On effective divisors on certain double covers and their linearly equivalent classes

Taketo Shirane^{*} and Akihito Sumitomo

Department of Mathematical Sciences, Tokushima University, Tokushima 770-8502, JAPAN

(Received October 6, 2023)

Abstract

Let $B \subset \mathbb{P}^2$ be a plane curve with even degree on the complex projective plane \mathbb{P}^2 , and let $\phi: X \to \mathbb{P}^2$ be the double cover branched along B. In this paper, we compute ideals of certain divisors on Xfor certain smooth curves B of degree ≤ 4 without using rationality of X.

2010 Mathematics Subject Classification. 14E20, 14J26.

1 Introduction

For two plane curves $C_1, C_2 \subset \mathbb{P}^2$, we say that C_1 and C_2 have the same embedded topology if there is a homeomorphism $h : \mathbb{P}^2 \to \mathbb{P}^2$. Let $C_i = C_{i,1} + \cdots + C_{i,n_i}$ be the irreducible decomposition of a plane curve $C_i \subset \mathbb{P}^2$ for each i = 1, 2. In the case where C_1 and C_2 have the same embedded topology, it is known that the following conditions hold:

^{*}The author is partially supported by JSPS KAKENHI Grant Number JP21K03182, $e\text{-mail}\ address$: shirane@tokushima-u.ac.jp

- (i) $n_1 = n_2 =: n$,
- (ii) after relabeling $C_{2,1}, \ldots, C_{2,n}$ if necessary, the followings are satisfied:
 - (a) $h(C_{1,i}) = C_{2,i}$ for each i = 1, ..., n,
 - (b) $\deg C_{1,i} = \deg C_{2,i}$ for each i = 1, ..., n,
 - (c) the numbers and the topological types of singularities of $C_{1,i}$ are same with $C_{2,i}$ for each i = 1, ..., n.
 - (d) intersections of $C_{1,1}, \ldots, C_{1,n}$ are topologically same with those of $C_{2,1}, \ldots, C_{2,n}$.

One of problems on plane curves is to distinguish the embedded topology of two plane curves $C_1, C_2 \subset \mathbb{P}^2$ satisfying the above conditions. The following theorem is used for this problem effectively.

Theorem 1.1 (cf. [4, Corollary 1.4]). For each i = 1, 2, let $C_i \subset \mathbb{P}^2$ be a plane curve consists of two irreducible components $B_i, C_i \subset \mathbb{P}^2$ with deg $B_i = 2\ell$ for $\ell \in \mathbb{Z}_{>0}$. Let $\phi_i : X_i \to \mathbb{P}^2$ be the double cover branched along B_i for each i = 1, 2. If there is a homeomorphism $h : \mathbb{P}^2 \to \mathbb{P}^2$ with $h(B_1) = B_2$ and $h(C_1) = C_2$, then $s_{\phi_1}(C_1) = s_{\phi_2}(C_2)$, where $s_{\phi_i}(C_i)$ is the number of irreducible components of $\phi_i^* C_i$.

With the same notation of Theorem 1.1, if deg $C_1 = \deg C_2 \neq 2\ell$, and there is a homeomorphism $h : \mathbb{P}^2 \to \mathbb{P}^2$ with $h(\mathcal{C}_1) = \mathcal{C}_2$, then $h(B_1) = B_2$ and $h(C_1) = C_2$, and hence $s_{\phi_1}(C_1) = s_{\phi_2}(C_2)$.

Let $\phi: X \to \mathbb{P}^2$ be a double cover branched along $B \subset \mathbb{P}^2$. The number $s_{\phi}(C)$ is called the *splitting number* of C with respect to ϕ . In the case of deg $B \neq$ deg C, Theorem 1.1 implies that the irreducibility of ϕ^*C is an invariant of embedded topology of $\mathcal{C} = B + C$. A criterion [4, Theorem 2.7] for irreducibility of ϕ^*C is given if C is smooth (cf. [2]). On the other hand, if C_i is singular, then such criterion is not known except for few cases (cf. [1]). In this paper, we consider an approach for the irreducibility of ϕ^*C by computing curves on the double cover X. Namely, we consider the following problem.

Problem 1.2. Let $B \subset \mathbb{P}^2$ be a plane curve of degree 2ℓ , and let $\phi : X \to \mathbb{P}^2$ be the double cover branched along B.

(i) Compute generators and relations of the divisor class group Cl(X).

- (ii) For each curve $\overline{C} \subset X$, compute curves on X linearly equivalent to \overline{C} .
- (iii) For each class $[\overline{C}] \in Cl(X)$, give geometric characters (e.g. the arrangement of singularities) of the image $\phi(\overline{C})$.

