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1 Introduction

Probably the simplest diophantine equation may be the following linear
diophantine equation of two valuables x, y,

E(a,b;c) : ax+ by = c, where a, b, c ∈ Z.

We shall denote the integer solutions of E(a,b;c) as S(a,b;c). It is well known the
above equation has the integer solutions (x, y) if and only if GCD(a, b)|c and
all the solutions are explicitly obtained by using the Euclidean Algorithm.

Let us start an example E(5,3;38) : 5x+3y = 38. We shall explain the usual
way of writing down the integer solutions of this equation. Firstly, from the
Euclidean Algorithm, one can find the special integer solutions (x, y) = (−1, 2)
of the equation E(5,3;1). Multiplying both sides of the equation E(5,3;1) by 38,
one obtains the solutions (x, y) = (−38, 78) of the equation E(5,3;38). Then all
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the integer solutions S(5,3;38) of the equation E(5,3,38) are written as follows;

S(5,3;38) = {(x, y) | x = −38 + 3k, y = 78− 5k,where k ∈ Z}.

We note that this set of integer solutions S(5,3;38) is a residue class of Z2 modulo
{k(3,−5) | k ∈ Z}, where {k(3,−5) | k ∈ Z} ∼= Z. Therefore (−38, 76) is
a representative of the residue class S(5,3;38). But, taking k = 15, we can
choose another “small” representative (x, y) = (7, 1). In the next section, we
shall introduce the length of integer solutions and (7, 1) are really the smallest
integer solutions and suitable for the representative of this residue class (see
Theorem 2.6 and Remark 2.7).

2 The length of integer solutions

Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) be two vectors in Rn. Then the
following d(a,b) defines a different way of measuring the distance of Rn which
is called the Manhattan distance,

d(a, b) = |a1 − b1|+ |a2 − b2|+ · · ·+ |an − bn|.

Let us denote (0, 0, . . . , 0) ∈ Rn by 0. Now treat the linear diophantine equation

E(a1,a2,...,an;c) : a1x1 + a2x2 + · · ·+ anxn = c,where a1, a2, . . . , an, c ∈ Z.

We shall define the length L(x) of the integer solution x = (x1, x2, . . . , xn) of
the above linear diophantine equation E(a1,a2,...,an;c) by putting

L(x1, x2, . . . , xn) = d(x,0) = |x1|+ |x2|+ · · ·+ |xn|.

Remark 2.1 The Manhattan distance for the case n = 2 is named after the
grid pattern of the streets and avenues in Manhattan.

In the following, we shall restrict ourselves to the simplest case n = 2, i.e.,

E = E(a,b;c) : ax+ by = c.

Then there exist the solutions (x, y) ∈ S(a,b;c) with the length L(x, y) = |x|+ |y|
of the minimal value. We denote this minimal value min{L(x, y) | (x, y) ∈
S(a,b;c)} by LE , and call the value LE theminimal length of the integer solutions
of the linear diophantine equation E = E(a,b;c). We also call the solutions (x, y)
with the minmal length LE the minimal integer solutions.

Firstly, we shall begin the distribution of the length of integer solutions of
an example of the equation E(5,3;38).
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Tabel 1

k (x = −38 + 3k, y = 76− 5k) The length L(x, y)
...

...
...

0 (−38, 76) 114
...

...
...

k (−38 + 3k, 76− 5k) 114− 8k
...

...
...

11 (−5, 21) 26
12 (−2, 16) 18

13 (1, 11) 12
14 (4, 6) 10
15 (7, 1) 8

16 (10,−4) 14
17 (13,−9) 22
18 (16,−14) 30
...

...
...

k (−38 + 3k, 76− 5k) 8k − 114
...

...
...

Then the above length L(x, y) is classified into the following three arithmetic
progressions, which will be abbreviated to AP in the following;

{18 + 8k|k ≥ 0} AP with the initial term 18 and the common difference 8,

{8, 10, 12}, Finite AP with the common difference 2,

{14 + 8k|k ≥ 0} AP with the initial term 14 and the common difference 8.

