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Abstract 

Background  This study was conducted to alleviate a common difficulty in chest X-ray image diagnosis: The atten-
tion region in a convolutional neural network (CNN) does not often match the doctor’s point of focus. The method 
presented herein, which guides the area of attention in CNN to a medically plausible region, can thereby improve 
diagnostic capabilities.

Methods  The model is based on an attention branch network, which has excellent interpretability of the classifica-
tion model. This model has an additional new operation branch that guides the attention region to the lung field and 
heart in chest X-ray images. We also used three chest X-ray image datasets (Teikyo, Tokushima, and ChestX-ray14) to 
evaluate the CNN attention area of interest in these fields. Additionally, after devising a quantitative method of evalu-
ating improvement of a CNN’s region of interest, we applied it to evaluation of the proposed model.

Results  Operation branch networks maintain or improve the area under the curve to a greater degree than conven-
tional CNNs do. Furthermore, the network better emphasizes reasonable anatomical parts in chest X-ray images.

Conclusions  The proposed network better emphasizes the reasonable anatomical parts in chest X-ray images. This 
method can enhance capabilities for image interpretation based on judgment.

Keywords  Attention mechanism, Chest X-ray images, Convolutional neural networks, Deep learning, Explainable AI

Background
In the field of analyzing clinical images such as radiologi-
cal, ophthalmic, and pathological images, a great deal of 
interest has arisen in using convolutional neural networks 
(CNN) for diagnosis assistance systems used by doctors. 
For instance, for simple screening methods for chest dis-
ease that are reliant on chest X-ray images, some studies 
have found that the diagnostic accuracy achieved using 
CNNs is equivalent to that provided by human physi-
cians [1]. Other studies examining the detection of recent 
outbreaks of the novel coronavirus disease (nCOVID-19) 
have been reported [2–6].

Generally, human users have difficulty interpreting 
CNNs, which are complex nonlinear functions. Class 
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activation mapping (CAM) was introduced to overcome 
difficulties that hinder the visualization of the region 
of interest (ROI) used for decision-making [7]. Many 
alternative methods have been proposed since CAM’s 
introduction: Grad-CAM uses gradient information [8]; 
Smooth Grad produces a sensitivity map of input images 
with Gaussian noise and then averages them [9]; addi-
tionally, LIME [10] and SHAP [11] can approximate fun-
damentally important parts of images that are used when 
making treatment decisions.

Reportedly, CNNs do not always specifically examine 
appropriate regions, even when the network achieves 
high classification accuracy. For instance, regarding 
the classification of skin lesions, a case arose in which a 
CNN learned to judge a ruler line located near a lesion as 
malignant instead of the lesion site [12]. When classifying 
pneumonia on chest X-ray images, emphasis assigned by 
the CNN to metal markers at the image corners has been 
reported [13].

Results obtained from these earlier studies underscore 
that a machine’s emphasis does not always match a doc-
tor’s attention region. Such findings are not surprising: 
earlier research efforts have not naturally incorporated 
domain knowledge into neural networks. Nevertheless, 
this important shortcoming can undermine the reli-
ability of artificial intelligence (AI) when used for clinical 
applications.

Experienced medical doctors often follow specific pat-
terns when reading medical images. For the improvement 
of medical image analysis, some studies of the incorpora-
tion of such medical knowledge into AI have been pro-
posed [14].

Using a CNN, these patterns followed by experienced 
doctors when reading can create a model that imitates 
a doctor’s techniques for making a diagnosis based on 
medical images. For example, expert doctors typically 
take a three-step approach when reading chest X-ray 
images: first viewing the entire image, concentrating 
on a local lesion, and finally combining the general and 
local information to draw inferences and make decisions 
[15]. One CNN approach, Dual-Ray Net, simultaneously 
addresses front and lateral chest X-ray images, mimick-
ing an expert doctor’s reading pattern [16]. Similarly, 
incorporating patterns that are typically used by expert 
doctors into the CNN model has improved its classifica-
tion accuracy for mammography [17] and skin lesion [18] 
images.

Experienced medical doctors also intensively exam-
ine a few specific areas when they read medical images. 
Consequently, incorporating their attention regions 
might improve disease diagnoses that are made using 
medical images. This domain knowledge can be incorpo-
rated into a CNN by the application of an attention map 

representing the observational techniques of experienced 
doctors, who devote careful attention to their work. For 
example, introducing an attention map representing the 
areas which ophthalmologists specifically examine when 
reading fundus images has raised the respective classifi-
cation accuracies for glaucoma [19] and diabetic retinop-
athy [20]. Other examples incorporating attention maps 
of medical doctors have been reported for breast cancer 
and melanoma screenings.