If B is smooth with deg B = 2, 4, then X is a rational surface, and $\operatorname{Cl}(X) = \operatorname{Pic}(X)$ is well known. On the other hand, it seems difficult to compute $\operatorname{Cl}(X)$ from data of B if deg $B \ge 6$ in general. The aim of this paper is to compute curves on X linearly equivalent to certain curves $\overline{C} \subset X$ for deg B = 2, 4 without using rationality of X.

Let $B \subset \mathbb{P}^2$ be a plane curve of degree 2ℓ , and let $F \in \mathbb{C}[x, y, z]$ be a defining polynomial of B. Let $\phi : X \to \mathbb{P}^2$ be the double cover branched along B. Then X can be regarded as the sub-variety in $\mathbb{P}(1, 1, 1, \ell)$ defined by $w^2 - F = 0$, where $\mathbb{P}(1, 1, 1, \ell)$ is the weighted projective space with weight $(1, 1, 1, \ell)$, and [x : y : z : w] is a system of coordinates with deg $x = \deg y =$ deg z = 1 and deg $w = \ell$. Let R_X be the homogeneous coordinate ring $\mathbb{C}[x, y, z, w]/\langle w^2 - F \rangle$ of X:

$$X = \mathbb{V}(w^2 - F) \subset \mathbb{P}(1, 1, 1, \ell), \qquad R_X := \mathbb{C}[x, y, z, w] / \langle w^2 - F \rangle.$$

By abuse of notation, let f denote the class [f] in R_X containing $f \in \mathbb{C}[x, y, z, w]$. For $d \in \mathbb{Z}_{>0}$, let

$$(R_X)_d \subset R_X$$

denote the vector space over \mathbb{C} generated by homogeneous elements of degree d. A prime (Weil) divisor $E \subset X$ defines a valuation $v_E : Q(R_X) \to \mathbb{Z} \cup \{\infty\}$ at E with $v_E(0) := \infty$ since R_X is normal (cf. [3, §9]), where $Q(R_X)$ is the quotient field of R_X . For an effective divisor $D = \sum_E n_E E$ on X, let $\mathbb{I}_X(D)$ be the ideal of R_X generated by homogeneous elements f such that $v_E(f) \ge n_E$ for any prime divisors E:

$$\mathbb{I}_X(D) := \langle f : \text{homog.} \mid v_E(f) \geq n_E \text{ for } \forall E \subset X : \text{ prime} \rangle \subset R_X.$$

The main theorem of this paper is as follows.

The case of deg B = 2. Put $F := z^2 + xy \in \mathbb{C}[x, y, z]$, and let $B \subset \mathbb{P}^2$ be the plane curve defined by F = 0. Let $\phi : X \to \mathbb{P}^2$ be the double cover branched along B. Then X is the sub-variety of \mathbb{P}^3 defined by $w^2 - F = 0$. Let $E^{\pm} \subset X$ be the curves defined by $w \pm z = x = 0$, respectively. Note that E^{\pm} are prime divisors on X. **Proposition 1.3.** Let $m, n \in \mathbb{Z}_{>0}$. The following equation holds:

$$\mathbb{I}_X(nE^+ + mE^-) = \begin{cases} \langle x^{n-i}(w+z)^i \mid i = 0, \dots, n-m \rangle & \text{if } n \ge m, \\ \langle x^{m-i}(w-z)^i \mid i = 0, \dots, m-n \rangle & \text{if } n \le m. \end{cases}$$

Theorem 1.4. Let $m, n \in \mathbb{Z}_{\geq 0}$, and put $M_{\min} := \min(m, n)$. If an effective divisor D on X is linearly equivalent to $nE^+ + mE^-$, then there exist $h_0, \ldots, h_{|n-m|} \in (R_X)_{M_{\min}}$ such that

$$\mathbb{I}_X(D) = \left\langle \sum_{j=0}^{|n-m|} h_j x^{n-m-i-j} (w+z)^i (w-z)^j \; \middle| \; i = 0, \dots, |n-m| \right\rangle$$

An example of deg B = 4. Let $F := x^4 + y^4 - z^4 \in \mathbb{C}[x, y, z]$, and let $B \subset \mathbb{P}^2$ be the quartic curve defined by F = 0. Let $\phi : X \to \mathbb{P}^2$ be the double cover branched along B. Let E_1 and E_2 be two prime divisors on X defined by the following equations:

$$E_1: y - z = w + x^2 = 0,$$
 $E_2: x - z = w + y^2 = 0.$

Put $\mathbb{I}_{n,m}^{(4)} := nE_1 + mE_2$. We obtain the following results.

