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Abstract: Rice, a staple food crop worldwide, is pivotal in agricultural productivity and public
health. Automatic classification of typical rice pests and diseases is crucial for optimizing rice yield
and quality in practical production. However, infrequent occurrences of specific pests and diseases
lead to uneven dataset samples and similar early-stage symptoms, posing challenges for effective
identification methods. In this study, we employ four image enhancement techniques—flipping,
modifying saturation, modifying contrast, and adding blur—to balance dataset samples throughout
the classification process. Simultaneously, we enhance the basic RepVGG model by incorporating
the ECA attention mechanism within the Block and after the Head, resulting in the proposal of a
new classification model, RepVGG_ECA. The model successfully classifies six categories: five types of
typical pests and diseases, along with healthy rice plants, achieving a classification accuracy of 97.06%,
outperforming ResNet34, ResNeXt50, Shufflenet V2, and the basic RepVGG by 1.85%, 1.18%, 3.39%, and
1.09%, respectively. Furthermore, the ablation study demonstrates that optimal classification results
are attained by integrating the ECA attention mechanism after the Head and within the Block of
RepVGG. As a result, the classification method presented in this study provides a valuable reference
for identifying typical rice pests and diseases.

Keywords: rice; pest and disease classification; ECA; attention mechanism; deep learning

1. Introduction

As global economic development progresses and living standards rise, the demand
for high-quality rice crops grows [1]. However, rice production faces numerous challenges
from diseases caused by bacteria, fungi, and other organisms, such as blasts, brown spots,
and dead hearts, which can significantly affect crop health, yield, and quality. Failure
to detect and control these pests and diseases could lead to substantial economic losses
in agricultural production [2–4]. Thus, farmers and the agricultural sector must develop
effective scientific methods for classifying and detecting rice pests and diseases.

Historically, the classification and detection of rice pests and diseases have relied on
manual visual inspection, which is time-consuming, inefficient, and inaccurate [5]. Such
ineffective traditional manual inspection methods inhibit sufficient rice production from
meeting societal needs, necessitating the development of novel detection techniques.

Advancements in computer technology have given rise to traditional image-processing
techniques, including image pre-processing, feature extraction, dimensionality reduction,
and recognition. These methods have been applied to agricultural images for various
purposes, for example, classifying crop pest and disease locations and types [6–8]. Nan
Xu [9] utilized image processing and traditional machine recognition techniques for crop
pest detection and analyzed their effectiveness. The results show that the recognition rates
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of the method are 86%, 89%, 91%, 83%, 78%, and 79%, respectively. Azim et al. [10] propose
segmentation of disease-affected areas using hue thresholding by background saturation
threshold removal of the image. Local and global statistical information for such images is
reliably described. An accuracy of 86.58% was achieved on UCI’s rice leaf disease dataset.
Shrivastava et al. [11] explored 14 color spaces, with four features extracted from each
color channel, yielding 172 features. The performance of seven different classifiers was
also compared, demonstrating a classification accuracy of up to 94.65% using a Support
Vector Machine (SVM) classifier. The method has high accuracy and is easy to implement.
However, these approaches still fall short of societal needs due to poor migration ability
between rice pests and diseases and suboptimal recognition results.

