On effective divisors on certain double covers and their linearly equivalent classes

Taketo Shirane* and Akihito Sumitomo
Department of Mathematical Sciences, Tokushima University, Tokushima 770-8502, JAPAN

(Received October 6, 2023)

Abstract

Let $B \subset \mathbb{P}^{2}$ be a plane curve with even degree on the complex projective plane \mathbb{P}^{2}, and let $\phi: X \rightarrow \mathbb{P}^{2}$ be the double cover branched along B. In this paper, we compute ideals of certain divisors on X for certain smooth curves B of degree ≤ 4 without using rationality of X.

2010 Mathematics Subject Classification. 14E20, 14J26.

1 Introduction

For two plane curves $\mathcal{C}_{1}, \mathcal{C}_{2} \subset \mathbb{P}^{2}$, we say that \mathcal{C}_{1} and \mathcal{C}_{2} have the same embedded topology if there is a homeomorphism $h: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$. Let $\mathcal{C}_{i}=$ $C_{i, 1}+\cdots+C_{i, n_{i}}$ be the irreducible decomposition of a plane curve $\mathcal{C}_{i} \subset \mathbb{P}^{2}$ for each $i=1,2$. In the case where \mathcal{C}_{1} and \mathcal{C}_{2} have the same embedded topology, it is known that the following conditions hold:

[^0](i) $n_{1}=n_{2}=: n$,
(ii) after relabeling $C_{2,1}, \ldots, C_{2, n}$ if necessary, the followings are satisfied:
(a) $h\left(C_{1, i}\right)=C_{2, i}$ for each $i=1, \ldots, n$,
(b) $\operatorname{deg} C_{1, i}=\operatorname{deg} C_{2, i}$ for each $i=1, \ldots, n$,
(c) the numbers and the topological types of singularities of $C_{1, i}$ are same with $C_{2, i}$ for each $i=1, \ldots, n$.
(d) intersections of $C_{1,1}, \ldots, C_{1, n}$ are topologically same with those of $C_{2,1}, \ldots, C_{2, n}$.

One of problems on plane curves is to distinguish the embedded topology of two plane curves $\mathcal{C}_{1}, \mathcal{C}_{2} \subset \mathbb{P}^{2}$ satisfying the above conditions. The following theorem is used for this problem effectively.

Theorem 1.1 (cf. [4, Corollary 1.4]). For each $i=1,2$, let $\mathcal{C}_{i} \subset \mathbb{P}^{2}$ be a plane curve consists of two irreducible components $B_{i}, C_{i} \subset \mathbb{P}^{2}$ with $\operatorname{deg} B_{i}=2 \ell$ for $\ell \in \mathbb{Z}_{>0}$. Let $\phi_{i}: X_{i} \rightarrow \mathbb{P}^{2}$ be the double cover branched along B_{i} for each $i=1,2$. If there is a homeomorphism $h: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ with $h\left(B_{1}\right)=B_{2}$ and $h\left(C_{1}\right)=C_{2}$, then $s_{\phi_{1}}\left(C_{1}\right)=s_{\phi_{2}}\left(C_{2}\right)$, where $s_{\phi_{i}}\left(C_{i}\right)$ is the number of irreducible components of $\phi_{i}^{*} C_{i}$.

With the same notation of Theorem 1.1, if $\operatorname{deg} C_{1}=\operatorname{deg} C_{2} \neq 2 \ell$, and there is a homeomorphism $h: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ with $h\left(\mathcal{C}_{1}\right)=\mathcal{C}_{2}$, then $h\left(B_{1}\right)=B_{2}$ and $h\left(C_{1}\right)=C_{2}$, and hence $s_{\phi_{1}}\left(C_{1}\right)=s_{\phi_{2}}\left(C_{2}\right)$.

Let $\phi: X \rightarrow \mathbb{P}^{2}$ be a double cover branched along $B \subset \mathbb{P}^{2}$. The number $s_{\phi}(C)$ is called the splitting number of C with respect to ϕ. In the case of $\operatorname{deg} B \neq \operatorname{deg} C$, Theorem 1.1 implies that the irreducibility of $\phi^{*} C$ is an invariant of embedded topology of $\mathcal{C}=B+C$. A criterion [4, Theorem 2.7] for irreducibility of $\phi^{*} C$ is given if C is smooth (cf. [2]). On the other hand, if C_{i} is singular, then such criterion is not known except for few cases (cf. [1]). In this paper, we consider an approach for the irreducibility of $\phi^{*} C$ by computing curves on the double cover X. Namely, we consider the following problem.

Problem 1.2. Let $B \subset \mathbb{P}^{2}$ be a plane curve of degree 2ℓ, and let $\phi: X \rightarrow \mathbb{P}^{2}$ be the double cover branched along B.
(i) Compute generators and relations of the divisor class group $\mathrm{Cl}(X)$.
(ii) For each curve $\bar{C} \subset X$, compute curves on X linearly equivalent to \bar{C}.
(iii) For each class $[\bar{C}] \in \mathrm{Cl}(X)$, give geometric characters (e.g. the arrangement of singularities) of the image $\phi(\bar{C})$.

If B is smooth with $\operatorname{deg} B=2,4$, then X is a rational surface, and $\mathrm{Cl}(X)=\operatorname{Pic}(X)$ is well known. On the other hand, it seems difficult to compute $\mathrm{Cl}(X)$ from data of B if $\operatorname{deg} B \geq 6$ in general. The aim of this paper is to compute curves on X linearly equivalent to certain curves $\bar{C} \subset X$ for $\operatorname{deg} B=2,4$ without using rationality of X.

Let $B \subset \mathbb{P}^{2}$ be a plane curve of degree 2ℓ, and let $F \in \mathbb{C}[x, y, z]$ be a defining polynomial of B. Let $\phi: X \rightarrow \mathbb{P}^{2}$ be the double cover branched along B. Then X can be regarded as the sub-variety in $\mathbb{P}(1,1,1, \ell)$ defined by $w^{2}-F=0$, where $\mathbb{P}(1,1,1, \ell)$ is the weighted projective space with weight $(1,1,1, \ell)$, and $[x: y: z: w]$ is a system of coordinates with $\operatorname{deg} x=\operatorname{deg} y=$ $\operatorname{deg} z=1$ and $\operatorname{deg} w=\ell$. Let R_{X} be the homogeneous coordinate ring $\mathbb{C}[x, y, z, w] /\left\langle w^{2}-F\right\rangle$ of X :

$$
X=\mathbb{V}\left(w^{2}-F\right) \subset \mathbb{P}(1,1,1, \ell), \quad R_{X}:=\mathbb{C}[x, y, z, w] /\left\langle w^{2}-F\right\rangle
$$

By abuse of notation, let f denote the class $[f]$ in R_{X} containing $f \in$ $\mathbb{C}[x, y, z, w]$. For $d \in \mathbb{Z}_{\geq 0}$, let

$$
\left(R_{X}\right)_{d} \subset R_{X}
$$

denote the vector space over \mathbb{C} generated by homogeneous elements of degree d. A prime (Weil) divisor $E \subset X$ defines a valuation $v_{E}: Q\left(R_{X}\right) \rightarrow \mathbb{Z} \cup\{\infty\}$ at E with $v_{E}(0):=\infty$ since R_{X} is normal (cf. [3, §9]), where $Q\left(R_{X}\right)$ is the quotient field of R_{X}. For an effective divisor $D=\sum_{E} n_{E} E$ on X, let $\mathbb{I}_{X}(D)$ be the ideal of R_{X} generated by homogeneous elements f such that $v_{E}(f) \geq n_{E}$ for any prime divisors E :

$$
\left.\mathbb{I}_{X}(D):=\langle f: \text { homog. }| v_{E}(f) \geq n_{E} \text { for }{ }^{\forall} E \subset X: \text { prime }\right\rangle \subset R_{X} .
$$

The main theorem of this paper is as follows.
The case of $\operatorname{deg} B=2$. Put $F:=z^{2}+x y \in \mathbb{C}[x, y, z]$, and let $B \subset \mathbb{P}^{2}$ be the plane curve defined by $F=0$. Let $\phi: X \rightarrow \mathbb{P}^{2}$ be the double cover branched along B. Then X is the sub-variety of \mathbb{P}^{3} defined by $w^{2}-F=0$. Let $E^{ \pm} \subset X$ be the curves defined by $w \pm z=x=0$, respectively. Note that $E^{ \pm}$are prime divisors on X.

