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Abstract

Let B C P2 be a plane curve with even degree on the complex
projective plane P2, and let ¢ : X — P? be the double cover branched
along B. In this paper, we compute ideals of certain divisors on X
for certain smooth curves B of degree < 4 without using rationality
of X.
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1 Introduction

For two plane curves C;,Co C P2, we say that C; and C, have the same
embedded topology if there is a homeomorphism h : P? — P2 Let C; =
Ci1++ -+ Cip, be the irreducible decomposition of a plane curve C; C P2 for
each i = 1,2. In the case where C; and Cy have the same embedded topology,
it is known that the following conditions hold:
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(1) ny =ng =:n,

(ii) after relabeling Cy 1, ..., Cy,, if necessary, the followings are satisfied:
(a) h(Cy,;) = Cy; foreach i =1,...,n,
(b) degCy,; =deg(Cy,; foreach i =1,...,n,

(c) the numbers and the topological types of singularities of C} ; are

same with Cy; for each i =1,... n.
(d) intersections of C 1,. .., C}, are topologically same with those of
02,1, ceey CQ,n-

One of problems on plane curves is to distinguish the embedded topology of
two plane curves Cp,Co C P? satisfying the above conditions. The following
theorem is used for this problem effectively.

Theorem 1.1 (cf. [4, Corollary 1.4]). For eachi = 1,2, let C; C P? be a plane
curve consists of two irreducible components B;, C; C P? with deg B; = 2/
for 0 € Zwy. Let ¢; : X; — P? be the double cover branched along B; for
each i = 1,2. If there is a homeomorphism h : P2 — P? with h(B;) = Bs
and h(Cy) = Cy, then s4,(C1) = s4,(C2), where s4,(C;) is the number of
irreducible components of ¢;C;.

With the same notation of Theorem 1.1, if deg C; = degCy # 2¢, and
there is a homeomorphism h : P? — P? with h(C;) = Cy, then h(By) = By
and h(Ch) = Cy, and hence s4,(C1) = 54,(C2).

Let ¢ : X — IP? be a double cover branched along B C P2. The number
s4(C) is called the splitting number of C' with respect to ¢. In the case
of deg B # deg C', Theorem 1.1 implies that the irreducibility of ¢*C is an
invariant of embedded topology of C = B + C. A criterion [4, Theorem 2.7]
for irreducibility of ¢*C' is given if C' is smooth (cf. [2]). On the other hand,
if C; is singular, then such criterion is not known except for few cases (cf.
[1]). In this paper, we consider an approach for the irreducibility of ¢*C' by
computing curves on the double cover X. Namely, we consider the following
problem.

Problem 1.2. Let B C P? be a plane curve of degree 2/, and let ¢ : X — P?
be the double cover branched along B.

(i) Compute generators and relations of the divisor class group C1(X).
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(ii) For each curve C' C X, compute curves on X linearly equivalent to C'.

(iii) For each class [C] € CI(X), give geometric characters (e.g. the arrange-
ment of singularities) of the image ¢(C').

If B is smooth with deg B = 2,4, then X is a rational surface, and
Cl(X) = Pic(X) is well known. On the other hand, it seems difficult to
compute Cl(X) from data of B if deg B > 6 in general. The aim of this
paper is to compute curves on X linearly equivalent to certain curves C' C X
for deg B = 2,4 without using rationality of X.

Let B C P? be a plane curve of degree 2¢, and let F € Cl[z,y, 2] be a
defining polynomial of B. Let ¢ : X — P? be the double cover branched
along B. Then X can be regarded as the sub-variety in P(1, 1,1, ) defined
by w?—F = 0, where P(1,1, 1, /) is the weighted projective space with weight
(1,1,1,¢), and [z : y : 2z : w] is a system of coordinates with degz = degy =
degz = 1 and degw = ¢. Let Ry be the homogeneous coordinate ring
Clz,y, z,w]/(w? — F) of X:

X =V(w? - F)cP(1,1,1,¢), Ry = Cl[x,y, z,w]/{w® — F).

By abuse of notation, let f denote the class [f] in Rx containing f €
Clz,y, z,w]. For d € Z>y, let

(RX)d C RX

denote the vector space over C generated by homogeneous elements of degree
d. A prime (Weil) divisor £ C X defines a valuation vg : Q(Rx) — ZU{oo}
at E with vg(0) := oo since Ry is normal (cf. [3, §9]), where Q(Rx) is
the quotient field of Ry. For an effective divisor D = ) . ngE on X, let
Ix(D) be the ideal of Rx generated by homogeneous elements f such that
ve(f) > ng for any prime divisors E:

Ix(D) := <f : homog. ’ ve(f) > ng for VE C X: prime> C Rx.