Deep learning-based classification and target recognition algorithms have recently emerged
in mainstream research, replacing traditional image recognition techniques [12–14]. These algo-
rithms allow machines to adaptively learn image features without manual feature extraction,
thereby enabling efficient completion of classification and detection tasks. Deep convolutional
networks have effectively improved migration between rice pests and diseases [15]. Sagarika
et al. [16] used a CNN model to build a classification detection system for three types of rice pests
and diseases with an accuracy of 94.12%. Wang Yibin et al. [17] proposed an attention-based
deep separable network model to achieve classification detection for four rice pest types with
an accuracy of 94.65%. Patil et al. [18] proposed a novel multimodal data fusion framework
called Rice-Fusion to diagnose rice diseases, which fuses agrometeorological data extracted from
sensors with images captured by cameras to provide a single output for diagnosing rice diseases.
Analysis of the experimental results shows that the proposed Rice-Fusion multimodal data
fusion framework outperforms the unimodal framework. Liang K et al. [19] reduced the model
parameters by decreasing the number of channels and introducing depth-separable convolution
based on the VGG16 model. A lightweight model was also constructed by introducing the
SE attention mechanism. The results show that the model achieves a classification accuracy of
95.09%. Yi Lu et al. [20] first preprocessed the images using median filtering and histogram
equalization. They performed edge segmentation using the Sobel operator to extract parameters
based on color and texture features. Subsequently, a BP neural network was built to train
and test the pre-processed images. A recognition accuracy of 85.8% was achieved. Burhan
et al. [21] conducted a comparative study of classification performance using five different
models on their rice dataset after pre-processing to remove background and shadows, and the
results showed that ResNet101 V2 was the best-performing model with an accuracy of 86.799%.
Hu Y et al. [22] presented an advanced YOLO-GBS model for accurate rice pest detection. The
model achieved a mean average precision of 79.8% on a self-made rice pest dataset, outperform-
ing the original YOLOv5s by 5.4%.

Additionally, it demonstrated robustness and generalizability on larger-scale pest datasets,
suggesting potential for broader crop pest detection applications. Chowdhury R. Rahman et al. [23]
employed large-scale architectures, including VGG16 and InceptionV3, and a two-stage small
CNN architecture for detecting diseases and pests from rice plant images and achieved a notable
accuracy of 93.3% with the proposed small CNN model on a dataset of 1426 images. Dengshan
Li et al. [24] developed a deep learning-based video detection architecture to identify three rice
pests and diseases: rice blight, rice brown spot and rice stem borer symptoms. The researchers’
customized backbone network outperforms other models such as VGG16, ResNet-50, ResNet-101
and YOLOv3, particularly in detecting slightly blurred images, demonstrating its potential for
wider application in crop pest and disease detection. Finally, Zhiyong Li et al. [25] demonstrated
the effectiveness of transfer learning and ARGAN data augmentation for rice pest identification.
VGG16 achieved the highest accuracy among the three classification networks, with 84.39%
on the original dataset and 88.68% on the augmented dataset. In this paper, we address the
issue of training sample imbalance during classification by applying image augmentation tech-
niques, including flipping, modifying saturation and contrast, and adding a blur. We employ a
RepVGG_ECA model with an integrated attention mechanism to classify six rice images, achieving
a classification accuracy of 97.06%. This method offers valuable insights for classifying typical
rice pests and diseases.
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The remainder of the paper is structured as follows: Section 2 describes the experimen-
tal methods, Section 3 presents the experimental results, Section 4 discusses the proposed
method based on the experimental results, and Section 5 offers concluding remarks.

2. Methods
2.1. RepVGG

In 2014, the Visual Geometry Group at the University of Oxford introduced the VGG
model [26], which exhibited strong performance in various computer vision tasks. The primary
attribute of the VGG model is its depth, with networks typically comprising 16 (VGG-16)
or 19 (VGG-19) successive convolutional and fully connected layers. While this allows the
network to learn more complex features, the increased depth also exacerbates the vanishing
gradient problem during training, leading to higher computational complexity and a more
significant number of parameters. In addition, the fully connected layers, in particular, require
substantial computational resources and training time. Consequently, VGG networks have been
progressively superseded by more advanced network architectures.