Proposition 1.3. Let $m, n \in \mathbb{Z}_{\geq 0}$. The following equation holds:

$$
\mathbb{I}_{X}\left(n E^{+}+m E^{-}\right)= \begin{cases}\left\langle x^{n-i}(w+z)^{i} \mid i=0, \ldots, n-m\right\rangle & \text { if } n \geq m \\ \left\langle x^{m-i}(w-z)^{i} \mid i=0, \ldots, m-n\right\rangle & \text { if } n \leq m\end{cases}
$$

Theorem 1.4. Let $m, n \in \mathbb{Z}_{\geq 0}$, and put $M_{\min }:=\min (m, n)$. If an effective divisor D on X is linearly equivalent to $n E^{+}+m E^{-}$, then there exist $h_{0}, \ldots, h_{|n-m|} \in\left(R_{X}\right)_{M_{\min }}$ such that

$$
\left.\mathbb{I}_{X}(D)=\left\langle\sum_{j=0}^{|n-m|} h_{j} x^{n-m-i-j}(w+z)^{i}(w-z)^{j}\right| i=0, \ldots,|n-m|\right\rangle
$$

An example of $\operatorname{deg} B=4$. Let $F:=x^{4}+y^{4}-z^{4} \in \mathbb{C}[x, y, z]$, and let $B \subset \mathbb{P}^{2}$ be the quartic curve defined by $F=0$. Let $\phi: X \rightarrow \mathbb{P}^{2}$ be the double cover branched along B. Let E_{1} and E_{2} be two prime divisors on X defined by the following equations:

$$
E_{1}: y-z=w+x^{2}=0, \quad E_{2}: x-z=w+y^{2}=0
$$

Put $\mathbb{I}_{n, m}^{(4)}:=n E_{1}+m E_{2}$. We obtain the following results.
Proposition 1.5. Let $m, n \in \mathbb{Z}_{\geq 0}$, and put $t_{1}:=y-z, t_{2}:=x-z, t_{3}:=$ $w+x^{2}+y^{2}-z^{2}$ in R_{X}. Then the following equation holds:
$\mathbb{I}_{n, m}^{(4)}= \begin{cases}\left\langle t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i}, t_{1}^{n-j} t_{3}^{j} \mid i=0, \ldots, m, j=m+1, \ldots, n\right\rangle & \text { if } n \geq m, \\ \left\langle t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i}, t_{2}^{m-j} t_{3}^{j} \mid i=0, \ldots, n, j=n+1, \ldots, m\right\rangle & \text { if } n \leq m .\end{cases}$
Theorem 1.6. Let $m, n \in \mathbb{Z}_{\geq 0}$ and $t_{1}, t_{2}, t_{3} \in R_{X}$ be as Proposition 1.5. Let $M_{\text {min }}:=\min (m, n)$ and $M_{\max }:=\max (m, n)$. Put

$$
\begin{aligned}
& A_{i, j}:=t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i-j}(x+z)^{j}(y+z)^{j} \quad \text { for } 0 \leq i \leq M_{\min } \text { and } 0 \leq j \leq i, \\
& B_{i, j}:=t_{1}^{n-j} t_{2}^{m-j}\left(2 w-t_{3}\right)^{j-i}(x+z)^{i}(y+z)^{i} \quad \text { for } \quad\left\{\begin{array}{l}
0 \leq i \leq M_{\min } \\
i \leq j \leq M_{\min },
\end{array}\right. \\
& A_{i, j}^{\prime}:=t_{1}^{n-i} t_{3}^{i-j}(x+z)^{j}(y+z)^{j} \quad \text { for } 0 \leq i \leq n \text { and } m<j \leq n \text { if } n>m, \\
& A_{i, j}^{\prime \prime}:=t_{2}^{m-i} t_{3}^{i-j}(x+z)^{j}(y+z)^{j} \quad \text { for } 0 \leq i \leq n \text { and } n<j \leq m \text { if } n<m .
\end{aligned}
$$

Put $A_{i, j}^{\prime}=A_{i, j}^{\prime \prime}=0$ if $m=n$. Then, for any divisor D on X linearly equivalent to $n E_{1}+m E_{2}$, there exist $c_{j} \in \mathbb{C}$ for $j=0, \ldots, M_{\max }$ such that $\mathbb{I}_{X}(D)$ is the following ideal of R_{X} :

$$
\left\{\begin{array}{l}
\left\langle\sum_{j=0}^{i} c_{j} A_{i, j}+\sum_{j=i+1}^{m}(-2)^{i-j} c_{j} B_{i, j}, \sum_{j=m+1}^{n} c_{j} A_{i, j}^{\prime} \mid i=0, \ldots, m\right\rangle \quad \text { if } n \geq m, \\
\left\langle\sum_{j=0}^{i} c_{j} A_{i, j}+\sum_{j=i+1}^{n}(-2)^{i-j} c_{j} B_{i, j}, \sum_{j=n+1}^{m} c_{j} A_{i, j}^{\prime \prime} \mid i=0, \ldots, n\right\rangle \quad \text { if } n \leq m .
\end{array}\right.
$$

2 Proofs

In this section, we give proofs of the main results. Let $\phi: X \rightarrow \mathbb{P}^{2}$ be a double cover branched along $B \subset \mathbb{P}^{2}$, and let $\iota: X \rightarrow X$ be the covering transformation of ϕ. Let $E^{+} \subset X$ be a prime divisor with $E^{+} \not \subset \phi^{-1}(B)$, and put

$$
E^{-}:=\iota^{*} E^{+} \subset X, \quad E:=\phi\left(E^{+}\right) \subset \mathbb{P}^{2} .
$$

Let $R_{X, E^{+}}$be the local ring of R_{X} at E^{+}, which is a DVR, and let $\mathfrak{m}_{X, E^{+}} \subset$ $R_{X, E^{+}}$be the maximal ideal.

Lemma 2.1. If $u_{E} \in H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(E)\right)$ is a defining polynomial of E, then $u_{E} \in R_{X, E^{+}}$is a uniformizing parameter of $R_{X, E^{+}}$.

Proof. Let $f \in \mathbb{I}_{X}\left(E^{+}\right)$be any homogeneous element; if $v_{E^{-}}(f) \geq 1$, then $f \in\left\langle u_{E}\right\rangle \subset R_{X}$ since $E^{+} \not \subset \phi^{-1}(B)$; if $v_{E-}(f)=0$, then $\iota^{*} f \notin \mathbb{I}_{X}\left(E^{+}\right)$and $f \cdot \iota^{*} f \in\left\langle u_{E}\right\rangle$, hence there is $h \in R_{X, E}$ such that $f=h u_{E} / \iota^{*} f$. Thus $\mathfrak{m}_{X, E^{+}}$ is generated by u_{E} in $R_{X, E^{+}}$.

Lemma 2.2. For two effective divisors $D=\sum n_{E} E, D^{\prime}=\sum n_{E}^{\prime} E$, if D and D^{\prime} are linearly equivalent, $D \sim D^{\prime}$, then there is a rational function $q \in \mathbb{C}(X)^{\times}$such that $\mathbb{I}_{X}(D)=q \cdot \mathbb{I}_{X}\left(D^{\prime}\right)$.

Proof. Since $D \sim D^{\prime}$, there is a rational function $q \in \mathbb{C}(X)^{\times}$such that $D-D^{\prime}=(q)$, where (q) is the principal divisor on X defined by q. Then we have $f^{\prime} q \in \mathbb{I}_{X}(D)$ for any $f^{\prime} \in \mathbb{I}_{X}\left(D^{\prime}\right)$ and any prime divisor E on X since $v_{E}\left(f^{\prime} q\right) \geq n_{E}$. Similarly, we have $f q^{-1} \in \mathbb{I}_{X}\left(D^{\prime}\right)$ for any $f \in \mathbb{I}_{X}(D)$. Therefore $\mathbb{I}_{X}(D)=q \cdot \mathbb{I}_{X}\left(D^{\prime}\right)$.

2.1 Proof of Theorem 1.4

Let $B \subset \mathbb{P}^{2}$ be the smooth conic defined by $F:=z^{2}+x y=0$, and let $\phi: X \rightarrow \mathbb{P}^{2}$ be the double cover branched along B. We can regard X and ϕ as the sub-variety of \mathbb{P}^{3} defined by $w^{2}-F=0$ and the map $X \rightarrow \mathbb{P}^{2}$ given by $\phi(x: y: z: w):=[x: y: z]$, respectively. Let $E^{ \pm}$be prime divisors on X defined by $x=w \pm z=0$, respectively:

$$
E^{+} \subset X: x=w+z=0, \quad E^{-} \subset X: x=w-z=0 .
$$

Lemma 2.3. For each $m \in \mathbb{Z}_{\geq 0}, \mathbb{I}_{X}\left(m E^{+}+m E^{-}\right) \subset R_{X}$ is the ideal generated by x^{m} :

$$
\mathbb{I}_{X}\left(m E^{+}+m E^{-}\right)=\left\langle x^{m}\right\rangle \subset R_{X} .
$$

Proof. Put $\mathbb{I}_{m}:=\mathbb{I}_{X}\left(m E^{+}+m E^{-}\right)$. It is clear that $\mathbb{I}_{0}=R_{X}=\left\langle x^{0}\right\rangle$. Let $L_{x} \subset \mathbb{P}^{2}$ be the line defined by $x=0$. Since $\phi^{*} m L_{x}=m E^{+}+m E^{-}$, we have $\mathbb{I}_{m}=\left\langle x^{m}\right\rangle$.
Lemma 2.4. For each $m \in \mathbb{Z}_{\geq 0}, \mathbb{I}_{X}\left(m E^{+}\right)$is the ideal of R_{X} generated by $x^{m-i}(w+z)^{i}$ for $i=0, \ldots, m$:

$$
\mathbb{I}_{X}\left(m E^{+}\right)=\left\langle x^{m-i}(w+z)^{i} \mid i=0, \ldots, m\right\rangle
$$