Now we will generalize the above results to the equation E(a,b;c) : ax+ by,
where a > b > 0 and GCD(a, b) = 1 and c > 0. Then the length L(x, y) of the
integer solutions S(a,b;c) is classified into the following three classes:

Infinite AP with the common difference a+ b, for (x, y) ∈ S2 = {(x, y)|x < 0},
Finite AP with the common difference a− b, for (x, y) ∈ S0 = {(x, y)|x, y ≥ 0},
Infinite AP with the common difference a+ b, for (x, y) ∈ S1 = {(x, y)|y < 0}.

Let Li be the minimal length of the minimal integer solutions in Si, (0 ≤ i ≤ 2).
We note the case S0 = ∅ may happen. For example, any (x, y) ∈ S(a,b;1) with
a > b ≥ 2 satify xy < 0 and hence S0 = ∅ for this case.
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Theorem 2.2 Assume a > b > 0, GCD(a, b) = 1 and c > 0. Then the
minimal length LE = min(L0, L1, L2). In case S0 = ∅, LE = min(L1, L2). In
case S0 ̸= ∅, LE = min(L0, L1).

2.1 Algorithm for finding the minimal solutions 1

We shall recall the Euclidean algorithm for a > b > 0 with n steps;

a = a0b+ r1, (0 < r1 < b),
b = a1r1 + r2, (0 < r2 < r1),
r1 = a2r2 + r3, (0 < r3 < r2),

...
rn−2 = an−1rn−1 + rn, (0 < rn < rn−1),
rn−1 = anrn,
rn = d = GCD(a, b).

Put r−1 = a, and r0 = b. Then the binary recurrence sequences Xi, Yi are
defined by putting

Xi = ai−1Xi−1 +Xi−2, Yi = ai−1Yi−1 + Yi−2,

with initial terms X−1 = 1, X0 = 0 and Y−1 = 0, Y0 = 1, One obtains, by
induction,

a(−1)i−1Xi + b(−1)iYi = ri, (−1 ≤ i ≤ n).

Assume n ≥ 2, i.e., b ̸ | a. d denotes GCD(a, b). Then, from the extended
Euclidean algorithm, E(a,b;d) has the minimal integer solutions

(x, y) = ((−1)n−1Xn, (−1)nYn).

Then (−1)nXn+1 = (−1)nb, (−1)n+1Yn+1 = (−1)n+1a, and hence Xi ≤ b

2d
and Yi ≤

a

2d
. Therefore the minimal length LE satisfies

LE = Xn + Yn <
a+ b

2d
.

Since Xi + Yi < Xn + Yn for any −1 ≤ i ≤ n− 1, one can generalize this result
as follows.

Theorem 2.3 For the case c = ri (−1 ≤ i ≤ n), the minimal integer solutions
of the equation E = E(a,b;ri) : ax + by = ri and the minimal length LE are
given by

(x, y) = ((−1)i−1Xi, (−1)iYi), LE = Xi + Yi, (−1 ≤ i ≤ n).

4

2.2 Continued fraction

Let
a

b
be a reduced fraction satisfying the following n steps.

a = a0b+ r1, (0 < r1 < b)
b = a1r1 + r2, (0 < r2 < r1)
r1 = a2r2 + r3, (0 < r3 < r2)

...
rn−2 = an−1rn−1 + rn, (0 < rn < rn−1)
rn−1 = anrn
rn = 1 = GCD(a, b)

Then the continued fraction expansion of the rational number
a

b
is denoted by

a

b
= [a0; a1, a2 . . . , an].

The k−th intermediate continued fraction is defined by putting

Pk

Qk
= [a0; a1, . . . , ak].

Put P−1 = 0, P0 = 1, Q−1 = 1, Q0 = 0. The recurrence sequences Pk, Qk are
defied by putting

Pk+1 = akPk + Pk−1, Qk+1 = akQk +Qk−1, for k ≥ 0.