In 2021, Ding et al. [27] drew inspiration from residual structures and proposed
the RepVGG [28] model. The defining characteristic of residual structures is their skip
connections, where the input is directly added to the output. This design mitigates the
vanishing gradient problem, enabling deeper network training. RepVGG, in turn, features a
multi-branch structure akin to residual structures during the training phase. Specifically,
RepVGG’s multi-branch structure comprises a 1 × 1 convolutional branch, a 3 × 3 convo-
lutional branch, and a constant mapping branch, as illustrated in Figure 1. For example,
given input feature map X, the 3 × 3 convolutional branch output is A, while the 1 × 1
convolutional branch output is B. The constant mapping branch output is C. The output of
the fundamental building block can then be expressed as:

Y = A + B + C = BN(W3×3(X)) + BN(W 1×1(X)) + BN(X), (1)

where W3×3 and W1×1 denote the 3 × 3 and 1 × 1 weight matrices. BN denotes the batch
normalization operation. The main role of the BN layer is to normalize the output of the
convolutional layer. Specifically, the BN layer calculates the mean and variance of the
output of the convolutional layer and normalizes the output. Let the desired mean be µ,
and the variance be σ2. The BN layer is given by:

BN(x) = γ× x− µ√
σ2 + ε

+ β, (2)

where γ and β are learnable parameters to control the scaling and translation of the output
features, respectively. x is a sample of the output of the convolution layer. ε is a small value
to maintain numerical stability and is usually set to e−5.
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This can effectively reduce internal covariate bias, improve training stability, and
speed up the convergence process while helping to reduce the sensitivity of the model to
parameter initialization. In the RepVGG block, the BN layer follows the convolutional layer,
and this design also helps to improve the training effect and inference performance of the
model. Figure 2a below shows the structure of the model during the training process.
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Upon completing RepVGG training, we employ a structural reparameterization strat-
egy to transform the original multi-branch structure into a simplified, continuous con-
volution operation, enhancing computational efficiency during inference. First, we fuse
the convolutional layer with the batch normalization (BN) layer. Then, in Equation (2), x
represents the output value following the convolutional layer operation. By substituting
the convolutional layer output, we can transform Equation (2) accordingly.

BN(Convx) = γ× wx− µ√
σ2 + ε

+ β =
γ× w√
σ2 + ε

x + β− γ× µ√
σ2 + ε

, (3)

Equation (3) represents a new fused convolutional layer, with the updated convolution
kernel weight denoted as W ′ and the bias as β′. Specifically:

W ′ =
γ× w√
σ2 + ε

, (4)

β′ = β− γ× µ√
σ2 + ε

, (5)

For the 3× 3 convolutional layer, fusion with the BN layer can be achieved by directly
substituting into Equation (3), resulting in a new 3× 3 weight, W ′3×3, and a bias, β′3×3.
For a 1 × 1 convolutional layer, it must first be transformed into a 3× 3 convolutional layer
by padding zeros around the 1× 1 convolution kernel to create a 3× 3 kernel. Substituting
this into Equation (3) provides the weight W ′1×1 and bias β′1×1 for a new 1× 1 convolution
branch. For the Identity branch, a 3× 3 convolution kernel is established with all nine
positions set to 1 to complete the identity mapping. This yields the branch’s new weight,
W ′0, and new bias, β′0.

Upon transforming all three branches into 3× 3 convolutional layers, the weights
and biases from each branch are superimposed separately, thus forming a new, fused
convolutional operation.

By integrating the BN layers into the convolutional weights and subsequently per-
forming structural reparameterization, a simplified RepVGG model is obtained. This model
retains the representative capacity of the original multi-branch structure while offering
enhanced computational efficiency. Figure 2b illustrates the model’s structure following
structural reparameterization.

In their paper, the model authors propose an array of RepVGG networks. For our
purposes, we selected the RepVGGa0 network structure.
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2.2. ECA Attention Mechanism

The attention mechanism emulates human visual or cognitive focus in deep learning
models, selectively emphasizing specific input data components. Rather than uniformly
weighting all parts during input data processing, each part is assigned a weight reflecting
the model’s current attention allocation. Consequently, the model prioritizes task-relevant
information, thereby enhancing classification accuracy. Widely employed attention mecha-
nisms include Squeeze-and-Excitation (SE) [29] and Convolutional Block Attention Module
(CBAM) [30]. In addition, the Efficient Channel Attention (ECA) [31], depicted in Figure 3,
constitutes an effective channel attention strategy designed to augment convolutional
neural networks’ feature representation by capturing inter-channel dependencies.
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Given a single input image X[C, H, W], where C represents the number of channels
and H and W denote the feature map’s height and width, respectively, the ECA attention
mechanism initially conducts Global Average Pooling (GAP) to capture global contextual
information for each channel. Specifically, the GAP procedure can be expressed as:

GAP(X) =
1

H ×W ∑H
i=1 ∑W

j=1 Xcij, ∀c ∈ {1, . . . , C}, (6)

In this context, Xcij represents the (i, j)th element of channel c in the input feature map X.
The GAP output is a vector with C dimensions, reflecting the average response of each channel.

Subsequently, the ECA attention mechanism captures local dependencies between
channels via a one-dimensional convolution layer (1D Convolution Layer). Denoting a
one-dimensional convolution operation with a convolution kernel of size k as Fconv1D,
the ECA attention mechanism dynamically determines the size k of the 1D Convolution
Layer’s convolution kernel. This adaptability enables ECA to accommodate varying
numbers of channels and more effectively capture local dependencies between channels.
The convolution kernel size k can be computed according to the following equation:

k =

∣∣∣∣ log2C + b
γ

∣∣∣∣
odd

, (7)

Here, γ serves as a hyperparameter governing the scope of local dependencies. A
smaller γ value yields a larger convolution kernel size, encompassing a broader range of
channel dependencies.

The output of a one-dimensional convolutional layer can be expressed as:

Conv1D(GPA(X)) = Fconv1D(GPA(X)), (8)
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To facilitate adaptive learning of inter-channel correlations within the model, the
output of the 1D convolutional layer undergoes nonlinear transformation via a Sigmoid
activation function, yielding a vector of attention weights:

A = σ(Conv1D(GPA(X))) (9)

Ultimately, the attention weight vector A is multiplied element-wise by the original
input feature map X, effectuating channel attention rescaling. The recalibrated feature map
Ycij is computed as follows:

Ycij = Ac·Xcij, ∀c ∈ {1, . . . , C}, i ∈ {1, . . . , H}, j ∈ {1, . . . , W}, (10)

The ECA attention mechanism bolsters the feature representation of convolutional
neural networks by capturing inter-channel dependencies. Its merits include high com-
putational efficiency, a low parameter count, and seamless compatibility with existing
convolutional neural networks. In addition, by incorporating localized adaptive channel
attention, the ECA attention mechanism enhances feature representation and elevates
model performance.

2.3. Proposed Methods

In deep learning-based image classification, recent research has demonstrated that
incorporating attention mechanisms can significantly enhance a model’s classification
accuracy. The RepVGG model, which has already demonstrated its robust classification
performance on ImageNet, is an ideal candidate for addressing the unique challenges
associated with rice pest and disease classification. These challenges include the similarity
of early-stage symptoms across various pests and diseases, the infrequent appearance of
certain pests and diseases, the impact of weather and lighting conditions on image quality,
and the cluttered rice background that complicates feature learning. The Efficient Chan-
nel Attention (ECA) module adaptively recalibrates channel-wise feature responses and
effectively addresses these challenges by explicitly modeling interdependencies between
channels, thereby improving the model’s generalization capabilities. Moreover, the ECA
module’s lightweight and efficient design enables performance enhancement without sub-
stantially increasing the model’s complexity. Consequently, integrating the ECA module
into the RepVGG architecture proves to be a logical and beneficial strategy for improving
the classification of rice pests and diseases.

Our design amalgamates RepVGG blocks and ECA modules to construct the overall
model. As depicted in Figure 4, we have innovatively integrated the ECA module into
two RepVGG blocks, referred to as Block A_ECA and Block B_ECA, and incorporated
the ECA module after the Head. “Head” refers to the first layer of the RepVGG_ECA
model architecture. This aims to enhance classification performance by emphasizing
crucial features within the input data and guides the model to concentrate on specific
regions or channels. Furthermore, to mitigate overfitting during training, we employ the
L2 regularization method. This paper’s fourth section will juxtapose our proposed approach
against alternative models to validate its superiority.
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3. Experiments and Results

The hardware and software environment for this experiment is as follows: Microsoft
Windows 11 operating system, CPU: AMD Ryzen 7 5800H, GPU: NVIDIA GeForce RTX
3060 Laptop (6 GB video memory), CUDA 11.1 and cuDNN 8.0.5, PyTorch 1.12.1 deep
learning framework.

