
1J. Math. Tokushima Univ. 
Vol. 57 (2023), 1−18

Axiomatic Set Theory

By

Yoshifumi Ito

Professor Emeritus, Tokushima University
209-15 Kamifukuman Hachiman-cho

Tokushima 770-8073, JAPAN
e-mail address : itoyoshifumi@fd5.so-net.ne.jp

(Received September 30, 2023)

Abstract

In this paper, we study the new axiomatic set theory.
Here we give the new exact definition of the concept of sets and the

proof of its existence theorem by using the axiomatic method.
Thus we give the complete solution of the problem of axiomatic set

theory.
Thereby we obtain the complete solution of the problem of the foun-

dation of the mathematics.

2000 Mathematics Subject Classification. Primary, 03Exx, 03E10,
03B30.

Introduction

In this paper, we define the concept of sets and prove its existence theorem
by using the axiomatic method. As for this paper, we refer to Ito[3], Chapter
1.

We know Cantor’s paradox of the set theory. This means that we cannot
consider simply the set of all sets as a set. Therefore, we have to restrict the
method of definition of the sets. Therefore we must create the new axiomatic set
theory. Thereby, we define new concept of sets by the conditions which should
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be satisfied by all sets. We say that the necessary and sufficient conditions for
the definition of all sets is the complete system of axioms of the set theory.

Until now, as the system of axioms of the set theory, we generally use the
system of axioms of the set theory ZFC.

This is the combined axioms of Zermelo-Fraenkel’s system of axioms ZF
and the axiom of choice C. If the set theory satisfies the system of axioms ZF,
we say that it is the ZF set theory. If the set theory satisfies the system of
axioms ZFC, we say that it is the ZFC set theory.

Here, the definitions of the concepts of sets are the definition of the class of
all sets satisfying the system of axioms ZF and also the definition of the class
of all sets satisfying the system of axioms ZFC.

It is considered that we can prove the existence theorems of the concepts of
the sets by constructing a model of the ZF set theory and a model of the ZFC
set theory.

Further, in the axiomatic set theory until now, we do not distinguish clearly
the prescription of the system of axioms for the definition of the concept of sets
and the construction of a model of the concept of sets.

Recently, in order to prove the existence theorem of the class of all sets
satisfying the system of axioms ZFC, we have to add the axiom of the ordinal
numbers and the axiom of the transcendental construction.

For that purpose, in this paper, we define the set theory I and prove its
existence theorem of the set theory I by using the system of axioms I. Here
the system of axioms I is the combined system of the system of axioms ZFC
and the axiom of the ordinal numbers and the axiom of the transcendental
construction.

Further, in the expression of the system of axioms I, we prescribe the
minimum of the necessary relations among the relations for the symbols
∈, =, ∅, ∪, ∩, ⊂ etc. describing the relations and the operations of sets.

Thereby the all relations of all sets of the set theory I are derived deduc-
tively.

We prove the existence theorem of the set theory I by constricting a model.
This is the proof by using the reduction to absurdity. Thereby we prove the
consistency of the system of axioms I.

As for the axiomatic set theory, we refer to Matsumura [5], Takeuti [9] ∼
[11] and Iwanami Dictionary of Mathematics, 4th ed., [8].

Especially, as for the system of axioms ZF and the system of axioms ZFC,
we refer to Iwanami Dictionary of Mathematics, 4th ed., [8].

At last, we express my heartfelt thanks to my wife Mutuko for her cooper-
ation of making this file of the manuscript.
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1 Preparation for the terminology and the no-
tation

In this section, we give the necessary preparation for the classical logic and
the notation used in this paper.

We assume that the logic symbols

∨, ∧, ¬, →, ∀, ∃

used in the explanation of the system of axioms I of the set theory in the
following are defined in the classical logic. Especially, we prove the consistency
of the system of axioms I of the set theory I by constructing a model of the
set theory I. This is the proof by using the reduction to absurdity. We remark
that the method of proof by using the reduction to absurdity is right because
the law of excluded middle is right in the classical logic.

In the classical logic used here, ∨ denotes the logical sum, ∧ denotes the
logical product, ¬ denotes the negation and → denotes the implication. ∀ and
∃ denote the quantifiers.

Now we assume that A and B are two formulas. Then A ∨ B means “A
or B”, A ∧ B means “A and B”, ¬A means “not A” and A → B means “if A
holds, then B holds”. ∀xA is said to be a universal formula and ∃xB is said to
be an existential formula.

