acids 3_6-7.

Scheme 6_7. Synthetic routes to derivatives 3_6-7. Reagents and conditions: (a) N-Boc-piperazines, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt- $50{ }^{\circ} \mathrm{C}$; (b) 4 M HCl in 1,4-dioxane, rt ; (c) methyl 2-bromoacetate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $60{ }^{\circ} \mathrm{C}$; (d) LiAlH_{4}, THF, $0^{\circ} \mathrm{C}$; (e) $\mathrm{MsCl}, \mathrm{TEA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$-rt; (f) methyl 2-(4-chloro-3-hydroxyphenyl)acetate, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, $60^{\circ} \mathrm{C}$; (g) $2 \mathrm{M} \mathrm{aq} \mathrm{NaOH}, \mathrm{THF}, \mathrm{MeOH}$, rt.

Synthetic routes to derivatives 3_12-22 are shown in Scheme 6_8. Intermediates 6_25a-k were prepared from 6_11b and appropriate Boc-protected piperazines followed by deprotection. N-Boc deprotection reactions of some substrates carried out under heating conditions due to the steric hindrances around their nitrogen atoms. Alkylation of the piperazine secondary amines in $\mathbf{6 _ 2 5 a}-\mathbf{k}$ with ethyl 2-(3-(bromomethyl)-5methylphenyl)acetate and subsequent hydrolysis of the ethyl esters 26a-k gave carboxylic acids 3_12-22 respectively.

Scheme 6_8. Synthetic routes to derivatives 3_12-22. Reagents and conditions: (a) N-Boc-piperazines, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt-50 ${ }^{\circ} \mathrm{C}$; (b) 4 M HCl in 1,4-dioxane, $60{ }^{\circ} \mathrm{C}$; (c) ethyl 2-(3-(bromomethyl)-5methylphenyl)acetate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $60^{\circ} \mathrm{C}$; (d) $2 \mathrm{M} \mathrm{aq} \mathrm{NaOH}, \mathrm{MeOH}, 60^{\circ} \mathrm{C}$.

Synthetic routes to derivatives of 4_1-9 were prepared as outlined in Scheme 6_9. The synthesis began with the Horner-Wadsworth-Emmons reaction of commercially available 1-Boc-4-piperidone (6_27) and trimethyl phosphonoacetate to afford α, β unsaturated methyl ester 6_28. After deprotection of the Boc group of $\mathbf{6}$ _28 using HCl solution, it was coupled with methyl 2,6-dichlorobenzothiazole to give intermediate 6_29, which was followed by functionalization with alkyl groups using Grignard reagents in the presence of copper iodide to afford the corresponding 4,4-disubstituted piperidines 6_30a-h. Their ester groups were reduced with LiAlH_{4} to give alcohols $\mathbf{3 1 a}-\mathbf{h}$. In the case of the ethyl or iso-propyl derivatives, nucleophilic substitution reaction with methyl 2-(4-chloro-3-hydroxyphenyl)acetate was followed by conversion to chloride using SOCl_{2} to afford 32a and 32d. For the other derivatives, the coupling reaction was followed by conversion to mesylates using MsCl to afford the corresponding 32b-c and 32e-i. Finally, their ester groups were hydrolyzed under basic condition to obtain carboxylic acid 4_1-9.

Scheme 6_9. Synthetic routes to derivatives 4_1-9. Reagents and conditions: (a) NaH, trimethyl phosphonoacetate, DMF, $50{ }^{\circ} \mathrm{C}$; (b) 4 M HCl in 1,4-dioxane, rt ; (c) 2,6-dichlorobenzothiazole, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $60^{\circ} \mathrm{C}$; (d) CuI, Grignard reagent, TMSOTf, $-78^{\circ} \mathrm{C}$; (e) LiAlH_{4}, THF, $0^{\circ} \mathrm{C}$; (f) $\mathrm{SOCl}_{2}, 60^{\circ} \mathrm{C}$; (g) $\mathrm{MsCl}, \mathrm{TEA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (h) corresponding phenylacetic acid methyl esters, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, $60{ }^{\circ} \mathrm{C}$; (i) 2 M aq NaOH , THF, MeOH , rt.

As depicted in Scheme 6_10, the synthetic routes to derivatives of 4_10-16 and 4_18-19 are as follows. Commercially available 1-benzyl-4-piperidone (6_33) was first converted to the corresponding enamine intermediates with secondary amines under reflux condition. After iminium salt formation with AcOH , the Reformatsky reaction was performed successfully by addition of methyl bromoacetate in the presence of zinc to afford 4,4-disubstituted piperidine intermediates 34a-f. After reduction with LiAlH_{4}, the removal of their benzyl group via Pd / C-catalyzed hydrogenolysis and subsequent coupling of the resulting amines with 2,6-dichlorobenzothiazole or 2-chloro-6(trifluoromethyl)benzothiazole gave alcohols 35a-g. Next, following the Mitsunobu reaction with methyl 2-(3-chloro-5-hydroxyphenyl)acetate, methyl 2-(3-hydroxy-5methylphenyl)acetate or methyl 2-(3-hydroxy-4-methylphenyl)acetate, the resulting esters 36a-i were hydrolyzed with NaOH to furnish carboxylic acids $\mathbf{4}$ _10-16 and 4_1819.

Scheme 6_10. Synthetic routes to derivatives 4_10-16 and 4_18-19. Reagents and conditions: (a) corresponding amines, toluene, reflux, then $\mathrm{AcOH}, \mathrm{Zn}$, methyl bromoacetate, THF, rt; (b) LiAlH_{4}, THF, $0{ }^{\circ} \mathrm{C}$; (c) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}$, rt; (d) $\mathrm{Ar}-\mathrm{Cl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 6{ }^{\circ} \mathrm{C}$; (e) corresponding phenylacetic acid methyl esters, ADDP, tri- n-butylphosphine, THF, rt; (f) $2 \mathrm{M} \mathrm{aq} \mathrm{NaOH}, \mathrm{THF}, \mathrm{MeOH}, \mathrm{rt}$.

Scheme 6_11 shows the synthetic route of derivative 4_17. First, exo-olefin 6_38 was prepared by the Wittig reaction of commercially available benzyl 4-oxopiperidine-1carboxylate (6_37) with the phosphorous ylide which was generated from the reaction of methyltriphenylphosphonium bromide and n-BuLi. Cycloaddition of chlorosulfonyl isocyanate to alkene 6_38 provided β-lactam 6_39, followed by hydrolysis and esterification of the resulting carboxylic acid using concentrated HCl in MeOH to afford methyl ester 6_40. After amidation with 4-bromobutyryl chloride, pyrrolidone intermediate 6_42 was obtained via intramolecular cyclization. Subsequently, reduction of $6 \mathbf{4 2}$ by lithium borohydride provided alcohol 6_43, which was deprotected via Pd / C catalyzed hydrogenolysis, coupling with 2-chloro-6-(trifluoromethyl)benzothiazole, the Mitsunobu reaction with methyl 2-(3-chloro-5-hydroxyphenyl)acetate, and hydrolysis of the methyl ester to give carboxylic acid 4_17.

Scheme 6_11. Synthetic routes to derivatives 4_17. Reagents and conditions: (a) n-BuLi, methyltriphenylphosphonium bromide, THF, $0^{\circ} \mathrm{C}$; (b) chlorosulfonyl isocyanate, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (c) conc. HCl , $\mathrm{MeOH}, 95^{\circ} \mathrm{C}$; (d) 4-bromobutyryl chloride, pyridine, rt; (e) NaH , DMF, rt; (f) $\mathrm{LiBH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, MeOH , reflux; (g) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, THF, rt; (h) 2-chloro-6-(trifluoromethyl)benzothiazole $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $70{ }^{\circ} \mathrm{C}$; (i) methyl 2-(3-chloro-5-hydroxyphenyl)acetate, DEAD, triphenylphosphine, THF, rt; (j) 2 M aq NaOH , THF, MeOH , rt.

The synthetic routes of 4 -aza-benzothiazole derivatives $\mathbf{4} \mathbf{2 0}$ and $\mathbf{4} \mathbf{2 1}$ are shown in Scheme 6_12. Initially, commercially available 2-chloro-6-(trifluoromethyl)pyridin-3amine (6_46) was treated with potassium ethylxanthate, followed by conversion of the thiol group to chloride via treatment with SOCl_{2} to provide 6_48. Coupling of chloride $6 _48$ with 2-(4-(pyrrolidin-1-yl)piperidin-4-yl)ethan-1-ol, prepared above, provided intermediate 6_49, which was then subjected to the Mitsunobu reaction with methyl 2-(3-chloro-5-hydroxyphenyl)acetate or methyl 2-(4-chloro-3-hydroxyphenyl)acetate, and hydrolysis of the methyl esters to afford carboxylic acids $\mathbf{4} \mathbf{2 0}$ and 4_21.

Scheme 6_12. Synthetic routes to derivatives 4_20 and 4_21. Reagents and conditions: (a) potassium ethylxanthate, DMF, $120{ }^{\circ} \mathrm{C}$; (b) $\mathrm{SOCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (c) 2-(4-(pyrrolidin-1-yl)piperidin-4-yl)ethan-1-ol, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $60{ }^{\circ} \mathrm{C}$; (d) methyl 2-(3-chloro-5-hydroxyphenyl)acetate or methyl 2-(4-chloro-3hydroxyphenyl)acetate, ADDP, tri- n-butylphosphine, THF, rt; (e) 2 M aq NaOH , THF, MeOH, rt.

Experimentals

General

All commercially available chemicals and reagents were used without any further purification unless otherwise indicated. Column chromatography was done on a purification system using prepacked silica gel columns. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Varian MERCURY system (300 MHz) or a Bruker AVANCE system (400 MHz). Chemical shifts (δ) are reported as parts per million (ppm), and tetramethylsilane was used as an internal reference. For peak multiplicities, the following abbreviations are used: singlet (s), doublet (d), double doublets (dd), double doublet (ddd), double triplet (dt), triplet (t), quartet (q), multiplet (m), and broad peak (br). Coupling constants (J) are given in Hertz (Hz). High-resolution mass spectral (HRMS) data were acquired with a Waters Xevo G2 Tof (ESI) and low-resolution mass spectral data were collected with a Waters SQD mass detector (ESI). The purity of the compounds was confirmed by LCMS. A Waters Acquity UPLC system comprising Binary Solvent manager, Sample Manager, PDA Detector, SQD mass spectrometer, and Acquity evaporative light scattering detector were employed. Column: Waters ACQUITY UPLC BEH C18 (1.7 $\mu \mathrm{m}$, i.d. $2.1 \times 50 \mathrm{~mm}$). Flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$. UV detection wavelength: 254 nm . Mobile phase: [A] is 0.1% formic acid-containing aqueous solution, and $[\mathrm{B}]$ is 0.1% formic acid-containing acetonitrile solution. Gradient: linear gradient of $5-100 \%$ solvent $[B]$ for 3.5 min was performed, and 100% solvent [B] was maintained for 0.5 min . All compounds used in the bioassays are $>95 \%$ pure based on HPLC-MS data. The animal study protocols were designed and refined by taking reduction of animal use into consideration and approved by the Institutional Animal Care and Use Committee of Shionogi Research Laboratories.

Typical procedure for synthesis of compounds $\mathbf{6}$ _2a-b

A mixture of 4-piperidine alcohol 6_1 (16.2 mmol), 2,6-dichlorobenzothiazole $(3.00 \mathrm{~g}$, $14.7 \mathrm{mmol})$, potassium carbonate $(2.33 \mathrm{~g}, 16.2 \mathrm{mmol})$ and anhydrous DMF (15 mL) was stirred at room temperature for 16 hours. Water and EtOAc were added to the reaction solution. The organic layer was separated, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The precipitate was washed with IPE to give the target compound.

Compound 6_2a

Yellow solid, 67% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.29-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{q}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.87(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{td}, J=12.8,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-4.13(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 31.56,32.31,38.94,49.07$, $60.01,119.33,120.31,126.28,126.42,131.59,151.09,168.70$. HRMS (ESI) : m/z [M + $\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{OS}^{+}, 297.0823$; found, 279.0845.

Compound 6_2b

Yellow solid, 100% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.32-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.82$ $(\mathrm{m}, 1 \mathrm{H}), 1.85-1.90(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{td}, J=12.8,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-$ $4.16(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) : $\delta 28.11,38.50,48.67,67.18,119.42,120.30,126.21$,
126.37, 131.85, 151.45, 168.79. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{OS}^{+}$, 283.0666; found, 283.0691.

Synthesis of compound 6_3

A mixture of 6_2a ($50.0 \mathrm{mg}, 0.168 \mathrm{mmol}$), mono-tert-butyl succinate $(35.2 \mathrm{mg}, 0.202$ $\mathrm{mmol}), \mathrm{EDC} \cdot \mathrm{HCl}(38.8 \mathrm{mg}, 0.202 \mathrm{mmol}),(2.06 \mathrm{mg}, 0.017 \mathrm{mmol})$ and DMF (1.0 mL) was stirred at room temperature for 3 hours. To the reaction mixture was added aqueous NaHCO_{3} solution and extracted with EtOAc. The organic layer was washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography to give compound 6_3 as a yellow solid ($75.4 \mathrm{mg}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) : $\delta 1.23$ (ddd, $J=24.2$, $12.4,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.55(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.80(\mathrm{~m}$, 2H), 2.44-2.50 (m, 4H), $3.14(\mathrm{td}, J=12.4,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.98-4.01(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, 1H).

Synthesis of compound 2_2

To 4 M solution of hydrochloric acid-dioxane ($754 \mu \mathrm{~L}, 3.02 \mathrm{mmol}$) was added 6_3(68.3 $\mathrm{mg}, 0.151 \mathrm{mmol})$. After stirring at room temperature for 2 hours, the reaction mixture was concentrated under reduced pressure and became pH 4 with aqueous NaHCO_{3} solution. The precipitate was washed with water and IPE to give compound 2_2 as a white solid
(38.4 mg, 64\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2}-\mathrm{d}_{6}$) : $\delta 1.17-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{q}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.63-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.81(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.19(\mathrm{~m}, 2 \mathrm{H}), 3.98-4.01(\mathrm{~m}, 2 \mathrm{H})$, $4.09(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 12.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) : $\delta 28.60,28.68,30.71$, $31.81,34.25,48.27,61.52,119.09,120.69,124.55,125.99,131.80,151.37,168.23$, 171.99, 173.30. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}, 397.0983$; found, 397.0983

Typical procedure for synthesis of compounds $\mathbf{6}$ _4a-b
A mixture of 6_2a-b $(4.03 \mathrm{mmol})$ and $\mathrm{SOCl}_{2}(10 \mathrm{~mL})$ were stirred at $60^{\circ} \mathrm{C}$ for 1 hour. The reaction mixture was poured into ice water and added with 5 M aqueous NaOH solution to neutralize. The precipitate was collected and washed with IPE to give the target compound.

Compound 6_4a

White solid, 77% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.25-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.94$ (m, $5 \mathrm{H}), 3.08-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07-4.20(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=8.5,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0,1 \mathrm{H})$.

Compound 6_4b

White solid, 89% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $_{6}$) : $\delta 1.20-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.80-2.00$
$(\mathrm{m}, 3 \mathrm{H}), 3.10-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-4.10(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=8.5$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 6_5a-d
A mixture of $6 _4(1.59 \mathrm{mmol})$, the corresponding phenol (2.39 mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(779 \mathrm{mg}$, 2.39 mmol) and DMF (5 mL) was stirred at $60^{\circ} \mathrm{C}$ for 9 hours. Water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the target compound.

Compound 6_5a

White solid, 62% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.30-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.74-1.97(\mathrm{~m}$, $5 \mathrm{H}), 3.09-3.22(\mathrm{~m}, 2 \mathrm{H}), 4.04-4.18(\mathrm{~m}, 4 \mathrm{H}), 4.38(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=8.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_5b

Colorless oil, 46% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-$ $1.44(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.92(\mathrm{~m}, 5 \mathrm{H}), 3.02-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.02-4.15 (m, 2H), $4.14(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.90(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.41$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_5c

White solid, 71% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-$ $1.49(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.95(\mathrm{~m}, 5 \mathrm{H}), 2.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-$ $3.21(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.07-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.71-$ $6.84(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_5d

Colorless oil, 23% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.51$ (ddd, $J=25.1,12.6,4.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.97-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.13(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{dt}, J=12.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}$, $2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.20(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.87(\mathrm{~m}, 3 \mathrm{H}), 7.21-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 2_3-6
To a solution of $\mathbf{6} \mathbf{5}(0.300 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ was added 2 M aqueous NaOH solution ($0.45 \mathrm{~mL}, 0.900 \mathrm{mmol}$), and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 hour. To the reaction mixture was added 2 M aqueous HCl solution to be pH 4 . The precipitate was collected and washed with water and IPE to give the target compound.