3.1. Dataset

The dataset employed in this experiment is sourced from “Paddy Doctor: A Visual
Image Dataset for Automated Paddy Disease Classification and Benchmarking [32].” In
Figure 5, we have selected five types of rice pests and diseases, along with healthy rice, each
forming a category for our classification study. The dataset encompasses Blast, Brown_spot,
Dead_heart, Hispa, Tungro, and Normal categories. The images in the dataset are color
RGB images with a resolution of 480 × 640.

Agriculture 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. The datasets used in the experiments were divided into six categories. (a) Blast; (b) 
Brown_spot; (c) Dead_heart; (d) Hispa; (e) Tungro; (f) Normal. 

The dataset, upon completion of data augmentation, comprised a total of 11,907 
samples and was categorized into three distinct subsets: training, validation, and test sets. 
A random selection of 10% of the augmented dataset constituted the test set. The 
remaining samples were subsequently partitioned, with 80% allocated to the training set 
and 20% to the validation set. Table 1 delineates the specific groupings for each subset. 

Table 1. Specific groupings. 

Type Training Set Validation Set Testing Set 
Blast 1482 370 206 

Brown_spot 1386 346 193 
Dead_heart 1413 353 196 

Hispa 1436 359 199 
Tungro 1414 354 196 
Normal 1442 362 200 

3.2. Data Augmentation 
As evident from Table 2, the images in this dataset exhibit overall diversity; however, 

the sample sizes for Brown_spot and Tungro pests are considerably smaller than those of 
other types. For example, table 2 reveals that the normal category has the largest sample 
size at 20.5%, significantly exceeding the smallest category, Brown_spot, which accounts 
for only 11.2%. This suggests that certain rice pests and diseases may occur less frequently 
in actual production, leading to an imbalanced dataset. Consequently, during training, 
the model may overly concentrate on more abundant categories while neglecting less 
frequent ones, ultimately diminishing classification accuracy. 

Table 2. Number and percentage of images of each type of rice. 

Type Blast Brown_spot Dead_heart Hispa Normal Tungro 
Number 1738 965 1442 1594 1764 1088 

Proportion (%) 20.2 11.2 16.8 18.6 20.5 12.7 
In deep learning-based image classification, image enhancement plays a crucial role. 

Primarily, data augmentation increases the dataset’s diversity by transforming the 
original dataset to generate new samples. This enables the model to learn more features 
and perform effectively in various situations during training, consequently improving its 
generalization capacity. Moreover, data augmentation can create more samples by 
transforming smaller categories, thereby alleviating data imbalance issues, and enhancing 

Figure 5. The datasets used in the experiments were divided into six categories. (a) Blast;
(b) Brown_spot; (c) Dead_heart; (d) Hispa; (e) Tungro; (f) Normal.



Agriculture 2023, 13, 1066 8 of 15

The dataset, upon completion of data augmentation, comprised a total of
11,907 samples and was categorized into three distinct subsets: training, validation, and
test sets. A random selection of 10% of the augmented dataset constituted the test set. The
remaining samples were subsequently partitioned, with 80% allocated to the training set
and 20% to the validation set. Table 1 delineates the specific groupings for each subset.

Table 1. Specific groupings.