∀xA means “for all x, A holds”, ∃xB means “for a certain x, B holds”.
A ↔ B is defined as (A → B) ∧ (B → A).
Here we explain the notation used afterward.
We assume that a set considered in this section is a set in the set theory I.

Therefore, all letters appeared in the statements about the system of axioms I
denote the sets. The symbol x ∈ y means that x is an element of y.

We assume that A(a) denotes the proposition satisfied for a set a.
Then we denote the class of all x satisfying A(x) as {x; A(x)}.
Especially, if A(x) denotes x ̸∈ x, this means {x; x ̸∈ x}. {x; x ̸∈ x}

cannot be a set by virtue of Russell’s paradox. Therefore, in general, we say
that {x; A(x)} is a class.

Definition 1.1 Assume that a class A is A = {x; A(x)}.
Then we define that A is a set if we have

a(a = A).

Here a denotes a certain set.

Therefore, in general, we define that A is a class and not a set.
In the sequel, we say simply that a class is a set if the class is a set. Against

this, we say simply that a true class is a class.
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Then we have the proposition in the following.

Proposition 1.1 We use the notation in Definition 1.1. Then the state-
ments (1) ∼ (3) in the following are equivalent:

(1) a = A.

(2) ∀x(x ∈ a ↔ x ∈ A).

(3) ∀x(x ∈ a ↔ A(x)).

2 Definition of the concept of sets

In this section, we give the complete system of axioms I of the set theory
for the purpose of prescribing the concept of sets. The system of axioms I of
the set theory is the system of axioms which is the combined system of the
system of axioms ZFC and the axiom of the ordinal numbers and the axiom of
the transcendental construction.

Namely, the system of axioms I is the combined system of the axiom of
extensionality, the axiom of empty set, the axiom of unordered pair, the axiom
of union, the axiom of power set, the axiom of subset, the axiom of infinity,
the axiom of ordinal numbers, the axiom of image set, the axiom of regularity,
the axiom of choice and the axiom of transcendental construction.

We say that the complete system of axioms I prescribing the set theory I
is the system of accurate conditions which are satisfied by all sets appeared in
the set theory I. The system of axioms I is the complete system of axioms of
the set theory I.

In this section, we formulate the new definition of the concept of sets. In
the definition of the concept of sets, the symbol ∈ is given at the beginning.
Namely, for two sets a and A, it is determined that a ∈ A is true or false.

Further the symbols =, ∅, ∪, ∩, ⊂ etc. of the relations of sets and opera-
tions are given beforehand.

Remark 2.1 Historically, the definitions of the symbols =, ∅, ∪, ∩, ⊂
are defined concretely in the system of axioms ZF or in the system of axioms
ZFC. Really, when we prescribe the axioms, these symbols are prescribed in
the beginning and it is important that we prescribe the conditions satisfied by
these symbols and operations.

Then, we prescribe the accurate relations among the relations satisfied by
the relations or the operations of sets =, ∅, ∪, ∩, ⊂ etc., in the expression of
the system of axioms I and it is important that the all relations of sets in the
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set theory I are derived inductively from these accurate relations. If the set
theory satisfies the system of axioms I, we say that this set theory is the set
theory I.

We give the definition of the concept of sets in the set theory I in the
following Definition 2.1.

Definition 2.1 (Definition of the concept of sets) We define that
the class V is the class of all sets if the axioms (I) ∼ (XI) in the following are
satisfied.

(I) In V , the relation ∈ is defined. Namely, for arbitrary elements a and A
in V , it is determined that a ∈ A is true or false. We denote a ̸∈ A if
a ∈ A does not hold. Then A ∈ V means that A is an element of V and
we say that A is a set. If A is a set, a ∈ A means that a is an element
of A.

In the sequel, the letter other than V denotes a set. Then we have (I-1)
∼ (I-6) in the following.

(I-1) We have V ̸∈ V . Namely V is not a set and V is a true class.

(I-2) If we have A ∈ V , we have A = {a ∈ V ; a ∈ A}.
(I-3) For two elements A and B in V, A = B means that we have the

condition
(x ∈ A) ↔ (x ∈ B).

(I-4) For arbitrary elements A, B and C in V , we have (i) ∼ (iii) in
the following:

(i) We have A = A. Therefore we have A ̸∈ A.

(ii) If we have A = B, we have B = A.

(iii) If we have A = B and B = C, we have A = C.