Experienced medical doctors devote attention to ana-
tomical priors when they read medical images. This 
domain knowledge can be incorporated by application of 
an attention map to which expert doctors devote atten-
tion when reading medical images. Anatomy X-Net has 
achieved state-of-the-art thoracic disease classification 
of chest X-ray images by incorporating a lung and heart 
mask as an attention map into its architecture [21–25], 
and also by incorporating anatomical lung priors into 
CNN. These reports have described methods of incorpo-
rating expert doctors’ pattern-reading for medical images 
as domain knowledge into CNN. Nevertheless, these 
studies did not evaluate improvement of the model’s 
focus area to emphasize medically plausible parts.

This study proposes a method for inputting medi-
cal information into a CNN as prior information. This 
method forces CNNs to examine plausible areas of inter-
est in terms of medical knowledge. Our base model is the 
attention branch network [26], which improves inter-
pretability by visualizing attention (attention map) dur-
ing training and by reflecting the attention region during 
CNN training. By guiding the attention map to make spe-
cific examinations of anatomical structures such as the 
lung field and heart, which are observed closely by doc-
tors when reading images, one can construct a CNN that 
emphasizes appropriate regions for domain knowledge.

Materials and methods
Dataset
For learning and validating the proposed method, we 
used three chest X-ray image datasets: the Teikyo data-
set, the Tokushima dataset, and the NIH14 dataset [27]. 
They are explained hereinafter.

The Teikyo dataset consists of 3032 frontal chest X-ray 
images taken at Teikyo University Hospital, includ-
ing those of 2002 normal and 1030 abnormal unique 
patients. Abnormal cases include the upright position, 
along with sitting and supine positions. This dataset was 
approved by the institutional ethics review board (Teikyo 
University Review Board 17-108-6). The need for written 
informed consent from patients was waived because the 
patient data remain anonymous.

The Tokushima dataset comprises data of 1069 
patients who underwent chest X-rays and right heart 
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catheterization at Tokushima University Hospital. This 
dataset has a chest X-ray image and two labels for each 
patient. The first label identifies the presence of pulmo-
nary hypertension according to the most recent world 
symposium standards: mean PAP > 20  mmHg [28–30]. 
The second label denotes the presence or absence of 
heart failure, defined as mean pulmonary artery wedge 
pressure higher than 18  mmHg [31–33]. The institu-
tional review board of the Tokushima University Hospi-
tal approved the study protocol (no. 3217–3). No patient 
was required to give informed consent to the study 
because the analyses used anonymous clinical data that 
were obtained after each patient had given their written 
consent.

To resize chest X-ray images to the CNN input size 
while maintaining a constant aspect ratio, a padding pro-
cess was applied to fill the image with zero values so that 
the image width and height were equal. Then the images 
were resized to 224 × 224 to fit the classification model 
input size.

The NIH14 dataset is a large chest X-ray dataset pub-
lished by the National Institute of Health Clinical Center. 
Many reports have described studies using this dataset 
to develop AI models [15, 34–38]. The NIH14 dataset 
comprises 112,120 chest X-ray images of 30,805 unique 
patients. Each radiographic image is labeled with com-
mon thorax diseases of one or more of 14 types: atelec-
tasis, cardiomegaly, consolidation, edema, effusion, 
emphysema, fibrosis, hernia, infiltration, mass, nodule 
pleural thickening, pneumonia, and pneumothorax. The 
images, which were saved in a portable network graphic 
format (1024 × 1024), were resized to 224 × 224 for input 
to the classification models.

Model architecture
An attention branch network [26], because of its superior 
interpretability of classification models, was used as the 
basis for this network study. The attention branch net-
work consists of a feature extractor, an attention branch, 
and a perception branch. The feature extractor is based 
on VGG16 [39] or ResNet50 [40]. The attention branch 
is used to create an attention map using CAM. The atten-
tion map generated by the attention branch is used to 
weigh the feature map output from the feature extrac-
tor. The perception branch outputs the feature maps, 
weighted by the attention map, as the final classification 
result for the input.

For this study, we propose a newly added operation 
branch, an operation branch network (OBN), to manip-
ulate the attention map for specific examination of ana-
tomical structures such as the lung fields and heart. This 
proposed network is presented in Fig. 1.