Type Training Set Validation Set Testing Set

Blast 1482 370 206
Brown_spot 1386 346 193
Dead_heart 1413 353 196

Hispa 1436 359 199
Tungro 1414 354 196
Normal 1442 362 200

3.2. Data Augmentation

As evident from Table 2, the images in this dataset exhibit overall diversity; however,
the sample sizes for Brown_spot and Tungro pests are considerably smaller than those of
other types. For example, Table 2 reveals that the normal category has the largest sample
size at 20.5%, significantly exceeding the smallest category, Brown_spot, which accounts
for only 11.2%. This suggests that certain rice pests and diseases may occur less frequently
in actual production, leading to an imbalanced dataset. Consequently, during training, the
model may overly concentrate on more abundant categories while neglecting less frequent
ones, ultimately diminishing classification accuracy.

Table 2. Number and percentage of images of each type of rice.

Type Blast Brown_spot Dead_heart Hispa Normal Tungro

Number 1738 965 1442 1594 1764 1088
Proportion (%) 20.2 11.2 16.8 18.6 20.5 12.7

In deep learning-based image classification, image enhancement plays a crucial role.
Primarily, data augmentation increases the dataset’s diversity by transforming the origi-
nal dataset to generate new samples. This enables the model to learn more features and
perform effectively in various situations during training, consequently improving its gener-
alization capacity. Moreover, data augmentation can create more samples by transforming
smaller categories, thereby alleviating data imbalance issues, and enhancing the model’s
performance across all categories. Furthermore, by perturbing the original image to differ-
ent extents, data augmentation exposes the model to more transformed samples during
training, helping it learn more robust features and improving performance on noisy or
perturbed data. Lastly, data augmentation techniques can expand the number of training
samples and prevent overfitting issues in small datasets. In this study, we employ four
image-processing techniques to enrich the initial dataset:

Flipping: Inverting an image, the model can learn features and corresponding classi-
fication information in different orientations, enhancing its robustness when processing
mirrored or flipped samples. For numerous vision tasks, such as object recognition and
classification, flipping usually does not alter the image’s semantic information.

Modifying saturation: Adjusting an image’s saturation lets the model learn features at
varying color purities. This maintains better performance in lighting or color deviations
and bolsters the model’s color robustness.

Modifying contrast: By altering an image’s contrast, the model can learn feature
information under different contrast conditions, which in turn aids in improving the
classification performance on images with variable lighting or low contrast.
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Adding blur: Blurring simulates image distortion due to factors like focus and motion
during the capturing process. By introducing blur to an image, the model can learn
feature information at different levels of blurriness, thereby enhancing its robustness when
handling images with varying degrees of sharpness or focus.

Table 3, presented below, enumerates the quantity of each image type following the
application of data enhancement techniques. Concurrently, Figure 6 illustrates the effect of
these four processing techniques on a single representative image.

Table 3. The sample size of various classes in the data set after data augmentation.

Type Blast Brown_spot Dead_heart Hispa Normal Tungro

Number 2058 1925 1962 1994 1964 2004
Proportion (%) 17.3 16.2 16.5 16.7 16.5 16.8
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Figure 6. Data to enhance contrast. (a) original image; (b) modify saturation; (c) modify contrast;
(d) add blur; (e) flip.

3.3. Pest and Disease Classification

In the context of image classification using a model, parameter selection plays a crucial
role in enhancing the model’s classification accuracy. T2 regularization is employed in
conjunction with the Adam optimizer, a learning rate of 0.0001, and a maximum epoch
count of 100. to mitigate overfitting

Figure 7 depicts the variation curves for four key parameters. The parameter ‘train_loss’
represents the model’s loss during training on the training dataset, while ‘train_accuracy’
signifies the proportion of accurate predictions made using the training dataset. Conversely,
‘val_loss’ corresponds to the model’s loss on the validation dataset, w metric for evaluating
the model’s performance on previously unseen data. Lastly, ‘val_accuracy’ indicates the
percentage of accurate predictions made by the model on the validation dataset.
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Figure 7 clearly illustrates that ‘train_loss’ experiences a rapid decrease initially, par-
ticularly within the first 20–30 epochs. Subsequently, the decline becomes more gradual,
interspersed with minor fluctuations during specific periods. Despite these fluctuations,
the overall trend is downward, signifying the model’s learning and improvement in per-
formance on the training dataset. Concurrently, ‘train_accuracy’ exhibits a swift increase
during the initial 20–30 epochs, followed by a decelerated growth rate. The upward trend
persists, albeit more gradually, with minimal fluctuations at certain intervals, indicating the
model’s increased accuracy on the training dataset. ‘val_loss’ undergoes a sharp reduction
within the first ten epochs, followed by a more moderate decline while demonstrating more
frequent and pronounced fluctuations compared to ‘train_loss’.