Proof. Put $\mathbb{I}_{m}:=\mathbb{I}_{X}\left(m E^{+}\right)$, and $I_{m}:=\left\langle x^{m-i}(w+z)^{i} \mid i=0, \ldots, m\right\rangle$. We prove the following claim.
Claim 2.5. Let k be an integer with $0 \leq k \leq m-1$. If $h_{k, i} \in R_{X}$ for $i=k, \ldots, m-1$ satisfies

$$
f_{k}:=\sum_{i=k}^{m-1} h_{k, i} x^{m-i-1}(w+z)^{i} \equiv 0 \quad\left(\bmod \mathbb{I}_{m}\right)
$$

then there are $h_{k+1, j} \in R_{X}$ for $j=k+1, \ldots, m-1$ such that

$$
f_{k+1}:=\sum_{i=k+1}^{m-1} h_{k+1, i} x^{m-i-1}(w+z)^{i} \equiv f_{k} \quad\left(\bmod I_{m}\right) .
$$

Proof of Claim 2.5. Let $R_{X, E^{+}}$be the local ring at $\mathbb{I}_{1}=\mathbb{I}_{x}\left(E^{+}\right)$. Note that the maximal ideal $\mathfrak{m}_{X, E^{+}} \subset R_{X, E^{+}}$is generated by x. Since $w^{2}-z^{2}=x y$, we obtain

$$
f_{k}=\frac{x^{m-1}}{(w-z)^{m-1}} \sum_{i=k}^{m-1} h_{k, i} y^{i}(w-z)^{m-i-1}
$$

as elements of $R_{X, E^{+}}$. Since $\mathfrak{m}_{X, E^{+}} \cap R_{X}=\mathbb{I}_{1}$ and $f_{k} \in \mathbb{I}_{m}$, we obtain

$$
\sum_{i=k}^{m-1} h_{k, i} y^{i}(w-z)^{m-i-1} \in \mathbb{I}_{1} .
$$

Since $x, w+z \in \mathbb{I}_{1}$, there are $h_{k, i}^{\prime} \in \mathbb{C}[y, z]$ such that $h_{k, i}^{\prime} \equiv h_{k, i}\left(\bmod \mathbb{I}_{1}\right)$. Moreover, we have

$$
0 \equiv \sum_{i=k}^{m-1} h_{k, i} y^{i}(w-z)^{m-i-1} \equiv \sum_{i=k}^{m-1} h_{k, i}^{\prime} y^{i}(-2 z)^{m-i-1} \quad\left(\bmod \mathbb{I}_{1}\right)
$$

Since $R_{X} / \mathbb{I}_{1} \cong \mathbb{C}[y, z]$, we have

$$
h_{k, k}^{\prime}(-2 z)^{m-k-1}+h_{k, k+1}^{\prime} y^{k+1}(-2 z)^{m-k-2}+\cdots+h_{k, m-1}^{\prime} y^{m-1}=0
$$

as polynomials in $\mathbb{C}[y, z]$. Hence there is $g_{k, k} \in \mathbb{C}[y, z]$ such that $h_{k, k}^{\prime}=y g_{k, k}$. Since $x^{m-i}(w+z)^{i}, x^{m-i-1}(w+z)^{i+1} \in I_{m}$, we have in R_{X} / I_{m}

$$
\begin{aligned}
f_{k}= & \sum_{i=k}^{m-1} h_{k, i} x^{m-i-1}(w+z)^{i} \equiv \sum_{i=k}^{m-1} h_{k, i}^{\prime} x^{m-i-1}(w+z)^{i} \\
\equiv & g_{k, k}(x y) x^{m-k-2}(w+z)^{k}+h_{k, k+1}^{\prime} x^{m-k-2}(w+z)^{k+1} \\
& \quad+\cdots+h_{k, m-1}(w+z)^{m-1} \\
\equiv & g_{k, k}\left(w^{2}-z^{2}\right) x^{m-k-2}(w+z)^{k}+h_{k, k+1}^{\prime} x^{m-k-2}(w+z)^{k+1} \\
& \quad+\cdots+h_{k, m-1}(w+z)^{m-1} .
\end{aligned}
$$

Since $w^{2}-z^{2}=-2 z(w+z)+(w+z)^{2}$, by putting

$$
\begin{aligned}
h_{k+1, k+1} & :=-2 z g_{k, k}+h_{k, k+1}^{\prime} \\
h_{k+1, k+2} & :=x g_{k, k}+h_{k, k+2}^{\prime} \\
h_{k+1, j} & :=h_{k, j} \quad(j=k+3, \ldots, m-1),
\end{aligned}
$$

we obtain $f_{k} \equiv f_{k+1}\left(\bmod I_{m}\right)$.
Let us return to the proof of Lemma 2.4. If $m=0,1$, the equation $\mathbb{I}_{m}=I_{m}$ is clear. Suppose that $m>1$ and $\mathbb{I}_{m-1}=I_{m-1}$. By the definition of \mathbb{I}_{m}, we have $\mathbb{I}_{m} \supset I_{m}$. Let $f \in \mathbb{I}_{m}$ be any homogeneous element of degree d.

Since $\mathbb{I}_{m} \subset \mathbb{I}_{m-1}=I_{m-1}$, there are homogeneous elements $h_{i} \in\left(R_{X}\right)_{d-m+1}$ for $i=0, \ldots, m-1$ such that

$$
f=\sum_{i=0}^{m-1} h_{i} x^{m-i-1}(w+z)^{i}
$$

Put $h_{0, i}:=h_{i}$ for $i=0, \ldots, m-1$, and $f_{0}:=f$. With the notation of Claim 2.5, we obtain

$$
f=f_{0} \equiv f_{1} \equiv \cdots \equiv f_{m-1}=h_{m-1, m-1}(w+z)^{m-1} \quad\left(\bmod I_{m}\right)
$$

Since $f \in \mathbb{I}_{m}$ and $\mathbb{I}_{m} \supset I_{m}$,

$$
m \leq v_{E^{+}}\left(h_{m-1, m-1}(w+z)^{m-1}\right)
$$

Thus we have $v_{E^{+}}\left(h_{m-1, m-1}\right) \geq 1$, and $h_{m-1, m-1} \in \mathbb{I}_{1}=x R_{X}+(w+z) R_{X}$. Therefore $f \equiv h_{m-1, m-1}(w+z)^{m-1} \equiv 0\left(\bmod I_{m}\right)$.

By the same argument, we can prove the following lemma.
Lemma 2.6. For each $m \in \mathbb{Z}_{\geq 0}$, the following equation holds:

$$
\mathbb{I}_{X}\left(m E^{-}\right)=\left\langle x^{m-i}(w-z)^{i} \mid i=0, \ldots, m\right\rangle \subset R_{X}
$$

We are ready to prove Proposition 1.3.
Proof of Proposition 1.3. Put $\mathbb{I}_{n, m}:=\mathbb{I}_{X}\left(n E^{+}+m E^{-}\right)$. We first suppose that $n \geq m$. Put

$$
I_{n, m}^{+}:=\left\langle x^{n-i}(w+z)^{i} \mid i=0, \ldots, n-m\right\rangle \subset R_{X} .
$$

Let $f \in I_{n, m}^{+}$be a homogeneous element. Since $v_{E^{ \pm}}\left(x^{m}\right)=m$ and $v_{E^{+}}(w+$ $z)=1$, we have $v_{E^{+}}(f) \geq n, v_{E^{-}}(f) \geq m$, and hence $f \in \mathbb{I}_{n, m}^{+}$.

Conversely, let $f \in \mathbb{I}_{n, m}^{+}$be a homogeneous element. Since $v_{E^{+}}(f) \geq$ $n \geq m$ and $v_{E^{-}}(f) \geq m$, there is a homogeneous element $g \in R_{X}$ such that $f=x^{m} g$. Then

$$
n \leq v_{E^{+}}(f)=v_{E^{+}}\left(x^{m}\right)+v_{E^{+}}(g)=m+v_{E^{+}}(g)
$$

Thus we have $v_{E^{+}}(g) \geq n-m$. Since

$$
f \in\left\langle x^{n-m-i}(w+z)^{i} \mid i=0, \ldots, n-m\right\rangle
$$

by Lemma 2.4, there are homogeneous elements $h_{i} \in R_{X}$ such that

$$
g=\sum_{i=0}^{n-m} h_{i} x^{n-m-i}(w+z)^{i} .
$$

Therefore $f \in I_{n, m}^{+}$, and $\mathbb{I}_{n, m}^{+}=I_{n, m}^{+}$.
In the case of $n \leq m$, we can prove the assertion by the same argument using Lemma 2.3 and 2.6.