(I-5) For three elements A, B and C in V , we have A ∈ C if we have
A ∈ B and B ∈ C.

(I-6) There exists ∅ ∈ V such that, for an arbitrary element a in V , we
have a ̸∈ ∅. We say that ∅ is the empty set.

(II) For two sets a and b, there exists a set {a, b}. Especially, we denote
{a, a} as {a}.

(III) For two elements A and B in V , three operations A ∪ B, A ∩ B and
A−B are defined. We say that A∪B is a union of A and B and A∩B
is a product set of A and B. Further we also say that A ∩ B is an
intersection of A and B. We say that A−B is a difference set which
is a subtraction of B from A. Especially, if we have B ⊂ A, we say that
A−B is a complementary set of B for A.

Then we have the statements (III-1) ∼ (III-5) in the following:
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(III-1) For three elements A, B and C in V , we have the following (i)
∼ (iv):

(i) A ∪B = B ∪A.

(ii) (A ∪B) ∪ C = A ∪ (B ∪ C).

(iii) A ∪A = A.

(iv) A ∪ ∅ = A.

(III-2) For three elements A, B and C in V , we have the following (i)
∼ (iv):

(i) A ∩B = B ∩A.

(ii) (A ∩B) ∩ C = A ∩ (B ∩ C).

(iii) A ∩A = A.

(iv) A ∩ ∅ = ∅.
(III-3) For three elements A, B and C in V , we have the following (i)

and (ii):

(i) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

(ii) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(III-4) For three elements A, B and C in V , we have the following (i)
and (ii):

(i) A ∪ (A ∩B) = A.

(ii) A ∩ (A ∪B) = A.

(III-5) For three elements A, B and C in V , we have the following (i)
and (ii):

(i) A−B = {x ∈ A; x ̸∈ B}.
(ii) A− (B ∪ C) = (A−B) ∩ (A− C).

(IV) If, for two elements A and B in V , the relation A ⊂ B is defined, we
say that A is s subset of B. Then we have the following (i) ∼ (v):

(i) We assume that we have a set A and a proposition P (x) defined for
all elements x of A, and it is determined that P (x) is true or false.

Then we assume that B = {x ∈ A; P (x)} is the set of all elements x in
A such that P (x) is true. Then we have B ⊂ A.

(ii) We have A ⊂ A. Therefore, A ⊂ A includes the equality A = A. If
we have A ⊂ B and A ̸= B, we denote this as A ⫋ B.

(iii) If we have A ⊂ B and B ⊂ A, we have A = B.

(iv) If we have A ⊂ B and B ⊂ C, we have A ⊂ C.

(v) If we have ∅ ∈ V , we have ∅ ⊂ A for an arbitrary A ∈ V .

(V) For an arbitrary element A in V , there exists a set P (A) of all subsets
of A. Then we have

P (A) = {B; B ⊂ A}.

6

We say that the set P (A) is the power set of the set A.

(VI) There exists A in V such that we have the following (i) ∼ (iii):

(i) We have ∅ ∈ A.

(ii) For x ∈ A, we have x′ = x ∪ {x} ∈ A.

(iii) We have A = {∅} ∪ {x′; x′ = x ∪ {x}, (x ∈ A)}.
Then the set A is an infinite set.

(VII) There exists the subclass On of V such that we have the following (i)
∼ (iv):

(i) For α and β in On, we define that β < α holds if we have β ∈ α.

(ii) There exists only one empty set ∅ in On.

(iii) If α ∈ On is not the empty set, α = {β; β < α} satisfies either one
of the following conditions (iii-1) or (iii-2):

(iii-1) If α includes the maximum element β, we have

α = β ∪ {β}.

(iii-2) If α does not include the maximum element, we have

α = {β; β < α} =
∪
β<α

{β}.

(iv) We have On = {∅} ∪ {α; α = {β ∈ On; β < α}}.
We define that an element of On is an ordinal number.

The set A in (VI) in the above is the set which belongs to On. This set
A is the set of all finite ordinal numbers.

(VIII) For a set A, there exists a set B such that, for an arbitrary element
x ∈ A, we can correspond y ∈ B uniquely so that we have y = f(x).

Namely, a mapping f : A → B is defined and we have

B = f(A) = {y; y = f(x), (x ∈ A)}.

(IX) If a is a nonempty set, there exists an element b in a so that a and b
does not include any common element. Namely, we have

∀a
[
(a ̸= ∅) → ∃b{(b ∈ a) ∧ (a ∩ b = ∅)}

]
.