The main theorem of this paper is as follows.

The case of deg B = 2. Put F:= 2? + 2y € C|z,y, 2], and let B C P?
be the plane curve defined by F = 0. Let ¢ : X — P? be the double cover
branched along B. Then X is the sub-variety of P? defined by w? — F' = 0.
Let E* C X be the curves defined by w =z = x = 0, respectively. Note that
E* are prime divisors on X.
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Proposition 1.3. Let m,n € Z>q. The following equation holds:

(e w+2)" |i=0,...,n—m) ifn>m,

Ix(nE* +mE™) = _ _
X(n m ) {<xmz(w—z)1’i:0,...,m—n> zfngm

Theorem 1.4. Let m,n € Zsq, and put My, := min(m,n). If an effec-
tive divisor D on X is linearly equivalent to nE™ + mE~, then there exist
ho, ..., Mp—m| € (Rx) M, such that

In—m|
Ix(D) = < Z hia" " (w4 2) (w—2) [ i=0,...,|n— m|>

Jj=0

An example of deg B = 4. Let F := 2% + y* — 2% € Clz, v, 2], and let
B C P? be the quartic curve defined by F = 0. Let ¢ : X — P2 be the
double cover branched along B. Let E; and E5 be two prime divisors on X
defined by the following equations:

Bl :y—z=w+2*=0, Ey:x—z=w+y*=0.
Put 115;%271 = nkFE; + mFE,. We obtain the following results.

Proposition 1.5. Let m,n € Zsg, and put t1 :=y — 2, to == — 2, t3 1=
w+ 22 +y? — 2% in Rx. Then the following equation holds:

I

n,

- iy, 7 [ i=0,0..,m, j=m+1,...,n) ifn>m,
" (=, 4 i =0, n, j=n+1...m) ifn<m.
Theorem 1.6. Let m,n € Z>( and t1,ts,t3 € Rx be as Proposition 1.5. Let
Myin = min(m,n) and My.x = max(m,n). Put

Ay =t (w+ 2) (y + 2) for 0<i < My, and 0 < j <1,

0 S { S Mmin
{ S] S Mmim

A =t (w4 2 (y +2)) for0<i<nandm <j<nifn>m,
Af; = T (w4 2) (y+ 2 for0<i<mnandn<j<mifn<m.

B;; = t?ijt’;*j@w —t3) (x4 2) (y + 2)° for {
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Put A}, = A}, = 0 if m = n. Then, for any divisor D on X linearly
equivalent to nEy + mE,, there exist ¢; € C for j = 0,..., Myax such that
Ix (D) is the following ideal of Ry :

<ZCJA J+ Z ) e; By, i A

j=i+1 j=m+1

=O,...,m> ifn>m,

<ZCJA1]+ Z )" JCJ i, zm: CJ'A;/,]'

Jj=i+1 j=n+1

iO,...,n> ifn <m.

2 Proofs

In this section, we give proofs of the main results. Let ¢ : X — P2 be a
double cover branched along B C P? and let + : X — X be the covering
transformation of ¢. Let ET C X be a prime divisor with E+* ¢ ¢~1(B),
and put

E-:=/E" CX, E = ¢(ET) C P

Let Ry g+ be the local ring of Ry at E*, which is a DVR, and let my g+ C
Ry g+ be the maximal ideal.

Lemma 2.1. If up € H°(P* O(F)) is a defining polynomial of E, then
ug € Rx g+ 15 a uniformizing parameter of Rx p+.

Proof. Let f € Ix(E™) be any homogeneous element; if vg-(f) > 1, then
f € {ug) C Ry since E* ¢ ¢~ Y(B); if vp-(f) = 0, then +*f ¢ Ix(E") and
f-v*f € (ug), hence there is h € Rx g such that f = hug/c*f. Thus my g+
is generated by up in Rx g+. Ll

Lemma 2.2. For two effective divisors D = > ngE, D' = > npFE, if D
and D' are linearly equivalent, D ~ D', then there is a rational function
q € C(X)* such that Ix(D) = q-Ix(D").