Compound 2_3

White solid, 93% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) : $\delta 1.25-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.75$ (m, 2H), 1.81-1.88 (m, 3H), 3.17 (t, $J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.01$ (d, $J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.09$ (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.45(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 12.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d d_{6} : $\delta 30.88,32.05,34.76,48.32,65.33,114.47,119.13,119.25,120.65,121.41$, 124.54, 125.97, 129.61, 131.89, 132.10, 151.53, 158.49, 167.03, 168.25. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}, 417.1034$; found, 417.1037.

Compound 2_4

White solid, 87% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) : $\delta 1.34-1.44$ (m, 2H), 1.88-1.93 (m, 2H), 2.03-2.12 (m, 1H), 3.17-3.25 (m, 2H), 3.50(s, 2H), $3.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.07(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-6.83(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=8.5$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 12.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}) δ 27.68, 35.04, 40.82, 47.95, 71.27, 112.39, 115.54, 119.16, 120.67, 121.53, 124.56, 125.98, 129.08, 131.88, 136.59, 151.50, 158.42, 168.29, 172.45. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 417.1034; found, 417.1028.

Compound 2_5

White solid, 78% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) : $\delta 1.24-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.73$ $(\mathrm{m}, 2 \mathrm{H}), 1.79-1.86(\mathrm{~m}, 3 \mathrm{H}), 3.17(\mathrm{t}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.99-4.04(\mathrm{~m}, 4 \mathrm{H})$,
$6.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 12.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta 30.89,32.05,34.87,40.59,48.32,64.92,112.42,115.60,119.13,120.64,121.45$, 124.53, 125.96, 129.12, 131.89, 136.32, 151.53, 158.42, 168.25, 172.41. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}, 431.1191$; found, 431.1205.

Compound 2_6

White solid, 35% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d) : $\delta 1.25-1.34(\mathrm{~m}, 2 \mathrm{H}$), 1.67-1.72 (m, 2H), 1.80-1.86 (m, 3H), 2.51-2.54 (m, 2H), $2.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=12.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.99-4.03(\mathrm{~m}, 4 \mathrm{H}), 6.77(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 12.07(\mathrm{~s}, 1 \mathrm{H}) . .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d 6) : $\delta 30.29,30.89,32.06,34.90,35.04,48.33,64.86,111.87,114.38$, 119.14, 120.31, 120.65, 124.54, 125.97, 129.18, 131.91, 142.38, 151.55, 158.55, 168.26, 173.63. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 445.1347; found, 445.1346.

Typical procedure for synthesis of compounds 6_6a-f
To a mixture of $\mathbf{6} \mathbf{2 a}(10.2 \mathrm{mmol})$, the corresponding phenol (the corresponding phenols 10.2 mmol), 1,1-azodicarbonyldipiperidine ($3.86 \mathrm{~g}, 15.3 \mathrm{mmol}$) and anhydrous THF (100 mL) was added dropwise tributyl phosphine ($3.81 \mathrm{~mL}, 15.3 \mathrm{mmol}$) under ice-cooling. After stirring the reaction solution at the same temperature for 3 hours, water and EtOAc were added thereto. The organic layer was separated, washed with brine, dried over
anhydrous sodium sulphate, and evaporated under reduced pressure. The residue was purified by silica gel column chromatography to give the target compound.

Compound 6_6a

Colorless oil, 65% yield. 1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) : $\delta 1.36-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.83$ (m, 2H), 1.88-1.93 (m, 3H), $2.18(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $4.03(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.15(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.84(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_6b

Yellow oil, 71% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.38-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.93(\mathrm{~m}$, $5 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.15(\mathrm{~m}$, $2 \mathrm{H})$, 6.76-6.80 (m, 2H), $7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_6c

Yellow oil, 33% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.35-1.44$ (m, 2H), 1.74-1.79 (m, 2H), 1.85-1.91 (m, 3H), 2.31 (s, 3H), 3.11-3.17 (m, 2H), 3.56 (s, 2H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 4.01$
$(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-4.15(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.6,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_6d

Colorless oil, 79% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-$ $1.48(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.94(\mathrm{~m}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.21(\mathrm{~m}, 2 \mathrm{H})$, $3.61(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.74$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=8.6$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_6e

Yellow oil, 82% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.36-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.87(\mathrm{~m}$, $2 \mathrm{H}), 1.90-1.95(\mathrm{~m}, 3 \mathrm{H}), 3.12-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.09-4.15(\mathrm{~m}, 4 \mathrm{H})$, $6.81(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_6f

White solid, 78% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-$ $1.49(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.94(\mathrm{~m}, 5 \mathrm{H}), 2.63(\mathrm{q}, ~ J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.19(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}$,
$2 \mathrm{H}), 4.05(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-4.16(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=7.7,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 2_7 and 2_9-11
To a solution of 6_6 (0.214 mmol$)$ in THF $(0.6 \mathrm{~mL})$ and $\mathrm{MeOH}(0.6 \mathrm{~mL})$ was added 2 M aqueous NaOH solution ($0.322 \mathrm{~mL}, 0.642 \mathrm{mmol}$), and the mixture was stirred at room temperature for 2 hours. To the reaction mixture was added 2 M aqueous HCl solution to be pH 4 . The precipitate was collected and washed with water and IPE to give the title compound.

Compound 2_7

White solid, 82% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) : $\delta 1.25-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.76$ $(\mathrm{m}, 2 \mathrm{H}), 1.83-1.87(\mathrm{~m}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.99-4.03(\mathrm{~m}$, 4H), $6.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}$, $J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 12.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}) : $\delta 11.40,30.91,32.26,35.02,38.94,48.34,65.32$, $109.95,119.12,120.65,122.48,124.52,124.79,125.91,125.96,131.89,134.81,151.54$, 156.47, 168.25, 172.37. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 445.1347; found, 445.1342.

Compound 2_9

White solid, 99% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$) : $\delta 1.24-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.71$ (m, 2H), 1.79-1.85 (m, 3H), $2.25(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.98-4.04(\mathrm{~m}$, 4H), 6.62-6.66 (m, 3H), $7.27(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 12.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) : $\delta 20.96,30.88,32.05$, 34.89, 40.61, 48.34, 64.84, 112.66, 113.14, 119.09, 120.66, 122.21, 124.56, 125.99, 131.83, 135.97, 138.57, 151.41, 158.45, 168.24, 172.45. HRMS (ESI) : m/z [M + H ${ }^{+}$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}, 445.1347$; found, 445.1345 .

Compound 2_10

White solid, 39% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) : $\delta 1.24-1.33$ (m, 2H), 1.68 (q, J $=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.85(\mathrm{~m}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.96-4.02$ $(\mathrm{m}, 4 \mathrm{H}), 6.73(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 12.31$ (br s, 1 H). ${ }^{13}{ }^{1}$ NMR (100 MHz, DMSO-d $_{6}$) : $\delta 18.17,30.99,32.13,35.03,38.98,48.43$, 64.97, 112.43, 116.70, 119.24, 120.78, 124.63, 126.08, 128.39, 130.62, 132.00, 134.91, 151.63, 156.63, 168.36, 172.45. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 445.1347; found, 445.1347.

Compound 2_11

White solid, 90% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) : $\delta 1.27-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.77$ $(\mathrm{m}, 2 \mathrm{H}), 1.83-1.89(\mathrm{~m}, 3 \mathrm{H}), 3.17(\mathrm{t}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~d}, J=12.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.11(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 12.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta 30.84,32.15,34.63,40.15,48.35,66.35,115.10,119.07$, $119.56,120.68,122.35,124.59,125.99,129.33,131.79,135.44,151.33,153.48,168.22$, 172.18. HRMS (ESI) : m/z [M + H] ${ }^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 465.0801; found, 465.0798 .

Synthesis of compound 2_8

A mixture of compound 6_6b $(1.14 \mathrm{~g}, 2.68 \mathrm{mmol}), \mathrm{NaOH}(0.54 \mathrm{~g}, 13.5 \mathrm{mmol})$, water $(1.6 \mathrm{~mL})$ and $\mathrm{EtOH}(21 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 6 hours. The reaction solution was concentrated under reduced pressure and became pH 7 with 2 M aqueous HCl solution. The precipitate was collected and washed with water and IPE to give compound 2_8 as a white solid ($0.63 \mathrm{~g}, 53 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) : $\delta 1.25-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{q}$, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.88(\mathrm{~m}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{t}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H})$, 3.99-4.04 (m, 4H), $6.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-$ $7.29(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.88(\mathrm{~m}, 1 \mathrm{H}), 12.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta 15.58,30.92,32.28,34.92,40.61,48.34,65.12,112.34,119.12$,
$120.64,120.90,123.80,124.53,125.96,129.95,131.89,133.67,151.54,156.35,168.25$, 172.61. HRMS (ESI) : m/z [M + H] ${ }^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 445.1347; found, 445.1354.

Synthesis of compound 2_12

A mixture of compound $\mathbf{6} \mathbf{6 f}(214 \mathrm{mg}, 0.486 \mathrm{mmol})$, concentrated sulfuric acid (10 ml) and water $(10 \mathrm{ml})$ was stirred at $80^{\circ} \mathrm{C}$ for 20 hours. After air cooling, 5 N aqueous NaOH solution was added to be pH 4 . The mixture was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was collected and washed with water to give compound $\mathbf{2}$ _12 as a white solid ($89.1 \mathrm{mg} ; 61 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{2}$) : $\delta 1.12$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), $1.25-1.36$ $(\mathrm{m}, 2 \mathrm{H}), 1.71-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.86(\mathrm{~m}, 3 \mathrm{H}), 2.51-2.57(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{t}, J=11.7 \mathrm{~Hz}$, 2H), 3.49 ($\mathrm{s}, 2 \mathrm{H}$), $3.97-4.03(\mathrm{~m}, 4 \mathrm{H}), 6.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, 1H), 12.32 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$) : $\delta 14.25,22.45,30.89,32.26$, 34.93, 41.15, 48.35, 65.01, 112.45, 119.13,120.65, 121.06, 124.53, 125.96, 128.33, 129.64, 131.89, 134.19, 151.53, 155.92, 168.25, 172.82. HRMS (ESI) : m/z [M + H] ${ }^{+}$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}, 459.1504$; found, 459.1510.

Synthesis of compound 6_8

A mixture of 2,6-dichlorobenzothiazole ($1.01 \mathrm{~g}, 4.95 \mathrm{mmol}$), 1-piperazineethanol (637 $\mu \mathrm{L}, 5.19 \mathrm{mmol})$, potassium carbonate ($2.05 \mathrm{~g}, 14.9 \mathrm{mmol}$) and anhydrous DMF (10 mL) was stirred at $60^{\circ} \mathrm{C}$ for 4 hours. Water and EtOAc were added to the reaction solution. The organic layer was separated, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by silica gel column chromatography to give compound $\mathbf{6} 8(1.25 \mathrm{~g}, 85 \%)$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 2.60-2.67(m, 6H), 3.63-3.69(m, 6H), $7.23(\mathrm{~d}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis of compound 6_9

A mixture of $6 _8(1.24 \mathrm{~g}, 4.16 \mathrm{mmol})$ and $\mathrm{SOCl}_{2}(12 \mathrm{~mL})$ were stirred at $60^{\circ} \mathrm{C}$ for 1 hour. To the reaction mixture was added aqueous NaHCO_{3} solution to neutralize, and extracted with EtOAc. The extract was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give compound $\mathbf{6} _\mathbf{9}(1.02 \mathrm{~g}, 77 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 2.63-2.72(\mathrm{~m}, 4 \mathrm{H})$, $2.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58-3.73(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis of compound 6_10

A mixture of 6_9 (153 mg, 0.484 mmol), methyl 2-(3-hydroxy-4-methylphenyl)acetate ($95.9 \mathrm{mg}, 0.532 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(473 \mathrm{mg}, 1.45 \mathrm{mmol})$ and DMF (6 mL) was stirred at
$60^{\circ} \mathrm{C}$ for 4 hours. Water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give compound 6_10 (128 mg, 57\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 2.19$ (s, 3H), 2.73-2.79 (m, 4H), $2.91(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.63-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{t}, J$ $=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.79(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis of compound 3_1

To a solution of $\mathbf{6} \mathbf{1 0}(128 \mathrm{mg}, 0.278 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ and $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added 2 M aqueous NaOH solution (1.0 mL), and the mixture was stirred at room temperature for 2 hours. To the reaction mixture was added 2 M aqueous HCl solution to be neutral, and extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The obtained solid was washed with IPE to give compound 3_1 $(74.4 \mathrm{mg}, 60 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.60-3.00(\mathrm{~m}, 6 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 4.15(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.74$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 12.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) : $\delta 15.75,40.65,47.95,52.18,56.36,65.87,112.62,119.49,120.90,121.23,123.99$, 124.93, 126.17, 130.10, 132.00, 133.78, 151.36, 156.27, 168.57, 172.74. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}, 446.1300$; found, 446.1310 .

Typical procedure for synthesis of compounds 6_12a-f
A mixture of 6 _11 (2.45 mmol), the corresponding piperazine (2.94 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (406 $\mathrm{mg}, 2.94 \mathrm{mmol})$ and anhydrous DMF (5 mL) was stirred at room temperature for 12 hours. Water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the target compound.

Compound 6_12a

Yellow solid, 87% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.80$ (dd, $J=12.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-3.02(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.90-4.00(\mathrm{~m}, 2 \mathrm{H})$, 7.24 (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_12b

Yellow solid, 77% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.17(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.83$ (dd, $J=12.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-3.03(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.90-4.01(\mathrm{~m}, 2 \mathrm{H})$, $7.24(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_12c

White solid, 99% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-$
$1.56(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=12.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{td}, J=11.8,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.10-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{td}, J=12.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-4.02(\mathrm{~m}, 2 \mathrm{H}), 7.24$ (dd, $J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_12d

Yellow solid, quantitative yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.80(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.92-$ $3.00(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.99(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_12e

White solid, 71% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.17(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.85$ (dd, $J=12.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.97(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=11.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.16$ (m, 1H), $3.23(\mathrm{td}, J=12.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-4.05(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

Compound 6_12f

White solid, 76% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=12.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{td}, J=11.9,3.4$
$\mathrm{Hz}, 1 \mathrm{H}), 3.12-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{td}, J=12.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-4.07(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{dd}$, $J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 6_22a-b
A mixture of 2,6-dichlorobenzothiazole ($500 \mathrm{mg}, 2.45 \mathrm{mmol}$), (R / S)-1-Boc-3methylpiperazine ($589 \mathrm{mg}, 2.94 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.02 \mathrm{~g}, 7.35 \mathrm{mmol})$ and anhydrous DMF $(5 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 18 hours. Water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the target compound.

Compound 6_22a

Yellow oil, 69% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~s}$, 9H), 2.95-3.22 (m, 2H), $3.40(\mathrm{td}, J=12.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-4.28(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{dd}, J=$ $8.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_22b

Yellow oil, 68% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.30(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~s}$, 9H), 2.95-3.22 (m, 2H), $3.40(\mathrm{td}, J=12.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-4.28(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{dd}, J=$ 8.7, 2.1 Hz, 1H), $7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 6_23a-b

To 4 M solution of hydrochloric acid-dioxane was added 6_22 ($500 \mathrm{mg}, 1.36 \mathrm{mmol}$). After stirring at room temperature for 3 hours, the reaction mixture was concentrated under reduced pressure and the residue was washed with IPE to give the target compound.

Compound 6_23a

Yellow solid, 99% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $: \delta 1.40(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $3.03-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.36(\mathrm{~m}, 3 \mathrm{H}), 3.48-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.99-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.50$ $(\mathrm{m}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 9.22 (br s, 1H), 9.68 (br s, 1H).

Compound 6_23b

Yellow solid, 99% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) $: \delta 1.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $3.02-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.35(\mathrm{~m}, 3 \mathrm{H}), 3.49-3.57(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.48$ $(\mathrm{m}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 9.32 (br s, 1H), 9.78 (br s, 1H).

Typical procedure for synthesis of compounds 6_13a-h

Compound 6_12 or 6_23 (2.01 mmol) was dissolved in anhydrous DMF (5 mL). After addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(335 \mathrm{mg}, 2.42 \mathrm{mmol})$ and methyl 2-bromoacetate $(205 \mu \mathrm{~L}, 2.22 \mathrm{mmol})$,
the solution was stirred at $60^{\circ} \mathrm{C}$ for 1 hour. Water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the target compound.

Compound 6_13a

White solid, 99% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.77-$ $2.97(\mathrm{~m}, 3 \mathrm{H}), 3.00-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J$ $=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.92(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_13b

Yellow solid, 100% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.15(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.78-$ $2.99(\mathrm{~m}, 3 \mathrm{H}), 3.02-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.93(\mathrm{~m}, 2 \mathrm{H}), 7.24$ (dd, $J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_13c

Colorless oil, 94% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-$ $1.56(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.70(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.96(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{dd}, J=12.8$,
$9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.51(\mathrm{~m}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.91(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_13d

White solid, 98% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.75(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.95(\mathrm{~m}, 3 \mathrm{H}), 3.18(\mathrm{dd}, J=$ $12.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{ABq}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.50-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.76-$ $3.88(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H})$.

