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Abstract: The definitive diagnosis of obstructive sleep apnea syndrome (OSAS) is made using an
overnight polysomnography (PSG) test. This test requires that a patient wears multiple measurement
sensors during an overnight hospitalization. However, this setup imposes physical constraints and
a heavy burden on the patient. Recent studies have reported on another technique for conducting
OSAS screening based on snoring/breathing episodes (SBEs) extracted from recorded data acquired
by a noncontact microphone. However, SBEs have a high dynamic range and are barely audible
at intensities >90 dB. A method is needed to detect SBEs even in low-signal-to-noise-ratio (SNR)
environments. Therefore, we developed a method for the automatic detection of low-intensity
SBEs using an artificial neural network (ANN). However, when considering its practical use, this
method required further improvement in terms of detection accuracy and speed. To accomplish
this, we propose in this study a new method to detect low SBEs based on neural activity pattern
(NAP)-based cepstral coefficients (NAPCC) and ANN classifiers. Comparison results of the leave-
one-out cross-validation demonstrated that our proposed method is superior to previous methods
for the classification of SBEs and non-SBEs, even in low-SNR conditions (accuracy: 85.99 ± 5.69% vs.
75.64 ± 18.8%).

Keywords: obstructive sleep apnea syndrome; auditory property; polysomnography; artificial neural
network; snoring/breathing episode

1. Introduction

Obstructive sleep apnea syndrome (OSAS) is characterized by complete or incomplete
obstruction of the upper airway during sleep. The main symptoms of OSAS are light
sleep, excessive daytime sleepiness, and snoring; these are said to increase the risk of
developing serious illnesses, such as ischemic heart disease, hypertension, stroke, and
cognitive dysfunction [1]. Furthermore, it is said that 6–19% of females and 13–33% of
males have OSAS, with the prevalence rate increasing with age [2,3]. A definitive diagnosis
of OSAS is currently made using polysomnography (PSG) tests. However, this test requires
multiple measurement sensors (e.g., oral thermistor, nasal pressure cannula, chest belt)
to be worn directly on the body all night, which imposes a heavy burden on the patient.
Previous studies suggested that the discomfort of wearing multiple sensors during PSG
and restricted movements affect sleep efficiency, electrocardiographic (EEG) spectral power,
and rapid-eye movements [4–7].

Appl. Sci. 2022, 12, 2242. https://doi.org/10.3390/app12042242 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12042242
https://doi.org/10.3390/app12042242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9404-1780
https://orcid.org/0000-0001-7676-972X
https://doi.org/10.3390/app12042242
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12042242?type=check_update&version=1


Appl. Sci. 2022, 12, 2242 2 of 14

To resolve these problems, research is being conducted with the aim to establish an
OSAS screening method that is based on noncontact microphones. These studies include (i)
technological development to detect snoring/breathing episodes (SBEs) [8–13], (ii) studies
of snoring that characterize OSAS [14–18], and (iii) snoring-based OSAS screening methods
and evaluations [19–21].

In [8–13], snoring characteristics were extracted using ZCR, MFCC, and other statistical
processing from the respiratory sounds during sleep which were obtained from patients; it
was then shown that SBE sections could be classified using deep learning with accuracies
in the range of 75.1–96.8% in various environments, including noise.

In [14–18], the effectiveness of various characteristics in OSAS and non-OSAS patients
in terms of temporal, frequency, intensity, and clinical features was evaluated to characterize
OSAS-related upper airway obstruction.

In [19–21], snoring sounds obtained from noncontact microphones were segmented,
features were extracted by statistical processing and formant acoustic analysis, and machine
learning tools, such as logistic regression and AdaBoost were used to classify OSAS/non-
OSAS and sleep/waking states at sensitivities in the range of 80–90%, while doing so at a
low cost.

As shown in [22–25], it has recently been suggested that sleep–awake activity and
sleep quality could be estimated based on the analysis of respiratory sounds obtained
during sleep. These results emphasized the importance of detecting SBEs during sleep.
The automatic detection of SBEs from sleep sounds is the first step for automatic OSAS
screening based on snoring. However, SBEs have a high dynamic range and are barely
audible at intensities >90 dB. Specifically, there is a need for a method to automatically
detect low-intensity SBEs without any contact, even in a low-SNR environment.