Nevertheless, the overall trend is decreasing, suggesting that the model generalizes
effectively to the validation dataset without overfitting the training data. ‘val_accuracy’
displays a substantial increase during the initial ten epochs, with the rate of growth
diminishing after that. This trend implies that the model improves its performance on the
validation dataset and generalizes well to unseen data. Consequently, we conclude that the
model learns efficiently from the training data and has good generalization.

The results of the test were evaluated using the four indicators Accuracy, Macro-
Precision, Macro-Recall, and Macro-F1. The specific formulae are shown below:

Accuracy =
TP + TN

TP + FP + FN + TN
, (11)

Macro− Precision =
1
N ∑N

i=1
TPi

TPi + FPi
, (12)

Macro− Recall =
1
N ∑N

i=1
TPi

TPi + FNi
, (13)

Macro− F1 =
1
N ∑N

i=1
2× Pi × Ri

Pi + Ri
, (14)

In the aforementioned equation, TP represents the True Positives, i.e., the correct
prediction of positive samples as positive by the classifier. FP signifies the False Positives,
i.e., the incorrect prediction of negative samples as positive. FN denotes the False Negatives,
i.e., the incorrect prediction of positive samples as negative. TN refers to the True Negatives,
i.e., the correct prediction of negative samples as negative. N corresponds to the number of
defect types, which, in this study, amounts to 6. Pi and Ri denote the precision and recall
for individual image types, respectively.

Table 4 presents the specific classification results. The classification accuracy of
RepVGG_ECA stands at 97.06%, demonstrating the model’s effectiveness in classifying typi-
cal pests and diseases in rice. In addition, the model exhibits robustness and generalization
capabilities. Figure 8 showcases the detailed classification in the form of a confusion matrix.

Table 4. Classification results.

Accuracy (%) Macro-Precision (%) Macro-Recall (%) Macro-F1 (%)

97.06 97.13 97.08 97.09

Examining the confusion matrix, the model attains 100% accuracy for Dead_heart and
Tungro. For Hispa, however, the model demonstrated the lowest accuracy at 94.6%, and
the recall and F1 scores were similarly lower at 96% and 95.29%, respectively. This reduced
performance can be attributed to the less distinctive features of Hispa, which shares more
similarities with other pests and disease features. Despite this, the model achieves an
overall classification accuracy of 97.06%. Consequently, our model delivers satisfactory
classification results for typical rice pest images.
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4. Discussion
4.1. Comparison with Other Models

To demonstrate the superior classification performance of our proposed model, we
compared it with ResNet34, ResNeXt50, ShuffleNet V2, and the basic RepVGGa0 model for
the classification of a typical rice pest dataset. Table 5 presents a comparison between
the selected models and our proposed approach. As evident from the table, our method
exhibits the highest classification accuracy, outperforming ResNet34, ResNeXt50, ShuffleNet
V2, and the basic RepVGGa0 by 1.85%, 1.18%, 3.39%, and 1.09%, respectively. Additionally,
our approach is optimal in terms of Macro-Precision, Macro-Recall, and Macro-F1, as shown
by the three key performance parameters.

Table 5. Comparison between different models.