The attention branch is a structure for creating an 
attention map using CAM. The perception branch out-
puts the final probability of each class by receiving the 
attention and feature maps from the feature extractor. 
According to the following formula, the feature map is 
weighed by the attention map generated in the attention 
branch as

Here, X i represents the i th input image, gc(X i) 
stands for the feature map from the feature extrac-
tor, M(X i) denotes the attention map, g ′

c(X i) expresses 
the feature map weighted by the attention mechanism, 
c ∈ {1, 2, · · · ,C} is an index of the channel, and ⊙ repre-
sents the Hadamard product [41]. The convolution layer 
in this Perception branch has the same structure as those 
of the upper layers of the ResNet50 and Densenet121 
baseline models.

Operation branch
The operation branch structure has been newly added for 
this study as a guide for the attention map generated from 
the attention branch to the correct part of the image. In 
the original attention branch network, the attention map 
generated by the attention branch is determined auto-
matically during the learning process. Therefore, it might 
specifically examine regions that are inappropriate from 
the perspective of experts. For example, when used for 
chest X-ray images, the model might specifically examine 
regions outside the body that are not relevant at the time 
of diagnosis.

For this study, we introduce Lope as a new loss function 
so that the attention map will particularly examine the 
same anatomical structures which experienced doctors 
emphasize.

Here, the newly added regularization term 
Lope(X i,W i) : a Frobenius norm of the image (matrix) 
calculated using the Hadamard product of an atten-
tion map M(X i) and weight map W i . This term imposes 
a penalty if the attention map emphasizes areas outside 
the appropriate region. Because the attention map gen-
erated from the attention branch has very fine resolu-
tion (14 × 14), we resize the image to the input size of the 
classification model. Then we calculate the Hadamard 
product.

This study’s weight maps are the convex hull created by 
lung field segmentation, lung field and heart segmenta-
tion images, and images created manually by experts. A 
conceptual visualization of calculation of the Frobenius 

(1)g
′

c(X i) = (1+M(X i))⊙ gc(X i).

(2)Lope(X i,W i) = �M(X i)⊙W
2
iFro
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norm of an attention map and a weight map is presented 
in Fig. 2. Regularization parameter � is a hyperparameter. 
It was tuned using grid search, which was set as {0.1, 0.01, 
10–3}.

Operation branch network’s loss function
The loss function of the operation branch network pro-
posed for this analysis consists of the sum of losses of 

attention, perception, and operation branches. The fol-
lowing equation is the overall loss function.

In that equation, Latt(X i) and Lper(X i) respectively rep-
resent the loss of the attention branch and perception 
branch. In addition, X i denotes the i th input image.

(3)
L(X i,W i) = Latt(X i)+ Lper(X i)+ Lope(X i,W i)

Fig. 1  Operation branch network. The operation branch network includes feature extractors and an attention branch, perception branch, and 
operation branch. A chest X-ray image and a weight map showing the ROI in the image are inputs to this model

Fig. 2  Visualization of the calculation process in the operation branch. An attention map is generated from the attention branch, a weight map, 
and the Hadamard product of the attention map and the weight map. White and black areas on the weight map respectively represent one and 
zero values. The red zone shows the highest values in an attention map
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Weight map creation
Doctors specifically examine the lung field, heart, and medi-
astinum during diagnostic examinations. To incorporate the 
anatomical information of chest X-ray images into a net-
work, we created weight maps for these areas. The weight 
map has a pairing structure with the image input to the pro-
posed model. This weight map is a binary image in which 
the pixel values represent the regions the proposed model 
wants to specifically examine and those it does not want to 
emphasize.

For this study, we used the Unet segmentation model [42] 
to create the convex hull image of the lung field and the com-
bined images of the lung field and heart. Under the direction 
of an experienced doctor, we manually created weight maps 
for the Tokushima and the Teikyo datasets to include the 
heart. Figure  3 presents an example of these weight maps. 
The weight map’s black (anatomical) and white (non-ana-
tomical) areas respectively represent zero and one values.

Unet
We used Unet [42] to segment the lung and heart in chest 
X-ray images. Additionally, we used 704 chest X-ray images 
from the Montgomery County Chest X-ray database [43, 
44] as ground truth for lung field segmentation, and 247 
chest X-ray images from JSRT [45, 46] as those for the 
heart. Several lung segmentation studies using these data-
bases have been reported [47–49]. These images were 
resized to 224 × 224 to input the classification network. 
Adam (alpha = 1.0 × 10–3, beta1 = 0.9, beta2 = 0.999) was 
used for training Unet with a batch size of 16. The number 
of epochs was set as 100. Combo Loss [50], a combination 
of Binary Cross-Entropy Loss and Dice Loss, was adapted 
for use in the segmentation task.