By virtue of (IX), we see that an arbitrary set a satisfies the conditions
a ̸∈ a.
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(VIII) For a set A, there exists a set B such that, for an arbitrary element
x ∈ A, we can correspond y ∈ B uniquely so that we have y = f(x).

Namely, a mapping f : A → B is defined and we have
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(IX) If a is a nonempty set, there exists an element b in a so that a and b
does not include any common element. Namely, we have

∀a
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(a ̸= ∅) → ∃b{(b ∈ a) ∧ (a ∩ b = ∅)}

]
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By virtue of (IX), we see that an arbitrary set a satisfies the conditions
a ̸∈ a.
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(X) If X is a nonempty set, there exists a mapping f of P (X)− {∅} into X
such that it satisfies the following condition (i):

(i) If we have A ∈ P (X)− {∅}, we have f(A) ∈ A.

Here we say that the mapping f is the choice function.

(XI) For an arbitrary ordinal number α in On, there corresponds a set Vα

such that we have the following conditions (i) ∼ (iii):

(i) For the ordinal number 0, V0 is the empty set ∅.
(ii) If an ordinal number α is not 0, we have either one of the following
conditions (ii-1) or (ii-2):

(ii-1) If we have α = β ∪ {β}, we have

Vα = P (Vβ).

(ii-2) If α = {β; β < α} does not include the maximum element, we
have

Vα =
∪
β<α

Vβ .

(iii) Then we have

V =
∪
α

Vα.

3 Definition of the ordinal numbers and its ex-
istence theorem

In this section, we study the definition of the ordinal numbers and its exis-
tence theorem. As for the details, we refer to Matsumura [5], Takeuti [11], and
Japanese Society of Mathematics [8].

Here we define the ordinal numbers.

Definition 3.1 We define that the class On of all sets which satisfy the
condition (VII) in Definition 2.1 is the class of ordinal numbers. We define
that an element of On is an ordinal number.

Especially, if α satisfies the condition (iii-1) of (VII) in Definition 2.1, we
say that this α is an isolated ordinal number. We denote this as α = β+1.
If α satisfies the condition (iii-2) of (VII) in Definition 2.1, we say that α is a
limit ordinal number.

Corollary 3.1 If we have β < α for α, β ∈ On, we have β ⊂ α.
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Theorem 3.1 We define α ≤ β for α, β ∈ On if we have α = β or α < β.
Then, for α, β and γ ∈ On, we have the following (1) ∼ (4):

(1) For α and β, we have only one formula among the following (i) ∼ (iii):

(i) α < β. (ii) α = β. (iii) α > β.

(2) We have α ≤ α.

(3) If we have α ≤ β and β ≤ α, we have α = β.

(4) If we have α ≤ β and β ≤ γ, we have α ≤ γ.

By virtue of Theorem 3.1, we see that On is the totally ordered set.
We happen to say that the totally ordered set is the linearly ordered set.
Here we propose Peano’s system of axioms. Peano’s system of axioms

gives the definition of the finite ordinal numbers.

Definition 3.2 (Peano’s system of axioms) We define that the set N
of some sets is the set of finite ordinal numbers if we have the following
conditions (i) ∼ (iii):

(i) We have ∅ ∈ N .

(ii) If we have α ∈ N , we have α′ = α ∪ {α} ∈ N .

(iii) We have N = {∅} ∪ {α′;α′ = α ∪ {α}, (α ∈ N)}
(Axioms of mathematical induction).

We define that an element of N is a finite ordinal number.

The conditions of the definition 3.1 of the ordinal numbers mean that we
replace the axiom of mathematical induction in the conditions of the Definition
3.2 of the finite ordinal numbers with the axiom of transcendental induction.

By using the axiom of transcendental induction, we can prove that the
proposition A(α) concerning an ordinal number α holds for an arbitrary ordinal
number α ∈ On. In this way, we say that the method of proof by using
the axiom of transcendental induction is the principle of transcendental
induction. As the form of transcendental induction usually used, we have the
theorem in the following.

Theorem 3.2 (Method of transcendental induction) We use the
notation in Definition 3.1. We have the formula

∀α
(
∀β < αA(β) → A(α)) → ∀αA(α)

)
.

9
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Then we define a function R(α) by the method of transcendental
induction. This is the method of defining the value of the function one by one
according to the order of the ordinal numbers.

We define the function R(α) by the method of transcendental induction in
the following:

(A) We define R(∅) = ∅.