Compound 6_13e

White solid, 96% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.81-$ $2.98(\mathrm{~m}, 3 \mathrm{H}), 3.08(\mathrm{dd}, J=12.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.52(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.90-3.97$ (m, 2H), $7.53(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

Compound 6_13f

White solid, 99% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-$ $1.55(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.70(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.97(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{dd}, J=12.7$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.47-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.96(\mathrm{~m}, 2 \mathrm{H})$,
$7.52(\mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

Compound 6_13g

Yellow oil, quantitative yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.45(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $2.55(\mathrm{dt}, J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=11.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=11.1,1 \mathrm{H})$, 2.97 (m, 1H), 3.29 (ABq, $J=16.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{dt}, J=12.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, 3.85-3.92 (m, 1H), 4.18-4.27 (m, 1H), $7.24(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_13h

Yellow oil, 75% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.45(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.50(\mathrm{dt}$, $J=11.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=10.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=11.7,1 \mathrm{H}), 2.97(\mathrm{dd}, J$ $=11.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dt}, J=$ $12.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.27(\mathrm{~m}, 1 \mathrm{H}), 7.24$ (dd, J $=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 6_14a-h
To a suspension of lithium aluminium hydride ($148 \mathrm{mg}, 3.90 \mathrm{mmol}$) in anhydrous THF (7 mL) was added dropwise a solution of $\mathbf{6} \mathbf{1 3}(1.95 \mathrm{mmol})$ in anhydrous THF (7 mL) under ice-cooling, and the mixture was stirred at the same temperature for 1 hour. Water
$(0.15 \mathrm{~mL}), 10 \%$ aqueous sodium hydroxide solution $(0.15 \mathrm{~mL})$ and water $(0.40 \mathrm{~mL})$ were added dropwise sequentially under ice-cooling. After filtration of aluminium hydroxide, the filtrate was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The obtained solid was collected by filtration, washed with diisopropyl ether, and dried under high vacuum to give the target compound.

Compound 6_14a

White solid, 84% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.37-$ $2.53(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.71-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.02(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{dd}, J=12.8$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.83(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_14b

White solid, 82% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.19(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.40-$ $2.58(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.98-3.09(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{dd}, J=12.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-$ $3.87(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, 1H).

Compound 6_14c

Colorless oil, 95% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.99$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.50$1.68(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.89-3.02(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{dd}, J=12.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-$ $3.73(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H})$.

Compound 6_14d

Colorless oil, 86% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$), 0.95 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.74(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.77$ $(\mathrm{m}, 2 \mathrm{H}), 2.82-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.99(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=12.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.68$ (m, 4H), 3.72-3.79 (m, 1H), $7.24(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$).

Compound 6_14e

Colorless oil, 99% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.39-$ $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.73-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.96-3.03(\mathrm{~m}, 2 \mathrm{H})$, $3.24(\mathrm{dd}, J=12.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.88(\mathrm{~m}, 2 \mathrm{H})$, 7.53 (dd, $J=8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

Colorless oil, 99% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.52-$ $1.69(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.63(\mathrm{~m}, 3 \mathrm{H}), 2.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.90-3.02(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{dd}, J=12.9$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.76(\mathrm{~m}, 5 \mathrm{H}), 7.53(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.85 (br s, 1H).

Typical procedure for synthesis of compounds 6_15a-i
To a solution of $6 _14(125 \mathrm{mg}, 0.401 \mathrm{mmol})$ and TEA $(100 \mu \mathrm{~L}, 0.721 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.25 \mathrm{~mL})$ was added $\mathrm{MsCl}(40 \mu \mathrm{~L}, 0.513 \mathrm{mmol})$ under ice-cooling. After stirring at the same temperature for 1 hour, water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. A mixture of the residue, the corresponding phenol (0.458 mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(159 \mathrm{mg}, 0.488 \mathrm{mmol})$ and anhydrous DMF $(2 \mathrm{~mL})$ was stirred at $60{ }^{\circ} \mathrm{C}$ for 4 hours. Water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the target compound.

Compound 6_15a

Colorless oil, 28% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.19$ $(\mathrm{s}, 3 \mathrm{H}), 2.54-2.80(\mathrm{~m}, 3 \mathrm{H}), 2.90-3.20(\mathrm{~m}, 3 \mathrm{H}), 3.41-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}$,
$3 \mathrm{H}), 3.77-3.89(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.26(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.78(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.23 (dd, $J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_15b

Yellow oil, 87% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$), 2.72-2.88 $(\mathrm{m}, 2 \mathrm{H}), 2.95-3.23(\mathrm{~m}, 4 \mathrm{H}), 3.42-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.89(\mathrm{~m}$, 2H), 4.13-4.20 (m, 2H), 6.81 (dd, $J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (dd, $J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H})$.

Compound 6_15c

Yellow oil, 84% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.23(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$), 2.70-2.88 $(\mathrm{m}, 2 \mathrm{H}), 2.95-3.24(\mathrm{~m}, 4 \mathrm{H}), 3.42-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.89(\mathrm{~m}$, 2H), 4.13-4.20 (m, 2H), 6.81 (dd, $J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (dd, $J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2$ Hz, 1H).

Compound 6_15d

Colorless oil, 46% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-$
$1.65(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.80(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.93-3.01(\mathrm{~m}$, $1 \mathrm{H}), 3.06-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{dd}, J=12.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.81(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.19(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_15e

Colorless oil, 65% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.96$ (d, $J=6.4 \mathrm{~Hz}, 6 \mathrm{H}$), $1.35-$ $1.53(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.77(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.94(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.15(\mathrm{~m}$, $2 \mathrm{H}), 3.30(\mathrm{dd}, J=12.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.62-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.74$ (dd, $J=12.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_15f

White solid, 68% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.23(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.72-$ $2.79(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.21(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.53(\mathrm{~m}$, $1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.91(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.17$ (m, 2H), 6.81 (dd, $J=8.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

Compound 6_15g

White solid, 50% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-$ $1.65(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.80(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.02(\mathrm{~m}$, $1 \mathrm{H}), 3.09-3.19(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{dd}, J=12.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=12.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.19(\mathrm{~m}, 2 \mathrm{H}), 6.81$ (dd, $J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=$ $8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

Compound 6_15h

Colorless oil, 47% yield (2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.39$ (d, $J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 2.41(\mathrm{td}, J=11.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=11.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.90(\mathrm{~m}, 2 \mathrm{H})$, 2.92-2.95 (m, 1H), 3.05-3.09 (m, 1H), $3.47(\mathrm{td}, J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.70$ (s, 3H), 3.85-3.89 (m, 1H), $4.19(\mathrm{t}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.82(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_15i

Colorless oil, 50% yield (2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.39$ (d, $J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 2.41(\mathrm{td}, J=11.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=11.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.90(\mathrm{~m}, 2 \mathrm{H})$, 2.92-2.95 (m, 1H), 3.05-3.09 (m, 1H), 3.47 (td, $J=12.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.71$
$(\mathrm{s}, 3 \mathrm{H}), 3.85-3.89(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.82(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 3_2-4 and 3_6-11
To a solution of $6 \mathbf{1 5}(0.111 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added 2 M aqueous NaOH solution $(0.2 \mathrm{~mL})$, and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 hour. To the reaction mixture was added 2 M aqueous HCl solution to be neutral, and extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The obtained solid was washed with IPE to give the target compound.

Compound 3_2

White solid, 41% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) : $\delta 1.12(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.12$ $(\mathrm{s}, 3 \mathrm{H}), 2.56-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dt}, J=13.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-3.09$ $(\mathrm{m}, 3 \mathrm{H}), 3.34-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.73-3.80(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.72$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 12.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d 6) : $\delta 15.11,15.68,40.58,48.12,50.01,51.37,53.54,54.22,65.67,112.29$, $119.28,120.74,120.99,123.75,124.72,126.04,129.97,131.85,133.69,151.32,156.24$, 168.34, 172.64. HRMS (ESI) : m/z [M+H] calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}, 460.1456$; found, 460.1450.

Compound 3_3

White solid, 75% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 145^{\circ} \mathrm{C}$) : $\delta 1.16(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 H), 2.75-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.98(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.23(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.53$ (s, 2H), 3.73-3.80 (m, 2H), $4.22(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $: \delta 15.08,40.12$, $48.06,50.01,51.07,53.53,54.19,66.75,114.99,119.34,119.43,120.79,122.49,124.79$, 126.08, 129.35, 131.91, 135.46, 151.28, 153.33, 168.30, 172.21. HRMS (ESI) : m/z [M $+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}, 480.0910$; found, 480.0914 .

Compound 3_4

White solid, 82% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) : $\delta 1.12(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.59-$ $2.65(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dt}, J=14.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.34-$ $3.40(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.71-3.79(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (dd, $J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 12.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $\left.\mathrm{d}_{6}\right): \delta 15.13,40.17,48.09,49.97,51.10,53.49,54.21,66.74,114.98$, $119.28,119.41,120.74,122.41,124.72,126.04,129.32,131.85,135.47,151.33,153.39$, 168.33, 172.24. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}, 480.0910$; found, 480.0920.

Compound 3_6

White solid, quantitative yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) : $\delta 1.29$ (d, $J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 2.26(\mathrm{td}, J=11.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=11.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.82(\mathrm{~m}, 2 \mathrm{H})$, $2.92(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{td}, J=12.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.57$ (s, 2H), $3.77(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.21(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (dd, $J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 12.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}) : $\delta 14.44,40.28,43.58,51.85,52.50,56.13,57.16,66.90,115.26,119.23,119.55,120.71$, $12.52,124.62,125.98,129.32,131.65,135.59,151.32,153.38,167.78,172.28$. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}, 480.0910$; found, 480.0881 .

Compound 3_7

White solid, 29% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) : $\delta 1.29(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.26$ (td, $J=11.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=11.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.85(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $12.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$) : $\delta 14.44,40.13,43.59$, $51.85,52.50,56.14,57.16,66.91,115.28,119.24,119.61,120.72,122.53,124.62,125.99$, $129.35,131.65,135.44,151.33,153.40,167.79,172.25$. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$
calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}, 480.0910$; found, 480.0923.

Compound 3_8

White solid, 90% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}, 145{ }^{\circ} \mathrm{C}$) : $\delta 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 H), 1.52-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.78(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.91(\mathrm{~m}, 2 \mathrm{H}), 3.03-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.16-$ 3.24 (m, 2H), 3.43 (dd, $J=13.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ (s, 2H), 3.55-3.60 (m, 1H), 3.69-3.74 (m, 1H), 3.78 (dd, $J=13.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{dd}, J=8.0,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) : δ $9.73,20.31,40.11,47.28,49.14,50.74,50.79,59.06,67.06,114.98,119.40,119.51$, 120.82, 122.52, 124.75, 126.11, 129.38, 131.87, 135.49, 151.29, 153.37, 168.44, 172.21. HRMS (ESI) : m/z [M + H] ${ }^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}, 494.1066$; found, 494.1053.

Compound 3_9

White solid, 77% yield. ${ }^{1}$ H NMR (400 MHz, DMSO-d 6) : $\delta 0.90(\mathrm{dd}, J=6.4,0.9 \mathrm{~Hz}, 6 \mathrm{H}$), $1.24-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.69(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{dt}, J$ $=13.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-3.05(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.59(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{dd}$, $J=12.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 12.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) : δ
$21.93,23.38,24.77,36.22,40.14,46.66,48.42,50.69,51.05,56.27,67.53,115.09$, $119.24,119.49,120.75,122.44,124.64,126.05,129.34,131.70,135.44,151.40,153.42$, 168.58, 172.25. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}$, 522.1379; found, 522.1384.

Compound 3_10

White solid, 81% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d) : $\delta 1.13(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$), 2.60$2.67(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dt}, J=14.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-3.13(\mathrm{~m}, 3 \mathrm{H}), 3.40-$ $3.47(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.78-3.85(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.2$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.59(\mathrm{~m}, 2 \mathrm{H}), 8.23$ $(\mathrm{s}, 1 \mathrm{H}), 12.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6} : $\delta 15.03,40.16,48.15,49.91$, $51.09,53.53,54.22,66.76,114.99,118.16,118,85(\mathrm{q}, J=3.7 \mathrm{~Hz}), 119.42,121.03(\mathrm{q}, J=$ $32.3 \mathrm{~Hz}), 122.43,122.97(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.65(\mathrm{q}, J=271.4 \mathrm{~Hz}), 129.33,130.79,135.46$, 153.39, 155.43, 170.05, 172.25. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}$, 514.1174; found, 514.1183.

Compound 3_11

White solid, 93% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d) : $\delta 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), $1.48-$ $1.55(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.71(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{dt}, J=14.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-$ 3.09 (m, 2H), 3.36 (dd, $J=12.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 3.69-3.77$
(m, 2H), $4.15(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.59(\mathrm{~m}, 2 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 12.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) δ 9.46, 20.32, 40.44, 47.51, 49.11, 50.66, 50.86, 59.15, 67.13, 115.07, $118.24,118,95(\mathrm{q}, J=3.7 \mathrm{~Hz}), 119.46,121.08(\mathrm{q}, J=32.3 \mathrm{~Hz}), 122.53,123.08(\mathrm{q}, J=$ $3.7 \mathrm{~Hz}), 124.77(\mathrm{q}, J=271.4 \mathrm{~Hz}), 129.42,130.82,135.74,153.50,155.59,170.32,172.40$. HRMS (ESI) : m/z [M + H $]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}$, 528.1330; found, 528.1356.

Synthesis of compound 6_17

A mixture of trimethyl phosphonoacetate ($376 \mu \mathrm{~L}, 2.32 \mathrm{mmol}$), $28 \% \mathrm{NaOMe}$ solution in $\mathrm{MeOH}(471 \mu \mathrm{~L}, 2.32 \mathrm{mmol})$ and anhydrous THF (10 mL) was stirred at $0^{\circ} \mathrm{C}$ for 1 hour. Then a solution of $\mathbf{6} \mathbf{1 6}(450 \mathrm{mg}, 2.11 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added dropwise thereto at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 2 h , to the reaction mixture was added water and extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give compound $\mathbf{6} \mathbf{1 7}(564 \mathrm{mg}, 99 \%)$ as a mixture of stereoisomers ($E: Z=$ ca. $4: 3$). A colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1.7 \mathrm{H})$, $1.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1.3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 2.05(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.37-2.41(\mathrm{~m}, 0.6 \mathrm{H})$, 2.55-3.68 (m, 4H), $3.69(\mathrm{~s}, 1.3 \mathrm{H}), 3.70(\mathrm{~s}, 1.7 \mathrm{H}), 3.71-4.35(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, 0.4 H), 5.69 (br s, 0.6 H).

Synthesis of compound 6_18

To a solution of $\mathbf{6}$ _17 $(200 \mathrm{mg}, 0.743 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(10 \%$, 20.0 mg) at room temperature. After stirring under a hydrogen atmosphere at the same temperature for 2 hours, the insoluble material was filtrated and the filtrate was concentrated under reduced pressure to give compound 6_18 (197 mg, 98\%) as a mixture of stereoisomers (ca. 3:1). A colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.86(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 2.25 \mathrm{H}), 0.90(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 0.75 \mathrm{H}), 1.15-1.39(\mathrm{~m}, 0.75 \mathrm{H}), 1.41-1.44(\mathrm{~m}, 1 \mathrm{H})$, $1.45(\mathrm{~s}, 9 \mathrm{H}), 1.53-1.62(\mathrm{~m}, 0.25 \mathrm{H}), 1.67-1.72(\mathrm{~m}, 0.25 \mathrm{H}), 1.82(\mathrm{br} \mathrm{s}, 0.75 \mathrm{H}), 2.04-2.40$ (m, 3H), $2.57(\mathrm{dd}, J=15.1,4.3 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.67-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=13.2,3.1 \mathrm{~Hz}$, 0.75 H), $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.78(\mathrm{~m}, 0.75 \mathrm{H}), 3.86(\mathrm{br} \mathrm{s}, 0.25 \mathrm{H}), 4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

Synthesis of compound 6_19

To a suspension of lithium aluminium hydride ($66.4 \mathrm{mg}, 1.75 \mathrm{mmol}$) in anhydrous THF (5 mL) was added dropwise a solution of $\mathbf{6} \mathbf{1 8}(475 \mathrm{mg}, 1.75 \mathrm{mmol})$ in anhydrous THF $(5 \mathrm{~mL})$ under ice-cooling, and the mixture was stirred at the same temperature for 1 hour. Water $(70 \mu \mathrm{~L}), 10 \%$ aqueous sodium hydroxide solution $(70 \mu \mathrm{~L})$ and water $(210 \mu \mathrm{~L})$ were added dropwise sequentially under ice-cooling. After filtration of aluminium hydroxide, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give compoound $\mathbf{6}$ _19 ($423 \mathrm{mg}, 99 \%$) as a mixture of stereoisomers. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2.25 \mathrm{H})$,
$0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 0.75 \mathrm{H}), 1.10-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.70-1.98(\mathrm{~m}, 1.75 \mathrm{H}), 2.30-$ $2.38(\mathrm{dd}, J=13.2,10.8 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.64-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=13.2,2.4 \mathrm{~Hz}, 0.75 \mathrm{H})$, 3.64-3.74 (m, 2H), 3.78-3.84 (m, 0.75H), 3.94-4.08 (m, 1H).