Proof. Since D ~ D', there is a rational function ¢ € C(X)* such that
D — D" = (q), where (g) is the principal divisor on X defined by ¢. Then
we have f'q € Ix(D) for any f € Ix(D’) and any prime divisor F on X
since ve(f'q) > ng. Similarly, we have f¢=' € Ix(D’) for any f € Ix(D).
Therefore Ix(D) = q - Ix(D’). O
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2.1 Proof of Theorem 1.4

Let B C P? be the smooth conic defined by F' := 22 + zy = 0, and let
¢ : X — P? be the double cover branched along B. We can regard X and ¢
as the sub-variety of P defined by w? — F = 0 and the map X — P? given
by ¢(x 1y :z:w):=[r:y: 2], respectively. Let E~ be prime divisors on X
defined by © = w £+ z = 0, respectively:

EftcX:z=w+2z=0, E-cX:z=w—2=0.
Lemma 2.3. For eachm € Zsq, Ix(mET +mE~) C Rx is the ideal gener-
ated by x™:

Ix(mET +mE~) = (2) C Rx.
Proof. Put L, := Ix(mE" +mE~). It is clear that Iy = Rx = (z°). Let
L, C P? be the line defined by = 0. Since ¢*mL, = mE* +mE~, we have
L, = (™). [
Lemma 2.4. For each m € Zso, Ix(mE™) is the ideal of Rx generated by
2w+ 2)! fori=0,...,m:
Ix(mET) = (@™ "(w+2)"|i=0,...,m).

Proof. Put I, := Ix(mE™), and I, :== (2™ (w+2)" | i =0,...,m). We
prove the following claim.
Claim 2.5. Let k be an integer with 0 < k < m — 1. If hy; € Rx for
1=Fk,...,m—1 satisfies

m—1

fr = Z ha™ w4+ 2)"=0 (mod L),
i—k

then there are hyt1; € Ry for j=k+1,...,m —1 such that

m—1
fra1 = Z th,ixm*i*l(w + z)i = fr (mod I,).
i=k+1
Proof of Claim 2.5. Let Ry g+ be the local ring at I; = I,(E*). Note that
the maximal ideal mx g+ C Ry g+ is generated by . Since w? — 2% = xy, we

obtain

m—1 m—1
z i m—i—
szmzhk,z}y(w_z) !
i=k
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as elements of Ry g+. Since my g+ N Rx =1 and f; € I,,,, we obtain

m—1
Z byt (w — 2)" " e 1.
i—k

Since x,w + 2z € Iy, there are h ; € C[y, z] such that hj ; = hy; (mod I).
Moreover, we have

EZh;ﬂy fzmll—Zh,“y (—22)""1 (mod T).
i=k

Since Ry /I; = Cly, 2], we have
k(=22 Byt (=22) T e By = 0

as polynomials in Cly, z]. Hence there is g, € Cly, 2] such that hj , = ygr.
Since 2™ (w + z)", z™ " Hw + 2)"** € I, we have in Rx/I,,

fk—zhkzxmllw+z Zh lew—FZ)i
i=k

= gr(zy)z"™ " (w + 2)F + B g (w 4 )M
o P (w4 2)™ !

= ge(w? — 22) 2™ (w + 2)* + B2 (w + 2)M

+ ot A (w4 2)™
Since w? — 2% = =2z(w + 2) + (w + 2)?, by putting
Phsrksr i= =220k + Ny jirs

Pii1 g2 = TGk + My o
Pisr=he;  (G=k+3,...,m—1),

we obtain fi = fr11 (mod I,). O

Let us return to the proof of Lemma 2.4. If m = 0,1, the equation
I, = I, is clear. Suppose that m > 1 and I,,_; = I,,,_;. By the definition of
L., we have I,, D I,,. Let f € I, be any homogeneous element of degree d.
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Since I, C I,,_1 = I,,_1, there are homogeneous elements h; € (Rx)d_mi1
for i =0,...,m — 1 such that

m—1

/= Z hia™ " (w + 2)".

=0

Put hg; := h; for i = 0,...,m — 1, and f, := f. With the notation of
Claim 2.5, we obtain

f=fizsfh="=fo1=hmima(w+2)"" (modI,).
Since f €1, and I,, D I,
m—l).

m < UE*(hmfl,mfl(w + Z)

Thus we have vg+ (hym—1m-1) > 1, and hpy_1m-1 € I} = 2Rx + (w + 2)Rx.
Therefore f = hy1m-1(w +2)™""' =0 (mod I,,,). O

By the same argument, we can prove the following lemma.