(B) For an ordinal number α, we assume that R(β) is defined for all β < α.
Then we have the definitions (B.1), (B.2) in the following:

(B.1) If α is an isolated ordinal number, we have β so that we have
α = β + 1. Then we define

R(α) = P (R(β)).

(B.2) If α is a limit ordinal number, we define

R(α) =
∪
β<α

R(β).

(C) We define R(α) for all ordinal number α according to the order of the
ordinal numbers.

By virtue of this definition, when we define R(α) one by one starting from
the ordinal number ∅, we complete the definition of the function R(α) for
all ordinal numbers by defining the value of R(α) for each ordinal number α
according to the processes (A), (B) and (C).

Thereby we can consider that the definition of the function R(α) for all
ordinal numbers α is determined uniquely.

For the functionR(α) defined in the above, we have Theorem 3.3∼ Theorem
3.5 in the following.

Theorem 3.3 We have the three formulas in the following:

(1) R(∅) = ∅.

(2) R(α+ 1) = R(α) ∪ P (R(α)).

(3) If α is a limit ordinal number, we have

R(α) =
∪
β<α

R(β).

Theorem 3.4 We have the three properties in the following:
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(1) α < β → R(α) ⊂ R(β) ∧R(α) ∈ R(β).

(2) The sets R(α) are transitive. Namely we have the condition

∀x, y
(
x ∈ y ∧ y ∈ R(α) → x ∈ R(α)

)
.

(3) a ∈ R(α), b ⊂ a → b ∈ R(α).

Theorem 3.5 We have two properties in the following:

(1) R(α+ 1) = P (R(α)).

(2) We have
∀x∃α(x ∈ R(α)).

Namely we have

V =
∪

α∈On

R(α).

Theorem 3.6 We have the formula

0 ̸= A ⊂ On → ∃α ∈ A∀β ∈ A(α ≤ β).

We say that Theorem 3.6 is the principle of transcendental induction.
We denote the minimum limit ordinal number as ω. Then α ∈ On is a

finite ordinal number if and only if we have the condition α < ω.

Theorem 3.7 The minimum limit ordinal number ω in On is the set
ω = {∅, 1, 2, · · · } of all finite ordinal numbers.

Next, we prove the existence theorem of the ordinal numbers on the basis
of the principle of transcendental induction.

Namely we prove this by constructing a model of ordinal numbers.

Theorem 3.8 (the existence theorem of the ordinal numbers) We
construct the class On whose elements are the sets so that we have the following
conditions (1) ∼ (4):

(1) For α and β in On, we define that β < α holds if β ∈ α holds.

(2) By constructing the empty set ∅, we define the empty set ∅ as 0 ∈ On.

(3) If α ∈ On is not 0, we can construct the set {β; β < α} of all ordinal
numbers β < α so that we have the following (i) or (ii):

11
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(i) If there exists the maximum element β of the set {β;β < α}, we
have

α = β + 1 = β
∪

{β}.

(ii) If there does not exist the maximum element of α, α is a limit
ordinal number and we have

α = {β; β < α} =
∪
β<α

{β}.

(4) We have the formula

On = {0} ∪ {α; α = {β ∈ On; β < α}}.

Then On is the class of all ordinal numbers. Therefore an element of On

is an ordinal number.

We see that On constructed in the above satisfies the condition (VII) of
Definition 2.1. Hence we can construct a model of ordinal numbers by using
the principle of transcendental induction.

Thereby we prove the existence of a model of ordinal numbers. Therefore
we have the existence theorem of ordinal numbers in the following.

Theorem 3.9 We use the notation in Theorem 3.8. Then we have a
model of the class of all ordinal numbers. Therefore there exists the class On

of all ordinal numbers.

Next we prove that the set N of all finite ordinal numbers satisfies Peano’s
system of axioms. Namely we have the following theorem.

Theorem 3.10 We denote the set N = {α; α < ω} of all finite ordinal
numbers as N = {0, 1, 2, · · · }. Then we have the following conditions (1) ∼
(3):

(1) We have 0 ∈ N .

(2) If we have a ∈ N , then we have a+ 1 ∈ N .

(3) We have the formula N = {0} ∪ {a+ 1 = a ∪ {a}; a ∈ N}.

Therefore the set N = {0, 1, 2, · · · } of all finite ordinal numbers satisfies
Peano’s system of axioms.

In this sense, Peano’s system of axioms gives the definition of finite ordinal
numbers. By using the set N of all finite ordinal numbers, we can construct a
model of natural numbers.