Synthesis of compound 6_20

To 4 M solution of hydrochloric acid-dioxane (4 mL) was added 6_19 (410 mg, 1.69 mmol). After stirring at room temperature for 2 hours, the reaction mixture was concentrated under reduced pressure. To the obtained residue was added anhydrous DMF $(5 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(699 \mathrm{mg}, 5.06 \mathrm{mmol})$ and 2,6-dichlorobenzothiazole ($344 \mathrm{mg}, 1.69 \mathrm{mmol}$), and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 6 h . Water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give compound $\mathbf{6} \mathbf{2 0}(510 \mathrm{mg}, 97 \%)$ as a mixture of stereoisomers. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2.25 \mathrm{H}), 1.01(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 0.75 \mathrm{H}), 1.44-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.84-2.02(\mathrm{~m}, 3 \mathrm{H}), 2.78(\mathrm{dd}, J=12.4,10.8 \mathrm{~Hz}, 0.25 \mathrm{H})$, 3.08-3.23 (m, 1H), $3.36(\mathrm{dd}, J=12.9,2.4 \mathrm{~Hz}, 0.75 \mathrm{H}), 3.68-3.80(\mathrm{~m}, 3 \mathrm{H}), 4.02-4.16(\mathrm{~m}$, $1 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of compound 6_21

To a solution of $\mathbf{6}$ _20 $(150 \mathrm{mg}, 0.483 \mathrm{mmol})$ and TEA ($202 \mu \mathrm{~L}, 1.45 \mathrm{mmol})$ in anhydrous
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathrm{MsCl}(56 \mu \mathrm{~L}, 0.725 \mathrm{mmol})$ under ice-cooling. After stirring at room temperature for 1 hour, water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. A mixture of the residue, methyl 2-(4-chloro-3-hydroxyphenyl)acetate (107 mg , $0.531 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(173 \mathrm{mg}, 0.531 \mathrm{mmol})$ and anhydrous DMF $(2 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ for 3 hours. Water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give compound 6_21 (237 mg, 99\%) as a mixture of stereoisomers. A colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) : $\delta 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2.25 \mathrm{H}), 1.06(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.75 \mathrm{H}), 1.66-1.90$ $(\mathrm{m}, 3 \mathrm{H}), 1.96-2.12(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.60(\mathrm{~m}, 3 \mathrm{H})$, 3.69-3.71 (m, 4H), 4.05-4.16 (m, 3H), 6.79-6.96 (m, 3H), 7.20-7.33 (m, 2H), 7.52-7.54 (m, 1H).

Synthesis of compound 3_5

To a solution of 6_21 (205 mg, 0.415 mmol$)$ in THF $(1 \mathrm{~mL})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ was added 2 M aqueous NaOH solution (0.5 mL), and the mixture was stirred at room temperature for 1 hour. To the reaction mixture was added 2 M aqueous HCl solution to be acidic, and extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The obtained solid was washed with n-hexane to give compound 3_5 ($155 \mathrm{mg}, 78 \%$) as a mixture of stereoisomers. A white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) : $\delta 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2.1 \mathrm{H}), 0.98(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 0.9 \mathrm{H}), 1.35-1.66$
$(\mathrm{m}, 2.6 \mathrm{H}), 1.71-1.76(\mathrm{~m}, 1.4 \mathrm{H}), 1.89-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=12.7,10.7 \mathrm{~Hz}, 0.3 \mathrm{H})$, 3.12-3.24 (m, 1H), $3.37(\mathrm{dd}, J=13.0,2.7 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.54-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.74(\mathrm{~m}$, $0.7 \mathrm{H}), ~ 3.92-4.02(\mathrm{~m}, ~ 1.3 \mathrm{H}), ~ 4.05-4.12(\mathrm{~m}, 2 \mathrm{H}), ~ 6.81-6.85(\mathrm{~m}, 1 \mathrm{H}), ~ 7.07-7.09(\mathrm{~m}, 1 \mathrm{H})$, 7.24-7.28 (m, 1H), 7.31-7.41 (m, 2H), $7.85(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 0.7 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}$, $0.3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $_{6}$) : $\delta 11.54,16.25,25.77,29.58,30.59,31.26,31.61$, $34.63,34.90,40.56,47.55,48.51,54.49,54.77,66.28,66.74,115.03,118.97,119.11$, $119.33,119.35,119.37,119.39,120.58,120.66,122.32,122.36,124.37,124.50,125.94$, 125.97, 129.27, 131.72, 131.88, 138.81, 135.84, 135.89, 151.54, 151.56, 153.40, 135.43, 168.01, 168.81, 172.35. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 479.0957; found, 479.0966.

Typical procedure for synthesis of compounds $\mathbf{6} \mathbf{2 4 a} \mathbf{- k}$ A mixture of 2-chloro-6-(trifluoromethyl)benzothiazole ($300 \mathrm{mg}, 1.26 \mathrm{mmol}$), the corresponding N-Boc-piperazine (1.52 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(523 \mathrm{mg}, 3.79 \mathrm{mmol})$ and anhydrous DMF (3 mL) was stirred at $50^{\circ} \mathrm{C}$ for 3 hours. Water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the target compound.

Compound 6_24a

White solid, 75% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.49(\mathrm{~s}, 9 \mathrm{H}), 3.58-3.62(\mathrm{~m}, 4 \mathrm{H})$, 3.64-3.68 (m, 4H), $7.54(\mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_24b

White solid, 70% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~s}$, 9H), 3.20-3.31 (m, 2H), 3.48 (dd, $J=13.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-$ $4.15(\mathrm{~m}, 2 \mathrm{H}), 4.40-4.45(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.86 (s, 1H).

Compound 6_24c

White solid, 74% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.49$ (s, 9H), 3.21-3.31 (m, 2H), 3.48 (dd, $J=13.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-$ 4.15 (m, 2H), 4.40-4.45 (m, 1H), $7.54(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.86 (s, 1H).

Compound 6_24d

White solid, 50% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.32(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~s}$, $9 \mathrm{H}), 2.85-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.82-4.38(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_24e

White solid, 65% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.31(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~s}$, 9H), 2.90-3.30 (m, 2H), 3.44 (td, $J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-4.35$ (m, 4H), 7.53 (dd, $J=$ $8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_24f

White solid, 67% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.49$ (s, 9H), 1.68-1.80 (m, 2H), 2.90-3.20 (m, 2H), 3.32-3.46 (m, 1H), 3.90-4.32 (m, 4H), 7.54 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_24g

White solid, 60% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~s}$, 9H), $1.74(\mathrm{q}, ~ J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.92-4.31(\mathrm{~m}, 4 \mathrm{H})$, 7.50-7.58 (m, 2H), $7.85(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_24h

White solid, 31% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.13$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 2.12-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.84-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.43(\mathrm{~m}, 1 \mathrm{H})$, 3.60-3.75 (m, 1H), 4.02-4.40 (m, 3H), $7.53(\mathrm{~s}, 2 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_24i

White solid, 11% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.13 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 2.07-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.70-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.44(\mathrm{~m}, 1 \mathrm{H})$, 3.59-3.75 (m, 1H), 3.95-4.46(m, 3H), $7.52(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_24j

White solid, 57% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.00(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$), $1.40-$ $1.52(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.60-1.69(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.40(\mathrm{dt}, J=3.6,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-4.13(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~s}$, $1 \mathrm{H})$.

Compound 6_24k

White solid, 43% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.99(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}$,
$J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.57-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.84-3.23(\mathrm{~m}, 2 \mathrm{H})$, $3.40(\mathrm{td}, J=13.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-4.35(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds $\mathbf{6} \mathbf{2 5 a} \mathbf{- k}$
To 4 M solution of hydrochloric acid-dioxane ($3 \mathrm{~mL}, 12 \mathrm{mmol}$) was added $\mathbf{6}$ _24 (0.774 mmol). After stirring at room temperature for 3 hours, the reaction mixture was concentrated under reduced pressure and the residue was washed with IPE to give the target compound.

Compound 6_25a

White solid, 100% yield. ${ }^{1}$ H NMR (400 MHz , DMSO-d ${ }_{6}$) : $\delta 3.26(\mathrm{br} \mathrm{s}, 4 \mathrm{H}$), 3.85-3.90 $(\mathrm{m}, 4 \mathrm{H}), 4.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 2 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 9.50(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$.

Compound 6_25b

White solid, 100% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) : $\delta 1.33(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, 3.12-3.23 (m, 1H), 3.32-3.47(m, 3H), 3.55-3.63(m, 2H), 4.10-4.22(m, 1H), 4.49 (br s, $1 \mathrm{H}), 7.63(\mathrm{~s}, 2 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 9.48-9.56(\mathrm{~m}, 1 \mathrm{H}), 9.58-9.65(\mathrm{~m}, 1 \mathrm{H})$.

Compound 6_25c

White solid, 98% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d) : $\delta 1.33(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$), 3.12$3.22(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.46(\mathrm{~m}, 3 \mathrm{H}), 3.56-3.64(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.63(\mathrm{~s}, 2 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 9.54-9.61(\mathrm{~m}, 1 \mathrm{H}), 9.64-9.69(\mathrm{~m}, 1 \mathrm{H})$.

Compound 6_25d

White solid, 80% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) : $\delta 1.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.00-$ $3.17(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.38(\mathrm{~m}, 3 \mathrm{H}), 3.49-3.64(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.58(\mathrm{~m}$, $1 \mathrm{H}), 6.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) 7.61(\mathrm{~m}, 2 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 9.25-9.50(\mathrm{~m}, 1 \mathrm{H}), 9.73-9.92(\mathrm{~m}, 1 \mathrm{H})$.

Compound 6_25e

White solid, 100% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.84-$ $2.96(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{dt}, J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=12.5,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.15-4.25(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$).

Compound 6_25f

White solid, quantitative yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, 1.72 (br s, 1H), $1.91(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{td}, J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-3.13(\mathrm{~m}$,
$3 \mathrm{H}), 3.38(\mathrm{td}, J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.95-4.08(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_25g

White solid, quantitative yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.90(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{td}, J=12,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-3.13(\mathrm{~m}, 3 \mathrm{H})$, $3.37(\mathrm{td}, J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.95-4.06(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.56(\mathrm{~m}, 2 \mathrm{H})$, 7.83 ($\mathrm{s}, 1 \mathrm{H}$).

Compound 6_25h

White solid, 93% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) : $\delta 0.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.00 $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.50-2.60(\mathrm{~m}, 1 \mathrm{H}), 3.03-3.31(\mathrm{~m}, 3 \mathrm{H}), 3.44-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.90-4.00$ $(\mathrm{m}, 1 \mathrm{H}), 4.20-4.30(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.63(\mathrm{~m}, 2 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 9.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.48(\mathrm{br} \mathrm{s}$, $1 \mathrm{H})$.

Compound 6_25i

White solid, quantitative yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) : $\delta 0.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.00-3.35(\mathrm{~m}, 4 \mathrm{H}), 3.38-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.87-4.02(\mathrm{~m}, 1 \mathrm{H})$,
4.16-4.31 (m, 1H), $5.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ $(\mathrm{s}, 1 \mathrm{H}), 9.05-9.22(\mathrm{~m}, 1 \mathrm{H}), 9.37-9.50(\mathrm{~m}, 1 \mathrm{H})$.

Compound 6_25j

White solid, 97% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.04(\mathrm{~s}, 6 \mathrm{H}$), 1.68 (br s, 1 H), 1.98 (br s, 1H), 2.07 (br s, 1H), 3.54 (br s, 3H), 3.71 (br s, 1H), $3.98(\mathrm{~s}, 1 \mathrm{H}), 4.46$ (br s, 2H), $7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_25k

White solid, quantitative yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6} : $\delta 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $6 \mathrm{H}), 1.50-1.90(\mathrm{~m}, 3 \mathrm{H}), 2.99-3.39(\mathrm{~m}, 4 \mathrm{H}), 3.46-3.63(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.35-$ $4.48(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 2 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 9.10-9.29(\mathrm{~m}, 1 \mathrm{H}), 9.54-9.67(\mathrm{~m}$, $1 \mathrm{H})$.

Typical procedure for synthesis of compounds 6_26a-k
A mixture of 6_25(0.555 mmol), ethyl 2-(3-(bromomethyl)-5-methylphenyl)acetate (166 $\mathrm{mg}, 0.611 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(230 \mathrm{mg}, 1.67 \mathrm{mmol})$ and anhydrous DMF $(2 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ for 3 hours. Water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over MgSO_{4}, and concentrated under reduced
pressure. The residue was purified by silica gel column chromatography to give the target compound.

Compound 6_26a

Colorless oil, 89% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 5 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}), 2.57-2.60(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.67-3.70(\mathrm{~m}, 4 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2H), 7.02 (br s, 1H), 7.06 (br s, 2H), 7.51-7.58 (m, 2H), 7.84 (br s, 1H).

Compound 6_26b

Colorless oil, 92% yield. ${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.24(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.25-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.85(\mathrm{~m}, 1 \mathrm{H})$, 3.15-3.24 (m, 2H), 3.40-3.47(m, 1H), 3.58 (s, 2H), 3.73-3.78 (m, 1H), 3.89-3.94(m, 1H), $4.02(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}), 7.50-7.57$ (m, 2H), $7.83(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_26c

Colorless oil, 88% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.24(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.25-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.85(\mathrm{~m}, 1 \mathrm{H})$,
$3.15-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.73-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.94(\mathrm{~m}, 1 \mathrm{H})$, $4.02(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}), 7.50-7.57$ (m, 2H), $7.83(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_26d

Colorless oil, 69% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.43$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.17-2.39(\mathrm{~m}, 5 \mathrm{H}), 2.70-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.97(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J$ $=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.85-3.97(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.29$ $(\mathrm{m}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.05-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_26e

Colorless oil, 74% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.18-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J$ $=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{td}, J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-4.30$ (m, 1H), $7.02(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_26f

Colorless oil, 73% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.95(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.93(\mathrm{~m}$, $2 \mathrm{H}), 3.39(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{td}, J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.57(\mathrm{~s}, 2 \mathrm{H}), 3.80-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.98-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H})$, $7.06(\mathrm{~s}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_26g

Colorless oil, 53% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.87-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{td}, J=11.0,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.82-$ $2.95(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{td}, J=13.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=13$ $\mathrm{Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.80-3.95(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.01(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_26h

Colorless oil, 70% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.90(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.12(\mathrm{dd}, J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{td}, J=$ $11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=$
$9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ $(\mathrm{s}, 2 \mathrm{H}), 3.57-3.60(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.04$ $(\mathrm{s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_26i

Colorless oil, 44% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.12(\mathrm{dd}, J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{td}, J=$ $11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.56-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.57(\mathrm{~s}, 2 \mathrm{H}), 4.08-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}), 7.49$ (s, 2H), $7.79(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_26j

Colorless oil, 80% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.94(\mathrm{dd}, J=6.3,3.0 \mathrm{~Hz}, 6 \mathrm{H})$, $1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.44-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.91-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.18-$ $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}$, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dt}, J=12.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.04(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.2(\mathrm{~s}$, $2 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H})$.

Compound 6_26k

Colorless oil, 47% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.89-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.14-$ $2.38(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}$, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.94-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}$, $1 \mathrm{H})$.

Typical procedure for synthesis of compounds 3_12-22
To a solution of $6 _26(0.209 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added 2 M aqueous NaOH solution $(0.5 \mathrm{~mL})$, and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 hour. To the reaction mixture was added 2 M aqueous HCl solution to be neutral, and extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The obtained solid was washed with IPE to give the target compound.

Compound 3_12

White solid, 64% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\mathrm{d}_{6}, 145{ }^{\circ} \mathrm{C}$) : $\delta 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}$, $J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{t}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}$,
$J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.53(\mathrm{~m}, 2 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.\mathrm{d}_{6}\right): \delta$ $20.81,40.55,47.85,51.59,61.55,115.54,118.29,118,92(\mathrm{q}, J=3.7 \mathrm{~Hz}), 121.14(\mathrm{q}, J=$ $32.3 \mathrm{~Hz}), 122.97(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.65(\mathrm{q}, J=271.4 \mathrm{~Hz}), 127.08,127.95,128.86,130.86$, 134.79, 137.70, 155.37, 170.17, 172.61. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}, 450.1458$; found, 450.1483 .