Therefore, our research group has been developing a system that automatically detects
low-intensity SBEs from sleep sounds obtained by noncontact recording [10,12]. It has
been suggested that the automatic detection of low-intensity SBEs has a high performance
compared with other methods proposed in recent studies. However, the calculation speed
and performance must be improved further for practical use.

The purpose of our study was to develop a more efficient method to detect low-
intensity SBEs in sleep sound recordings.

Even if low-intensity SBEs are present in sleep sounds, human hearing can distinguish
them from sleep sounds by careful listening. This is because the human auditory pathway
has an innate function which is used to analyze the fine temporal characteristics of sound.
The auditory image model (AIM) [26–28], which simulates a human auditory mechanism
from an engineering perspective, was developed by Patterson in 1995 [26].

To generate a stabilized auditory image (SAI), this AIM describes a process of strobed
temporal integration which transforms the signal flow from the cochlea up the auditory
nerve to the brain. For sound event classification [1,13,29], front-end, ear-like audio analysis
has been conducted by generating features extracted from an SAI. However, the calculation
of SAI requires large computational and memory costs. Conversely, sound event detection
performed based on the peaks corresponding to glottal pulses was apparent in the neural
activity pattern (NAP) which was converted into an SAI [30–32]. Furthermore, the NAP
which produces spectral profiles from AIM were used for the communication of sound
recognition and the analysis of cochlear implant representations [33,34]. From these reports,
we hypothesize that NAP carries information on the presence or absence of sound events
even before SAI modeling.

A novel aspect of this study is that we propose the new feature, NAP-based cepstral
coefficients (NAPCC), for the automatic, accurate, and faster detection of low-intensity
SBEs in sleep sound recordings.

Based on leave-one-out cross validation of sleep sound data stored in a database, the
performance of the proposed method was investigated and compared with that of the
low-intensity SBEs detection method developed in our previous study in 2018 [10,12].
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To date, sleep–awake evaluation methods and OSAS screening methods have been
developed using SBEs obtained based on the noncontact approach [19–21]. High-intensity
SBEs can be detected by the energy-based approach; however, if low-intensity SBEs can
be detected efficiently and automatically by this study, then the presence or absence of
patient’s breathing can be estimated from the recorded data, regardless of SBE intensity.

A noncontact approach based on sleep sound analysis was developed with the objec-
tive of a cost-effective alternative approach to OSAS diagnosis. Incorporating the proposed
method in these approaches may enable more accurate OSAS screening and sleep stage
evaluations.

2. Materials and Methods
2.1. Snoring/Breathing Episodes

This study was conducted after obtaining approval from the ethics review boards of
the Division of Science and Technology, Graduate School of Technology, Industrial and
Social Sciences, Tokushima University, and Anan Kyoei Hospital. Sleep sounds were
recorded during a PSG test conducted at the Anan Kyoei Hospital. A microphone (Model
NT3, RODE, Sydney, Australia) was placed approximately 50 cm away from the patient,
and its distance could vary from 40 to 70 cm depending on the patient’s movements. Sleep
sounds were recorded using a preamplifier (Mobile pre USB, M-Audio, CA, USA), with a
sampling rate of 44.1 kHz and digital resolution of 16 bits/sample. However, in this study,
the recorded data were downsampled to 11.025 kHz at the time of analysis in consideration
of the main SBE components [35,36].

The SBEs and non-SBEs used in this study were identified by three annotators who
carefully listened to the recorded data. The SBE/non-SBE sections were finally determined
from the average values of the start and end points of the SBEs/non-SBE sections identified
by the three annotators after they carefully listened to the recordings. The degree of match-
ing of the annotations of the three annotators was calculated using Cohen’s kappa [37,38]
to guarantee the reliability of annotations. The SNRs of the SBEs included in the recorded
data were calculated from the annotation results using the following equation:

SNR = 10log10
PS − PN

PN
, (1)

Herein, PS and PN denote the SBE and noise power, respectively. In this study, the
recorded data were selected to satisfy the following conditions to evaluate the performance
of the proposed method in low-SNR conditions. Furthermore, the recorded data used
in this study included a 120 s section extracted from the 6 h sleep sound data, wherein
multiple low-intensity SBEs existed which were composed of SBE and non-SBE sections.