Lemma 2.6. For each m € Zsq, the following equation holds:
Iy(mE™) = (2™ (w—2)"|i=0,...,m) C Rx.
We are ready to prove Proposition 1.3.

Proof of Proposition 1.3. Put L,,, := Ix(nEt + mE~). We first suppose
that n > m. Put

+
n,m

= (2" (w+2)"|i=0,...,n—m) C Rx.

Let f € I;”m be a homogeneous element. Since vg+(x™) = m and vg+(w +
z) =1, we have vg+(f) > n, vg-(f) > m, and hence f € I} .

Conversely, let f € I} =~ be a homogeneous element. Since vp+(f) >
n > m and vg-(f) > m, there is a homogeneous element g € Rx such that
f=a"g. Then

n < vp+(f) = vp+(2™) + vp+(9) = m + vp+(9).
Thus we have vg+(g) > n —m. Since

fel@ ™ (w+2)i=0,...,n—m)
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by Lemma 2.4, there are homogeneous elements h; € Rx such that

Z pnme 1 ,w + Z)l
i=0
Therefore f € I}, and I} = I .
In the case of n < m, we can prove the assertion by the same argument
using Lemma 2.3 and 2.6. |

Let Sx C Ry be the set of all homogeneous elements, which is a multi-
plicatively closed set. Note that the rational function field C(X) of X can be
regarded as the sub-field (Sy'Rx)o of the localized ring Sy' Ry consisting of
homogeneous elements of degree 0 and the zero element.

Proposition 2.7. Let n,m € Zsq, and put My, = min(n,m). For q €
C(X)*, q¢-Ix(nE* + mE~) C Rx if and only if there are ho, ..., hjp_m €
(Rx)m,,, such that

n—m h w— 2 7
ZZ< ) ifn>m,
xm T

=0

Zhn<w+z> ifn <m.

1=0

To prove Proposition 2.7, we prove the following lemma.

Lemma 2.8. Let k,n € Zso with 0 < k < n, and let ¢ € C(X)*. If
qr" 7 (w + 2) € Rx for each j = 0,...,k, then there are homogeneous
polynomials ag € Clx,y, zln_k, bo € Clz,y, z]p_k_1 and o, € Cly, z],_x for
1=1,...,k such that

!

k i
ag + bow ak w— z
= ! . 2.1
q e ) e ( - ) (2.1)

i=1

Proof. We prove the assertion by the induction on k. In the case of k = 0,
qr™ € Rx if and only if there is a homogeneous polynomials ag, by € Rx of
degree n and n — 1, respectively, such that ¢ = (ag + bow)/x™.
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Suppose that k£ > 1. By the assumption of the induction, there are ay €
Clz,y, 2ln—r+1, bo € Clz,y, 2]n—k and a; € Cly, 2]p_g41 for i = 1,... .k — 1

such that o _
Cagtbhw 4 w—2z\"
4= ket + Zl pn—k+1 - :
P

Let ap, by € Cly, 2] and ag, b, € Clz,y, z] be the homogeneous polynomials
such that
ap = agx + aj, bo = bz + by,

We consider the Ry-module z7" Ry and its quotient module (z~"Rx)/Rx.
Since (w + 2)? = 2z(w + 2) + 2y, we have

(w+2) = (22)"(w+2) (modzRy).
for each 7 > 1. Since ag + byw = (ag + bpz) + bo(w — 2) and w? — 2% = zy,
(ap + bow)(w + 2) = (a; + biz)(w + z) (mod zRy).

By ¢a" *(w + 2)* € Ry, we have in 2 "Rx/Rx

0=qz" "(w+2)"= -

k—1
1
<(2z)k1a0+b —I—ZayZsz’l)(w—i—z)

Let ¢} € Cly, z] be the element
k-1
(22’)k 1a0+b/ +Zayz2zk11
=1

The above computation implies that ¢ € xRx. Since ¢’ € Cly, z], we obtain
¢y, = 0. Thus there is b} € Cly, 2] of degree n — k such that af, = yb| — z0j,.
Then we obtain

ag +bow b (w—z) yb}

xnflﬂ»l - xnfk T xn7k+1’

k-1
= (22)*2(a} + 220)) + Za’ =2z = 0.