Compound 3_13

White solid, 57% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) : $\delta 1.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.19-$ $2.25(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.57-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.76(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.23(\mathrm{~m}, 2 \mathrm{H})$, 3.37-3.44(m, 1H), $3.50(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ $(\mathrm{d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 2 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 11.66$ (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d 6) : $\delta 14.77,20.83,40.84,48.00,48.87,53.96$, $54.05,56.81,118.16,118.86(\mathrm{q}, J=3.7 \mathrm{~Hz}), 121.03(\mathrm{q}, J=32.3 \mathrm{~Hz}), 122.96(\mathrm{q}, J=3.7$ $\mathrm{Hz}), 124.65(\mathrm{q}, J=271.4 \mathrm{~Hz}), 126.85,127.60,128.57,130.81,134.96,137.05,138.32$, 155.44, 170.06, 172.71. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}$, 464.1614; found, 464.1625.

Compound 3_14

White solid, 60% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) : $\delta 1.16(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.20-$ $2.25(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.77(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.23(\mathrm{~m}, 2 \mathrm{H})$,
3.38-3.44(m, 1H), $3.51(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ $(\mathrm{d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 2 \mathrm{H}), 8.23(\mathrm{~s}$, 1 H), 12.25 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) : $\delta 14.76,20.83,40.58,47.98$, $48.87,53.99,54.10,56.78,118.18,118.86(\mathrm{q}, J=3.7 \mathrm{~Hz}), 121.06(\mathrm{q}, J=32.3 \mathrm{~Hz}), 122.97$ $(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.66(\mathrm{q}, J=271.4 \mathrm{~Hz}), 126.88,127.71,128.60,130.82,134.73,137.13$, 138.36, 155.44, 170.07, 172.63. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}$, 464.1614; found, 464.1624.

Compound 3_15

White solid, 72% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) : $\delta 1.33(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 2.14 (td, $J=11.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=11.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, 1H), 3.85 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H})$, $7.56(\mathrm{~s}, 2 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) : $\delta 14.64,20.85,41.30,43.75$, $52.03,52.21,56.41,61.51,118.18,118.84(\mathrm{q}, J=3.7 \mathrm{~Hz}), 120.98(\mathrm{q}, J=32.3 \mathrm{~Hz}), 122.93$ $(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.68(\mathrm{q}, J=271.4 \mathrm{~Hz}), 126.55,127.20,128.69,130.62,135.44,137.03$, 137.74, 155.43, 169.60, 172.91. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}$, 464.1614; found, 464.1628

Compound 3_16

White solid, 98% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) : $\delta 1.33(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.13$ $(\mathrm{td}, J=11.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=11.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.91$ (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.44$ (m, 2H), 3.45 (s, 2H), 3.53 (d, $J=13.4 \mathrm{~Hz}$, 1H), 3.84 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24$ (br s, 1H), 6.96 (s, 1H), 7.00 (s, 1H), 7.04 (s, 1H), 7.56-7.57 (m, 2H), $8.23(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d 6) : $\delta 14.64,20.87,41.90$, $43.75,52.04,52.21,56.41,61.56,118.18,118.84(\mathrm{q}, J=3.7 \mathrm{~Hz}), 120.98(\mathrm{q}, J=32.3 \mathrm{~Hz})$, $122.92(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.68(\mathrm{q}, J=271.4 \mathrm{~Hz}), 126.57,127.01,128.70,130.62,136.00$, 136.90, 137.61, 155.44, 169.59, 173.08. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}, 464.1614$; found, 464.1648.

Compound 3_17

White solid, 96% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d) : $\delta 0.81$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.78$1.95(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.34-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.97$ $(\mathrm{s}, 1 \mathrm{H}), 7.04(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 2 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 12.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d 6) : $\delta 10.54,20.82,21.63,40.63,44.05,52.29,53.47,58.36,61.47,118.02$, $118.77(\mathrm{q}, J=3.7 \mathrm{~Hz}), 120.90(\mathrm{q}, J=32.3 \mathrm{~Hz}), 122.94(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.70(\mathrm{q}, J=$ $271.4 \mathrm{~Hz}), 126.50$, 127.41, 128.71, 130.58, 134.80, 137.16, 137.90, 155.52, 169.90, 172.62. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}$, 478.1771; found, 478.1785.

Compound 3_18

White solid, 89% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) : $\delta 0.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), $1.78-$ $1.95(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=11.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.35-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.43$ (dd, $J=12.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (br s, 2H), 6.98 (s, 1H), 7.04 (br s, 2H), 7.53 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (dd, J = 8.6, 1.6 Hz, 1H), 8.21 (br s, 1H), 12.29 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta 10.54,20.82,21.63,40.63,44.07,52.29,53.47,58.36,61.47,118.02,118.77(\mathrm{q}, J$ $=3.7 \mathrm{~Hz}), 120.90(\mathrm{q}, J=32.3 \mathrm{~Hz}), 122.94(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.70(\mathrm{q}, J=271.4 \mathrm{~Hz})$, 126.50, 127.41, 128.71, 130.59, 134.80, 137.16, 137.90, 155.52, 169.90, 172.61. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}, 478.1771$; found, 478.1792.

Compound 3_19

 $6 \mathrm{H}), 2.01$ (dd, $J=11.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13$ (td, $J=11.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (s, 3H), 2.54$2.61(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.96(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}$, $2 \mathrm{H}), 3.57(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.71(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 12.32(\mathrm{br} \mathrm{s}$, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) : $\delta 19.10,19.49,20.82,26.50,40.67,44.54,52.53$, $52.62,61.50,63.52,117.83,118.66(\mathrm{q}, J=3.7 \mathrm{~Hz}), 120.76(\mathrm{q}, J=32.3 \mathrm{~Hz}), 122.96(\mathrm{q}, J$ $=3.7 \mathrm{~Hz}), 124.70(\mathrm{q}, J=271.4 \mathrm{~Hz}), 126.58,127.47$, 128.73, 130.53, 134.81, 137.11,
137.85, 155.67, 170.10, 172.64. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}$, 492.1927; found, 492.1940 .

Compound 3_20

White solid, 53% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) : $\delta 0.84$ (dd, $J=12.8,6.7 \mathrm{~Hz}$, $6 \mathrm{H}), 2.01$ (dd, $J=11.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{td}, J=11.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.55-$ $2.60(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.39-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-4.10(\mathrm{~m}, 2 \mathrm{H}), 6.96$ (s, 1H), 7.01 (br s, 2H), $7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.18$ (br $\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d 6) : δ 19.09, 19.47, 20.82, 26.49, 41.55, 44.48, $52.48,52.63,61.53,63.62,117.80,118.66(\mathrm{q}, J=3.7 \mathrm{~Hz}), 120.71(\mathrm{q}, J=32.3 \mathrm{~Hz}), 122.94$ $(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.67(\mathrm{q}, J=271.4 \mathrm{~Hz}), 126.58,127.13,128.71,130.49,135.63,136.89$, 137.63, 155.64, 170.08, 172.93. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}$, 492.1927; found, 492.1943.

Compound 3_21

White solid, 98% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) : $\delta 0.91(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}$), 1.37$1.44(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.76$ (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.49(\mathrm{~m}, 1 \mathrm{H})$,
$3.52(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.03$ (s, 1H), $7.04(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H})$, 12.30 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$) : $\delta 20.82,21.80,23.24,24.46,37.53$, $40.58,44.12,52.45,53.69,55.22,61.41,118.07,118.83(\mathrm{q}, J=3.7 \mathrm{~Hz}), 120.93(\mathrm{q}, J=$ $32.3 \mathrm{~Hz}), 122.94(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.69(\mathrm{q}, J=271.4 \mathrm{~Hz}), 126.47,127.29,128.72,130.61$, 134.76, 137.15, 137.89, 155.47, 169.59, 172.58. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}, 506.2084$; found, 506.2106.

Compound 3_22

White solid, 99% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) : $\delta 0.91(\mathrm{t}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.37-$ $1.44(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=11.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (td, $J=11.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=11.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.32(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 12.31$ (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6} : $\delta 20.82,21.79,23.23,24.45,37.53,40.74,44.12,52.44,53.69,55.16$, $61.41,118.07,118.82(\mathrm{q}, ~ J=3.7 \mathrm{~Hz}), 120.92(\mathrm{q}, J=32.3 \mathrm{~Hz}), 122.94(\mathrm{q}, J=3.7 \mathrm{~Hz})$, $124.68(\mathrm{q}, ~ J=271.4 \mathrm{~Hz}), 126.46,127.23,128.71,130.59,134.91,137.11,137.85,155.46$, 169.58, 172.62. HRMS (ESI) : m/z [M + H $]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}, 506.2084$; found, 506.2095.

Synthesis of compound 6_28

To a suspension of sodium hydride ($4.02 \mathrm{~g}, 100.4 \mathrm{mmol}$) in THF (300 mL) was added trimethyl phosphonoacetate $(16.3 \mathrm{~mL}, 100.4 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 1 hour. After addition of a solution of 1-Boc-4-piperidone (20 $\mathrm{g}, 100.4 \mathrm{mmol})$ in THF (150 mL) and stirring at $50^{\circ} \mathrm{C}$ for 1.5 hours, to the reaction solution was added water and extracted with EtOAc. The organic layer was washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography to give compound 6_28(27.0 g, 100\%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.47$ (s, $9 \mathrm{H}), 2.28(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{t}, J$ $=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H})$.

Synthesis of compound 6_29

A solution of $\mathbf{6} \mathbf{2 8}(8.00 \mathrm{~g}, 31.3 \mathrm{mmol})$ in 4 M solution of hydrochloric acid-dioxane (80 mL) was stirred at room temperature for 1 hour. The solvent was evaporated under reduced pressure and the residue was dissolved in DMF (60 mL). $\mathrm{K}_{2} \mathrm{CO}_{3}(8.65 \mathrm{~g}, 62.6$ $\mathrm{mmol})$ and 2,6-dichlorobenzothiazole ($6.39 \mathrm{~g}, 31.3 \mathrm{mmol}$) were added thereto at $0^{\circ} \mathrm{C}$. After stirring at $60^{\circ} \mathrm{C}$ for 3 hours, water was added and the mixture extracted with EtOAc. The organic layer was washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography to give compound $\mathbf{6} _29(9.48 \mathrm{~g}, 94 \%)$ as a beige solid. ${ }^{1} \mathrm{H}$ NMR (300
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.48(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{t}, J=5.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 6_30a-h
$\mathrm{CuI}(1.77 \mathrm{~g}, 9.30 \mathrm{mmol})$ was suspended in THF (18 mL), and the corresponding alkylmagnesium bromide (1.0 M THF solution, $18.6 \mathrm{~mL}, 18.6 \mathrm{mmol}$) was added thereto under $-30^{\circ} \mathrm{C}$. After stirring at $-20^{\circ} \mathrm{C}$ for 30 minutes, the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. To the mixture was added dropwise a solution of $\mathbf{6} _29(1.00 \mathrm{~g}, 3.10 \mathrm{mmol})$ in THF (10 mL), and then added TMSOTf ($1.12 \mathrm{~mL}, 6.20 \mathrm{mmol}$). After stirring at $-78^{\circ} \mathrm{C}$ for 2 hours, aqueous NaHCO_{3} solution was added. The insoluble material was filtered out and the filtrate was extracted with EtOAc. The organic layer was washed with water and brine, and dried over MgSO_{4}. The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography to give the target compound.

Compound 6_30a

White solid, 90% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{q}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.72(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 2 \mathrm{H}), 3.59-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 7.24$ (dd, $J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_30b

Yellow solid, 76% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.93$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.26$1.39(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.76(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 2 \mathrm{H}), 3.57-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.67$ (s, 3H), 7.23 (dd, $J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_30c

Yellow solid, 92% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-$ $1.34(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.75(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 2 \mathrm{H}), 3.57-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.67$ (s, 3H), 7.23 (dd, $J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_30d

White solid, 55% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.74-$ $1.79(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 2 \mathrm{H}), 3.46-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.82$ (m, 2H), 7.24 (dd, $J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_30e

Yellow solid, 97% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.43$ $(\mathrm{d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.79(\mathrm{~m}, 5 \mathrm{H}), 2.46(\mathrm{~s}, 2 \mathrm{H}), 3.54-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 7.23$ (dd, $J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_30f

Yellow solid, 28% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.86-0.94(\mathrm{~m}, 6 \mathrm{H}), 1.25-1.31$ (m, 3H), 1.75-1.83 (m, 4H), 2.43 (s, 2H), 3.47-3.57 (m, 2H), 3.66 (s, 3H), 3.71-3.78 (m, $2 \mathrm{H}), 7.24(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_30g

White solid, 33% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : δ 1.24-1.76 (m, 12H), 2.04-2.14 $(\mathrm{m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 2 \mathrm{H}), 3.42-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.87(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=$ 8.7, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_30h

White solid, 50% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.94-1.08(\mathrm{~m}, 2 \mathrm{H}), 1.12-1.28(\mathrm{~m}$, $3 \mathrm{H}), 1.41-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.84(\mathrm{~m}, 9 \mathrm{H}), 2.44(\mathrm{~s}, 2 \mathrm{H}), 3.47-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, 3.70-3.78 (m, 2H), $7.24(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 6_31a-h
To a suspension of $\mathrm{LiAlH}_{4}(202 \mathrm{mg}, 5.33 \mathrm{mmol})$ in anhydrous THF $(10 \mathrm{~mL})$ was added dropwise a solution of 6_30 (2.66 mmol) in anhydrous THF (10 mL) under ice-cooling, and the mixture was stirred at the same temperature for 1 hour. Water $(0.2 \mathrm{~mL}), 10 \%$ aqueous sodium hydroxide solution $(0.2 \mathrm{~mL})$ and water $(0.6 \mathrm{~mL})$ were added dropwise sequentially under ice-cooling. After filtration of aluminium hydroxide, the filtrate was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the target compound.

Compound 6_31a

Yellow oil, 91% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{q}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.61(\mathrm{t}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_31b

Colorless oil, 100% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.93(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.26$1.38(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.72$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (dd, $J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_31c

Colorless oil, 95% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-$ $1.39(\mathrm{~m}, 6 \mathrm{H}), 1.57-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.72$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (dd, $J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_31d

White solid, 94% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.52-$ $1.59(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.85(\mathrm{~m}, 5 \mathrm{H}), 3.49-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.77(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{dd}, J=8.7$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_31e

White solid, 84% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.32(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{t}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.69-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.55-3.68 (m, 4H), 3.74 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_31f

Colorless oil, 90% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-$ $0.96(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.80(\mathrm{~m}, 4 \mathrm{H}), 3.50-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.75(\mathrm{~m}$, $4 \mathrm{H}), 7.24(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_31g

White solid, 41% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.26-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.73(\mathrm{~m}$, $8 \mathrm{H}), 1.79(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-2.04(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.82(\mathrm{~m}, 4 \mathrm{H})$, 7.23 (dd, $J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6 31h

White solid, 83% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.96-1.27(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.41(\mathrm{~m}$, $1 \mathrm{H}), 1.50-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.82(\mathrm{~m}, 10 \mathrm{H}), 3.49-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.75(\mathrm{~m}, 4 \mathrm{H}), 7.24$ (dd, $J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 6_32a and 6_32d
A mixture of $6 _31(2.35 \mathrm{mmol})$ and $\mathrm{SOCl}_{2}(4 \mathrm{~mL})$ were stirred at $60^{\circ} \mathrm{C}$ for 1.5 hours. To the reaction mixture was added ice and extracted with EtOAc. The organic layer was washed with aqueous NaHCO_{3} solution and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography. A portion (0.437 mmol) of the resulting material was dissolved in DMF (2 mL) prior to the addition of methyl 2-(4-chloro-3-hydroxyphenyl)acetate (176 mg , 0.874 mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(285 \mathrm{mg}, 0.874 \mathrm{mmol})$. After stirring at $75^{\circ} \mathrm{C}$ for 24 hours, water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the target compound.

Compound 6_32a

Yellow oil, 73% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{q}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.64-3.70(\mathrm{~m}$, $4 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24$ (dd, $J=8.6,2.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_32d

Yellow oil, 49% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.62-$ $1.70(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.64$ $(\mathrm{m}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.84(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{dd}$, $J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 6_32b-c and 6_32e-i To a solution of 6_31a $(0.443 \mathrm{mmol})$ and TEA $(185 \mu \mathrm{~L}, 1.33 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added $\mathrm{MsCl}(51.4 \mu \mathrm{~L}, 0.665 \mathrm{mmol})$ under ice-cooling. After stirring at the same temperature for 30 minutes, water was added, and the mixture was extracted with CHCl_{3}. The extract was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. A mixture of the resulting material, the corresponding phenol (0.665 mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(217 \mathrm{mg}, 0.665 \mathrm{mmol})$ and anhydrous DMF (2 mL) was stirred at $60^{\circ} \mathrm{C}$ for 16 hours. Water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the target material.