The Dice coefficient [51]

and intersection over union (IoU) [52]

(4)2|X∩Y |
|X |+|Y |

#

(5)|X∩Y |
|X∪Y |

#

were used as evaluation indices for segmentation. Here, 
X represents the region predicted by the segmentation 
model; Y  shows the region of ground truth.

This study created mask images of the lung field and 
heart for the Teikyo, Tokushima, and NIH 14 datasets. 
For lung field and heart segmentation, we performed ten-
fold cross-validation. We also fine-tuned heart segmen-
tation with a pre-trained model of lung segmentation. 
Then, we calculated the average output of the ten trained 
model’s binarized output and created lung field and heart 
mask images for the Teikyo, Tokushima, and NIH 14 
datasets. A weight map’s anatomical and non-anatomical 
areas are respectively represented as zero and one values.

Learning
For this study, we built three operation branch networks 
based on models: Resnet50 [40] and Densenet121 [53], 
which were pre-trained on ImageNet [54]. Fine-tun-
ing was performed with those models. Adam [55] used 
the optimization algorithm. First, 100 epoch learning 
was performed, with early stopping occurring to pre-
vent overfitting when the classification accuracy for a 
validation dataset was the highest. We also used grid 
search to seek the optimal parameters for the initial 
value of the learning rate. This search space was set as 
{10–5, 10–4,10–3}. To reduce the influence of the imbal-
anced data, the inverse ratios of the number of data were 
weighted respectively to the cross-entropy loss of the 
attention branch and the perception branch. In addi-
tion, a multi-label binary cross-entropy loss was used to 
train the NIH14 dataset. Furthermore, all images were 
augmented using gamma correction, horizontal flipping, 
rotation, and pixel shift. Images enhanced using these 
techniques are presented in Fig. 4.

We built the proposed network on Reedbush-L run-
ning on a computer (Xeon CPUs; Intel Corp. and Tesla 
P100 16  GB GPU; NVIDIA Corp.) with a Pytorch (ver. 
1.5.0) deep learning framework.

Fig. 3  Examples of weight maps. A, Input image. B, Weight map with the convex hull on the mask lung field. C, Weight map combining a mask 
image of the lung field and heart. D, Weight map produced with the doctor’s support, manually masked to include the heart
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Attention index
The final output of the attention branch network is the 
output obtained by inputting the attention map weighted 
to the feature map to the perception branch. We verified 
the effects of the operation branch on the Grad-CAM 
images. For this study, we defined a new index to evaluate 
how an activation site of Grad-CAM specifically exam-
ines an appropriate part in the image.

We express the degree of attention on the pixel (i, j) 
aspi,j , the index set of the entire image as� , and the index 
set of the ROI asA . The total attention I(�) of the entire 
image can therefore be defined as shown below.

The total attention of the trained model I(A) is defined 
as

Therefore, we can define the Attention Index IA as 

This study uses this index to test our algorithm’s 
performance.

Results
Unet
First, we explain the results of segmentation learning 
of the lung field and heart using Unet to create weight 
maps showing the ROI in the chest X-ray image. Ten-fold 
cross-validation was applied for segmentation of the lung 

(6)I(�) = (i,j)∈� pi,j#

(7)I(A) =
∑

(i,j)∈A pi,j .#

(8)IA =
I(A)
I(�)

.#

field and heart. Table  1 presents the mean values and 
standard deviations of accuracy, IoU, and the Dice coef-
ficient found from ten-fold cross-validation.

Ten‑fold cross‑validation
For this study, we used three chest X-ray datasets to 
investigate the operation branch effects: the Teikyo Uni-
versity dataset, the University of Tokushima dataset, and 
the NIH14 dataset. They are used to guide the focus of 
attention.

We evaluated learning models using ten-fold cross-val-
idation for the Teikyo and the University of Tokushima 
datasets and using the hold-out method for the NIH14 
dataset. Figure  5 presents classification results obtained 
for the Teikyo dataset and pulmonary hypertension and 
heart failure dataset at the University of Tokushima. The 
bottom figures portray boxplots of the 14 disease classi-
fication results of the NIH14 dataset using the hold-out 
method. These numerical classification results are pre-
sented in Tables  2, 3 and 4. A comparison of the pro-
posed method and a state-of-the-art method with the 
NIH 14 dataset is presented in Table 5.

The AUC of the Teikyo dataset and the NIH14 dataset 
classification show almost identical values for Resnet50 
and Densenet121. Introducing the operation branch 
seemed to raise the AUC for two pulmonary hyper-
tension and heart failure classification models in the 
Tokushima dataset.