=2
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We assume that there is b; € Cly, z] of n —k for j =1,...,i (i < k—1) such
that

ay = yb, — 220 (j=1,...,i—1),
k—1
b= (22)" 7 (d + 220)) + Z Ay =0 (j=1,...,40).
i=j+1
By ¢; = 0, there is b, ; € Cly, 2] of degree n — k such that
a; = yb; , — 22

[

Gy = (22)"2(aly, + 220]) + Z aly T2z = 0.
s=i+2

Since (w — 2)* = zy — 2(w — z), we obtain

- . A .
ybl  (w—2z\" N a; w—2z\" b (w-—z l+yb2+1 w—2z\"
an—k+1 T pn—k+1 T B an—k T pn—k+1 T

Since ¢, = aj,_; +22b,_, =0,

/ k—2 / k—1 / k
yb_y [w—z N a,_, [(w—=z by (w2
xn—k-ﬂ—l T xn—k+1 T xn—k T

The above argument proves the assertion. O

Proof of Proposition 2.7. Suppose that n > m. If ¢ = 2™ > " hja ™ (w —

z)* for some homogeneous elements h; € (Rx),,, then, for each j =0, ..., n—
m?
n—m
g (w + z) hax™ ™™ (w — 2) (w + 2)?
=0
n—m

hixnfmfifj(xy)min(i,j)(w +€i7jz)|ifj\ c RX,
0

I3

where ¢; ; = 1if i < j, and ¢; ; = —1 otherwise. Hence ¢-Ix(nE*+mE~) C
Ry by Proposition 1.3.
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Conversely, if ¢-Ix (nET+mE~) C Ry, then gz" 7 (w+2)’ € Rx for each
j =0,...,n —m by Proposition 1.3; and there are hg,...,h,—m € (Rx)m

such that ‘
— h; (w—2z\"
=3 (")

i=0

This prove the assertion in the case of n > m. We can prove this proposition
in the case of n < m by the same argument. We omit the details here. O

Next we prove Thorem 1.4.

Proof of Theorem 1.4. Assume that D be an effective divisor on X linearly
equivalent to nE* +mFE~. Then there exists a rational function ¢ € C(X)
such that

Ix(D) =q-Ix(nET +mE").

Suppose that n > m. Since

. o h.: — J o o ) )
xn—z(w + Z)Z Z x_it (w - Z) _ Z hjxn—m—l—] (w 4 Z)Z(U} _ Z)]
=0

J=0

for homogeneous elements h; € Rx of degree m, the assertion follows from
Proposition 1.3 and 2.7. We can prove the assertion in the case of n < m by
the same argument. O

2.2 An example of deg B =4

Put F:=a2* +y* — 2%, and let B C P? be the plane curve defined by F = 0.
Let ¢ : X — P? be the double cover branched along B, and we regard X
as the sub-variety of P(1,1,1,2) defined by w? — F = 0. Let E, E; be the
divisors on X defined by y — 2 = w+ 22> =0 and 2 — 2z = w + y? = 0,
respectively:

Ech:y—z:w+x2:0, EQCXZ(I,'*Z:w‘f“y?:O.

Note that F; and E5 are prime divisors on X. Put

t, =y — 2, to == — 2, t3::w+x2+y2—z2

{ (T, ] ‘ i=0,....,m, j=m+1,...,n) ifn>m,

I =

(B, Tt i =00, j=n+1,...,m) ifn<m
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Lemma 2.9. Let n € Zsq. the following equations hold:
Ix(nEy) = I, Ix(nEy) = Io,.

Proof. We prove Ix(nE,) = I, by the induction on n. We have Ix(0) =
Ino = Rx and Ix(E;) = I 9. Suppose that n > 1, and f € Ix(nE;). By the
assumption of the induction, there are hg, ..., h,_1 € Rx such that

n—1
f=> hti
=0

On the local ring Rx g, at E;, we have

— n—i—1 y' -2 2 2 '
F= _hly—2 (e

— w — 22
S gyt (R =) =)’
=0 l w—
! nz_l 2\yn—i—1 2, 2 2y ;
= ———5— ) hi(w—a%)""(w—2"+y +27)(y + 2)".
(w — 22"t =

Since (y — z)Rx g, is the maximal ideal of Rx g, by Lemma 2.1, we have
(y — 2)Rx,p, N Rx = Ix(E1). Since vg, (f) > n by f € Ix(nE,),

|
—

n

= hi(w — 22)" " Hw — 22 + 2 + 22) (y + 2)' € Ix(EY).