Compound 6_32b

Colorless oil, quantitative yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.95(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.30-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 3.66-3.71(\mathrm{~m}$, $4 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.55(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_32c

Yellow oil, quantitative yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.93(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.26-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.98(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.60$ (s, 2H), 3.65-3.69 (m, 4H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.1,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_32e

Colorless oil, 91% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.38$ (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{t}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.73-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.56(\mathrm{~s}, 2 \mathrm{H}), 3.59-3.69(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.79(\mathrm{dd}, J=2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_32f

Colorless oil, 72% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.91$ (d, $\left.J=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.95-$
$0.97(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.54-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.78$ (dd, $J=1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (br s, 1H), 7.24 (dd, $J=8.2$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_32g

Yellow oil, 76% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.30-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.64(\mathrm{~m}$, $8 \mathrm{H}), 1.69-1.79(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-2.12(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.55(\mathrm{~m}, 2 \mathrm{H})$, $3.56(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.87(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 6.79 (t, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.23$ (dd, $J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_32h

Yellow oil, 81% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.00-1.28(\mathrm{~m}, 5 \mathrm{H}), 1.41-1.85(\mathrm{~m}$, $10 \mathrm{H}), 1.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 3.56-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.77$ (m, 2H), 3.99 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (br $\mathrm{s}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=8.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_32i

Yellow oil, quantitative yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.01-1.28(\mathrm{~m}, 5 \mathrm{H}), 1.44-$ $1.87(\mathrm{~m}, 10 \mathrm{H}), 2.07(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, 3.73-3.80 (m, 2H), $4.09(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 4_1-9
To a solution of 6_32 (0.300 mmol) in THF $(1 \mathrm{~mL})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ was added 2 M aqueous NaOH solution $(0.45 \mathrm{~mL})$, and the mixture was stirred at room temperature for 2 hours. To the reaction mixture was added 2 M aqueous HCl solution to be neutral, and extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the target material.

Compound 4_1

White solid, 36% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) : $\delta 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.46$1.56(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $4 \mathrm{H}), 4.09(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (dd, $J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=$
$2.2 \mathrm{~Hz}, 1 \mathrm{H}), 12.47(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) : $\delta 7.23,28.27,32.92,33.10$, $33.69,40.20,44.21,64.78,114.82,119.10,119.27,120.65,122.27,124.45,125.95$, 129.29, 131.80, 135.50, 151.53, 153.42, 168.30, 172.26. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 493.1114; found, 493.1121.

Compound 4_2

White solid, 95% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) : $\delta 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-$ $1.32(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H})$, $3.60(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 4.09(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 12.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$) : $\delta 14.77$, $15.70,33.24,33.61,34.19,38.68,40.56,44.32,64.90,114.88,119.21,119.27,120.75$, 122.36, 124.56, 126.05, 129.36, 131.91, 135.84, 151.62, 153.50, 168.42, 172.46. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 507.1270; found, 507.1277.

Compound 4_3

Yellow solid, 91% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) : $\delta 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), $1.23-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.58$ (s, 2H), $3.60(\mathrm{t}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.09(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.11(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 12.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta 14.05,22.99,24.65,33.11,33.59,34.21,35.94,40.49,44.32,64.90,114.91,119.21$, $119.30,120.75,122.37,124.56,126.05,129.37,131.91,135.78,151.62,153.50,168.42$, 172.45. HRMS (ESI) : m/z [M + H] calcd. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 521.1427; found, 521.1439.

Compound 4_4

Yellow solid, 87% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) : $\delta 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}$), $1.58-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.49-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.57$ (s, 2H), 3.68-3.73 (m, 2H), $4.11(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 12.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}) : $\delta 16.67,30.13,31.30,35.34,40.24,44.20,65.05,114.97,119.19,119.38,120.72,122.36$, $124.52,126.02,129.36,131.87,135.55,151.60,153.50,168.37,172.33$. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 507.1270; found, 507.1276.

Compound 4_5

White solid, 81% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) : $\delta 0.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.35$ $(\mathrm{d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.51-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-$
$3.65(\mathrm{~m}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.95$ (dd, $J=2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 12.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $_{6}$) : $\delta 23.00,25.29,33.75$, $33.91,34.48,40.06,44.32,45.27,64.44,112.46,115.01,119.19,120.72,121.53,124.56$, 126.03, 131.92, 133.30, 138.19, 151.60, 159.25, 168.37, 172.11. HRMS (ESI) : m/z [M $+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 521.1427; found, 521.1428.

Compound 4_6

White solid, 82% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) : $\delta 0.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-$ $0.93(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H})$, 3.64-3.69 (m, 2H), $4.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=$ $2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 12.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$) : $\delta 12.54,13.15,22.78,30.42$, $30.58,35.81,38.70,40.08,44.15,64.52,112.49,115.00,119.19,120.72,121.50,124.54$, 126.03, 131.87, 133.28, 138.19, 151.59, 159.22, 168.39, 172.14. HRMS (ESI) : m/z [M $+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 521.1427; found, 521.1441.

Compound 4_7

White solid, 87% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}$) : $\delta 1.24-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.60$ $(\mathrm{m}, 10 \mathrm{H}), 1.93(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-2.15(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H})$,
3.73-3.78 (m, 2H), 4.08 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=$ $1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 12.45 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) : $\delta 25.26,25.56,30.59,31.41$, $34.83,40.06,44.22,44.99,64.52,112.49,115.02,119.19,120.72,121.48,124.55,126.02$, 131.90, 133.29, 138.16, 151.60, 159.24, 168.37, 172.11. HRMS (ESI) : m/z [M + H] ${ }^{+}$ calcd. for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 533.1427; found, 533.1436.

Compound 4_8

White solid, 88% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) : $\delta 0.95-1.26(\mathrm{~m}, 5 \mathrm{H}), 1.43-1.76$ $(\mathrm{m}, 10 \mathrm{H}), 1.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 3.64-3.69(\mathrm{~m}, 2 \mathrm{H})$, $4.03(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27 (dd, $J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 12.42$ (br s, 1 H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) : $\delta 26.20,26.65,30.44,30.74,35.30,40.06$, 42.04, 44.17, 64.50, 112.49, 115.02, 119.19, 120.72, 121.50, 124.54, 126.02, 131.87, 133.29, 138.17, 151.58, 159.22, 168.40, 172.11. HRMS (ESI) : m/z [M + H] ${ }^{+}$calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$, 547.1583; found, 597.1596.

Compound 4_9

White solid, 85% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) : $\delta 0.97-1.26(\mathrm{~m}, 5 \mathrm{H}), 1.48(\mathrm{t}, J$ $=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.78(\mathrm{~m}, 9 \mathrm{H}), 1.97(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 2 \mathrm{H}), 3.48-3.54(\mathrm{~m}$,
$2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.70(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.86(\mathrm{~s}, 1 \mathrm{H}), 12.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d 6) : $\delta 26.19,26.21,26.66$, $30.50,30.60,35.37,40.23,42.07,44.24,65.11,115.00,119.20,119.39,120.73,122.38$, $124.53,126.03,129.38,131.87,135.55,151.60,153.49,168.42,172.35$. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}, 547.1583$; found, 547.1568.

Typical procedure for synthesis of compounds 6_34a-f A mixture of 1-benzyl-4-piperidone ($30 \mathrm{~mL}, 0.168 \mathrm{~mol}$), the corresponding amine (0.504 $\mathrm{mol})$ and toluene (150 mL) was refluxed with a Dean-Stark apparatus for 4 hours. The solvent was evaporated under reduced pressure. To the residue was added anhydrous THF (200 mL) and $\mathrm{AcOH}(9.61 \mathrm{~mL}, 0.168 \mathrm{~mol}$), and the mixture was stirred at room temperature for 5 minutes. After addition of zinc ($13.7 \mathrm{~g}, 0.210 \mathrm{~mol}$) and methyl bromoacetate ($21.7 \mathrm{~mL}, 0.235 \mathrm{~mol}$), the reaction mixture was stirring at room temperature for 2 hours. To the reaction mixture was added aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with EtOAc. The organic layer was washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography to give the target compound.

Compound 6_34a

Orange oil, 30% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.38-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.64-1.73(\mathrm{~m}$, 2H), 1.90-1.97 (m, 2H), 2.34 (s, 2H), 2.43-2.49 (m, 8H), 3.51 (s, 2H), 3.63 (s, 3H), 7.20-
$7.33(\mathrm{~m}, 5 \mathrm{H})$.

Compound 6_34b

Yellow oil, 26% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.54-1.66(\mathrm{~m}, 12 \mathrm{H}), 2.44-2.48(\mathrm{~m}$, $4 \mathrm{H}), 2.56-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.78(\mathrm{~m}, 4 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 5 \mathrm{H})$.

Compound 6_34c

Yellow oil, 56% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.69-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.82(\mathrm{~m}$, $4 \mathrm{H}), 2.40(\mathrm{~s}, 2 \mathrm{H}), 2.42-2.63(\mathrm{~m}, 8 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 7.22-7.37(\mathrm{~m}, 5 \mathrm{H})$.

Compound 6_34d

Yellow oil, 46% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.03(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.74-1.92$ $(\mathrm{m}, 4 \mathrm{H}), 2.24-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.66(\mathrm{~m}$, $1 \mathrm{H}), 2.75(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.99(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 5 \mathrm{H})$.

Compound 6_34e

Yellow oil, 37% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.01(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}$), 1.73-1.89 $(\mathrm{m}, 4 \mathrm{H}), 2.35-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 2 \mathrm{H}), 2.53-2.60(\mathrm{~m}, 6 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$, 7.24-7.32 (m, 5H).

Compound 6_34f

Yellow oil, 10% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.72-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.93(\mathrm{~m}$, 2H), 2.38 (s, 2H), 2.43-2.56 (m, 8H), 3.54 (s, 2H), 3.58-3.70 (m, 4H), 3.65 (s, 3H), 7.227.34 (m, 5H).

Typical procedure for synthesis of compounds $\mathbf{6} \mathbf{3 5 a} \mathbf{- g}$
To a suspension of $\mathrm{LiAlH}_{4}(78.9 \mathrm{mg}, 2.08 \mathrm{mmol})$ in anhydrous THF (4 mL) was added dropwise a solution of $\mathbf{6} \mathbf{3 4}(1.04 \mathrm{mmol})$ in anhydrous THF (4 mL) under ice-cooling, and the mixture was stirred at the same temperature for 1 hour. Water $(80 \mu \mathrm{~L}), 10 \%$ aqueous sodium hydroxide solution $(80 \mu \mathrm{~L})$ and water $(240 \mu \mathrm{~L})$ were added dropwise sequentially under ice-cooling. After filtration of aluminium hydroxide, the filtrate was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. To a solution of the resulting material of MeOH (8 mL) was added $\mathrm{Pd} / \mathrm{C}(10 \%, 60 \mathrm{mg})$ and the mixture was stirred under a hydrogen atmosphere for 22 hours. The insoluble material was filtrated out and the filtrate was
concentrated under reduced pressure. To the obtained residue were added DMF (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(143 \mathrm{mg}, 10.3 \mathrm{mmol})$ and 2,6-dichlorobenzothiazole ($211 \mathrm{mg}, 1.03 \mathrm{mmol}$). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 6 hours. Water was added, and the mixture was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the target compound.

Compound 6_35a

Brown oil, 34% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.52-1.92(\mathrm{~m}, 8 \mathrm{H}), 2.08-2.18(\mathrm{~m}$, 8H), 3.26-3.35 (m, 2H), 3.99-4.06 (m, 4H), 7.26 (dd, $J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_35b

Brown oil, 55% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.56-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.66(\mathrm{~m}$, $4 \mathrm{H}), 1.72-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.77(\mathrm{~m}, 4 \mathrm{H})$, $3.44-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82-3.86(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_35c

Brown oil, 90% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.74-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.90-1.98(\mathrm{~m}$, $6 \mathrm{H}), 2.77-2.82(\mathrm{~m}, 4 \mathrm{H}), 3.27-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.93-4.00(\mathrm{~m}, 2 \mathrm{H})$, $7.24(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_35d

Brown oil, 62% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.09(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.53$ $(\mathrm{m}, 2 \mathrm{H}), 1.70-2.10(\mathrm{~m}, 8 \mathrm{H}), 2.75-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.31(\mathrm{~m}, 3 \mathrm{H})$, $3.81-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.93-4.09(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_35e

Brown oil, 66% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.89-1.96$ $(\mathrm{m}, 6 \mathrm{H}), 2.69(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.22-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.96-4.03$ $(\mathrm{m}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_35f

Orange oil, 65% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.78-2.00(\mathrm{~m}, 10 \mathrm{H}), 2.65-2.90(\mathrm{~m}$, $4 \mathrm{H}), 3.32-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.01-4.07(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.59(\mathrm{~m}, 2 \mathrm{H})$, 7.85-7.86 (m, 1H).

Compound 6_35g

Brown oil, 46% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.76-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.96-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.71(\mathrm{~m}, 4 \mathrm{H}), 3.42-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.74(\mathrm{~m}, 4 \mathrm{H})$, $3.84(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.96(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.85-7.86(\mathrm{~m}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 6_36a-i
A mixture of 6_35 (0.326 mmol), the corresponding phenol (0.326 mmol), tri- n butylphosphine ($85.4 \mu \mathrm{~L}, 0.342 \mathrm{mmol}$), ADDP ($86.3 \mathrm{mg}, 0.342 \mathrm{mmol}$) and THF (2 mL) was stirred at room temperature for 1 hour. The insoluble material was filtrated. To the filtrate was added aqueous NaHCO_{3} solution and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the target compound.

Yellow oil, 29% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.25-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.49(\mathrm{~m}$, $2 \mathrm{H}), 1.51-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, 2H), 2.54 (br s, 4H), $3.52(\mathrm{~s}, 4 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.67-$ $6.69(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.87(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_36b

Colorless oil, 28% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.26-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.74$ $(\mathrm{m}, 8 \mathrm{H}), 1.97(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.76(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H})$, 3.58-3.67(m, 2H), 3.70(s, 3H), 3.73-3.79 (m, 2H), 3.97(t, J=6.8 Hz, 2H), 6.67-6.69 (m, $1 \mathrm{H}), 6.76(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.87(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_36c

Yellow oil, 36% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.74-1.80(\mathrm{~m}, 6 \mathrm{H}), 1.87-1.93(\mathrm{~m}$, $2 \mathrm{H}), 2.01(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.70(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.58-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 3.70-3.76(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.86(\mathrm{br}$
$\mathrm{s}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_36d

Brown oil, 46% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.03(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.53$ $(\mathrm{m}, 2 \mathrm{H}), 1.72-1.84(\mathrm{~m}, 6 \mathrm{H}), 2.01-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.87(\mathrm{~m}, 1 \mathrm{H})$, 3.26-3.29 (m, 1H), $3.54(\mathrm{~s}, 2 \mathrm{H}), 3.67-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 6.67-6.69 (m, 1H), $6.78(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.87(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_36e

Yellow oil, 13% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.67-1.76$ $(\mathrm{m}, 2 \mathrm{H}), 1.94-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.54(\mathrm{~s}$, $2 \mathrm{H}), 3.67-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$).

Compound 6_36f

Yellow oil, 46% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.75-1.80(\mathrm{~m}, 6 \mathrm{H}), 1.89-1.94(\mathrm{~m}$,
$2 \mathrm{H}), 2.02(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.71(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.61-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 3.76-3.82(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.86(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.49-7.57$ (m, 2H), 7.84 (br s, 1H).

Compound 6_36g

Yellow oil, 58% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.69-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.98-2.05(\mathrm{~m}$, $4 \mathrm{H}), 2.62-2.65(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.60-3.68(\mathrm{~m}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.82(\mathrm{~m}, 5 \mathrm{H})$, $4.01(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.68-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.87(\mathrm{~m}, 1 \mathrm{H})$, 7.50-7.58 (m, 2H), 7.85-7.85 (m, 1H).

Compound 6_36h

Yellow oil, 41% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.77-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.90-1.95$ (m, $2 \mathrm{H}), 2.03$ (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.22-2.25 (m, 2H), 2.32 (s, 3H), 2.45-2.49 (m, 1H), 2.68$2.73(\mathrm{~m}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 3.61-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.79(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=8.8,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound 6_36i

Yellow oil, 45% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.79-1.96(\mathrm{~m}, 6 \mathrm{H}), 2.07(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.74(\mathrm{~m}, 3 \mathrm{H}), 3.59$ $(\mathrm{s}, 2 \mathrm{H}), 3.62-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.79(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.73-$ $6.82(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

Typical procedure for synthesis of compounds 4_10-16 and 4_18-19
To a solution of $6 _36(0.096 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added 2 M aqueous NaOH solution $(0.25 \mathrm{~mL})$, and the mixture was stirred at room temperature for 30 min . To the reaction mixture was added 2 M aqueous HCl solution to be neutral, and extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by RP-HPLC to give the target compound.