Methods Accuracy (%) Macro-Precision (%) Macro-Recall (%) Macro-F1 (%)

ResNet34 95.21 95.4 95.2 95.24
ResNeXt50 95.88 96.02 95.9 95.92

ShuffleNet V2 93.67 93.67 93.35 93.42
RepVGGa0 95.97 95.48 95.98 96.01
Our method 97.06 97.13 97.08 97.09

Figure 9 presents the training set accuracy of all models compared after 100 epochs
on the training set. As ShuffleNet is a lightweight network model with a small number of
layers, it only achieved a maximum accuracy of 90.01%. In contrast, our method surpasses
the accuracy of the other models, with the basic RepVGGa0 model outperforming other
basic models, validating our choice of RepVGG as the base model. Concerning convergence
speed, our method, even with a more complex network structure due to the addition of the
ECA module, converges faster than the basic RepVGGa0 model and attains a satisfactory
convergence speed. These aspects highlight the superiority of our designed method.
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Figure 10 illustrates the loss of all models compared to the validation set. ResNeXt50 
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Figure 9. Comparison of the accuracy of the training set of each model.

Figure 10 illustrates the loss of all models compared to the validation set. ResNeXt50 exhibits
significant fluctuations and is the least stable. On the other hand, ShuffleNet V2 demonstrates
the smoothest and most stable curve with minimal fluctuations. Our method ranks second
in stability, only surpassed by the ShuffleNet V2 model, but achieves the lowest loss value. In
comparison to RepVGGa0, our method reduces the loss while maintaining stability.
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In summary, our method exhibits good stability during the training process, ensuring
the lowest loss value and the highest accuracy, making it the optimal method for rice pest
and disease classification.

4.2. Ablation Study

To explore the impact of the ECA attention mechanism on RepVGG’s classification
performance, we conducted an ablation study, the results of which are displayed in Table 6.
Our findings indicate that incorporating additional ECA modules does not enhance the
model’s performance. Instead, optimal results are achieved when the ECA module is added
both in the block and after the head, leading to a notably higher classification accuracy
than other model configurations. These results suggest that the judicious insertion of ECA
modules can yield improved classification outcomes, further reaffirming the superiority of
our proposed method.

Table 6. Results of ablation study. “
√

” indicates the inclusion of the ECA attention mechanism after
that position and “×” indicates that it is not inserted.

Block Head Stage 1 Stage 2 Stage 3 Stage 4 Accuracy
(%)

√
× × × × × 96.55√ √

× × × × 97.06√ √ √
× × × 95.97√ √ √ √

× × 96.22√ √ √ √ √
× 96.47√ √ √ √ √ √

96.31

5. Conclusions

In addressing the challenge of unusual training sample distribution in rice pest image
datasets, this study puts forward four techniques: flipping, modifying saturation, modifying
contrast, and adding a blur. These methods effectively simulate diverse rice environments
under varying conditions, facilitating more efficient classification training for the model. In
addition, we have proposed a novel RepVGG_ECA model for rice pest and disease classification.
This model is based on the RepVGGa0 model, with an integrated ECA attention mechanism
within the block and after the head. It achieves a remarkable accuracy of 97.06%, outperforming
ResNet34, ResNeXt50, ShuffleNet V2, and the basic RepVGGa0 model.

Furthermore, the model excels in all three-evaluation metrics: macro precision, macro
recall, and macro F1 score. The stability of the training process, free of overfitting issues,
results in excellent classification results. An ablation study has revealed that while the ECA
attention mechanism is beneficial, its excessive inclusion does not further enhance classifi-
cation accuracy. The optimal results are obtained by strategically adding the mechanism
within the block and after the head. This work lays a solid foundation for future research
in this area.

While the RepVGG_ECA model demonstrates remarkable classification performance,
it exhibits relatively poorer performance on Hispa images, which feature less prominent
pests and diseases. Recognizing this, we plan to incorporate an optimization algorithm in
our future work for fine-tuning hyperparameters and, simultaneously, enabling a more
lightweight design without compromising on improved classification performance. This
could significantly enhance the model’s performance. In addition, including an optimiza-
tion algorithm for hyperparameters adjustment could allow the model to better adapt to
various data patterns and reduce bias, especially in classifying less prominent pests and
diseases such as Hispa. This optimization approach will likely provide a more balanced
and accurate model in future iterations.
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