-
Il
<}

Since z =y, w = —z* (mod Ix(FE})), there are 1} € Clx, y] such that b = h;
(mod Ix(E})) for i =0,...,n — 1. Hence we obtain, on Rx/Ix(E}),

n—1
0=f'=> hi(=22")"""" (22" + 25°)'(2y)’
=0
n—1 i
=3 (=203 (= (et - )
1=0

S h(-202) (—dy(a? — ) =0 (2.2)

i=0
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as a polynomial in C[xz,y|. Thus there is g,,—1 € Clx,y| such that
h{n—l = —2x2gn_1 = —(tg — (y + Z)t1>gn_1 + (w - .Tz)gn_l.
By (2.2) again, there is gi,—2 € Clx,y] such that

h;v,n72 = _2ngk,n—2 + 49(5172 - y2)gk,n—1~

Since aff € I, for any a € I,,_19 and 3 € Ix(E;), and t3(w — 2?) =
t1(y + 2)(w — 2? + y* + z%) on Ry, we obtain on Rx /I,
n—2
f= gnoa(=227) 7 4> T
i=0
= gn_1 ((w — 2t + dy(2® — y2)t1)t’3’_2

n—3

+ gnoa(=227 0ty 7+ ) R
=0
= Gn1(y — 2) ((y +2)(w —2® + g+ 2%) — dy(a® - yz))tg—z
n—3
+ gnoa(—227) 0ty 2 ) R
=0
n—3
= o207 00857 4 Y W,
1=0

By repeating this operation as the proof of Proposition 1.3, Ix(nE;) C I,
can be proved. The inclusion Ix(nE;) D I,q is trivial. Hence we obtain
Ix(nE,) = I,o. By the same argument, we can prove Ix(nEs) = Iy,,. O

Proof of Proposition 1.5. We prove Ly (nEy +mEsy) = I,, ,,, in the case of n >
m. Let f be a homogeneous element of I, ,,,. Then there are hy,...,h, € Rx
such that

F=) iy T > bt
=0 i=m+1
Note that we have
(w =)ty = (y + 2)(w — 2® + y* + 22)ty,
(w—y*)ts = (z + 2)(w + 2* — y* + 2)ta,
v, (t3) = vi,(t3) = 1.
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Thus vg, (f) > n, ve,(f) > m, and hence [ € Ix(nE; + mE,).

We prove Iy(nE, + mEy) = I, by the induction on m. Recall that
thi=y—2z, ty:=x—2 t3 :=w+ 2> +y* — 22, By Lemma 2.9, the above
equation holds when m = 0. Suppose that m > 0, and f € Ix(nFE; + mEs).
By the assumption of the induction, there are hy,...,h, € Rx such that

m—1 n
F= hti T Y bty
1=0 i=m

On the local ring Rx g,, we have

tm—l m—1 ) ) . .
o Z Rty (x4 2) (w — )" (w + 2 — y? + 2P
=0

f (w _ y2)m71 —

modulo t5'Rx g,. Since f € t5'Rx g,, we obtain

m—1

Z Rttt (x4 2) (w—y*)" T (w+ 2* —y? + 2% € thRx g, N Rx = Ix(Ey).
i=0

Since z = x, w = —y? (mod Ix(Ey)), there are h, € C[z,y] such that h; = h!
(mod Ix(FE,)) for i =0,...,m — 1. Moreover,

Z tn z JZ 4z (’LU _ y2)m7i71(w +Z’2 _ y2 + 22)2'
0
—1

<.
Il

S

> iy — )" (=2y%)" T (22) (227 — 2%)" (mod Ix(En)).

Since Ry /Ix(Ey) = Clx,y], we have

D hily — )" (=2t (20) (227 - 2¢°) = 0. (2.3)

Hence there is gy, , € Clz,y] such that
Ry = =20*(y — )91
y (2.3), there is g,,_2 € C[z,y| such that

Rl o= —2y*(y — T)gm_2 — 22(22% — 2y*)Gm_1.
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Since aff € I, for any « € I, ,,—1 and § € Ix(E»), and

2%ty = (w — ) (w + 2* + y* — 22) — (w + ) (w + 22 + y* — 2?)
= (z+2)(w+ 2% — > + 2ty — (w + yts
= (v +2)(ts — 2% + 22H)ty — (t3 — 2° + 2°)t3
= 2(x + 2)tatz — 2(x + 2)(y + 2)t1ty — 13,

on Ry, we obtain on Rx /I,

Y A LR NP A Y A

= — 2%y — o)t " oty 2 g o (mod I,,,).