1. The amplitude of SBE within the 120 s interval did not change considerably across all
the recorded data

2. SBEs with low SNR were repeated in the 120 s interval of recorded data

(1) Exp-1: SBE detection of the recorded data from 25 individuals, wherein as SBEs and
non-SBEs only included silence periods and (2) Exp-2: SBE detection of recorded data from
15 individuals, wherein SBEs and non-SBEs included talking, alarm sounds, footsteps, and
fan noise which may have occurred during actual sleep. Table 1 shows the subject record
databases used in Exp-1 and Exp-2. It can be observed from Table 1 that in Exp-1, the range
of average SNR of the SBEs recorded from the OSAS (AHI > 10) and non-OSAS (AHI < 10)
subjects ranged from −8.34 ± 1.40 to 0.88 ± 3.24. In Exp-2, the range of average SNRs of
the SBEs recorded from the OSAS and non-OSAS subjects ranged from −13.84 ± 4.02 to
0.05 ± 3.22.
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Table 1. Subject record database used in Exp-1.

Exp-1 Exp-2

No. of patients 25 15
AHI 26.8 ± 22.9 24.1 ± 22.8
BMI 26.2 ± 6.2 25.5 ± 2.2
Age 56.6 ± 22.0 60.3 ± 12.3

Gender 19 males/6 females 9 males/6 females
SNR [dB] −8.34 ± 1.40~0.88 ± 3.24 −13.84 ± 4.02~−0.05 ± 3.22

Class 18 OSAS/7 non-OSAS 8 OSAS/7 non-OSAS
No. of SBEs 52.7 ± 13.2 54.1 ± 12.4

The average number of segments with SBEs/silence used in Exp-1 was 54.7 ± 13.2
and 54.1 ± 12.4, respectively. The number of segments with SBEs/non-SBEs used in Exp-2
is described in detail in Table 2. It can be observed from Table 2 that non-SBEs that are
expected to occur during actual sleep were used in the experiment.

Table 2. Number of segments with snoring/breathing episodes (SBEs)/non-SBEs used in Exp-2.

No. of Segments

SBEs 963.4 ± 290.2

Non-SBEs

Silence 502.7 ± 651.2
Music 64.3 ± 193.2
Alarm 93.3 ± 257.9
Speech 52.9 ± 172.5

Footsteps 15.7 ± 30.0
Mouth movement 2.5 ± 4.4

Duvet noise 22.0 ± 59.9
Fan 718.9 ± 785.9

Tapping 46.0 ± 71.6

2.2. Auditory Property-Based Features and Artificial Neural Network Classifiers

We describe herein a new method based on the use of auditory model-based fea-
tures wherein artificial neural network (ANN) classifiers were used to detect quickly
low-intensity SBEs in the sleep sound records. Humans can distinguish small sound events
and silence from sleep sounds. Therefore, in this study, we used the AIM of Patterson
et al. [26], which simulated the processing mechanism of the auditory system. AIM consists
of precochlear processing (PCP), basilar membrane motion (BMM), and the NAP and stabi-
lized auditory image (SAI), which is converted using strobe temporal integration modules.
However, given that (i) the calculation of SAI requires large computational and memory
costs and (ii) the information on the detection of sound event is included prior to the strobe
temporal integration processing [39], we used the PCP, BMM, and NAP modules of the
AIM. Figures 1 and 2 show the flow charts of the automatic SBE detection system proposed
in this study.
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Figure 2. Flow chart of the automatic snoring/breathing event (SBE) detection system proposed in
this study.