Visualization of attention maps
To assess the improvement of attention attributable to 
introduction of the operation branch in the proposed 
method, we compared attention maps generated by the 
attention branches. The attention maps of the atten-
tion branch and operation branch networks based 
on Densenet121 are presented in Fig.  6 for each data-
set. The activation maps of the models are presented 
in the figure: conventional attention branch network, 

Fig. 4  Examples of augmented images. Left, original image. Middle left, gama correction. Middle, horizontal flip. Middle right, rotation. Right, pixel 
shift

Table 1  Ten-fold cross-validation results of Unet

Accuracy [%] IoU Dice coefficient

Lung 96.78 ± 2.52 0.92 ± 0.05 0.96 ± 0.0.3

Heart 96.44 ± 3.32 0.79 ± 0.09 0.88 ± 0.06
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operation branch network using weight maps with a 
convex hull mask of the lung field, and operation branch 
network using weight maps with a lung field and heart 
mask.

Evaluation of focus areas in Grad‑CAM images
To verify effects of the operation branch on the Grad-
CAM images, we calculated the attention index for 
Grad-CAM images based on DenseNet121 in Tokushima 

Fig. 5  Box plots of learning results. Left column, ResNet50. Right column, DenseNet121. Original, original CNN. ABN, attention branch network. 
OBN1, Operation branch network using the weight map with a convex hull on mask images of the lung field. OBN2, Operation branch network 
using weight maps with combined mask images of the lung field and heart. OBN3, Operation branch network using weight maps masked manually 
to include the heart, produced using a doctor’s support
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Table 2  Teikyo dataset classification results from ten-fold cross-validation

ResNet50 and DenseNet121 are used as backbone approaches: ABN, attention branch network; OBN1, operation branch network using weight map with a convex 
hull on mask images of lung field; OBN2, operation branch network using weight maps with a combined mask image of lung field and heart; OBN3, operation branch 
network using weight maps manually masked to include the heart, produced with a doctor’s support

Backbone Model Accuracy [%] Sensitivity [%] Specificity [%] AUC​

ResNet50 Conventional 93.16 ± 1.49 89.51 ± 3.03 96.80 ± 1.19 0.97 ± 0.01

ABN 93.54 ± 1.55 91.17 ± 2.86 95.90 ± 1.43 0.97 ± 0.01

OBN1 93.62 ± 1.48 90.29 ± 3.19 96.95 ± 1.91 0.98 ± 0.01

OBN2 93.44 ± 1.81 90.78 ± 2.89 96.11 ± 2.24 0.98 ± 0.01

OBN3 93.23 ± 1.53 89.90 ± 3.23 96.55 ± 1.78 0.98 ± 0.01

DenseNet121 Conventional 93.99 ± 1.22 91.07 ± 2.29 96.90 ± 0.89 0.98 ± 0.01

ABN 93.59 ± 1.45 90.68 ± 2.05 96.50 ± 2.07 0.98 ± 0.01

OBN1 93.50 ± 1.51 90.19 ± 2.80 96.80 ± 1.20 0.98 ± 0.01

OBN2 93.64 ± 1.26 90.78 ± 3.08 96.50 ± 1.21 0.98 ± 0.01

OBN3 93.62 ± 2.03 90.19 ± 3.70 97.05 ± 1.38 0.98 ± 0.01

Table 3  Pulmonary hypertension classification results from ten-fold cross-validation

Bolded numbers indicate the highest score

ResNet50 and DenseNet121 are used as backbone approaches: ABN, attention branch network; OBN1, operation branch network using weight map with a convex 
hull on mask images of lung field; OBN2, operation branch network using weight maps with a combined mask image of lung field and heart; OBN3, operation branch 
network using weight maps manually masked to include the heart, produced with a doctor’s support