Here we define the operations of the addition and the multiplication and
the order relation by using those defined for the finite ordinal numbers.

12

4 Construction of a model of the set theory

In this section, we prove the existence theorem of the concept of sets. For
that purpose, we prove this by constructing really a model of the class V of all
sets defined in Definition 2.1.

We construct a model of the set theory I and we prove that this model
satisfies the conditions of the definition of the set theory in Definition 2.1. For
that purpose, assuming that the fundamental relation ∈ is given, we define
concretely the relations concerning the sets such as =, ∅, ∪, ∩, ⊂ etc. as the
necessary symbols and we have only to prove that the conditions in Definition
2.1 are satisfied concerning these symbols. For that purpose, we prescribe the
conditions (1) ∼ (12) in Theorem 4.1. By virtue of these prescriptions, we can
prove the formulas in the axioms of Definition 2.1 concerning these symbols
=, ∅, ∪, ∩, ⊂ etc..

For the proof of the existence theorem of the set theory I, the concept of
ordinal numbers and the axioms of transcendental induction play the funda-
mental role. As for the details, we refer to Takeuti [12] .

Therefore we have Theorem 4.1 in the following.

Theorem 4.1 (Construction of the class of all sets) A model of the
class V of all sets is constructed as the class of all sets satisfying the following
conditions (1) ∼ (12):

(1) (Axiom of extensionality) x and y are equal, namely we have x = y
if, for an arbitrary z, z ∈ x and z ∈ y are equivalent. Namely, we have

(x = y) ↔ ∀z
[
(z ∈ x) ↔ (z ∈ y)

]
.

(2) (Axiom of empty set) There exists a set which has not any element.
Namely we have

∃x∀y(¬y ∈ x).

The set considered in the condition (2) is determined uniquely by virtue
of the condition (1).

We denote this set as ∅ and we say that this is the empty set.

(3) (Axiom of unordered pair) For two arbitrary sets a and b, there
exists the set whose elements are only a and b. Namely we have

∀a∀b∃p∀u
[
(u ∈ p) ↔ (u = a) ∨ (u = b)

]
.

Definition 4.1 We say that p in the condition (3) is the unordered pair
of a and b and we denote it as {a, b}. We denote {a, a} as {a}.

13
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(4) (Axiom of union) For an arbitrary set a, there exists the union s of
all sets of a. Namely we have

∀a∃s∀u
[
(u ∈ s) ↔ ∃x{(u ∈ x) ∧ (x ∈ a)}

]
.

Definition 4.2 We say that s in the condition (4) is the sum of a and we
denote it as ∪a. 　When we have a = {A, B}, we happen to denote ∪a as
A ∪B.

Definition 4.3 When every element of x also belongs to y surely, we say
that x is a subset of y and we denote it as x ⊂ y. Namely we have

x ⊂ y ↔ ∀u
[
(u ∈ x) → (u ∈ y)

]
.

(5) (Axiom of power set) For an arbitrary set a, there exists the set t of
all subsets of a. Namely we have the formula

∀a∃t∀u
[
(u ∈ t) ↔ (u ⊂ a)

]
.

Definition 4.4 We denote the set t in the condition (5) as P (a).

(6) (Axiom of subset) For an arbitrary set a and the accurate proposition
A(x) which has the meaning for all elements x of a, there exists the set
y of all elements x of a such as A(x) is true for x. Namely we have the
formula

∀a∃y∀x
[
(x ∈ y) ↔ {(x ∈ a) ∨A(x)}

]
.

The set y in the condition (6) happen to be expressed as

y = {x ∈ a; A(x)}.

Then we say that y is a subset of a. Namely we have y ⊂ a.
By virtue of the condition (6), the set P (a) in Definition 4.4 can be expressed

as
P (a) = {u; u ⊂ a}.

Definition 4.5 (Definition of product set) We define that the prod-
uct set A ∩B of two sets A and B is the set

A ∩B = {x; x ∈ A andx ∈ B}.

We happen to say that A ∩B is the intersection of A and B.

By virtue of the condition in the above, we can prove the existence of the
product set.

Thereby we can define the concept of a mapping.
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(7) (Axiom of infinity) There exists a set A with the properties (i) and
(ii) in the following:

(i) We have ∅ ∈ A.

(ii) For x ∈ A, these exists the successor x+ of x and we have x+ ∈ A.