As shown in Figure 1, the 120 s recorded data segment first underwent preprocessing
with a bandpass filter that simulated the characteristics of the outer and middle ears at
the PCP stage of AIM (lower cutoff frequency: 1000 Hz, and upper cutoff frequency:
6000 Hz) [40]. After the recorded data passed through the PCP stage, the recorded data
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were divided in windows with widths equal to 1024 samples and a shift width equal to 1
sample. Subsequently, at the BMM stage, filtering was conducted with an auditory filter
bank that simulated the cochlear frequency analysis mechanism. In this study, we used a
gamma chirp filter bank composed of 50 channel filters between the asymptotic frequencies
of 100 Hz and 5000 Hz as an auditory filter bank. Given that the NAP stage simulates
the phase fixing characteristics when converting BMM physical information into acoustic
nerve information, the filter output obtained from the BMM stage was filtered by half-wave
rectification and a low-pass filter. The output obtained from the NAP stage was framed
with a frame size of 1024 samples and a shift size of 512 samples. Through this frame
processing, a total number of 2582 frames for the 120 s recorded data were obtained.

We applied power-law nonlinearity with an exponent of 1/15 on each NAP frame to
derive cepstral features. Furthermore, DCT which has a property of energy compaction
was also applied.

The output extracted from the DCT generally needed to be normalized before the clas-
sification process. However, there is no optimal way of normalization or formal correction,
as described in [41]. Thus, the output extracted from the DCT was normalized using mean
normalization [42] and sigmoid normalization [43], which are typically performed on the
analysis data. Herein, we compared the effect of mean normalization with that of sigmoid
normalization on the output from the DCT.

In this study, we used a new feature extraction algorithm called NAPCC that was
based on auditory processing which corresponded to the above procedure. Figure 2 shows
the structure of the new NAPCC approach that we introduce in this study.

We used an ANN based on NAPCC as a discriminator for the classification of SBE and
non-SBE sections from the recorded data.

We used multilayer perceptron (MLP)-ANN and radial basis function (RBF)-ANN as
a classifier for the classification of SBE and non-SBE sections from the recorded data. The
MLP-ANN consists of three layers: input layer, hidden layer, and output layer [44]. Herein,
the output function of the hidden layer unit was a hyperbolic tangent function, and the
transfer function of the output layer unit was a linear function. The number of units in the
hidden and output layers of the MLP-ANN were 10 and 1, respectively.

RBF-ANN is also composed of three layers: an input layer, a hidden radial basis
function layer, and an output layer. The number of units in the hidden and output layers
of the RBF-ANN were also 10 and 1, respectively. The weighted input of the RBF hidden
layer is computed by the ratio of the Euclidean distance between the weight vector and
the input vector to the spread parameter (σ) which allows the sensitivity of the radial basis
neuron. In this work, the spread parameter (σ) was set to 1. This network is known to have
strong tolerance to input noise and fast and comprehensive training and responds well to
test patterns [45,46].

The NAPCC extracted from each of the frames of the recorded data were given as
input to the input layer of both ANN. The target signals of 1 and 0 were provided to the
SBE and non-SBE sections, respectively, and to prevent overfitting, both ANN were trained
by the error back propagation method based on the Levenberg–Marquardt method with
early stopping [43,44]. The output result after learning was subjected to 4th-order median
filtering to eliminate the influences of sudden changes.

2.3. Evaluation of the Performance of the Proposed Detection Method

The effectiveness of the SBE/non-SBE classification of the proposed method was
validated by dividing the recording data of N individuals into the recording data of one
individual for test purposes and the recorded data of N-1 individuals for training purposes;
the leave-one-out cross-validation (which repeats the validation process N times so that the
recording data of each individual were selected once as test data) was used. The training
data were composed of NAPCC patterns extracted frame by frame from the recorded data
of N 1 individuals. The testing data were composed of NAPCC patterns extracted frame by
frame from the recorded data of one individual.
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Receiver operating characteristic (ROC) analysis was conducted from the output of
the ANN after learning was achieved from the training data, and the test data were used
to estimate the optimal threshold Th for use when the SBEs and non-SBEs were classified.
The optimal threshold value at this time is the threshold Th that minimizes the Euclidean
distance from the position of sensitivity of 1 and specificity of 1 on the ROC curve [47].
Based on the threshold value that was estimated in this way, the SBE/non-SBE classification
accuracies that used the test data were calculated. Specifically, the sensitivity, specificity,
PPV, NPV, accuracy, and F1 score were estimated. As this study used the leave-one-out
cross-validation method, validation was conducted N times in total, and the means and
standard deviations of the classification accuracies were calculated for a total number of N.