Let $S_{X} \subset R_{X}$ be the set of all homogeneous elements, which is a multiplicatively closed set. Note that the rational function field $\mathbb{C}(X)$ of X can be regarded as the sub-field $\left(S_{X}^{-1} R_{X}\right)_{0}$ of the localized ring $S_{X}^{-1} R_{X}$ consisting of homogeneous elements of degree 0 and the zero element.

Proposition 2.7. Let $n, m \in \mathbb{Z}_{\geq 0}$, and put $M_{\min }:=\min (n, m)$. For $q \in$ $\mathbb{C}(X)^{\times}, q \cdot \mathbb{I}_{X}\left(n E^{+}+m E^{-}\right) \subset R_{X}$ if and only if there are $h_{0}, \ldots, h_{|n-m|} \in$ $\left(R_{X}\right)_{M_{\text {min }}}$ such that

$$
q= \begin{cases}\sum_{i=0}^{n-m} \frac{h_{i}}{x^{m}}\left(\frac{w-z}{x}\right)^{i} & \text { if } n \geq m \\ \sum_{i=0}^{m-n} \frac{h_{i}}{x^{n}}\left(\frac{w+z}{x}\right)^{i} & \text { if } n \leq m\end{cases}
$$

To prove Proposition 2.7, we prove the following lemma.
Lemma 2.8. Let $k, n \in \mathbb{Z}_{\geq 0}$ with $0 \leq k \leq n$, and let $q \in \mathbb{C}(X)^{\times}$. If $q x^{n-j}(w+z)^{j} \in R_{X}$ for each $j=0, \ldots, k$, then there are homogeneous polynomials $a_{0} \in \mathbb{C}[x, y, z]_{n-k}, b_{0} \in \mathbb{C}[x, y, z]_{n-k-1}$ and $a_{i}^{\prime} \in \mathbb{C}[y, z]_{n-k}$ for $i=1, \ldots, k$ such that

$$
\begin{equation*}
q=\frac{a_{0}+b_{0} w}{x^{n-k}}+\sum_{i=1}^{k} \frac{a_{i}^{\prime}}{x^{n-k}}\left(\frac{w-z}{x}\right)^{i} . \tag{2.1}
\end{equation*}
$$

Proof. We prove the assertion by the induction on k. In the case of $k=0$, $q x^{n} \in R_{X}$ if and only if there is a homogeneous polynomials $a_{0}, b_{0} \in R_{X}$ of degree n and $n-1$, respectively, such that $q=\left(a_{0}+b_{0} w\right) / x^{n}$.

Suppose that $k \geq 1$. By the assumption of the induction, there are $a_{0} \in$ $\mathbb{C}[x, y, z]_{n-k+1}, b_{0} \in \mathbb{C}[x, y, z]_{n-k}$ and $a_{i}^{\prime} \in \mathbb{C}[y, z]_{n-k+1}$ for $i=1, \ldots, k-1$ such that

$$
q=\frac{a_{0}+b_{0} w}{x^{n-k+1}}+\sum_{i=1}^{k-1} \frac{a_{i}^{\prime}}{x^{n-k+1}}\left(\frac{w-z}{x}\right)^{i} .
$$

Let $a_{0}^{\prime}, b_{0}^{\prime} \in \mathbb{C}[y, z]$ and $a_{0}^{\prime}, b_{0}^{\prime} \in \mathbb{C}[x, y, z]$ be the homogeneous polynomials such that

$$
a_{0}=a_{0}^{\prime \prime} x+a_{0}^{\prime}, \quad b_{0}=b_{0}^{\prime \prime} x+b_{0}^{\prime} .
$$

We consider the R_{X}-module $x^{-n} R_{X}$ and its quotient module $\left(x^{-n} R_{X}\right) / R_{X}$. Since $(w+z)^{2}=2 z(w+z)+x y$, we have

$$
(w+z)^{i} \equiv(2 z)^{i-1}(w+z) \quad\left(\bmod x R_{X}\right) .
$$

for each $i \geq 1$. Since $a_{0}+b_{0} w=\left(a_{0}+b_{0} z\right)+b_{0}(w-z)$ and $w^{2}-z^{2}=x y$,

$$
\left(a_{0}+b_{0} w\right)(w+z) \equiv\left(a_{i}+b_{i} z\right)(w+z) \quad\left(\bmod x R_{X}\right) .
$$

By $q x^{n-k}(w+z)^{k} \in R_{X}$, we have in $x^{-n} R_{X} / R_{X}$

$$
0 \equiv q x^{n-k}(w+z)^{k} \equiv \frac{1}{x}\left((2 z)^{k-1}\left(a_{0}^{\prime}+b_{0}^{\prime} z\right)+\sum_{i=1}^{k-1} a_{i}^{\prime} y^{i}(2 z)^{k-i-1}\right)(w+z)
$$

Let $q_{0}^{\prime} \in \mathbb{C}[y, z]$ be the element

$$
q_{0}^{\prime}:=(2 z)^{k-1}\left(a_{0}^{\prime}+b_{0}^{\prime} z\right)+\sum_{i=1}^{k-1} a_{i}^{\prime} y^{i}(2 z)^{k-i-1} .
$$

The above computation implies that $q_{0}^{\prime} \in x R_{X}$. Since $q^{\prime} \in \mathbb{C}[y, z]$, we obtain $q_{0}^{\prime}=0$. Thus there is $b_{1}^{\prime} \in \mathbb{C}[y, z]$ of degree $n-k$ such that $a_{0}^{\prime}=y b_{1}^{\prime}-z b_{0}^{\prime}$. Then we obtain

$$
\begin{aligned}
\frac{a_{0}^{\prime}+b_{0}^{\prime} w}{x^{n-k+1}} & =\frac{b_{0}^{\prime}}{x^{n-k}}\left(\frac{w-z}{x}\right)+\frac{y b_{1}^{\prime}}{x^{n-k+1}}, \\
q_{1}^{\prime} & :=(2 z)^{k-2}\left(a_{1}^{\prime}+2 z b_{1}^{\prime}\right)+\sum_{i=2}^{k-1} a_{i}^{\prime} y^{i-1}(2 z)^{k-i-1}=0 .
\end{aligned}
$$

We assume that there is $b_{j}^{\prime} \in \mathbb{C}[y, z]$ of $n-k$ for $j=1, \ldots, i(i<k-1)$ such that

$$
\begin{aligned}
a_{j}^{\prime} & =y b_{j+1}^{\prime}-2 z b_{j}^{\prime} \quad(j=1, \ldots, i-1) \\
q_{j}^{\prime} & :=(2 z)^{k-j-1}\left(a_{j}^{\prime}+2 z b_{j}^{\prime}\right)+\sum_{i=j+1}^{k-1} a_{i}^{\prime} y^{i-j}(2 z)^{k-i-1}=0 \quad(j=1, \ldots, i)
\end{aligned}
$$

By $q_{i}^{\prime}=0$, there is $b_{i+1}^{\prime} \in \mathbb{C}[y, z]$ of degree $n-k$ such that

$$
\begin{aligned}
a_{i}^{\prime} & =y b_{i+1}^{\prime}-2 z b_{i}^{\prime}, \\
q_{i+1}^{\prime} & :=(2 z)^{k-i-2}\left(a_{i+1}^{\prime}+2 z b_{i}^{\prime}\right)+\sum_{s=i+2}^{k-1} a_{s}^{\prime} y^{s-i-1}(2 z)^{k-s-1}=0 .
\end{aligned}
$$

Since $(w-z)^{2}=x y-2(w-z)$, we obtain

$$
\frac{y b_{i}^{\prime}}{x^{n-k+1}}\left(\frac{w-z}{x}\right)^{i-1}+\frac{a_{i}^{\prime}}{x^{n-k+1}}\left(\frac{w-z}{x}\right)^{i}=\frac{b_{i}^{\prime}}{x^{n-k}}\left(\frac{w-z}{x}\right)^{i}+\frac{y b_{i+1}^{\prime}}{x^{n-k+1}}\left(\frac{w-z}{x}\right)^{i}
$$

Since $q_{k-1}^{\prime}=a_{k-1}^{\prime}+2 z b_{k-1}^{\prime}=0$,

$$
\frac{y b_{k-1}^{\prime}}{x^{n-k+1}}\left(\frac{w-z}{x}\right)^{k-2}+\frac{a_{k-1}^{\prime}}{x^{n-k+1}}\left(\frac{w-z}{x}\right)^{k-1}=\frac{b_{k-1}^{\prime}}{x^{n-k}}\left(\frac{w-z}{x}\right)^{k}
$$

The above argument proves the assertion.
Proof of Proposition 2.7. Suppose that $n \geq m$. If $q=x^{-m} \sum_{i=0}^{n-m} h_{i} x^{-i}(w-$ $z)^{i}$ for some homogeneous elements $h_{i} \in\left(R_{X}\right)_{m}$, then, for each $j=0, \ldots, n-$ m,

$$
\begin{aligned}
q x^{n-j}(w+z)^{j} & =\sum_{i=0}^{n-m} h_{i} x^{n-m-i-j}(w-z)^{i}(w+z)^{j} \\
& =\sum_{i=0}^{n-m} h_{i} x^{n-m-i-j}(x y)^{\min (i, j)}\left(w+\varepsilon_{i, j} z\right)^{|i-j|} \in R_{X}
\end{aligned}
$$

where $\varepsilon_{i, j}=1$ if $i \leq j$, and $\varepsilon_{i, j}=-1$ otherwise. Hence $q \cdot \mathbb{I}_{X}\left(n E^{+}+m E^{-}\right) \subset$ R_{X} by Proposition 1.3.