By repeating this operation as the proof of Proposition 1.3, Ix(nE+m#Es) C
I, can be proved. The inclusion Ix(nE; + mEs,) D I, ,, is trivial. Hence
we obtain Iy(nE; + mEsy) = I, ,, if n > m. By the same argument, we can
prove Iy (nE; + mEs;) = I, ,,, in the case of n < m. O

From now we prove Theorem 1.6 in the case of n > m. Note that we
can prove it in the case of n < m by the same argument. We first prove the
following proposition.

Proposition 2.10. Let n,m € Zsq, and put My, := min(n,m). For q €
C(X™), q-Ix(nEy + mEy) C Ry if and only if there are cy, ..., cn,,, € C
such that
W @)yt
1= Z Ci(

w+$2+y2_z2)i'

i=0

We prove this proposition in the case of n > m. By Proposition 1.5, we
have

Ix(nEy 4+ mEy) = (40 4774 |i=0,...,m, j=m+1,...,n),

where t, '=y — 2, ty := o — 2, t3 .= w + 22 + y? — z2. In order to prove
the above proposition, put Q(Rx) = C(z,y, z)[w]/(w? — F), which is the
quotient field of Ry. We call ¢ € Q(Rx) a homogeneous element if there are
homogeneous elements ¢, ¢" € Rx with ¢” # 0 such that ¢ = ¢’/¢”, and put
degq := degq — degq”. Note that C(X) can be regarded as the C-vector
space Q(Rx)o C Q(Rx) generated by homogeneous elements of degree 0.
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Lemma 2.11. Let g € Q(Rx) be a homogeneous element of degree d. If q -
t1t5ts7 € Rx for any j =0,...,k, then there are co, ..., ¢, € (Rx)ar2(m—k)

such that
y + Z)
tm k Z
=0

Proof. We prove this lemma by the induction on k. If k = 0, then ¢y :=
q - 15" € Ry is a homogeneous element of degree d +m with ¢ = cot3™
Suppose that k > 0, and ¢ - t]t5t3"7 € Rx for each j = 0,...,k. By the

assumption of the induction, there are co,...,ce—1 € (Rx)dt(m—it1) such
that o
1§, (@+2)(y+2)
1= =i Z G t ‘
3 i=0 3

Let o; € (Rx)ayom—k) and f; € Clx,y, 2]ayo(m—k+1) be the elements such
that

¢ = aits + f5;

for each i = 0,...,k—1. Since —2(y* — 2%)(2? — 2?) = (w+2* +y? — 2%)(w —
2 — 42 4 22,

tyto w—z*—y*+22 2@+t -2 —t3

A = . 2.4
b 2wt Awrs) | 2wt Au+?) 24)
Hence we obtain, on the Rx-module Q(Rx)/Rx,
= 4
0=q-tht5ey " = — Z(Oéits + BT (2 P — 2P = 27 M)
t3 4 =
=
= ;Zﬁztk ztk z l‘ +y2_z2)z
k-1
_ w2ty 42 i1 ki1
= — ity ty + .
2(z +2)(y + 2) ;6 (2% +y" =2
Hence we have
k-1
¢ =) Bty TN @ + P — 2P € (w+ 2)(y + 2)Clx,y, 2]

S
Il
=)
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Let a; € Clz,y, 2] and a; € C[z,y] be the polynomials such that §; = a;(z +
z) + a}. Since the above polynomial is divisible by = + z, we have

0=q = a;2xk11x+y)klly2l (mod x + 2).

Since Clz,y, 2] /{x + z) = C[z,y],

k—1
Za zx k—i—1 x_i_y)k‘fiflyQi:O.
=0

Thus there are go, ..., gr_1 € C[z,y] such that
ay = y>go, a=yrg —2x(x+y)g. (i=1,....k—1), Ggp—1 = 0.
Since
y2gi(tlt2)k7ifl(‘r2 + y2 _ ZZ)i 4 bi+1(t1t2)k7i72(aﬁ2 =+ y2 _ ZZ)Z’+1
=(vtts = 20(z +9)(@* + 7 = 29) ) (ita) 20?4 o — 2
+ y29i+1(t1t2)k_i_2(1‘2 + y2 o Z2)i+1

- (I + Z) G(tth)k7i72(x2 + y2 _ Z2>igi
+ 42 g1 (t1t) 2 (2% 4 y? — 22)THL

where G = 222 + 22%y — 2z 22 + 22 y% — 2xyz + y° — y?2, we obtain

e
i

T+ 2 a; + Gg)ti =k =112 g2 — 221
1 2

7

I§
S

Hence we may assume that §; € (x + 2)C[z,y, z]. Let 5, € Clx, vy, 2] be the
polynomial with ; = (x + 2)! for each ¢ = 0,...,k — 1. Then