3. Results

Fifty dimensional features extracted from the DCT were normalized using mean or
sigmoid normalizations. In consideration of the initial value dependence of MLP-ANN,
leave-one-out cross-validation was used, and a mean F1 score was obtained. Subsequently,
the initial value of the MLP-ANN was changed, and validation was repeated 10 times; a
performance evaluation of the proposed method was then conducted based on the trial
results that maximized the F1 score.

Table 3 shows the results of the inter-annotator agreement of the three human judges
using Cohen’s kappa for our careful listening process of the sleep sound recordings. From
this table, we can confirm that our annotators achieved a kappa coefficient > 0.9, which
indicates an almost perfect agreement.

Table 3. Inter-annotator agreement computed based on Cohen’s kappa.

Annotator 2 Annotator 3

Annotator 1 0.97 0.98
Annotator 2 0.98

3.1. Normalization Used for NAPCC and Optimum Number of NAPCC

In this section, the performance of the proposed method was evaluated by changing the
number of dimensions of NAPCC presented to MLP-ANN to investigate how the number
of dimensions of NAPCC obtained based on the use of these normalization methods
influenced the automatic extraction performance of SBEs. Figure 3 shows the relationship
between the mean F1 score and the number of NAPCC dimensions when sigmoid or mean
normalizations were used in Exp-1. Figure 4 shows the respective results for Exp-2.
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It can be observed from Figure 3 that the F1 score of sigmoid normalization was
approximately 0.5% and 1% higher than that of mean normalization in Exp-1 and Exp-2,
respectively. There were no large differences in the standard deviation between the sigmoid
and the mean normalizations. Given that sigmoid normalization seems to perform better
based on the results obtained in these experiments, we employed the sigmoid normalization
in the NAPCC extraction process in this study.

According to the results associated with the use of sigmoid normalization in Figure 3,
it was confirmed that the maximum score in 13 dimensions was obtained when the mean
F1 scores in each dimension obtained based on Exp-1 and Exp-2 were multiplied. The
13-dimensional NAPCC was determined as the optimal characteristic vector used in the
proposed method in this study. In the following sections, this characteristic vector was
used for the evaluation of the performance of the proposed method and for the comparison
of the proposed method with the previous method.

Figure 4 shows (as examples) (a) 20 s of recorded data, (b) NAP output obtained by
analyzing the recorded data, (c) trained MLP-ANN output results, and (d) labeling results
by three annotators (1 for SBE sections, 0 for non-SBE sections). It can be confirmed from
these figures that the NAP output and the trained MLP-ANN output reflected even the
information of SBEs that appeared to be buried in background noise.

3.2. Evaluation of the Performance of the Proposed Method and Comparison of the Proposed
Method with Our Previous Method

We developed an SBE/non-SBE classification technique based on MLP-ANN, which
was used as a time-series classifier [12]. When this MLP-ANN was used as a subject-
independent classifier, we showed that our previous method can classify low-intensity
SBEs and low-intensity non-SBEs from sleep sounds recorded in noisy environments with
an average accuracy of 75.10%. The performance of our previous technique was compared
with that of other recent techniques. Even though we focused on the detection of low-
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intensity SBEs in sleep sounds, the classification accuracy was as good as that attained with
recent techniques. In this study, we compared the performance of the proposed method
with that of this method. For this purpose, Exp-1 and Exp-2 were performed using the
same parameters adopted in our previous work.

Tables 3 and 4 show the performance evaluation results of the proposed and the
conventional methods for Exp-1 and Exp-2, respectively. As mentioned in Section 3.1, in
consideration of the initial value dependence of MLP-ANN, leave-one-out cross-validation
was conducted 10 times, and performance evaluations of the proposed method and previ-
ous method were conducted based on trial results that maximized the F1 score.

Table 4. Performance evaluation results of the proposed and conventional methods in Exp-1.