Conversely, if $q \cdot \mathbb{I}_{X}\left(n E^{+}+m E^{-}\right) \subset R_{X}$, then $q x^{n-j}(w+z)^{j} \in R_{X}$ for each $j=0, \ldots, n-m$ by Proposition 1.3; and there are $h_{0}, \ldots, h_{n-m} \in\left(R_{X}\right)_{m}$ such that

$$
q=\sum_{i=0}^{n-m} \frac{h_{i}}{x^{m}}\left(\frac{w-z}{x}\right)^{i}
$$

This prove the assertion in the case of $n \geq m$. We can prove this proposition in the case of $n<m$ by the same argument. We omit the details here.

Next we prove Thorem 1.4.
Proof of Theorem 1.4. Assume that D be an effective divisor on X linearly equivalent to $n E^{+}+m E^{-}$. Then there exists a rational function $q \in \mathbb{C}(X)$ such that

$$
\mathbb{I}_{X}(D)=q \cdot \mathbb{I}_{X}\left(n E^{+}+m E^{-}\right)
$$

Suppose that $n \geq m$. Since

$$
x^{n-i}(w+z)^{i} \sum_{j=0}^{n-m} \frac{h_{j}}{x^{m}}\left(\frac{w-z}{x}\right)^{j}=\sum_{j=0}^{n-m} h_{j} x^{n-m-i-j}(w+z)^{i}(w-z)^{j}
$$

for homogeneous elements $h_{j} \in R_{X}$ of degree m, the assertion follows from Proposition 1.3 and 2.7. We can prove the assertion in the case of $n<m$ by the same argument.

2.2 An example of $\operatorname{deg} B=4$

Put $F:=x^{4}+y^{4}-z^{4}$, and let $B \subset \mathbb{P}^{2}$ be the plane curve defined by $F=0$. Let $\phi: X \rightarrow \mathbb{P}^{2}$ be the double cover branched along B, and we regard X as the sub-variety of $\mathbb{P}(1,1,1,2)$ defined by $w^{2}-F=0$. Let E_{1}, E_{2} be the divisors on X defined by $y-z=w+x^{2}=0$ and $x-z=w+y^{2}=0$, respectively:

$$
E_{1} \subset X: y-z=w+x^{2}=0, \quad E_{2} \subset X: x-z=w+y^{2}=0
$$

Note that E_{1} and E_{2} are prime divisors on X. Put

$$
\begin{aligned}
t_{1} & :=y-z, \quad t_{2}:=x-z, \quad t_{3}:=w+x^{2}+y^{2}-z^{2} \\
I_{n, m} & := \begin{cases}\left\langle t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i}, t_{1}^{n-j} t_{3}^{j} \mid i=0, \ldots, m, j=m+1, \ldots, n\right\rangle & \text { if } n \geq m, \\
\left\langle t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i}, t_{2}^{m-j} t_{3}^{j} \mid i=0, \ldots, n, j=n+1, \ldots, m\right\rangle & \text { if } n \leq m .\end{cases}
\end{aligned}
$$

Lemma 2.9. Let $n \in \mathbb{Z}_{\geq 0}$. the following equations hold:

$$
\mathbb{I}_{X}\left(n E_{1}\right)=I_{n, 0}, \quad \mathbb{I}_{X}\left(n E_{2}\right)=I_{0, n}
$$

Proof. We prove $\mathbb{I}_{X}\left(n E_{1}\right)=I_{n, 0}$ by the induction on n. We have $\mathbb{I}_{X}(0)=$ $I_{0,0}=R_{X}$ and $\mathbb{I}_{X}\left(E_{1}\right)=I_{1,0}$. Suppose that $n>1$, and $f \in \mathbb{I}_{X}\left(n E_{1}\right)$. By the assumption of the induction, there are $h_{0}, \ldots, h_{n-1} \in R_{X}$ such that

$$
f=\sum_{i=0}^{n-1} h_{i} t_{1}^{n-i-1} t_{3}^{i} .
$$

On the local ring $R_{X, E_{1}}$ at E_{1}, we have

$$
\begin{aligned}
f & =\sum_{i=0}^{n-1} h_{i}(y-z)^{n-i-1}\left(\frac{y^{4}-z^{4}}{w-x^{2}}+y^{2}-z^{2}\right)^{i} \\
& =\sum_{i=0}^{n-1} h_{i}(y-z)^{n-i-1}\left(\frac{\left(y^{2}+z^{2}\right)\left(y^{2}-z^{2}\right)+(y+z)\left(w-x^{2}\right)}{w-x^{2}}\right)^{i} \\
& =\frac{t_{1}^{n-1}}{\left(w-x^{2}\right)^{n-1}} \sum_{i=0}^{n-1} h_{i}\left(w-x^{2}\right)^{n-i-1}\left(w-x^{2}+y^{2}+z^{2}\right)^{i}(y+z)^{i} .
\end{aligned}
$$

Since $(y-z) R_{X, E_{1}}$ is the maximal ideal of $R_{X . E_{1}}$ by Lemma 2.1, we have $(y-z) R_{X, E_{1}} \cap R_{X}=\mathbb{I}_{X}\left(E_{1}\right)$. Since $v_{E_{1}}(f) \geq n$ by $f \in \mathbb{I}_{X}\left(n E_{1}\right)$,

$$
f^{\prime}:=\sum_{i=0}^{n-1} h_{i}\left(w-x^{2}\right)^{n-i-1}\left(w-x^{2}+y^{2}+z^{2}\right)^{i}(y+z)^{i} \in \mathbb{I}_{X}\left(E_{1}\right) .
$$

Since $z \equiv y, w \equiv-x^{2}\left(\bmod \mathbb{I}_{X}\left(E_{1}\right)\right)$, there are $h_{i}^{\prime} \in \mathbb{C}[x, y]$ such that $h_{i}^{\prime} \equiv h_{i}$ $\left(\bmod \mathbb{I}_{X}\left(E_{1}\right)\right)$ for $i=0, \ldots, n-1$. Hence we obtain, on $R_{X} / \mathbb{I}_{X}\left(E_{1}\right)$,

$$
\begin{aligned}
0 & \equiv f^{\prime} \equiv \sum_{i=0}^{n-1} h_{i}^{\prime}\left(-2 x^{2}\right)^{n-i-1}\left(-2 x^{2}+2 y^{2}\right)^{i}(2 y)^{i} \\
& \equiv \sum_{i=0}^{n-1} h_{k, i}^{\prime}\left(-2 x^{2}\right)^{n-i-1}\left(-4 y\left(x^{2}-y^{2}\right)\right)^{i} .
\end{aligned}
$$

Since $R_{X} / \mathbb{I}_{X}\left(E_{1}\right) \cong \mathbb{C}[x, y]$,

$$
\begin{equation*}
\sum_{i=0}^{n-1} h_{i}^{\prime}\left(-2 x^{2}\right)^{n-i-1}\left(-4 y\left(x^{2}-y^{2}\right)\right)^{i}=0 \tag{2.2}
\end{equation*}
$$

as a polynomial in $\mathbb{C}[x, y]$. Thus there is $g_{n-1} \in \mathbb{C}[x, y]$ such that

$$
h_{n-1}^{\prime}=-2 x^{2} g_{n-1}=-\left(t_{3}-(y+z) t_{1}\right) g_{n-1}+\left(w-x^{2}\right) g_{n-1} .
$$

By (2.2) again, there is $g_{k, n-2} \in \mathbb{C}[x, y]$ such that

$$
h_{k, n-2}^{\prime}=-2 x^{2} g_{k, n-2}+4 y\left(x^{2}-y^{2}\right) g_{k, n-1} .
$$