These recurrence sequences can be written by the use of matrices,

(
Pk+1 Pk

Qk+1 Qk

)
=

(
Pk Pk−1

Qk Qk−1

)(
ak 1
1 0

)

=

(
a0 1
1 0

)
· · ·

(
ak−1 1
1 0

)(
ak 1
1 0

)
.

Since a = Pn+1, Qn+1 = b, one gets,

(
a Pn

b Qn

)
=

(
a0 1
1 0

)
· · ·

(
an−1 1
1 0

)(
an 1
1 0

)
.

We note that Qk = Xk, Pk = Yk, where Xk, Yk are those of the extended
Euclidean algorithm for a > b.

2.3 The Frobenius coin problem

To investigate the algorithm of finding the minimal integer solutions for
larger c, we shall recall the Frobenius coin problem, which states the existence
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of the non-negative integer solutions for given linear diophantine equations. Let
{a1, a2, . . . , an} be coprime positive integers. Fron Schur’s theorem, there exists
the largest positive integer c = g(a1, a2, . . . , an) for which the linear diophan-
tine equation E(a1,a2,,...,an;c) : a1x1+a2x2+ · · ·+anxn = c has no non-negative
integer solutions x1, x2, . . . , xn. The number g(a1, a2, . . . , an) is called the
Frobenius number. From the definition of the Frobenius number, the equation
E(a1,a2,...,an;c) has non-negative integer solutions for any c > g(a1, a2, . . . , an).
Though the explicit closed form of the Frobenius number for n ≥ 3 is still an
open problem, the following case n = 2 is well known.

Theorem 2.4 (Frobenius number for the case n = 2) Let a, b be coprime
positive integers. Then the Frobenius number g(a, b) for the equation ax+by = c
is

g(a, b) = ab− a− b.

When c varies 0 ≤ c ≤ g(a, b) = (a − 1)(b − 1) − 1, there exist exactly
(a− 1)(b− 1)

2
equations E(a,b;c) with non-negative integer solutions x, y.

Remark 2.5 Last part of the above theorem is easily proved from the following
property;

E(a,b;c) has non-negative integer solutions

⇐⇒ E(a,b;g(a,b)−c) has no non-negative integer solutions.

2.4 Algorithm for finding minimal solutions 2

Assume the positive integers a, b satisfy a > b > 0 and GCD(a, b) = 1. Then
the condition for the equation E(a,b;c) : ax + by = c has non-negative integer
solutions (x, y) is the following. Consider the following linear congruence by ≡ c
(mod a). Then there exists y = y0 with 0 ≤ y0 < a. If c− by0 ≥ 0, the integer
x0 = (c − by0)/a satisfies ax0 + by0 = c with x0, y0 ≥ 0, i.e., the equation has
the non-negative integer solutions (x0, y0). Moreover (x0, y0) are the minimal
integer solutions of S0 and hence the length L(x0, y0) = x0 + y0 is L0. Then
the solutions (x0 + b, y0 − a) are the minimal solutions of S1 and the length
L(x0 + b, y0 − a) = x0 − y0 + a+ b is the minimal length L1. Thus

L0 ≤ L1 ⇐⇒ y0 ≤ a+ b

2
.

On the contrary, if c − by0 < 0, the integer x0 = (c − by0)/a satisfy ax0 +
by0 = c with x0 < 0, y0 ≥ 0, and the equation does not have non-negative
integer solutions. The length L(x0, y0) = −x0 + y0 is L2 for this case. Hence
the solutions (x0 + b, y0 − a) are the minimal solutions of S1 and the length
L(x0 + b, y0 − a) = x0 − y0 + a+ b is the minimal length L1. Thus we have

L2 ≤ L1 ⇐⇒ −x0 + y0 ≤ a+ b

2
.

6

Theorem 2.6 Under the above notations, the minimal integer solutions and
the minimal length LE are the following:

If c ≥ by0 and y0 ≤ a+ b

2
, then the minimal integer solutions are (x0, y0) and

the minimal length is LE = x0 + y0.