Backbone Model Accuracy [%] Sensitivity [%] Specificity [%] AUC​

ResNet50 Conventional 64.17 ± 5.89 68.56 ± 10.74 59.78 ± 11.48 0.69 ± 0.05

ABN 63.10 ± 3.65 61.03 ± 7.99 65.17 ± 7.83 0.69 ± 0.04

OBN1 63.11 ± 4.37 60.52 ± 7.86 65.70 ± 12.91 0.69 ± 0.04

OBN2 64.95 ± 4.66 64.15 ± 9.21 65.74 ± 15.01 0.70 ± 0.04
OBN3 64.53 ± 4.03 61.75 ± 9.53 67.31 ± 12.84 0.70 ± 0.04

DenseNet121 Conventional 63.66 ± 4.99 65.60 ± 6.61 61.73 ± 10.30 0.69 ± 0.05

ABN 61.54 ± 4.94 57.72 ± 9.88 65.35 ± 11.12 0.68 ± 0.06

OBN1 64.33 ± 4.55 61.77 ± 8.69 66.88 ± 8.50 0.69 ± 0.04

OBN2 64.05 ± 4.11 57.40 ± 11.06 70.69 ± 5.08 0.69 ± 0.04

OBN3 64.79 ± 3.59 58.70 ± 7.73 70.88 ± 6.52 0.70 ± 0.04

Table 4  Heart failure classification results from ten-fold cross-validation

Bolded numbers indicate the highest score

ResNet50 and DenseNet121 are used as backbone approaches: ABN, attention branch network; OBN1, operation branch network using weight map with a convex hull 
on mask images of lung field; OBN2, operation branch network using weight maps with combined mask images of the lung field and heart; OBN3, operation branch 
network using weight maps manually masked to include the heart according to the doctor’s support

Backbone Model Accuracy [%] Sensitivity [%] Specificity [%] AUC​

ResNet50 Conventional 60.26 ± 3.64 37.59 ± 15.63 82.92 ± 10.41 0.68 ± 0.03

ABN 59.20 ± 5.81 81.09 ± 17.98 67.31 ± 10.46 0.67 ± 0.06

OBN1 62.49 ± 3.90 58.75 ± 16.44 66.24 ± 13.27 0.70 ± 0.04
OBN2 64.38 ± 2.79 58.32 ± 8.62 70.44 ± 7.31 0.69 ± 0.03

OBN3 61.99 ± 3.66 54.87 ± 11.32 69.11 ± 6.24 0.68 ± 0.04

DenseNet121 Conventional 61.29 ± 5.45 39.46 ± 16.01 83.12 ± 8.54 0.70 ± 0.06

ABN 65.24 ± 5.09 61.00 ± 15.36 69.49 ± 11.55 0.70 ± 0.05

OBN1 63.79 ± 4.30 55.65 ± 17.19 71.93 ± 11.20 0.69 ± 0.03

OBN2 66.54 ± 5.21 64.40 ± 10.63 68.67 ± 5.07 0.71 ± 0.05
OBN3 63.80 ± 3.47 58.03 ± 16.14 69.57 ± 15.25 0.70 ± 0.05
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datasets (heart failure and hypertension) and Teikyo 
datasets. We present data classified as true positive in 
Figs. 7, 8 and 9. In these figures, the horizontal and verti-
cal axes respectively show values of the attention index 
in the operation branch network and in the other mod-
els. Dots to the upper left of the diagonal show that the 
operation branch raised the attention index value for the 
conventional CNN and the original attention branch net-
work. These numerical results for the Attention index of 
True positive data are presented in Table 6.

Figures  10 and 11 respectively present comparisons 
of Grad-CAM images for which the attention indexes 
were raised and reduced by introducing an operation 
branch. The left column (Attention region) shows input 
images superimposed on the attention region (red con-
vex). The center column (Conventional) shows activation 
maps of the original attention branch networks based 
on DenseNet121. The right column (Proposed) presents 
activation maps of the operation branch network based 
on DenseNet121 using weight maps that were created 

Fig. 6  Comparison of attention maps. The upper row shows the Teikyo dataset. The upper middle row shows the Tokushima dataset pulmonary 
hypertension classification. The lower middle row shows the Tokushima dataset heart failure classification. The lower row presents the NIH14 
dataset. Columns show the following: Far-left column, input images; left middle column, conventional attention branch network; right middle 
column, operation branch network using weight maps with a convex hull mask of lung field; far left column, operation branch network created 
using weight maps with a combined mask image of the lung field and heart



Page 11 of 18Tsuji et al. BMC Medical Imaging           (2023) 23:62 	

manually through collaboration with an experienced 
doctor. The attention index of the operation branch net-
work was higher than that of the attention branch net-
work for heart failure classification using the University 
of Tokushima dataset.