Since $\alpha \beta \in I_{n, 0}$ for any $\alpha \in I_{n-1,0}$ and $\beta \in \mathbb{I}_{X}\left(E_{1}\right)$, and $t_{3}\left(w-x^{2}\right)=$ $t_{1}(y+z)\left(w-x^{2}+y^{2}+z^{2}\right)$ on R_{X}, we obtain on $R_{X} / I_{n, 0}$

$$
\begin{aligned}
f \equiv & g_{n-1}\left(-2 x^{2}\right) t_{3}^{n-1}+\sum_{i=0}^{n-2} h_{i}^{\prime} t_{1}^{n-i-1} t_{3}^{i} \\
\equiv & g_{n-1}\left(\left(w-x^{2}\right) t_{3}+4 y\left(x^{2}-y^{2}\right) t_{1}\right) t_{3}^{n-2} \\
& \quad+g_{n-2}\left(-2 x^{2}\right) t_{1} t_{3}^{n-2}+\sum_{i=0}^{n-3} h_{i}^{\prime} t_{1}^{n-i-1} t_{3}^{i} \\
\equiv & g_{n-1}(y-z)\left((y+z)\left(w-x^{2}+y^{2}+z^{2}\right)-4 y\left(x^{2}-y^{2}\right)\right) t_{3}^{n-2} \\
& \quad+g_{n-2}\left(-2 x^{2}\right) t_{1} t_{3}^{n-2}+\sum_{i=0}^{n-3} h_{i}^{\prime} t_{1}^{n-i-1} t_{3}^{i} \\
& \\
\equiv & g_{n-2}\left(-2 x^{2}\right) t_{1} t_{3}^{n-2}+\sum_{i=0}^{n-3} h_{i}^{\prime} t_{1}^{n-i-1} t_{3}^{i} .
\end{aligned}
$$

By repeating this operation as the proof of Proposition $1.3, \mathbb{I}_{X}\left(n E_{1}\right) \subset I_{n, 0}$ can be proved. The inclusion $\mathbb{I}_{X}\left(n E_{1}\right) \supset \mathbb{I}_{n, 0}$ is trivial. Hence we obtain $\mathbb{I}_{X}\left(n E_{1}\right)=I_{n, 0}$. By the same argument, we can prove $\mathbb{I}_{X}\left(n E_{2}\right)=I_{0, n}$.

Proof of Proposition 1.5. We prove $\mathbb{I}_{X}\left(n E_{1}+m E_{2}\right)=I_{n, m}$ in the case of $n \geq$ m. Let f be a homogeneous element of $I_{n, m}$. Then there are $h_{0}, \ldots, h_{n} \in R_{X}$ such that

$$
f=\sum_{i=0}^{m} h_{i} t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i}+\sum_{i=m+1}^{n} h_{i} t_{1}^{n-i} t_{3}^{i} .
$$

Note that we have

$$
\begin{aligned}
\left(w-x^{2}\right) t_{3} & =(y+z)\left(w-x^{2}+y^{2}+z^{2}\right) t_{1}, \\
\left(w-y^{2}\right) t_{3} & =(x+z)\left(w+x^{2}-y^{2}+z^{2}\right) t_{2}, \\
v_{E_{1}}\left(t_{3}\right) & =v_{E_{2}}\left(t_{3}\right)=1 .
\end{aligned}
$$

Thus $v_{E_{1}}(f) \geq n, v_{E_{2}}(f) \geq m$, and hence $f \in \mathbb{I}_{X}\left(n E_{1}+m E_{2}\right)$.
We prove $\mathbb{I}_{X}\left(n E_{1}+m E_{2}\right)=I_{n, m}$ by the induction on m. Recall that $t_{1}:=y-z, t_{2}:=x-z, t_{3}:=w+x^{2}+y^{2}-z^{2}$. By Lemma 2.9, the above equation holds when $m=0$. Suppose that $m>0$, and $f \in \mathbb{I}_{X}\left(n E_{1}+m E_{2}\right)$. By the assumption of the induction, there are $h_{0}, \ldots, h_{n} \in R_{X}$ such that

$$
f=\sum_{i=0}^{m-1} h_{i} t_{1}^{n-i} t_{2}^{m-i-1} t_{3}^{i}+\sum_{i=m}^{n} h_{i} t_{1}^{n-i} t_{3}^{i} .
$$

On the local ring $R_{X, E_{2}}$, we have

$$
f \equiv \frac{t_{2}^{m-1}}{\left(w-y^{2}\right)^{m-1}} \sum_{i=0}^{m-1} h_{i} t_{1}^{n-i}(x+z)^{i}\left(w-y^{2}\right)^{m-i-1}\left(w+x^{2}-y^{2}+z^{2}\right)^{i}
$$

modulo $t_{2}^{m} R_{X, E_{2}}$. Since $f \in t_{2}^{m} R_{X, E_{2}}$, we obtain
$\sum_{i=0}^{m-1} h_{i} t_{1}^{n-i}(x+z)^{i}\left(w-y^{2}\right)^{m-i-1}\left(w+x^{2}-y^{2}+z^{2}\right)^{i} \in t_{2} R_{X, E_{2}} \cap R_{X}=\mathbb{I}_{X}\left(E_{2}\right)$.
Since $z \equiv x, w \equiv-y^{2}\left(\bmod \mathbb{I}_{X}\left(E_{2}\right)\right)$, there are $h_{i}^{\prime} \in \mathbb{C}[x, y]$ such that $h_{i} \equiv h_{i}^{\prime}$ $\left(\bmod \mathbb{I}_{X}\left(E_{2}\right)\right)$ for $i=0, \ldots, m-1$. Moreover,

$$
\begin{aligned}
0 & \equiv \sum_{i=0}^{m-1} h_{i} t_{1}^{n-i}(x+z)^{i}\left(w-y^{2}\right)^{m-i-1}\left(w+x^{2}-y^{2}+z^{2}\right)^{i} \\
& \equiv \sum_{i=0}^{m-1} h_{i}^{\prime}(y-x)^{n-i}\left(-2 y^{2}\right)^{m-i-1}(2 x)^{i}\left(2 x^{2}-2 y^{2}\right)^{i} \quad\left(\bmod \mathbb{I}_{X}\left(E_{2}\right)\right) .
\end{aligned}
$$

Since $R_{X} / \mathbb{I}_{X}\left(E_{2}\right) \cong \mathbb{C}[x, y]$, we have

$$
\begin{equation*}
\sum_{i=0}^{m-1} h_{i}^{\prime}(y-x)^{n-i}\left(-2 y^{2}\right)^{m-i-1}(2 x)^{i}\left(2 x^{2}-2 y^{2}\right)^{i}=0 \tag{2.3}
\end{equation*}
$$

Hence there is $g_{h_{m-1}} \in \mathbb{C}[x, y]$ such that

$$
h_{m-1}^{\prime}=-2 y^{2}(y-x) g_{m-1} .
$$

By (2.3), there is $g_{m-2} \in \mathbb{C}[x, y]$ such that

$$
h_{m-2}^{\prime}=-2 y^{2}(y-x) g_{m-2}-2 x\left(2 x^{2}-2 y^{2}\right) g_{m-1} .
$$

Since $\alpha \beta \in I_{n, m}$ for any $\alpha \in I_{n, m-1}$ and $\beta \in \mathbb{I}_{X}\left(E_{2}\right)$, and

$$
\begin{aligned}
-2 y^{2} t_{3} & =\left(w-y^{2}\right)\left(w+x^{2}+y^{2}-z^{2}\right)-\left(w+y^{2}\right)\left(w+x^{2}+y^{2}-z^{2}\right) \\
& =(x+z)\left(w+x^{2}-y^{2}+z^{2}\right) t_{2}-\left(w+y^{2}\right) t_{3} \\
& =(x+z)\left(t_{3}-2 y^{2}+2 z^{2}\right) t_{2}-\left(t_{3}-x^{2}+z^{2}\right) t_{3} \\
& =2(x+z) t_{2} t_{3}-2(x+z)(y+z) t_{1} t_{2}-t_{3}^{2},
\end{aligned}
$$

on R_{X}, we obtain on $R_{X} / I_{n, m}$

$$
\begin{aligned}
& h_{m-1} t_{1}^{n-m+1} t_{3}^{m-1}+h_{m-2} t_{1}^{n-m+2} t_{2} t_{3}^{m-2} \\
\equiv & -2 y^{2}(y-x) t_{1}^{n-m+2} t_{2} t_{3}^{m-2} g_{m-2} \quad\left(\bmod I_{n, m}\right) .
\end{aligned}
$$

By repeating this operation as the proof of Proposition $1.3, \mathbb{I}_{X}\left(n E_{1}+m E_{2}\right) \subset$ $I_{n, m}$ can be proved. The inclusion $\mathbb{I}_{X}\left(n E_{1}+m E_{2}\right) \supset \mathbb{I}_{n, m}$ is trivial. Hence we obtain $\mathbb{I}_{X}\left(n E_{1}+m E_{2}\right)=I_{n, m}$ if $n \geq m$. By the same argument, we can prove $\mathbb{I}_{X}\left(n E_{1}+m E_{2}\right)=I_{n, m}$ in the case of $n \leq m$.

From now we prove Theorem 1.6 in the case of $n \geq m$. Note that we can prove it in the case of $n<m$ by the same argument. We first prove the following proposition.