-1
DBt @y = ) € (y + 2)Clay, 2],
i=0

By the same argument, we may assume that 3 € (y + 2)Clz,y, 2] for each
i = 0,...,k —1. Then there are by,...,b,_1 € Clx,y, 2| such that §; =
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(x + z)(y + 2)b; for each i, and

k—1 i A

1 r+2)(y+2)

4= im=r1 > (aits + bz + 2)(y + Z))()t#
3 i

=0

k-1
1 (I+Z y+z x+z’+1(y+z)”'1
- (T et

=0

Therefore the assertion holds. O

Lemma 2.12. Let ¢ € Q(Rx) be a homogeneous element of degree 0. If
q-Ix(nEy +mEs) C Rx, then there are ¢y, ..., cm € (Rx)o such that

oz )iy +2)
L Z( i+
Proof. We prove the assertion by the induction on n. Since
Hx(mEl + mE2> == <t;n_i7 t;n_ltg ‘ 1= 0, ceny m>

by Proposition 1.5, it follows from Lemma 2.11 if n = m.
Suppose that n > m, and ¢ - Ix(nE; + mE,) C Rx. Since

]IX(nE1 + mEg) = <t§> + tl . ]Ix(<’rl — I)El + mEg),

there are homogeneous elements ¢y, . .., ¢, € (Rx); such that

1~ (z+42)(y+2)
?E:” th
=0

by the assumption of the induction. Since ¢; € (Ry); for each i, there are
a; € C and f; € C[z,y]; such that

c; = a;th + ;.
By ¢t} € Rx, we have, on the Rx-module Q(Rx)/Rx,

m

1 . ) )
Lizo

w + 22

Zﬁ, (22%)" "1 (2y)(x +y)" (mod Ryx)
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since z = y and (w+2%)*F = (222)* 1(w + 2?) (mod ¢, Rx). Hence we obtain

m

S Bi(20%)" 7 (2g) (@ + ) = 0

=0

as a polynomial of C[z,y]|. Then there are go, ..., gm € Clz,y] such that

Bo = 2y(z+y)go, Bi =2y(z+y)gi—22°gi1 (i=1,....,m), Gm = 0.

Since deg 3; < 1, we have g; = 0 for each i = 0,...,m, and ¢; = a;t;. This
prove the assertion. O

Proof of Proposition 2.10. Let ¢ € C(X)* be a rational function with ¢ -
Ix(nE; +mkFEs) C Rx. Since

Iy(nEy +mB,y) = ({7757, 77t | i=0,....m, j=m+1,...,n)

by Proposition 1.5, there are homogeneous elements ¢y, ..., ¢, € (Rx)o = C
such that

=3 L2y +e) (2.5)

ti
i=0 3

by Lemma 2.11.
Conversely, suppose that ¢ € C(X)* is of the form in (2.5). Since

s (2 (y+2) i - ,
e - ()t# =77ty (e +2) (y+ 2)’ € Rx (2.6)
3
fori=m+1,...,nand j =0,...,m, we have ¢ - 77t} € Rx if i > m. It
is enough to prove that ¢ - t7 't 't} € Rx for each i = 0,...,m. For each

1,7 =0,...,m, put

(x+2)(y + z)j.

Gij =ty Tt 3
t3

If0 <j <i<m, then we have

Gij = (x+2) (y+ =)t "ty 'ty 7 € Rx. (2.7)
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If0<i<j<m,then
(z +2)’ (y + 2)!
tj
3

<t1t2>j B (@ + 2) (y + 2)

T

; (2.8)
(-3 $H3jj)tW@<+a@+@
:< ;) 0785 (0 +2) (5 + 2) (w — 2 —y? + 2% € Ry
by (2.4). 0

We prove Theorem 1.6 in the case of n > m.

Proof of Theorem 1.6. Let D be an effective divisor on X with D ~ nkE; +
mF5. By Lemma 2.2, there is ¢ € C(X)* such that

q- Hx(TLEl + mEQ) = ]Ix(D) C Rx.
By Proposition 2.10, there are ¢y, ..., ¢, € C such that

= r+2) (y+ 2)7
S WL (A
=0 t
By (2.6), (2.7) and (2.8), Ix(D) C Ry is generated by

n

ZCJAJ—F Z )"¢;B;; and Z ;A

J=i+1 j=m+1

fori=0,...,m. O
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