Discussion
Experienced doctors, when reading medical images, gen-
erally follow some patterns and specifically examine a few 
areas. This study was conducted to improve the phenom-
enon by which expert doctors’ areas of emphasis and the 

Fig. 7  Scatter plot of Attention Index for heart failure classification in the Tokushima dataset. Left column, conventional DenseNet121. Right 
column, original attention branch network. The horizontal axis shows the attention index value in the attention branch network. The vertical axis 
shows those of others: OBN1, operation branch network using weight maps with a convex hull mask of lung field; OBN2, operation branch network 
using weight maps with lung field and heart mask; OBN3, operation branch network created manually by an experienced doctor using weight 
maps
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CNN area of interest differ. Some research efforts have 
been devised to incorporate a general pattern into CNN 
as domain knowledge. Nevertheless, these studies were 
aimed at reaching the state-of-the-art for disease clas-
sification. They had not improved it using quantitative 

equalization. As described herein, we propose an opera-
tion branch network leading the network to assign atten-
tion to the lung field and heart. Addition of an operation 
branch reducing the classification accuracy presents 
difficulties. Therefore, to assess effects on classification 

Fig. 8  Scatter plot of attention index for pulmonary hypertension in the Tokushima dataset. Left column, conventional DenseNet121. Right column, 
original attention branch network. The horizontal axis shows the attention index value in the attention branch network. The vertical axis shows 
those of others: OBN1, operation branch network using weight maps with a convex hull mask of lung field; OBN2, operation branch network using 
weight maps with a combined mask of the lung field and heart; OBN3, operation branch network created manually by an experienced doctor using 
weight maps
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accuracy that would be produced by adding the operation 
branch, we first trained on three chest X-ray datasets: the 
Teikyo dataset, Tokushima dataset, and NIH14 dataset. 
Table 2 shows that the Teikyo dataset yielded classifica-
tion results (93%) and yielded nearly equivalent AUC val-
ues (0.98) for ResNet50 and DenseNet121. Furthermore, 

Table  5 presents NIH 14 dataset results obtained using 
the proposed method compared to the relevant state-of-
the-art method. This proposed method was not better 
than the state-of-the-art method for the NIH 14 dataset. 
However, for the Tokushima dataset’s pulmonary hyper-
tension (Table 3) and heart failure (Table 4) classification, 

Fig. 9  Scatter plot of attention index in Teikyo dataset. Left column, conventional DenseNet121; right column, original attention branch network. 
The horizontal axis shows the attention index value in the attention branch network. The vertical axis shows those of others: OBN1, operation 
branch network using weight maps with a convex hull mask of the lung field; OBN2, operation branch network using weight maps with a 
combined mask of the lung field and heart; OBN3, operation branch network created manually by an experienced doctor using weight maps
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Table 6  Results of attention index for true positive data

This table presents the averaged Attention index over all ten splits, with the respective calculated standard deviations for true positive data: ABN, attention branch 
network; OBN1, operation branch network using weight map with a convex hull on mask images of lung field; OBN2, operation branch network using weight maps 
with combined mask images of the lung field and heart

Dataset Backbone Conventional ABN OBN1 OBN2 OBN3

Teikyo ResNet50 0.60 ± 0.11 0.59 ± 0.11 0.56 ± 0.10 0.57 ± 0.11 0.58 ± 0.10

DenseNet121 0.63 ± 0.11 0.65 ± 0.13 0.72 ± 0.13 0.69 ± 0.13 0.72 ± 0.11

Pulmonary hypertension ResNet50 0.60 ± 0.25 0.57 ± 0.27 0.69 ± 0.23 0.70 ± 0.24 0.62 ± 0.28

DenseNet121 0.55 ± 0.15 0.65 ± 0.16 0.68 ± 0.20 0.77 ± 0.13 0.69 ± 0.16

Heart failure ResNet50 0.74 ± 0.25 0.73 ± 0.24 0.69 ± 0.25 0.78 ± 0.20 0.66 ± 0.23

DenseNet121 0.75 ± 0.21 0.56 ± 0.31 0.84 ± 0.19 0.84 ± 0.21 0.90 ± 0.09

Fig. 10  Grad-CAM images for which the attention index was raised by an operation branch. The left column (Attention region) presents input 
images, where red zones show the ROI. The center column (Conventional) shows activation maps of the original attention branch networks based 
on DenseNet121. The right column (Proposed) presents activation maps of operation branch networks based on DenseNet121 created manually by 
an experienced doctor using weight maps
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the operation branch improved AUCs of 0.01 found for 
the ResNet50 and DenseNet121 networks.

Figure  6 presents examples of attention maps clas-
sified as true positive. The attention map of the middle 
left (original attention branch network) shows anatomi-
cal structures such as the lung field, heart, mediastinum, 
and extracorporeal structures that are unrelated to the 
diagnosis. These attention maps, particularly address-
ing the outside of the body, are inappropriate for medi-
cal use. However, the attention maps specifically examine 
the inner regions of weight maps in the operation branch 
networks (middle right and far-right columns). These 
results indicate that the operation branch leads the 
attention map to the appropriate anatomical structures. 
The feature maps entered in the perception branch are 
weighted to the attention map, thereby reflecting the ana-
tomical structure.