If c ≥ by0 and y0 >
a+ b

2
, then the minimal integer solutions are (x0+b, y0−a)

and the minimal length is LE = x0 − y0 + a− b.

If c < by0 and −x0+y0 ≤ a+ b

2
, then the minimal integer solutions are (x0, y0)

and the minimal length is LE = −x0 + y0.

If c < by0 and −x0 + y0 >
a+ b

2
, then the minimal integer solutions are

(x0 + b, y0 − a) and the minimal length is LE = x0 − y0 + a+ b.

Remark 2.7 Given a equation E(a,b;c) : ax+by = c, with a > b > 0, c > 0 and
GCD(a, b) = 1. From this theorem, one can find the minimal integer solutions
(X,Y ) and any integer solutions are written in the form (X+kb, Y −ka), k ∈ Z.
When a = 5, b = 3 and c = 37, one can verifies that (7, 1) are the minimal
integer solutions as mentioned in the firsst section.

3 Related problems

3.1 Equivalence classes of the linear diophantine equation

Let V be the set of integer vectors (a, b, c) ∈ Z3 which satisfy the condition
GCD(a, b)|c. Then (a, b, c) ∈ V is nothing but the integer solutions S(a,b;c) ̸= ∅
of the corresponding diophantine equation E(a,b;c). We denote (a1, b1, c1) ∼=
(a2, b2, c2) if there exists integers p, q, pq ̸= 0 which satisfy

p(a1, b1, c1) = q(a2, b2, c2).

Then one can see

(a1, b1, c1) ∼= (a2, b2, c2) ⇐⇒ S(a1,b1;c1) = S(a2,b2;c2).

Therefore, for any (a, b, c) ∈ V , there exists (a0, b0, c0) ∼= (a, b, c) with
GCD(a0, b0) = 1.

Let εa, εb, εc ∈ {−1, 1} and put a′ = εaa, b
′ = εbb, c

′ = εcc. The map ϕ
from E(a,b;c) to E(a′,b′;c′) is defined by putting

ϕ : (x, y) ∈ S(a,b;c) → (x′, y′) ∈ S(a′,b′;c′),

where x′ = ϕ(x) = εcεax, y
′ = ϕ(y) = εcεby. Then ϕ defines a bijection from

S(a,b;c) to S(a′,b′;c′) which preserves the length of integer solutions

L(x, y) = |x|+ |y| = |x′|+ |y′| = L(x′, y′) = L(ϕ(x), ϕ(y)),

7
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2
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Theorem 2.6 Under the above notations, the minimal integer solutions and
the minimal length LE are the following:
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2
, then the minimal integer solutions are (x0, y0) and

the minimal length is LE = x0 + y0.
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where

ax+ by = c ⇐⇒ (aεa)(εcεax) + (bεb)(εcεby) = (cεc) ⇔ a′x′ + b′y′ = c′′.

Thus, to investigate the distributions of the integer solutions of the given equa-
tion E(a,b;c), we may restrict ourselves to the case a > b > 0, c > 0 and
GCD(a, b) = 1, without loss of generality.

Remark 3.1 We denote (a, b, c) ∼ (a′, b′, c′) if there exists the above map
ϕ : E(a,b;c) → Ea′,b′,c′). There are examples (a, b, c) ̸∼ (a′, b′, c′) and (a, b, c) ̸∼=
(a′, b′, c′), but have the same set of the length of integer solutions. For exam-
ple, consider the equations E(11,3;7) and E(9,5;7). Then (11, 3, 7) ̸∼ (9, 5, 7) and
(11, 3, 7) ̸∼= (9, 5, 7), but both equations have the same set of the length of inte-
ger solutions {7, 21, 28, . . .}, i.e., AP with the initial term 7 and the common
difference 14.