When we consider the set A in the condition (7) as a model of the natural
numbers, we consider the empty set as the number 0.

Next we give the axiom which prescibes the ordinal numbers.

(8) (Axiom of ordinal numbers) There exists the class On of sets as its
elements so that we have the following conditions (I) ∼ (IV):

(I) For α and β in On, we define that β < α holds if β ∈ α holds.

(II) These exists only one element in On which is called as the empty
set ∅.

(III) If α ∈ On is not the empty set ∅, α = {β; β < α} satisfies either
one of the conditions (i) or (ii) in the following:

(i) If α contains the maximum β, we have

α = β ∪ {β}.

(ii) If α does not contain the maximum, we have

α = {β; β < α} =
∪
β<α

{β}.

Here the symbol β < α means that we have the condition β ∈ α
for two sets α and β in On.

(IV) We have the formula

∀α
(
∀β < α β ∈ On → α ∈ On

)
→ ∀α α ∈ On.

The (IV) in the condition (8) is equivalent to (IV)′ in the following:

(IV)′ We have the formula

On = {∅} ∪ {α; α = {β ∈ On; β < α}}.

We say that (IV) or (IV)′ in the above is the axiom of transcendental
induction.

(9) (Axiom of Image) Assume that we have a proposition F (x, y) in-
cluding two free variables and one set A, and assume that, for every
element x of A, there exists at most one element y such that F (x, y)

15
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(u ∈ s) ↔ ∃x{(u ∈ x) ∧ (x ∈ a)}

]
.

Definition 4.2 We say that s in the condition (4) is the sum of a and we
denote it as ∪a. 　When we have a = {A, B}, we happen to denote ∪a as
A ∪B.

Definition 4.3 When every element of x also belongs to y surely, we say
that x is a subset of y and we denote it as x ⊂ y. Namely we have

x ⊂ y ↔ ∀u
[
(u ∈ x) → (u ∈ y)

]
.

(5) (Axiom of power set) For an arbitrary set a, there exists the set t of
all subsets of a. Namely we have the formula

∀a∃t∀u
[
(u ∈ t) ↔ (u ⊂ a)

]
.

Definition 4.4 We denote the set t in the condition (5) as P (a).

(6) (Axiom of subset) For an arbitrary set a and the accurate proposition
A(x) which has the meaning for all elements x of a, there exists the set
y of all elements x of a such as A(x) is true for x. Namely we have the
formula

∀a∃y∀x
[
(x ∈ y) ↔ {(x ∈ a) ∨A(x)}

]
.

The set y in the condition (6) happen to be expressed as

y = {x ∈ a; A(x)}.

Then we say that y is a subset of a. Namely we have y ⊂ a.
By virtue of the condition (6), the set P (a) in Definition 4.4 can be expressed

as
P (a) = {u; u ⊂ a}.

Definition 4.5 (Definition of product set) We define that the prod-
uct set A ∩B of two sets A and B is the set

A ∩B = {x; x ∈ A andx ∈ B}.

We happen to say that A ∩B is the intersection of A and B.

By virtue of the condition in the above, we can prove the existence of the
product set.

Thereby we can define the concept of a mapping.

14

(7) (Axiom of infinity) There exists a set A with the properties (i) and
(ii) in the following:

(i) We have ∅ ∈ A.

(ii) For x ∈ A, these exists the successor x+ of x and we have x+ ∈ A.

When we consider the set A in the condition (7) as a model of the natural
numbers, we consider the empty set as the number 0.

Next we give the axiom which prescibes the ordinal numbers.

(8) (Axiom of ordinal numbers) There exists the class On of sets as its
elements so that we have the following conditions (I) ∼ (IV):

(I) For α and β in On, we define that β < α holds if β ∈ α holds.

(II) These exists only one element in On which is called as the empty
set ∅.

(III) If α ∈ On is not the empty set ∅, α = {β; β < α} satisfies either
one of the conditions (i) or (ii) in the following:

(i) If α contains the maximum β, we have

α = β ∪ {β}.

(ii) If α does not contain the maximum, we have

α = {β; β < α} =
∪
β<α

{β}.

Here the symbol β < α means that we have the condition β ∈ α
for two sets α and β in On.

(IV) We have the formula

∀α
(
∀β < α β ∈ On → α ∈ On

)
→ ∀α α ∈ On.

The (IV) in the condition (8) is equivalent to (IV)′ in the following:

(IV)′ We have the formula

On = {∅} ∪ {α; α = {β ∈ On; β < α}}.