Compound 4_10

Yellow solid, 29% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$) : $\delta 1.39-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{br}$ $\mathrm{s}, 4 \mathrm{H}), 1.62-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{br} \mathrm{s}$, $4 \mathrm{H}), 3.40-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 6.81 (br s, 1H), $6.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 12.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6} : $\delta 24.67,26.70,31.33,31.55,40.04,43.99,45.33,55.11,64.82,112.53$,
$115.01,119.19,120.73,121.52,124.52,126.05,131.85,133.29,138.17,151.60,159.17$, 168.46, 172.12. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}, 548.1536$; found, 548.1562.

Compound 4_11

White solid, 95% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d) : $\delta 1.55$ (br s, 8 H), 1.64-1.71 (m, $2 \mathrm{H}), 1.88-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 3.48-3.53(\mathrm{~m}, 2 \mathrm{H})$, $3.55(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.89(\mathrm{br}$ s, 1H), $6.92(\mathrm{dd}, J=1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 12.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) : $\delta 26.10$, $29.90,32.69,32.96,39.93,44.35,47.74,56.45,64.70,112.42,114.90,119.10,120.66$, 121.42, 124.44, 125.95, 131.80, 133.19, 138.07, 151.53, 159.08, 168.24, 172.01. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}, 562.1692$; found, 562.1696 .

Compound 4_12

Yellow solid, 88% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) : $\delta 0.84-0.89(\mathrm{~m}, 1 \mathrm{H}), 1.69-$ $1.77(\mathrm{~m}, 5 \mathrm{H}), 1.82-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 3.48-3.54(\mathrm{~m}$, $4 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.66-3.71(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.89(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 6.92(\mathrm{dd}, J=2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 12.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d d_{6} : $\delta 23.93$, $30.33,32.00,40.54,43.86,44.41,53.68,64.82,112.43,114.92,119.19,120.74,121.49$, 124.53, 126.04, 131.90, 133.23, 138.62, 151.63, 159.17, 168.44, 172.32. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}$, 534.1379; found, 534.1392.

Compound 4_13

White solid, 90% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) : $\delta 0.98(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-$ $1.43(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.79(\mathrm{~m}, 7 \mathrm{H}), 1.95-1.99(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.82(\mathrm{~m}$, $1 \mathrm{H}), 3.24-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.57-3.76(\mathrm{~m}, 4 \mathrm{H}), 4.03-4.09(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{br} \mathrm{s}$, 1H), 6.88 (br s, 1H), 6.91 (dd, $J=1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (dd, $J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 12.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$) $\delta 23.61,24.76,30.88,31.53,31.94,33.54,40.11,44.75,46.60,50.64,55.56$, $64.73,112.43,114.84,119.09,120.65,121.41,124.46,125.94,131.89,133.18,138.23$, 151.58, 159.15, 168.18, 172.10. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}$, 548.1536; found, 548.1546.

Compound 4_14

Yellow solid, 84% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) : $\delta 1.02(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$), $1.67-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.97(\mathrm{~m}, 4 \mathrm{H}), 2.63(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.58-3.65$ $(\mathrm{m}, 4 \mathrm{H}), 4.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=1.9,1.9$
$\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 12.18 (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d 6) : δ 16.47, 32.20, 33.03, 40.05, 41.79, 44.48, 56.74, 64.72, 112.41, 114.86, 119.10, 120.66, 121.41, 124.46, 125.95, 131.84, 133.18, 138.18, 151.54, 159.10, 168.21, 172.04. HRMS (ESI) : m/z [M + H ${ }^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}, 536.1536$; found, 536.1545 .

Compound 4_15

Yellow solid, 93% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) : $\delta 0.84-0.88(\mathrm{~m}, 1 \mathrm{H}), 1.23-$ $1.28(\mathrm{~m}, 1 \mathrm{H}), 1.72-2.02(\mathrm{~m}, 9 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.57-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.76$ (m, 2H), $4.07(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=1.9,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 2 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 12.16$ (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO$\left.\mathrm{d}_{6}\right): \delta 22.03,23.85,30.19,30.93,31.72,40.02,44.41,64.64,112.55,114.97,118.07$, $118.82(\mathrm{q}, J=3.7 \mathrm{~Hz}), 120.90(\mathrm{q}, J=32.3 \mathrm{~Hz}), 122.97(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.76(\mathrm{q}, J=$ 271.4 Hz), 130.85, 133.27, 138.15, 155.67, 159.14, 170.08, 172.08. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}, 568.1643$; found, 568.1629.

Compound 4_16

White solid, 69% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6} : $\delta 1.67-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.57(\mathrm{~m}, 4 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 3.51-3.57(\mathrm{~m}$, 2H), 3.60 (br s, 4H), 3.71-3.76 (m, 2H), 4.02 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.80 (br s, 1H), 6.87 (br
$\mathrm{s}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 2 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 12.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. ${ }^{13}$ C NMR (100 MHz , DMSO-d 6) : $\delta 30.58,31.18,41.62,44.02,44.90,54.80,64.63,67.03$, $112.10,114.86,118.07,118.84(\mathrm{q}, J=3.7 \mathrm{~Hz}), 120.85(\mathrm{q}, J=32.3 \mathrm{~Hz}), 122.99(\mathrm{q}, J=$ $3.7 \mathrm{~Hz}), 124.79$ (q, $J=271.4 \mathrm{~Hz}), 130.79,133.09,139.59,155.69,159.06,170.17,172.68$. HRMS (ESI) : m/z [M + H] ${ }^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}$, 584.1592; found, 584.1589.

Compound 4_18

White solid, 89% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) : $\delta 1.69-1.76$ (m, 6H), 1.84-1.87 $(\mathrm{m}, 2 \mathrm{H}), 1.95(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.68(\mathrm{~m}, 4 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 3.48-3.53$ $(\mathrm{m}, 3 \mathrm{H}), 3.67-3.70(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 3 \mathrm{H}), 7.27(\mathrm{dd}, J=8.7,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 12.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d 6) : $\delta 20.93,23.81,30.39,31.86,40.59,43.89,44.32,63.91,69.68$, $112.59,113.12,119.11,120.66,122.22,124.46,125.95,131.83,135.97,138.54,151.53$, 158.30, 168.33, 172.50. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}$, 514.1926; found, 514.1917.

Compound 4_19

White solid, 87% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) : $\delta 1.69-1.78$ (m, 6H), 1.84-1.89 $(\mathrm{m}, 2 \mathrm{H}), 1.99(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.67(\mathrm{~m}, 4 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.51-3.54$ (m, 2H), 3.68-3.72 (m, 2H), $4.02(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}$,
$1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 12.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$) : $\delta 15.68$, $23.81,30.48,31.93,40.60,43.78,44.40,63.99,69.68,112.15,119.10,120.64,120.81$, $123.55,124.43,125.94,129.90,131.82,133.71,151.55,156.24,168.33,172.70$. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}, 514.1926$; found, 514.1932.

Synthesis of compound 6_38

To a suspension of methyltriphenylphosphonium bromide ($23.4 \mathrm{mg}, 65.3 \mathrm{mmol}$) in THF (250 mL) was added n-BuLi ($2.61 \mathrm{M}, 25.1 \mathrm{~mL}$, 66 mmol) under ice-cooling, and the mixture was stirred at the same temperature for 30 minutes. After addition of a solution of benzyl 4-oxopiperidine-1-carboxylate ($15.3 \mathrm{~g}, 65.3 \mathrm{mmol}$) in THF (20 mL) dropwise and stirring at the same temperature for 30 minutes, to the reaction solution was added water and 2 M aqueous HCl solution to be neutral, and extracted with EtOAc. The organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give $\mathbf{6} \mathbf{3 8}$ $(13.1 \mathrm{~g}, 87 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 2.20(\mathrm{br} \mathrm{t}, J=5.8 \mathrm{~Hz}$, $4 \mathrm{H}), 3.50(\mathrm{t}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 5 \mathrm{H})$.

Synthesis of compound 6_39

To a solution of $6 _38(6.05 \mathrm{~g}, 26.1 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added dropwise chlorosulfonyl isocyanate ($2.3 \mathrm{~mL}, 26.6 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at
room temperature for 7 hours. To the reaction mixture was added aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and 10% aqueous KOH solution at $0^{\circ} \mathrm{C}$ to be neutral, and extracted with EtOAc. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The obtained material was washed with n-hexane and dried under high vacuum to give $6 _39$ ($7.27 \mathrm{~g}, 98 \%$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.77(\mathrm{t}, J=5.3 \mathrm{~Hz}, 4 \mathrm{H})$, $2.71(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.70(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 6.97(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 5 \mathrm{H})$.

Synthesis of compound 6_40

A mixture of 6_39 (800 mg, 2.91 mmol$)$, conc. $\mathrm{HCl}(0.82 \mathrm{~mL})$ and $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at $95^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was concentrated under reduced pressure to give $6 _40(500 \mathrm{mg}, 56 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.51-1.59$ (m, 4H), 1.76 (br s, 2H), $2.41(\mathrm{~s}, 2 \mathrm{H}), 3.35-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.77(\mathrm{~m}, 2 \mathrm{H})$, 5.12 (s, 2H), 7.30-7.37 (m, 5H).

Synthesis of compound 6_41

A mixture of 6 _40 ($492 \mathrm{mg}, 1.61 \mathrm{mmol})$, 4-bromobutyryl chloride ($186 \mu \mathrm{~L}, 1.61 \mathrm{mmol}$) and pyridine $(130 \mu \mathrm{~L})$ was stirred at room temperature for 1 hour. To the reaction mixture was added aqueous NaHCO_{3} solution and extracted with EtOAc. The organic layer was washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under
reduced pressure and the residue was purified by silica gel column chromatography to give $6 _41(316 \mathrm{mg}, 43 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.55-1.65(\mathrm{~m}$, $2 \mathrm{H}), 2.06-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{br}$ s, 2H), 3.10$3.19(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.89$ (m, 2H), $5.12(\mathrm{~s}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 5 \mathrm{H})$.

Synthesis of compound 6_42

A mixture of 6 _41 ($316 \mathrm{mg}, 0.694 \mathrm{mmol})$, $\mathrm{NaH}(60 \%, 31 \mathrm{mg}, 0.775 \mathrm{mmol})$ and DMF (1 mL) was stirred at room temperature for 2 hours. To the reaction mixture was added aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The organic layer was washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography to give $\mathbf{6} \mathbf{4 2}$ $(185 \mathrm{mg}, 71 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.85-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.32-$ $2.39(\mathrm{~m}, 4 \mathrm{H}), 2.89(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.33-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.63(\mathrm{~m}$, $2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 5 \mathrm{H})$.

Synthesis of compound 6_43

To a solution of $\mathbf{6}$ _42 $(158 \mathrm{mg}, 0.422 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added a solution of $\mathrm{LiBH}_{4}(90 \%, 24 \mathrm{mg}, 1.01 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ at room temperature, and the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 6 hours. To the reaction mixture was added 2 M aqueous HCl
solution and extracted with EtOAc. The organic layer was washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure to give $\mathbf{6} \mathbf{4 3}$ (161 mg , quant.) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.60-1.70(\mathrm{~m}, 2 \mathrm{H})$, $1.90(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.60(\mathrm{~m}, 4 \mathrm{H}), 3.09-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.39-$ $3.47(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.86(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 5 \mathrm{H})$.

Synthesis of compound 6_44

To a solution of $\mathbf{6}$ _43 ($161 \mathrm{mg}, 0.464 \mathrm{mmol}$) of THF $(10 \mathrm{~mL})$ and $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(10 \%, 80 \mathrm{mg})$ and the mixture was stirred under a hydrogen atmosphere overnight. The insoluble material was filtrated out and the filtrate was concentrated under reduced pressure. A mixture of the residue, 2-chloro-6-(trifluoromethyl)benzothiazole ($110 \mathrm{mg}, 0.464 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(128 \mathrm{mg}, 0.926 \mathrm{mmol})$ and DMF $(2 \mathrm{~mL})$ was stirred at $70^{\circ} \mathrm{C}$ for 10 hours. 2 M aqueous HCl solution was added, and the mixture was extracted with EtOAc. The organic layer was washed with water, concentrated under reduced pressure, and purified by silica gel column chromatography to give $\mathbf{6} \mathbf{- 4 4}(99 \mathrm{mg}, 52 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.80-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-2.06(\mathrm{~m}$, $2 \mathrm{H}), 2.43(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.69-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.34-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.48$ (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.93(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H})$.

Synthesis of compound 6_45

A mixture of 6_44 (20 mg, 0.048 mmol$)$, methyl 2-(3-chloro-5-hydroxyphenyl)acetate $(12 \mathrm{mg}, 0.058 \mathrm{mmol})$, triphenylphosphine $(26 \mathrm{mg}, 0.099 \mathrm{mmol})$, DEAD ($17 \mathrm{mg}, 0.097$ $\mathrm{mmol})$ and THF (3 mL) was stirred at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure and purified by silica gel column chromatography to give $\mathbf{6} \mathbf{4 5}(7.0 \mathrm{mg}, 24 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.90-2.03$ $(\mathrm{m}, 4 \mathrm{H}), 2.30(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.74(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.53$ (m, 4H), $3.56(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.86-3.93(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}$, $1 \mathrm{H}), 6.77(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H})$.

Synthesis of compound 4_17

To a solution of $6 \mathbf{4 5}(11 \mathrm{mg}, 0.019 \mathrm{mmol})$ in THF $(0.3 \mathrm{~mL})$ and $\mathrm{MeOH}(0.3 \mathrm{~mL})$ was added 2 M aqueous NaOH solution $(0.1 \mathrm{~mL})$, and the mixture was stirred at room temperature for 3 hours. To the reaction mixture was added 2 M aqueous HCl solution to be neutral, and extracted with EtOAc. The extract was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give $\mathbf{4} _\mathbf{1 7}(12 \mathrm{mg}, 100 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) : $\delta 1.81-1.93(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.27(\mathrm{~m}, 4 \mathrm{H}), 2.62(\mathrm{~d}$, $J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.40-3.47(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 3.80-3.86(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $2 H), 6.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.89-6.91(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.59(\mathrm{~m}, 2 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 12.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right): \delta 17.79,32.60,32.75,34.83,40.18,44.93,45.33,56.20$,
$64.07,112.30,115.02,118.19,118.91(\mathrm{q}, J=3.7 \mathrm{~Hz}), 121.00(\mathrm{q}, J=32.3 \mathrm{~Hz}), 123.02(\mathrm{q}$, $J=3.7 \mathrm{~Hz}), 124.77(\mathrm{q}, J=271.4 \mathrm{~Hz}), 130.93,133.29,138.33,155.61,159.07,170.14$, 172.15, 176.07. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}, 582.1436$; found, 582.1448.

Synthesis of compound 6_47

A mixture of 2-chloro-6-(trifluoromethyl)pyridin-3-amine (5.01 g, 25.5 mmol), potassium ethylxanthate ($8.99 \mathrm{~g}, 56.1 \mathrm{mmol}$) and DMF (25 mL) was stirred at $120^{\circ} \mathrm{C}$ for 20 hours. After cooled to room temperature, the reaction mixture was poured onto iced water and the pH was adjusted to $5-6$ using 2 M aqueous HCl solution. The precipitate was collected and washed with water. The solid was dissolved in EtOAc. The organic layer was washed with water and brine, dried over MgSO_{4}, and concentrated under reduced pressure to give $6 _47(5.35 \mathrm{~g}, 89 \%)$ as a beige solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta 3.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=8.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis of compound 6_48

To a solution of $6 _47(5.00 \mathrm{~g}, 21.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise SOCl_{2} ($10.2 \mathrm{~mL}, 127 \mathrm{mmol}$) under ice-cooling, and the mixture was stirred at room temperature for 3 hours. To the reaction mixture was added ice and aqueous NaOH solution to be neutral, and extracted with EtOAc. The extract was washed with brine, dried over MgSO_{4},
and concentrated under reduced pressure to give $6 _48(3.01 \mathrm{~g}, 66 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis of compound 6_49

A mixture of 6 _48 ($290 \mathrm{mg}, 1.22 \mathrm{mmol}$), 2-(4-(pyrrolidin-1-yl)piperidin-4-yl)ethan-1-ol ($241 \mathrm{mg}, 1.22 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(336 \mathrm{mg}, 2.43 \mathrm{mmol})$ and $\mathrm{DMF}(3 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ for 15 hours. Water was added, and the mixture was extracted with EtOAc. The extract was washed with water and brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give $\mathbf{6} \mathbf{4 9}$ ($321 \mathrm{mg}, 80 \%$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.74-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.85-$ $1.98(\mathrm{~m}, 6 \mathrm{H}), 2.73-2.76(\mathrm{~m}, 4 \mathrm{H}), 3.39-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-4.05$ $(\mathrm{m}, 2 \mathrm{H}), 5.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 23.54,30.01,31.33,44.53,54.01,56.44,59.62,118.50(\mathrm{q}, J=2.9 \mathrm{~Hz})$, $122.00(\mathrm{q}, ~ J=273.2 \mathrm{~Hz}), 124.10,139.93(\mathrm{q}, J=34.9 \mathrm{~Hz}), 139.56,155.59,168.78$. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{OS}^{+}, ~ 401.1617$; found, 401.1618 .