3.2 Three Jug Problem

Originally, three jug problem is the following mathematical puzzle. Let a, b
are positive integers with a > b. Given three jugs, the first jug A with a pints,
the second jug B with b pints, and the third jug C with a + b pints. Make
two jugs A and C with the same amount (a + b)/2, by only completely filling
up and/or emptying vessels into others. It is known that this problem can be
solved by using the solution of the linear diophantine equation E(a,b;(a+b)/2)).

This problem is slightly modified and generalized as follows. Given two
empty buckets A and B of positive integer capacities a and b, respectively
and a well containing an inexhautible supply of water. Moreover a > b and
GCD(a, b) = 1. One is asked to obtain a fixed quantity of liquid c using only two
initially empty buckets A and B by only completely filling up and/or emptying
buckets into others and also utilizing the well. In the film “Die Hard: With a
Vengeance” (1995), this problem of the case a = 5, b = 3 and c = 4 has been
treated.

We shall explain this example using the symbol [p, q], where p represents
the amount of water in the first bucket A with the capacity 5 and q represents
the amount of water in the second bucket B with the capacity 3.

(1)
[0, 0] → [5, 0] → [2, 3] → [2, 0] → [0, 2] → [5, 2] → [4, 3]

(2)

[0, 0] → [0, 3] → [3, 0] → [3, 3] → [5, 1] → [0, 1] → [1, 0] → [1, 3] → [4, 0]

Here (1) is the procedure corresponding the integer solutions (2,−2) of E(5,3;4) :
5x+3y = 4, and (2) is the procedure corresponding the integer solutions (−1, 3)
of E(5,3;4).
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Let (x, y) be the integer solutions of E(a,b;c) : ax + by = c. N denotes the
number of times to need to amount c with the buckets a and b corresponding
to these solutios (x, y). Then N is formulated as follows.

Theorem 3.2 (modified three jug problem) Assume a > b and GCD(a, b)
= GCD(a, c) = GCD(b, c) = 1. Then, using the length of the integer solution
L(x, y) = |x|+ |y|, the number of times N is expressed by;

If 1 ≤ c < b, then N = 2L(x, y)− 2.
If b < c < a and x > 0, then N = 2L(x, y)− 2.
If b < c < a and x < 0, then N = 2L(x, y).

Assume a > b > 0 with GCD(a, b) = GCD(a, c) = GCD(b, c) = 1 as above.
Then, very roughly speaking, to determine the minimal number of times N for
the above modified three jug problem is nothing but to determine the minimal
length LE of the equation E(a,b;c). Assume the additional condition a > c > 0,
then there exists only one couple (x, y) of minimal integer solutions for the

cases c ̸= a+ b

2
from Theorem 2.5. Moreover the case c =

a+ b

2
has exactly 2

minimal integer solutions;

(x, y) =

(
−b+ 1

2
,
a+ 1

2

)
, and

(
b+ 1

2
,
−a+ 1

2

)
.

Theorem 3.3 Let a be coprime positive integers with a > b. For any c (1 ≤
c < a), the equation E(a,b;c) : ax + by = c has exactly one couple of minimal

integer solutions except for the case c =
a+ b

2
. E = E(a,b;(a+b)/2) : ax + by =

a+ b

2
has exactly two minimal integer solutions

(x, y) =

(
−b+ 1

2
,
a+ 1

2

)
, and

(
b+ 1

2
,
−a+ 1

2

)
,

where the both minimal length is LE =
a+ b

2
.

Remark 3.4 The exceptional case c =
a+ b

2
occurs only when a ≡ b ≡ 1

(mod 2).

Corollary 3.5 Consider three jug problem for the case a, b, where a and b
are coprime odd positive integers with a > b. Then the number of times N

corresponding to the solutions

(
b+ 1

2
,
−a+ 1

2

)
is a+ b− 1.

The number of times N corresponding to the solutions

(
−b+ 1

2
,
a+ 1

2

)
is

a+ b.
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where
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(11, 3, 7) ̸∼= (9, 5, 7), but both equations have the same set of the length of inte-
ger solutions {7, 21, 28, . . .}, i.e., AP with the initial term 7 and the common
difference 14.