Accuracy [%] Sensitivity [%] Specificity [%] PPV [%] NPV [%] F1 Score [%]

Proposed method 85.83 ± 7.90 81.75 ± 11.98 91.95 ± 7.72 83.81 ± 18.23 85.45 ± 14.99 80.48 ± 12.25
Previous method 82.59 ± 10.14 82.84 ± 12.91 87.86 ± 13.07 79.56 ± 22.29 85.45 ± 15.70 77.57 ± 14.48

According to Table 4, in the case of Exp-1, we found that the mean value was larger
than that of our previous method, and the standard deviation of the proposed method was
smaller than that of our previous method. As shown in Table 5, the results of Exp-2 yield
the same trend as that of Exp-1. These results clearly indicate that the performance of the
proposed method was superior to that of our previous method even in noisy environments.

Table 5. Performance evaluation results of the proposed and conventional methods in Exp-2.

Accuracy [%] Sensitivity [%] Specificity [%] PPV [%] NPV [%] F1 Score [%]

Proposed method 85.99 ± 5.69 79.64 ± 9.50 91.34 ± 7.18 82.87 ± 15.80 87.31 ± 8.63 79.81 ± 9.14
Previous method 75.64 ± 18.80 73.64 ± 17.34 81.97 ± 26.06 75.65 ± 15.80 83.81 ± 11.42 69.40 ± 15.85

Figure 5a,b shows the F1 scores of the subjects obtained via the proposed method
or our previous method in Exp-1 and Exp-2, respectively. Please note that herein, the
mean F1 score value was used after leave-one-out cross-validation was conducted 10 times.
It can be observed from these figures that the F1 score of the proposed method in each
subject exceeded the F1 score of the conventional method in most cases. In particular,
the results of Exp-2 suggest that the use of the proposed method improved the detection
performance of subjects for whom detection was difficult with the conventional method.
Exp-1 demonstrates that in most cases, the proposed method worked better than the
previous method. In particular, for the recorded data (No. 9 and 10) of subjects who
were not detected, the F1 score of the proposed method was improved by about 20–30%
compared with that of the previous method.

These findings suggest that the proposed method was more effective than the con-
ventional method even when SBEs were detected from the recorded data which contained
low-SNR non-SBEs and SBEs.

Regarding subject No. 10 in Exp-1 and subject No. 5 in Exp-2, a degradation in
performance was found compared to the results obtained from the other subjects. This
could be due to the shorter duration of low-intensity SBEs.

It was considered that in cases of practical use of this proposed method, the recorded
data used in Exp-1 and in Exp-2 would be mixed together; therefore, in subsequent experi-
ments, using two classifiers, namely, MLP-ANN and RBF-ANN, the effectiveness of the
proposed method was validated for recording datasets constructed by mixing together the
recorded data used in this study. Table 6 lists the performance outcomes of the proposed
method for the mixture of the data used in Exp-1 and Exp-2 using two classifiers, i.e.,
MLP-ANN and RBF-ANN. These results suggest that, irrespective of the type of ANN,
the proposed method can detect SBEs with higher accuracy than the conventional method,
even for mixed recorded data.
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Table 6. Performance results of the proposed method based on the different classifiers applied on a
dataset constructed by mixing data from Exp-1 and Exp-2.

Types of Classifiers Used
in the Proposed Method Accuracy [%] Sensitivity [%] Specificity [%] PPV [%] NPV [%] F1 Score [%]

MLP-ANN 86.14 ± 6.96 80.97 ± 10.58 91.96 ± 7.29 83.84 ± 16.83 86.18 ± 12.74 80.58 ± 10.72
RBF-ANN 86.08 ± 7.07 81.28 ± 10.66 91.64 ± 7.24 83.34 ± 16.81 86.29 ± 12.80 80.53 ± 10.72

4. Discussion and Conclusions

In this study, we proposed a new method that used the auditory property-based fea-
tures of NAPCC and ANN discriminators to automatically detect low-intensity SBEs from
recorded data that were acquired using a noncontact microphone. The effectiveness of the
proposed method was investigated by detecting SBEs from recorded data of 25 individuals
which comprised silence and SBEs (Exp-1) and from recorded data of 15 individuals which
included non-SBEs thought to be noise, generated in an actual environment (Exp-2). Leave-
one-out cross-validation was used to evaluate the performance in each experiment. The
results suggested that SBEs could be detected with an average accuracy of 85.83% in Exp-1
and of 85.99% in Exp-2. A comparison of performance with the MLP-ANN-based SBE
detection method proposed in our previous work [12] showed that the proposed method
was approximately 3% better in the case of Exp-1 and approximately 10% better in the case
of Exp-2. In particular, the standard deviation in both Exp-1 and Exp-2 became smaller
with the proposed method when compared with the conventional method. Hence, it is
thought that the influence of each individual subject could be reduced. Furthermore, the
large improvement in specificity and PPV suggests that the new method is useful for the
effective and automatic detection of silent or apneic sections contained in sleep sounds.