Typical procedure for synthesis of compounds $\mathbf{6}$ _50a and $\mathbf{6} \mathbf{5 0 b}$ A mixture of $\mathbf{6 _ 4 9}(120 \mathrm{mg}, 0.300 \mathrm{mmol})$, the corresponding phenol $(0.330 \mathrm{mmol})$, tri- $n-$ butylphosphine ($82.3 \mu \mathrm{~L}, 0.330 \mathrm{mmol}$), $\operatorname{ADDP}(83.2 \mathrm{mg}, 0.330 \mathrm{mmol})$ and THF (2 mL) was stirred at room temperature for 4 hours. To the reaction mixture was added aqueous NaHCO_{3} solution and extracted with EtOAc. The organic layer was washed with water and brine, and dried over MgSO_{4}. The solvent was evaporated under reduced pressure
and the residue was purified by silica gel column chromatography to give the target compound.

Compound 6_50a

Yellow oil, 30% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.73-1.80(\mathrm{~m}, 6 \mathrm{H}), 1.90-1.95(\mathrm{~m}$, $2 \mathrm{H}), 2.02(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.71(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.63-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 3.83-3.88(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 24.38,30.91,32.96,40.80,44.36,44.53,52.23,54.20,64.73,113.43,114.13$, $118.42(\mathrm{q}, J=2.9 \mathrm{~Hz}), 121.93,122.07(\mathrm{q}, J=273.2 \mathrm{~Hz}), 123.76,134.92,136.56,139.63$ $(\mathrm{q}, J=34.9 \mathrm{~Hz}), 149.72,155.59,159.36,169.01,171.27 . \operatorname{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}^{+}$, 583.1752; found, 583.1763.

Compound 6_50b

White solid, 32% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.78-1.98(\mathrm{~m}, 8 \mathrm{H}), 2.10(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.72(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.89$ $(\mathrm{m}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-6.85(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$.

To a solution of $6 \mathbf{5 2}(0.085 \mathrm{mmol})$ in THF $(0.25 \mathrm{~mL})$ and $\mathrm{MeOH}(0.25 \mathrm{~mL})$ was added 2 M aqueous NaOH solution ($127 \mu \mathrm{~L}, 0.255 \mathrm{mmol}$), and the mixture was stirred at room temperature for 4 hours. To the reaction mixture was added 2 M aqueous HCl solution to be neutral, and extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The obtained material was washed with n-hexane and dried under high vacuum to give the target compound.

Compound 4_20

Yellow solid, 99% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) : $\delta 1.70-1.79(\mathrm{~m}, 6 \mathrm{H}), 1.88$ (d, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=10.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.92$ (dd, $J=1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 12.35(\mathrm{br} \mathrm{s}$, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $_{6}$) : $\delta 23.82,30.08,31.72,39.98,40.35,44.21,54.70$, $64.59,112.48,114.93,118.83(\mathrm{q}, J=2.2 \mathrm{~Hz}), 121.49,122.02(\mathrm{q}, J=272.2 \mathrm{~Hz}), 123.86$, 133.23, 137.71 (q, $J=34.5 \mathrm{~Hz}$), 138.10, 149.64, 155.11, 159.07, 167.96, 172.03. HRMS (ESI) : $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}^{+}, 569.1596$; found, 569.1600.

Compound 4_21

Yellow solid, 96% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) : δ 1.70-1.72 (m, 4H), 1.76-
$1.83(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.93(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.67(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H})$, $3.57-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 12.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$) : $\delta 23.84,30.18,31.96$, $40.18,43.79,53.80,65.20,69.68,114.84,118.82(\mathrm{q}, J=2.9 \mathrm{~Hz}), 119.13,122.01(\mathrm{q}, J=$ $272.9 \mathrm{~Hz}), 122.27,123.78,129.26,135.49,137.61(\mathrm{q}, J=34.5 \mathrm{~Hz}), 149.68,153.33$, 155.09, 167.93, 172.27. HRMS (ESI) : m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}^{+}$, 569.1596; found, 569.1596.

Acknowledgements

The author would like to express his deepest respect and gratitude to Professor Akira Otaka for his constant instruction from undergraduate days and giving the opportunity to present this thesis.

This research has been carried out under supervision of Dr. Ken-ichi Matsumura and Dr. Hiroki Sato at Shionogi \& Co., Ltd. research center.

The author is deeply grateful to Dr. Kenji Yamawaki, Vice President of Laboratory for Medicinal Chemistry Research, Shionogi \& Co., Ltd., for giving him the opportunity to conduct this research.

The author also would like to express his deep gratitude to Dr. Makoto Kawai for giving the kind guidance in organizing this thesis.

The author extends his sincere gratitude to Mr. Takafumi Ohara, Dr. Naoyuki Suzuki, Ms. Manami Masuda, Dr. Yasuhiko Kanda, Dr. Ken-ichi Setsukinai, Dr. Akira Ino, Mr. Ken Yasui and Mr. Hideaki Watanabe for their collaborations and discussions.

The author is gratitude to Mr. Keita Fukao, Dr. Noriyuki Naya and his colleagues for the biological assays.

The author is also grateful to Mr. Kazuya Yasuo for the docking simulation and Mr. Masayoshi Ogawa for support in the NMR analysis.

Finally, the author expresses cordial gratitude to Dr. Akiko Itai, Dr. Ryukou Tokuyama, Mr. Susumu Muto, Dr. Hiroshi Fukasawa and Dr. Miho Mizutani of Institute of Medicinal Molecular Design, Inc. for conducting and discussing this joint research.

References

1. (a) Vaduganathan, M.; Mensah, G. A.; Turco, J. V.; Fuster, V.; Roth, G. A. J. Am. Coll. Cardiol. 2022, 80, 2361-2371. (b) Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Circ. Res. 2016, 118, 535-546. (c) May, L. T.; Bartolo, B. A.; Harrison, D. G.; Guzik, T.; Drummond, G. R.; Figtree, G. A.; Ritchie, R. H.; Rye, K.; de Haan, J. B. Clin. Sci. 2022, 136, 1731-1758.
2. (a) Soehnlein, O.; Libby, P. Nat. Rev. Drug Discov. 2021, 20, 589-610. (b) Honda, S.; Sidharta, S. L.; Shishikura, D.; Takata, K.; Di Giovanni, G. A.; Nguyen, T.; Janssan, A.; Kim, S. W.; Andrews, J.; Psaltis, P. J.; Worthley, M. I.; Nicholls, S. J. Atherosclerosis 2017, 265, 110-116. (c) Rosenson, R. S.; Brewer J.., H. B.; Davidson, W. S.; Fayad, Z. A.; Fuster, V.; Goldstein, J.; Hellerstein, M.; Jiang, X.;. Phillips, M. C.; Rader, D. J.; Remaley, A. T.; Rothblat, G. H.; Tall, A. R.; Yvan-Charvet, L. Circulation 2012, 125, 1905-1919.
3. (a) Blagov, A. V.; Markin, A. M.; Bogatyreva, A. I.; Tolstik, T. V.; Sukhorukov, V. N.; Orekhov, A. N. Cells 2023, 12, 522. (b) Lorenzatti, A. J. Eur. Cardiol. 2021, 16, e15.
4. (a) Lamichane, S.; Lamichane, B. D.; Kwon, S. M. Int. J. Mol. Sci. 2018, 19, 949. (b) Desvergne, B.; Wahli, W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 1999, 20, 649-688.
5. Staels, B.; Dallongeville, J.; Auwerx, J.; Schoonjans, K.; Leitersdorf, E.; Fruchart, J. C. Circulation. 1998, 98, 2088-2093.
6. (a) Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E. M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J. M.; Heiss, E. H.; Schuster, D.;

Kopp, B.; Bauer, R.; Stuppner, H.; Dirsch, V. M.; Atanasov, A.G. Biochem. Pharmacol. 2014, 92, 73-89. (b) Ahmadian, M.; Suh, J. M.; Hah, N.; Liddle, C.; Atkins, A. R.; Downes, M.; Evans, R. M. Nat. Med. 2013, 19, 557-566.
7. (a) Wagner, K. D.; Wagner, N. Int. J. Mol. Sci. 2020, 21, 9436. (b) Wu, J.; Song, Y.; Li, H.; Chen, J. Eur. J. Clin. Pharmacol. 2009, 65, 1169-1174. (c) Nesto, R. W.; Bell, D.; Bonow, R. O.; Fonseca, V.; Grundy, S. M.; Horton, E. S.; Le Winter, M.; Porte, D.; Semenkovich, C. F.; Smith, S.; Young, L. H.; Kahn, R. Circulation 2003, 108, 2941-2948.
8. (a) Giordano Attianese, G. M.; Desvergne, B. Nucl. Recept. Signal. 2015, 13, 1-32. (b) Wang, Y. X.; Lee, C. H.; Tiep, S.; Yu, R. T.; Ham, J.; Kang, H.; Evans, R. M. Cell 2003, 113, 159-170.
9. (a) Sznaidman, M. L.; Haffner, C. D.; Maloney, P. R.; Fivush, A.; Chao, E.; Goreham, D.; Sierra, M. L.; LeGrumelec, C.; Xu, H. E.; Montana, V. G.; Lambert, M. H.; Willson, T. M.; Oliver, W. R.; Sternbach, D. D. Bioorg. Med. Chem. Lett. 2003, 13, 1517-1521. (b) Zhang, R.; Wang, A.; DeAngelis, A.; Pelton, P.; Xu, J.; Zhu, P.; Zhou, L.; Demarest, K.; Murray, W. V.; Kuo, G. H. Bioorg. Med. Chem. Lett. 2007, 17, 3855-3859. (c) Berger, J.; Leibowitz, M. D.; Doebber, T. W.; Elbrecht, A.; Zhang, B.; Zhou, G.; Biswas, C.; Cullinan, C. A.; Hayes, N. S.; Li, Y.; Tanen, M.; Ventre, J.; Wu, M. S.; Berger, G. D; Mosley, R.; Marquis, R.; Santini, C.; Sahoo, S. P.; Tolman, R. L.; Smith, R. G.; Moller, D. E. J. Biol. Chem. 1999, 274, 6718-6725.
10. (a) Oliver Jr, W. R.; Shenk, J. L.; Snaith, M. R.; Willson, T. M. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 5306-5311. (b) Tanaka, T.; Yamamoto, J.; Iwasaki, S.; Asaba, H.; Hamura, H.; Ikeda, Y.; Watanabe, M.; Magoori, K.; Ioka, R. X.; Tachibana, K.;

Watanabe, Y.; Uchiyama, Y.; Sumi, K.; Iguchi, H.; Ito, S.; Doi, T.; Hamakubo, T.; Naito, M.; Auwerx, J.; Yanagisawa, M.; Kodama, T.; Sakai, J. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 15924-15929.
11. (a) Bishop-Bailey, D.; Bystrom, J. Pharmacol. Ther. 2009, 124, 141-150. (b) Lee, C.; Chawla, A.; Urbiztondo, N.; Liao, D.; Boisvert, W. A.; Evans, R. M. Science 2003, 302, 453-457. (c) Graham, T. L.; Mookherjee, C.; Suckling, K. E.; Palmer, C. N. A.; Patel, L. Atherosclerosis 2005, 181, 29-37. (d) Barish, G. D.; Atkin, A. R.; Downes, M.; Olson, P.; Chong, L.; Nelson, M.; Zou, Y.; Hwang, H.; Kang, H.; Curtiss, L.; Evans, R. M.; Lee, C. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 4271-4276.
12. (a) Mizutani, M.Y.; Tomioka, N.; Itai, A. J. Mol. Biol. 1994, 243, 310-326. (b) Mizutani, M.Y.; Itai, A. J. Med. Chem. 2004, 47, 4818-4828.
13. Xu, H.E.; Lambert, M. H.; Montana, V. G.; Parks, D. J.; Blanchard, S. G.; Brown, P. J.; Sternbach, D. D.; Lehmann, J. M.; Wisely, G. B.; Willson, T. M.; Kliewer, S. A.; Milburn, M. V. Mol. Cell. 1999, 3, 397-403.
14. Farce, A.; Renault, N.; Chavatte, P. Curr. Med. Chem. 2009, 16, 1768-89.
15. Wu, C. C.; Baiga, T. J.; Downes, M.; La Clair, J. J.; Atkins, A. R.; Richard, S. B.; Fan, W.; Stockley-Noel, T. A.; Bowman, M. E.; Noel, J. P.; Evans, R. M. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E2563-E2570.
16. Mizutani, M. Y.; Nakamura, K.; Ichinose, T.; Itai, A. Chem. Pharm. Bull. 2006, 54, 1680-1685.
17. Mizutani, M. Y.; Takamatsu, Y.; Ichinose, T.; Nakamura, K.; Itai, PROTEINS 2006, 63, 878-891.
18. Murakami, K.; Tobe, K.; Ide, T.; Mochizuki, T.; Ohashi, M.; Akanuma, Y.; Yazaki, Y.; Kadowaki, T. Diabetes. 1998, 47, 1841-1847.
19. Topliss, J. G. J. Med. Chem. 1972, 15, 1006-1011.
20. Garrido, A.; Lepailleur, A.; Mignani, S. M.; Dallemagne, P.; Rochais, C. Eur. J. Med. Chem. 2020, 195, 112290.
21. (a) Charo, I. F.; Taubman, Mark B. Circ. Res. 2004, 95, 858-66. (b) GonzalezQuesada, C.; Frangogiannis, N. G. Curr. Atheroscler. Rep. 2009, 11, 131-138.
22. Ma, Y.; Wang, W.; Zhang, J.; Lu, Y.; Wu, W.; Yan, H.; Wang, Y. PLoS ONE 2012, 7, e35835.
23. Coll, T.; Rodriguez-Calvo, R.; Barroso, E.; Serrano, L.; Eyre, E.; Palomer, X.; Vazquez-Carrera, M. Curr. Mol. Pharmacol. 2009, 2, 46-55.
24. Takata, Y.; Liu, J.; Yin, F.; Collins, A. R.; Lyon, C. J.; Lee, C.; Atkins, A. R.; Downes, M.; Barish, G. D.; Evans, R. M.; Hsueh, W. A.; Tangirala, R. K. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 4277-4282.
25. Naya, N.; Fukao, K.; Nakamura, A.; Hamada, T.; Sugimoto, M.; Kojima, M.; Yoshimura, N.; Uwabe, K.; Imagawa, K.; Nomura, K. Hara, S.; Nakano, T.; Iwasaki, T.; Shinosaki, T.; Hanasaki, K. Metabolism 2016, 65, 16-25.

List of publications

Publications regarding this thesis

1. Discovery and structure-based design of a new series of potent and selective PPAR δ agonists utilizing a virtual screening method Bioorganic \& Medicinal Chemistry Letters, 2022, 59, 128567.

Terukazu Kato, Takafumi Ohara, Naoyuki Suzuki, Susumu Muto, Ryukou Tokuyama, Miho Mizutani, Hiroshi Fukasawa, Ken-ichi Matsumura, and Akiko Itai
2. Discovery and structure-activity relationship study of 2-piperazinyl-benzothiazole derivatives as potent and selective PPAR δ agonists Bioorganic \& Medicinal Chemistry, 2023, 82, 117215.

Terukazu Kato, Takafumi Ohara, Naoyuki Suzuki, Noriyuki Naya, Keita Fukao, Ryukou Tokuyama, Susumu Muto, Hiroshi Fukasawa, Akiko Itai, and Ken-ichi Matsumura
3. Design, Synthesis, and Anti-Inflammatory Evaluation of a Novel PPAR δ Agonist with a 4-(1-Pyrrolidinyl)piperidine Structure Journal of Medicinal Chemistry, 2023, 66, 11428-11446.

Terukazu Kato, Keita Fukao, Takafumi Ohara, Noriyuki Naya, Ryukou Tokuyama, Susumu Muto, Hiroshi Fukasawa, Akiko Itai, and Ken-ichi Matsumura

Other publication

1. Synthesis of potent β-secretase inhibitors containing a hydroxyethylamine dipeptide isostere and their structure-activity relationship studies

Organic \& Biomolecular Chemistry, 2003, 1, 2468-2473
Hirokazu Tamamura, Terukazu Kato, Akira Otaka, and Nobutaka Fujii