3.2 Three Jug Problem

Originally, three jug problem is the following mathematical puzzle. Let a, b
are positive integers with a > b. Given three jugs, the first jug A with a pints,
the second jug B with b pints, and the third jug C with a + b pints. Make
two jugs A and C with the same amount (a + b)/2, by only completely filling
up and/or emptying vessels into others. It is known that this problem can be
solved by using the solution of the linear diophantine equation E(a,b;(a+b)/2)).

This problem is slightly modified and generalized as follows. Given two
empty buckets A and B of positive integer capacities a and b, respectively
and a well containing an inexhautible supply of water. Moreover a > b and
GCD(a, b) = 1. One is asked to obtain a fixed quantity of liquid c using only two
initially empty buckets A and B by only completely filling up and/or emptying
buckets into others and also utilizing the well. In the film “Die Hard: With a
Vengeance” (1995), this problem of the case a = 5, b = 3 and c = 4 has been
treated.

We shall explain this example using the symbol [p, q], where p represents
the amount of water in the first bucket A with the capacity 5 and q represents
the amount of water in the second bucket B with the capacity 3.

(1)
[0, 0] → [5, 0] → [2, 3] → [2, 0] → [0, 2] → [5, 2] → [4, 3]

(2)

[0, 0] → [0, 3] → [3, 0] → [3, 3] → [5, 1] → [0, 1] → [1, 0] → [1, 3] → [4, 0]

Here (1) is the procedure corresponding the integer solutions (2,−2) of E(5,3;4) :
5x+3y = 4, and (2) is the procedure corresponding the integer solutions (−1, 3)
of E(5,3;4).
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Let (x, y) be the integer solutions of E(a,b;c) : ax + by = c. N denotes the
number of times to need to amount c with the buckets a and b corresponding
to these solutios (x, y). Then N is formulated as follows.

Theorem 3.2 (modified three jug problem) Assume a > b and GCD(a, b)
= GCD(a, c) = GCD(b, c) = 1. Then, using the length of the integer solution
L(x, y) = |x|+ |y|, the number of times N is expressed by;

If 1 ≤ c < b, then N = 2L(x, y)− 2.
If b < c < a and x > 0, then N = 2L(x, y)− 2.
If b < c < a and x < 0, then N = 2L(x, y).

Assume a > b > 0 with GCD(a, b) = GCD(a, c) = GCD(b, c) = 1 as above.
Then, very roughly speaking, to determine the minimal number of times N for
the above modified three jug problem is nothing but to determine the minimal
length LE of the equation E(a,b;c). Assume the additional condition a > c > 0,
then there exists only one couple (x, y) of minimal integer solutions for the

cases c ̸= a+ b

2
from Theorem 2.5. Moreover the case c =
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has exactly 2

minimal integer solutions;

(x, y) =

(
−b+ 1
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a+ 1
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Theorem 3.3 Let a be coprime positive integers with a > b. For any c (1 ≤
c < a), the equation E(a,b;c) : ax + by = c has exactly one couple of minimal
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,

where the both minimal length is LE =
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Remark 3.4 The exceptional case c =
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2
occurs only when a ≡ b ≡ 1

(mod 2).

Corollary 3.5 Consider three jug problem for the case a, b, where a and b
are coprime odd positive integers with a > b. Then the number of times N
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Remark 3.6 Three jug problem is sometimes called the decanter problem,
where the liquid is wine. In Japan, Mitsuyoshi Yoshida published a book “Jink-
ouki” in 1627. In this book he treated three jug problem of the case [a, b] = [7, 3],
where the liquid is oil.