We say that (IV) or (IV)′ in the above is the axiom of transcendental
induction.

(9) (Axiom of Image) Assume that we have a proposition F (x, y) in-
cluding two free variables and one set A, and assume that, for every
element x of A, there exists at most one element y such that F (x, y)
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holds. Then there exists a set B of all elements y so that, for an element
x ∈ A, F (x, y) holds. Namely, we have the formula

∀x
[
(x ∈ A) → ∀u∀v{(F (x, u) ∧ F (x, v)) → (u = v)}

]

→ ∃β∀t
[
(t ∈ β) ↔ ∃x{(x ∈ A) ∧ F (x, t)}

]
.

By virtue of the condition (9), for an arbitrary x ∈ A, we can correspond
uniquely an element y ∈ B so that y = f(x) holds and the mapping f : A → B
is defined.

Then we say that B is the image of A by the mapping f . We happen to
say simply that B is the image of A by virtue of f . Then we denote this as

B = f(A).

(10) (Axiom of regularity) If a is not the empty set, there exists an
element b of a so that a and b does not include any common element.
Namely we have the formula

∀a
[
(a ̸= ∅) → ∃b{(b ∈ a) ∧ (a ∩ b = ∅)}

]
.

By using the condition (10), we can conclude that every set does not include
itself as an element. Namely every set a satisfies the condition a ̸∈ a.

(11) (Axiom of choice) If X is not the empty set, there exists a map-
ping f of P (X) − {∅} into X such that we have the condition (1) in the
following:

(1) If we have
A ∈ P (X)− {0},

we have
f(A) ∈ A.

Here we say that the mapping f is the choice function.

Next, we give the axiom of transcendental construction concerning the ex-
istence of the class V of all sets.

(12) (Axiom of transcendental construction) The set Vα corresponds
to every ordinal number α of On such that we have the following (a) ∼
(c):

(a) For the ordinal number 0, V0 is the empty set ∅.
(b) For an ordinary number α which is not 0, Vα satisfies either one

of the following (i) or (ii):
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(i) If α = β + 1 holds, we have

Vα = P (Vβ).

(ii) If α is a limit ordinal number, we have

Vα =
∪
β<α

Vβ .

(c) For the class V of all sets which satisfy the conditions (1) ∼ (11),
we have

V =
∪
α

Vα.

We happen to say that the condition (12) of Theorem 4.1 is the Axiom of
constructibility. Thereby we show the construction of a model of the sets of
the set theory I.

Therefore V is a model of the set theory I. Thereby the consistency of the
system of axioms I is proved since the existence of a model V of the set theory
I is proved. Here we have the existence theorem of the set theory I in the
following.

Theorem 4.2 (Existence theorem) The system of axioms I is consis-
tent. Therefore there exists the set theory I.

Remark 4.1 In the set theory until now, the “ordinal number” is the
“order type of the well-ordered set”.

As the premise, we need all sets and the classification of the ordered set by
using the order type.

Then it is troubled for the consideration so that we proceed the construction
of a model of the axiomatic set theory along the generation of the ordinal
numbers. Before we prove the existence of a model of the set theory, we must
prove the existence of all sets.

By virtue of my method, the “definition of the ordinal numbers and its
existence theorem” is completed in itself. It is no problem to construct a model
of the set theory by using it. In this sense, my axiomatic method is fatally
important for the solution of the problem of the foundation of mathematics.
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Abstract

We shall introduce a length of the integer solutions of linear
diophantine equations and investigate the fundamental properties
of this length. We will also give an application of this length to a
famous mathematical puzzle called three jug problem.
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1 Introduction

Probably the simplest diophantine equation may be the following linear
diophantine equation of two valuables x, y,

E(a,b;c) : ax+ by = c, where a, b, c ∈ Z.

We shall denote the integer solutions of E(a,b;c) as S(a,b;c). It is well known the
above equation has the integer solutions (x, y) if and only if GCD(a, b)|c and
all the solutions are explicitly obtained by using the Euclidean Algorithm.

Let us start an example E(5,3;38) : 5x+3y = 38. We shall explain the usual
way of writing down the integer solutions of this equation. Firstly, from the
Euclidean Algorithm, one can find the special integer solutions (x, y) = (−1, 2)
of the equation E(5,3;1). Multiplying both sides of the equation E(5,3;1) by 38,
one obtains the solutions (x, y) = (−38, 78) of the equation E(5,3;38). Then all
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