We calculated the attention index of the Grad-CAM 
image output by the trained models for quantitative 
evaluation of the ROI. We created attention index scat-
ter plots to evaluate the degree of improvement by intro-
ducing the operation branch. Attention index plots of 
heart failure, pulmonary hypertension, and the Teikyo 

dataset are portrayed respectively in Figs.  7, 8, and 9. 
The upper left dots signify that introducing the opera-
tion branch raised the attention index in these figures. 
Next, as numerical evaluation, we explain the ratio of 
data with the improved Attention Index. This ratio is 
the percentage of the number of images for which the 
Attention Index is improved by our proposed method 
among the total number of input images. This value cor-
responds to the number of points located above and to 
the left of the diagonal of this figure, divided by the total 
number of points. The proposed methods have achieved 
56.5–94.4% for the heart failure classification depicted in 
Fig.  7 and have achieved 56.7–91.8% for the pulmonary 
hypertension classification portrayed in Fig.  8. Moreo-
ver, the proposed methods have achieved 57.5–83.1% for 
the Teikyo dataset classification presented in Fig. 9. From 
these results, we conclude that our proposed method can 
guide the model in the correct direction for medical use. 
The operation branch network guided the activated area 
in the Grad-CAM image successfully to a diagnostically 
important position. Actually, findings indicate that the 
ResNet50 results were not as effective as those obtained 
using DenseNet121.

Fig. 11  Grad-CAM images for which the attention index is decreased in the case of an operation branch. The left column (Attention region) 
presents input images, where red zones show the ROI. The center column (Conventional) shows activation maps of the original attention branch 
networks based on DenseNet121. The right column (Proposed) depicts activation maps of operation branch networks based on DenseNet121 
created manually by an experienced doctor using weight maps
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Figure 10 presents a comparison of Grad-CAM images. 
From a medical perspective, the activated region is 
expected to be the area around the heart, but the original 
attention branch network specifically emphasized areas 
below the diaphragm and outside the body. By contrast, 
the operation branch network emphasized the anatomi-
cal structures necessary for diagnoses, such as the heart 
and lung. This figure visually confirms that the operation 
branch leads the classification network to assign greater 
attention to the appropriate region than the original 
attention branch network does.

What is occurring to produce the data shown below 
the diagonal line in the scatter plot of the attention index 
(Figs. 7, 8 and 9)? A comparison of the Grad-CAM images 
is presented in Fig.  11. The activated area in the upper 
images has moved from the left ventricle (upper center) 
to the right diaphragm (upper right), whereas the lower 
image’s activated area moved from the superior vena 
cava (lower center) to the region around the heart (lower 
right). These figures suggest that decreasing the attention 
index does not mean that the attention region moves out-
side of the appropriate position in the chest X-ray image.

This method can also be applied to other modalities. For 
example, from magnetic resonance images, pneumonia, 
nodules, and tumors can be detected by particularly address-
ing the lung field. It is also possible to classify glaucoma in 
fundus images by particularly emphasizing the optic disk.

An important limitation of the proposed method is 
that the ROI cannot be guided to a valid region unless the 
segmentation model’s performance is sufficient to cre-
ate weight maps automatically. As shown in Table 1, the 
segmentation models in this study have achieved excel-
lent segmentation results when using the Montgomery 
County X-ray and JSRT datasets, but when applied to the 
other dataset, because of the influence of domain shift, 
segmentation accuracy might decrease as a result of the 
domain shift [56, 57]. This domain shift has the property 
of increasing in proportion to the distribution difference 
between the training and test datasets. Manually creating 
weight maps can prevent this shortcoming, but it is not 
practical for large-scale data. As an alternative method, 
one can apply semi-supervised learning, such as Anat-
omy X-Net [21], to create weight maps simultaneously 
and automatically with training of the classification mod-
els, using a few weight maps as ground truth. Therefore, 
such semi-supervised learning, which automatically cre-
ates weight maps, can solve the domain shift while reduc-
ing the cost of creating weight maps.

Conclusions
This study examined a method of inputting medi-
cal knowledge for areas that are observed closely by 
human physicians when reading chest X-ray images. 

The method constructs a neural network that assigns 
attention to useful and important locations for classi-
fication. This proposed model requires medical infor-
mation during training but not during inference. For 
that reason, it is highly versatile. In addition, this study 
evaluated the proposed method using a quantitative 
method to evaluate the degree of improvement in the 
attention area. The proposed method can maintain 
or improve classification accuracy, and can enhance 
capabilities for interpreting images based on later 
judgment.
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