3.3 Examples of minimal integer solutions

In this section, we shall treat the special class of equations E(a,b;c). Let Fn

and Ln be n-th Fibonacci and Lucas numbers, respectively. Fibonacci numbers
Fn and Lucas numbers Ln are defined by putting,

Fn+1 = Fn + Fn−1, and Ln+1 = Ln + Ln−1,

with inital terms F0 = 0, F1 = 1 and L0 = 2, L1 = 1. For the sake of readers,
we shall list Fibonacci numbers and Lucas numbers for small indices n.

n −1 0 1 2 3 4 5 6 7 8 9 10 11 12
Fn 1 0 1 1 2 3 5 8 13 21 34 55 89 144
Ln −1 2 1 3 4 7 11 18 29 47 76 123 199 322

Here we will give the minimal solutions of the following equations for small c.

Fn+1x+ Fny = c, and Ln+1x+ Lny = c,where 1 ≤ c ≤ 5.

The following well known formula is called Cassini’s identity, which played the
key role in our old paper [3].

Fn+1Fn−1 − F 2
n = (−1)n, i.e.,

∣∣∣∣
Fn+1 Fn

Fn Fn−1

∣∣∣∣ = (−1)n.

Thus one obtains
∣∣∣∣
Fn+1 Fn

Fn Fn−1

∣∣∣∣ =
∣∣∣∣
Fn+1 Fn − Fn+1

Fn Fn−1 − Fn

∣∣∣∣ =
∣∣∣∣
Fn+1 −Fn−1

Fn −Fn−2

∣∣∣∣ = −
∣∣∣∣
Fn+1 Fn−1

Fn Fn−2

∣∣∣∣ .

Hence we have shown the equation E(Fn+1,Fn,1) : Fn+1x+Fny = 1 have integer
solutions (x, y) = ((−1)n−1Fn−2, (−1)nFn−1). Actually these solutions are the
minimal integer solutions and the minimal length is LE = Fn(= Fn−1+Fn−2).
Hence we have shown the following result.

(3.1) The equation E(Fn+1,Fn;1)

Minimal integer solutions are (x, y) = ((−1)n−1Fn−2, (−1)nFn−1). The mini-
mal length is LE = Fn.
Similarly, one can easily verify the following examples.
(3.2) The equation E(Fn+1,Fn;2)

Minimal integer solutions are x = (−1)nFn−3, y = (−1)n−1Fn−2. The minimal
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length is LE = Fn−1.
(3.3) The equation E(Fn+1,Fn;3)

Minimal integer solutions are x = (−1)n−1Fn−4, y = (−1)nFn−3. The minimal
length is LE = Fn−2.
(3.4) The equation E(Fn+1,Fn;4)

Minimal integer solutions are x = (−1)n2Fn−3, y = (−1)n−12Fn−2, The mini-
mal length is LE = 2Fn−1.
(3.5) The equation E(Fn+1,Fn,;5)

Minimal integer solutions are x = (−1)nFn−5, y = (−1)n−1Fn−4. The minimal
length is LE = Fn−3.
(3.6) The equation E(Ln+1,Ln;1)

Minimal integer solutions are x = (−1)nFn−1, y = (−1)n+1Fn. The minimal
length is LE = Fn+1.
(3.7) The equation E(Ln+1,Ln;2)

Minimal integer solutions are x = (−1)n+1Fn, y = (−1)nFn+1. The minimal
length is LE = Fn+2.
(3.8) The equation E(Ln+1,Ln;3)

Minimal integer solutions are x = (−1)n−1Fn−2, y = (−1)nFn−1. The minimal
length is LE = Fn.
(3.9) The equation E(Ln+1,Ln;4)

Minimal integer solutionsa re x = (−1)nFn−3, y = (−1)n−1Fn−2. The minimal
length is LE = Fn−1.
(3.10) The equation E(Ln+1,Ln;5)

Minimal integer solutions are x = (−1)nLn−2, y = (−1)n−1Ln−1. The minimal
length is LE = Ln.
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Remark 3.6 Three jug problem is sometimes called the decanter problem,
where the liquid is wine. In Japan, Mitsuyoshi Yoshida published a book “Jink-
ouki” in 1627. In this book he treated three jug problem of the case [a, b] = [7, 3],
where the liquid is oil.