Proposition 2.10. Let $n, m \in \mathbb{Z}_{\geq 0}$, and put $M_{\min }:=\min (n, m)$. For $q \in$ $\mathbb{C}\left(X^{\times}\right), q \cdot \mathbb{I}_{X}\left(n E_{1}+m E_{2}\right) \subset R_{X}$ if and only if there are $c_{0}, \ldots, c_{M_{\min }} \in \mathbb{C}$ such that

$$
q=\sum_{i=0}^{M_{\min }} c_{i} \frac{(x+z)^{i}(y+z)^{i}}{\left(w+x^{2}+y^{2}-z^{2}\right)^{i}} .
$$

We prove this proposition in the case of $n \geq m$. By Proposition 1.5, we have

$$
\mathbb{I}_{X}\left(n E_{1}+m E_{2}\right)=\left\langle t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i}, t_{1}^{n-j} t_{3}^{j} \mid i=0, \ldots, m, j=m+1, \ldots, n\right\rangle,
$$

where $t_{1}:=y-z, t_{2}:=x-z, t_{3}:=w+x^{2}+y^{2}-z^{2}$. In order to prove the above proposition, put $Q\left(R_{X}\right):=\mathbb{C}(x, y, z)[w] /\left\langle w^{2}-F\right\rangle$, which is the quotient field of R_{X}. We call $q \in Q\left(R_{X}\right)$ a homogeneous element if there are homogeneous elements $q^{\prime}, q^{\prime \prime} \in R_{X}$ with $q^{\prime \prime} \neq 0$ such that $q=q^{\prime} / q^{\prime \prime}$, and put $\operatorname{deg} q:=\operatorname{deg} q^{\prime}-\operatorname{deg} q^{\prime \prime}$. Note that $\mathbb{C}(X)$ can be regarded as the \mathbb{C}-vector space $Q\left(R_{X}\right)_{0} \subset Q\left(R_{X}\right)$ generated by homogeneous elements of degree 0 .

Lemma 2.11. Let $q \in Q\left(R_{X}\right)$ be a homogeneous element of degree d. If q. $t_{1}^{j} t_{2}^{j} t_{3}^{m-j} \in R_{X}$ for any $j=0, \ldots, k$, then there are $c_{0}, \ldots, c_{k} \in\left(R_{X}\right)_{d+2(m-k)}$ such that

$$
q=\frac{1}{t_{3}^{m-k}} \sum_{i=0}^{k} c_{i} \frac{(x+z)^{i}(y+z)^{i}}{t_{3}^{i}}
$$

Proof. We prove this lemma by the induction on k. If $k=0$, then $c_{0}:=$ $q \cdot t_{3}^{m} \in R_{X}$ is a homogeneous element of degree $d+m$ with $q=c_{0} t_{3}^{-m}$. Suppose that $k>0$, and $q \cdot t_{1}^{j} t_{2}^{j} t_{3}^{m-j} \in R_{X}$ for each $j=0, \ldots, k$. By the assumption of the induction, there are $c_{0}, \ldots, c_{k-1} \in\left(R_{X}\right)_{d+(m-k+1)}$ such that

$$
q=\frac{1}{t_{3}^{m-k+1}} \sum_{i=0}^{k-1} c_{i} \frac{(x+z)^{i}(y+z)^{i}}{t_{3}^{i}}
$$

Let $\alpha_{i} \in\left(R_{X}\right)_{d+2(m-k)}$ and $\beta_{i} \in \mathbb{C}[x, y, z]_{d+2(m-k+1)}$ be the elements such that

$$
c_{i}=\alpha_{i} t_{3}+\beta_{i}
$$

for each $i=0, \ldots, k-1$. Since $-2\left(y^{2}-z^{2}\right)\left(x^{2}-z^{2}\right)=\left(w+x^{2}+y^{2}-z^{2}\right)(w-$ $x^{2}-y^{2}+z^{2}$),

$$
\begin{equation*}
\frac{t_{1} t_{2}}{t_{3}}=-\frac{w-x^{2}-y^{2}+z^{2}}{2(x+z)(y+z)}=\frac{2\left(x^{2}+y^{2}-z^{2}\right)-t_{3}}{2(x+z)(y+z)} . \tag{2.4}
\end{equation*}
$$

Hence we obtain, on the R_{X}-module $Q\left(R_{X}\right) / R_{X}$,

$$
\begin{aligned}
0 \equiv q \cdot t_{1}^{k} t_{2}^{k} t_{3}^{m-k} & =\frac{1}{t_{3}} \sum_{i=0}^{k-1}\left(\alpha_{i} t_{3}+\beta_{i}\right) t_{1}^{k-i} t_{2}^{k-i}\left(x^{2}+y^{2}-z^{2}-2^{-1} t_{3}\right)^{i} \\
& \equiv \frac{1}{t_{3}} \sum_{i=0}^{k-1} \beta_{i} t_{1}^{k-i} t_{2}^{k-i}\left(x^{2}+y^{2}-z^{2}\right)^{i} \\
& \equiv-\frac{w-x^{2}-y^{2}+z^{2}}{2(x+z)(y+z)} \sum_{i=0}^{k-1} \beta_{i} t_{1}^{k-i-1} t_{2}^{k-i-1}\left(x^{2}+y^{2}-z^{2}\right)^{i}
\end{aligned}
$$

Hence we have

$$
q^{\prime}:=\sum_{i=0}^{k-1} \beta_{i} t_{1}^{k-i-1} t_{2}^{k-i-1}\left(x^{2}+y^{2}-z^{2}\right)^{i} \in(x+z)(y+z) \mathbb{C}[x, y, z] .
$$

Let $a_{i} \in \mathbb{C}[x, y, z]$ and $a_{i}^{\prime} \in \mathbb{C}[x, y]$ be the polynomials such that $\beta_{i}=a_{i}(x+$ $z)+a_{i}^{\prime}$. Since the above polynomial is divisible by $x+z$, we have

$$
0 \equiv q^{\prime} \equiv \sum_{i=0}^{k-1} a_{i}^{\prime}(2 x)^{k-i-1}(x+y)^{k-i-1} y^{2 i} \quad(\bmod x+z)
$$

Since $\mathbb{C}[x, y, z] /\langle x+z\rangle \cong \mathbb{C}[x, y]$,

$$
\sum_{i=0}^{k-1} a_{i}^{\prime}(2 x)^{k-i-1}(x+y)^{k-i-1} y^{2 i}=0
$$

Thus there are $g_{0}, \ldots, g_{k-1} \in \mathbb{C}[x, y]$ such that

$$
a_{0}^{\prime}=y^{2} g_{0}, \quad a_{i}^{\prime}=y^{2} g_{i}-2 x(x+y) g_{i-1} \quad(i=1, \ldots, k-1), \quad g_{k-1}=0
$$

Since

$$
\begin{aligned}
& \quad y^{2} g_{i}\left(t_{1} t_{2}\right)^{k-i-1}\left(x^{2}+y^{2}-z^{2}\right)^{i}+b_{i+1}\left(t_{1} t_{2}\right)^{k-i-2}\left(x^{2}+y^{2}-z^{2}\right)^{i+1} \\
& =\left(y^{2} t_{1} t_{2}-2 x(x+y)\left(x^{2}+y^{2}-z^{2}\right)\right)\left(t_{1} t_{2}\right)^{k-i-2}\left(x^{2}+y^{2}-z^{2}\right)^{i} g_{i} \\
& \quad+y^{2} g_{i+1}\left(t_{1} t_{2}\right)^{k-i-2}\left(x^{2}+y^{2}-z^{2}\right)^{i+1} \\
& =-(x+z) G\left(t_{1} t_{2}\right)^{k-i-2}\left(x^{2}+y^{2}-z^{2}\right)^{i} g_{i} \\
& \quad \quad+y^{2} g_{i+1}\left(t_{1} t_{2}\right)^{k-i-2}\left(x^{2}+y^{2}-z^{2}\right)^{i+1},
\end{aligned}
$$

where $G:=2 x^{3}+2 x^{2} y-2 z x^{2}+2 x y^{2}-2 x y z+y^{3}-y^{2} z$, we obtain

$$
q^{\prime}=(x+z) \sum_{i=0}^{k-1}\left(a_{i}+G g_{i}\right) t_{1}^{k-i-1} t_{2}^{k-i-1}\left(x^{2}+y^{2}-z^{2}\right)^{i}
$$

Hence we may assume that $\beta_{i} \in(x+z) \mathbb{C}[x, y, z]$. Let $\beta_{i}^{\prime} \in \mathbb{C}[x, y, z]$ be the polynomial with $\beta_{i}=(x+z) \beta_{i}^{\prime}$ for each $i=0, \ldots, k-1$. Then

$$
\sum_{i=0}^{k-1} \beta_{i}^{\prime} t_{1}^{k-i-1} t_{2}^{k-i-1}\left(x^{2}+y^{2}-z^{2}\right)^{i} \in(y+z) \mathbb{C}[x, y, z]
$$

By the same argument, we may assume that $\beta_{i}^{\prime} \in(y+z) \mathbb{C}[x, y, z]$ for each $i=0, \ldots, k-1$. Then there are $b_{0}, \ldots, b_{k-1} \in \mathbb{C}[x, y, z]$ such that $\beta_{i}=$
$(x+z)(y+z) b_{i}$ for each i, and

$$
\begin{aligned}
q & =\frac{1}{t_{3}^{m-k+1}} \sum_{i=0}^{k-1}\left(\alpha_{i} t_{3}+b_{i}(x+z)(y+z)\right) \frac{(x+z)^{i}(y+z)^{i}}{t_{3}^{i}} \\
& =\frac{1}{t_{3}^{m-k}}\left(\sum_{i=0}^{k-1} \alpha_{i} \frac{(x+z)^{i}(y+z)^{i}}{t_{3}^{i}}+\sum_{i=0}^{k-1} b_{i} \frac{(x+z)^{i+1}(y+z)^{i+1}}{t_{3}^{i+1}}\right)
\end{aligned}
$$