To date, gammatone frequency cepstral coefficients (GFCC) [48] and BMM-based
cepstrum coefficients [49] have been developed, but both require gammatone filter bank
outputs or mean normalization. To achieve a more accurate human auditory perception,
a DCGA filter was developed to extend the domain of the gammatone auditory filter.
This filter bank accommodates the nonlinear behavior observed in human psychophysics
and can be useful for perceptual signal processing [50]. The DCGA filter bank, which
is the front-end of NAPCC, may be more noise-robust than the gammatone filter bank.
Furthermore, the results obtained in this work showed that the noise robustness of NAPCC
was improved by using the sigmoid normalization instead of the mean normalization used
in GFCC and BMM-based cepstrum coefficients. Therefore, NAPCC which uses DCGA
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and sigmoid normalization should improve the performance of GFCC and BMM-based
cepstrum coefficients.

In particular, to detect low-intensity SBEs in the sleep sound recordings, the method
developed in our previous study in 2018 outperformed the recent techniques published up
to 2018 [12]. Since 2018, more recent technologies have been developed to classify snoring
episodes and non-snoring episodes from sleep sounds.

Lim et al. proposed a recurrent neural network (RNN)-based classification method
that was capable of classifying snoring episodes and non-snoring episodes with the use
of features obtained from the sleep data recorded with a smartphone. The RNN-based
classifiers achieved an accuracy of 98.9% using relatively small datasets [9]. However,
snoring segments used in this work were created based on the peak point of snoring signals
obtained via the peak-detection algorithm. This means that relatively high-intensity snoring
was selected for the analysis.

Jiang et al. [51] proposed an automatic snore detection method using sound maps and
a series of neural networks. The results demonstrated that the method is appropriate for
identifying snores with an accuracy in the range of 91.8–95.1%. However, in this study,
potential snoring episodes were segmented using the improved sub-band spectral entropy
method which is based on sub-band energy calculation.

Shen et al. [8] proposed the use of the MFCC feature extraction method and the LSTM
model for the binary classification of snoring data. The experimental results showed that
the developed method yielded the highest accuracy rate of 87%. However, for the analysis,
very weak snoring sounds were not labeled in the data presented on PSG used in this study.

Furthermore, a sleep sound classification method based on AIM has been proposed
for sleep sounds extracted by an energy-based approach, and it has been confirmed that
sleep sounds can be classified with high accuracy [13]. However, there is a need to use
multiple acoustic features obtained from SAI which is converted from NAP using strobed
temporal integration (STI).

This study has the following advantages. The proposed method can be conducted
with low-computational costs because it eliminates the computationally expensive STI
processing used in AIM and can be built using stages up to NAP. Additionally, it has
been confirmed that the use of the proposed method allows for the detection of low-
intensity SBEs with higher performance compared with our previous method [12], and the
computational speed was also significantly improved. Given that the performance of the
proposed method was superior to that of our previous method even in the case of Exp-2, it
is suggested that the new feature (NAPCC) proposed in this study is an acoustic feature
that is robust against noise.

However, our study has some limitations: (i) a relatively small size of the dataset,
which cannot satisfy sound variety, was used; (ii) for SBEs of short duration, the perfor-
mance of the proposed method was degraded because the output of the NAPCC corre-
sponding to the SBEs became small in the NAPCC spectrogram, which is the ordered
series of the NAPCC of each frame for the recorded data; (iii) the proposed method uses
the DCGA filter bank approach which has the highest calculation cost in the NAPCC
calculation procedure.

The proposed method is expected to contribute as a pretreatment step to OSAS screen-
ing based on snoring and respiratory sounds. It is thought to be useful for the effective and
automatic identification of respiratory sound information, particularly apneic sections and
silence, from sleep sounds acquired without contact.
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