3.3 Examples of minimal integer solutions

In this section, we shall treat the special class of equations E(a,b;c). Let Fn

and Ln be n-th Fibonacci and Lucas numbers, respectively. Fibonacci numbers
Fn and Lucas numbers Ln are defined by putting,

Fn+1 = Fn + Fn−1, and Ln+1 = Ln + Ln−1,

with inital terms F0 = 0, F1 = 1 and L0 = 2, L1 = 1. For the sake of readers,
we shall list Fibonacci numbers and Lucas numbers for small indices n.

n −1 0 1 2 3 4 5 6 7 8 9 10 11 12
Fn 1 0 1 1 2 3 5 8 13 21 34 55 89 144
Ln −1 2 1 3 4 7 11 18 29 47 76 123 199 322

Here we will give the minimal solutions of the following equations for small c.

Fn+1x+ Fny = c, and Ln+1x+ Lny = c,where 1 ≤ c ≤ 5.

The following well known formula is called Cassini’s identity, which played the
key role in our old paper [3].

Fn+1Fn−1 − F 2
n = (−1)n, i.e.,

∣∣∣∣
Fn+1 Fn

Fn Fn−1

∣∣∣∣ = (−1)n.

Thus one obtains
∣∣∣∣
Fn+1 Fn

Fn Fn−1

∣∣∣∣ =
∣∣∣∣
Fn+1 Fn − Fn+1

Fn Fn−1 − Fn

∣∣∣∣ =
∣∣∣∣
Fn+1 −Fn−1

Fn −Fn−2

∣∣∣∣ = −
∣∣∣∣
Fn+1 Fn−1

Fn Fn−2

∣∣∣∣ .

Hence we have shown the equation E(Fn+1,Fn,1) : Fn+1x+Fny = 1 have integer
solutions (x, y) = ((−1)n−1Fn−2, (−1)nFn−1). Actually these solutions are the
minimal integer solutions and the minimal length is LE = Fn(= Fn−1+Fn−2).
Hence we have shown the following result.

(3.1) The equation E(Fn+1,Fn;1)

Minimal integer solutions are (x, y) = ((−1)n−1Fn−2, (−1)nFn−1). The mini-
mal length is LE = Fn.
Similarly, one can easily verify the following examples.
(3.2) The equation E(Fn+1,Fn;2)

Minimal integer solutions are x = (−1)nFn−3, y = (−1)n−1Fn−2. The minimal

10

length is LE = Fn−1.
(3.3) The equation E(Fn+1,Fn;3)

Minimal integer solutions are x = (−1)n−1Fn−4, y = (−1)nFn−3. The minimal
length is LE = Fn−2.
(3.4) The equation E(Fn+1,Fn;4)

Minimal integer solutions are x = (−1)n2Fn−3, y = (−1)n−12Fn−2, The mini-
mal length is LE = 2Fn−1.
(3.5) The equation E(Fn+1,Fn,;5)

Minimal integer solutions are x = (−1)nFn−5, y = (−1)n−1Fn−4. The minimal
length is LE = Fn−3.
(3.6) The equation E(Ln+1,Ln;1)

Minimal integer solutions are x = (−1)nFn−1, y = (−1)n+1Fn. The minimal
length is LE = Fn+1.
(3.7) The equation E(Ln+1,Ln;2)

Minimal integer solutions are x = (−1)n+1Fn, y = (−1)nFn+1. The minimal
length is LE = Fn+2.
(3.8) The equation E(Ln+1,Ln;3)

Minimal integer solutions are x = (−1)n−1Fn−2, y = (−1)nFn−1. The minimal
length is LE = Fn.
(3.9) The equation E(Ln+1,Ln;4)

Minimal integer solutionsa re x = (−1)nFn−3, y = (−1)n−1Fn−2. The minimal
length is LE = Fn−1.
(3.10) The equation E(Ln+1,Ln;5)

Minimal integer solutions are x = (−1)nLn−2, y = (−1)n−1Ln−1. The minimal
length is LE = Ln.

References
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