Therefore the assertion holds.
Lemma 2.12. Let $q \in Q\left(R_{X}\right)$ be a homogeneous element of degree 0 . If $q \cdot \mathbb{I}_{X}\left(n E_{1}+m E_{2}\right) \subset R_{X}$, then there are $c_{0}, \ldots, c_{m} \in\left(R_{X}\right)_{0}$ such that

$$
q=\sum_{i=0}^{m} c_{i} \frac{(x+z)^{i}(y+z)^{i}}{t_{3}^{i}}
$$

Proof. We prove the assertion by the induction on n. Since

$$
\mathbb{I}_{X}\left(m E_{1}+m E_{2}\right)=\left\langle t_{1}^{m-i}, t_{2}^{m-i} t_{3}^{i} \mid i=0, \ldots, m\right\rangle
$$

by Proposition 1.5, it follows from Lemma 2.11 if $n=m$.
Suppose that $n>m$, and $q \cdot \mathbb{I}_{X}\left(n E_{1}+m E_{2}\right) \subset R_{X}$. Since

$$
\mathbb{I}_{X}\left(n E_{1}+m E_{2}\right)=\left\langle t_{3}^{n}\right\rangle+t_{1} \cdot \mathbb{I}_{X}\left((n-1) E_{1}+m E_{2}\right)
$$

there are homogeneous elements $c_{0}, \ldots, c_{m} \in\left(R_{X}\right)_{1}$ such that

$$
q=\frac{1}{t_{1}} \sum_{i=0}^{m} c_{i} \frac{(x+z)^{i}(y+z)^{i}}{t_{3}^{i}}
$$

by the assumption of the induction. Since $c_{i} \in\left(R_{X}\right)_{1}$ for each i, there are $\alpha_{i} \in \mathbb{C}$ and $\beta_{i} \in \mathbb{C}[x, y]_{1}$ such that

$$
c_{i}=\alpha_{i} t_{1}+\beta_{i}
$$

By $q t_{3}^{n} \in R_{X}$, we have, on the R_{X}-module $Q\left(R_{X}\right) / R_{X}$,

$$
\begin{aligned}
0 \equiv q t_{3}^{n} & =\frac{1}{t_{1}} \sum_{i=0}^{m}\left(\alpha_{i} t_{1}+\beta_{i}\right) t_{3}^{n-i}(x+z)^{i}(y+z)^{i} \\
& \equiv \frac{w+x^{2}}{t_{1}} \sum_{i=0}^{m} \beta_{i}\left(2 x^{2}\right)^{n-i-1}(2 y)^{i}(x+y)^{i} \quad\left(\bmod R_{X}\right)
\end{aligned}
$$

since $z \equiv y$ and $\left(w+x^{2}\right)^{k} \equiv\left(2 x^{2}\right)^{k-1}\left(w+x^{2}\right)\left(\bmod t_{1} R_{X}\right)$. Hence we obtain

$$
\sum_{i=0}^{m} \beta_{i}\left(2 x^{2}\right)^{n-i-1}(2 y)^{i}(x+y)^{i}=0
$$

as a polynomial of $\mathbb{C}[x, y]$. Then there are $g_{0}, \ldots, g_{m} \in \mathbb{C}[x, y]$ such that
$\beta_{0}=2 y(x+y) g_{0}, \quad \beta_{i}=2 y(x+y) g_{i}-2 x^{2} g_{i-1} \quad(i=1, \ldots, m), \quad g_{m}=0$.
Since $\operatorname{deg} \beta_{i} \leq 1$, we have $g_{i}=0$ for each $i=0, \ldots, m$, and $c_{i}=\alpha_{i} t_{1}$. This prove the assertion.

Proof of Proposition 2.10. Let $q \in \mathbb{C}(X)^{\times}$be a rational function with q. $\mathbb{I}_{X}\left(n E_{1}+m E_{2}\right) \subset R_{X}$. Since

$$
\mathbb{I}_{X}\left(n E_{1}+m E_{2}\right)=\left\langle t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i}, t_{1}^{n-j} t_{3}^{j} \mid i=0, \ldots, m, j=m+1, \ldots, n\right\rangle
$$

by Proposition 1.5, there are homogeneous elements $c_{0}, \ldots, c_{m} \in\left(R_{X}\right)_{0}=\mathbb{C}$ such that

$$
\begin{equation*}
q=\sum_{i=0}^{m} c_{i} \frac{(x+z)^{i}(y+z)^{i}}{t_{3}^{i}} \tag{2.5}
\end{equation*}
$$

by Lemma 2.11.
Conversely, suppose that $q \in \mathbb{C}(X)^{\times}$is of the form in (2.5). Since

$$
\begin{equation*}
t_{1}^{n-i} t_{3}^{i} \cdot \frac{(x+z)^{j}(y+z)^{j}}{t_{3}^{j}}=t_{1}^{n-i} t_{3}^{i-j}(x+z)^{j}(y+z)^{j} \in R_{X} \tag{2.6}
\end{equation*}
$$

for $i=m+1, \ldots, n$ and $j=0, \ldots, m$, we have $q \cdot t_{1}^{n-i} t_{3}^{i} \in R_{X}$ if $i>m$. It is enough to prove that $q \cdot t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i} \in R_{X}$ for each $i=0, \ldots, m$. For each $i, j=0, \ldots, m$, put

$$
q_{i, j}:=t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i} \cdot \frac{(x+z)^{j}(y+z)^{j}}{t_{3}^{j}}
$$

If $0 \leq j \leq i \leq m$, then we have

$$
\begin{equation*}
q_{i, j}=(x+z)^{j}(y+z)^{j} t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i-j} \in R_{X} . \tag{2.7}
\end{equation*}
$$

If $0 \leq i<j \leq m$, then

$$
\begin{align*}
& t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i} \cdot \frac{(x+z)^{j}(y+z)^{j}}{t_{3}^{j}} \\
= & \left(\frac{t_{1} t_{2}}{t_{3}}\right)^{j-i} t_{1}^{n-j} t_{2}^{m-j}(x+z)^{j}(y+z)^{j} \tag{2.8}\\
= & \left(-\frac{w-x^{2}-y^{2}+z^{2}}{2(x+z)(y+z)}\right)^{j-i} t_{1}^{n-j} t_{2}^{m-j}(x+z)^{j}(y+z)^{j} \\
= & \left(-\frac{1}{2}\right)^{j-i} t_{1}^{n-j} t_{2}^{m-j}(x+z)^{i}(y+z)^{i}\left(w-x^{2}-y^{2}+z^{2}\right)^{j-i} \in R_{X}
\end{align*}
$$

by (2.4).
We prove Theorem 1.6 in the case of $n \geq m$.
Proof of Theorem 1.6. Let D be an effective divisor on X with $D \sim n E_{1}+$ $m E_{2}$. By Lemma 2.2, there is $q \in \mathbb{C}(X)^{\times}$such that

$$
q \cdot \mathbb{I}_{X}\left(n E_{1}+m E_{2}\right)=\mathbb{I}_{X}(D) \subset R_{X} .
$$

By Proposition 2.10, there are $c_{0}, \ldots, c_{m} \in \mathbb{C}$ such that

$$
q=\sum_{j=0}^{m} c_{j} \frac{(x+z)^{j}(y+z)^{j}}{t_{3}^{j}}
$$

By (2.6), (2.7) and (2.8), $\mathbb{I}_{X}(D) \subset R_{X}$ is generated by

$$
\sum_{j=0}^{i} c_{j} A_{i, j}+\sum_{j=i+1}^{m}(-2)^{i-j} c_{j} B_{i, j} \quad \text { and } \quad \sum_{j=m+1}^{n} c_{j} A_{i, j}^{\prime}
$$

for $i=0, \ldots, m$.

References

[1] Shinzo Bannai and Taketo Shirane. Nodal curves with a contact-conic and Zariski pairs. Adv. Geom., 19(4):555-572, 2019.
[2] Benoît Guerville-Ballé and Taketo Shirane. Non-homotopicity of the linking set of algebraic plane curves. J. Knot Theory Ramifications, 26(13):13, 2017. Id/No 1750089.
[3] Hideyuki Matsumura. Commutative ring theory. Transl. from the Japanese by M. Reid, volume 8. Cambridge University Press, Cambridge, 1986.
[4] Taketo Shirane. A note on splitting numbers for Galois covers and $\pi_{1}-$ equivalent Zariski k-plets. Proc. Am. Math. Soc., 145(3):1009-1017, 2017.

[^0]: *The author is partially supported by JSPS KAKENHI Grant Number JP21K03182, e-mail address : shirane@tokushima-u.ac.jp