Proposition 1.5. Let $m, n \in \mathbb{Z}_{\geq 0}$, and put $t_1 := y - z$, $t_2 := x - z$, $t_3 := w + x^2 + y^2 - z^2$ in R_X . Then the following equation holds:

$$\mathbb{I}_{n,m}^{(4)} = \begin{cases} \left\langle t_1^{n-i} t_2^{m-i} t_3^i, t_1^{n-j} t_3^j \mid i = 0, \dots, m, j = m+1, \dots, n \right\rangle & \text{if } n \ge m, \\ \left\langle t_1^{n-i} t_2^{m-i} t_3^i, t_2^{m-j} t_3^j \mid i = 0, \dots, n, j = n+1, \dots, m \right\rangle & \text{if } n \le m. \end{cases}$$

Theorem 1.6. Let $m, n \in \mathbb{Z}_{\geq 0}$ and $t_1, t_2, t_3 \in R_X$ be as Proposition 1.5. Let $M_{\min} := \min(m, n)$ and $M_{\max} := \max(m, n)$. Put

$$\begin{split} A_{i,j} &:= t_1^{n-i} t_2^{m-i} t_3^{i-j} (x+z)^j (y+z)^j \quad for \ 0 \le i \le M_{\min} \ and \ 0 \le j \le i, \\ B_{i,j} &:= t_1^{n-j} t_2^{m-j} (2w-t_3)^{j-i} (x+z)^i (y+z)^i \quad for \ \begin{cases} \ 0 \le i \le M_{\min} \\ i \le j \le M_{\min}, \end{cases} \\ A_{i,j}' &:= t_1^{n-i} t_3^{i-j} (x+z)^j (y+z)^j \quad for \ 0 \le i \le n \ and \ m < j \le n \ if \ n > m, \end{cases} \\ A_{i,j}'' &:= t_2^{m-i} t_3^{i-j} (x+z)^j (y+z)^j \quad for \ 0 \le i \le n \ and \ n < j \le m \ if \ n < m \end{cases}$$

Put $A'_{i,j} = A''_{i,j} = 0$ if m = n. Then, for any divisor D on X linearly equivalent to $nE_1 + mE_2$, there exist $c_j \in \mathbb{C}$ for $j = 0, \ldots, M_{\text{max}}$ such that $\mathbb{I}_X(D)$ is the following ideal of R_X :

$$\begin{cases} \left\langle \sum_{j=0}^{i} c_{j} A_{i,j} + \sum_{j=i+1}^{m} (-2)^{i-j} c_{j} B_{i,j}, \sum_{j=m+1}^{n} c_{j} A_{i,j}' \middle| i = 0, \dots, m \right\rangle & \text{if } n \ge m, \\ \left\langle \sum_{j=0}^{i} c_{j} A_{i,j} + \sum_{j=i+1}^{n} (-2)^{i-j} c_{j} B_{i,j}, \sum_{j=n+1}^{m} c_{j} A_{i,j}'' \middle| i = 0, \dots, n \right\rangle & \text{if } n \le m. \end{cases}$$

2 Proofs

In this section, we give proofs of the main results. Let $\phi : X \to \mathbb{P}^2$ be a double cover branched along $B \subset \mathbb{P}^2$, and let $\iota : X \to X$ be the covering transformation of ϕ . Let $E^+ \subset X$ be a prime divisor with $E^+ \not\subset \phi^{-1}(B)$, and put

$$E^- := \iota^* E^+ \subset X, \qquad E := \phi(E^+) \subset \mathbb{P}^2.$$

Let R_{X,E^+} be the local ring of R_X at E^+ , which is a DVR, and let $\mathfrak{m}_{X,E^+} \subset$ R_{X,E^+} be the maximal ideal.

Lemma 2.1. If $u_E \in H^0(\mathbb{P}^2, \mathcal{O}(E))$ is a defining polynomial of E, then $u_E \in R_{X,E^+}$ is a uniformizing parameter of R_{X,E^+} .

Proof. Let $f \in \mathbb{I}_X(E^+)$ be any homogeneous element; if $v_{E^-}(f) \geq 1$, then $f \in \langle u_E \rangle \subset R_X$ since $E^+ \not\subset \phi^{-1}(B)$; if $v_{E^-}(f) = 0$, then $\iota^* f \notin \mathbb{I}_X(E^+)$ and $f \cdot \iota^* f \in \langle u_E \rangle$, hence there is $h \in R_{X,E}$ such that $f = h u_E / \iota^* f$. Thus \mathfrak{m}_{X,E^+} is generated by u_E in R_{X,E^+} .

Lemma 2.2. For two effective divisors $D = \sum n_E E$, $D' = \sum n'_E E$, if D and D' are linearly equivalent, $D \sim D'$, then there is a rational function $q \in \mathbb{C}(X)^{\times}$ such that $\mathbb{I}_X(D) = q \cdot \mathbb{I}_X(D')$.

Proof. Since $D \sim D'$, there is a rational function $q \in \mathbb{C}(X)^{\times}$ such that D - D' = (q), where (q) is the principal divisor on X defined by q. Then we have $f'q \in \mathbb{I}_X(D)$ for any $f' \in \mathbb{I}_X(D')$ and any prime divisor E on X since $v_E(f'q) \ge n_E$. Similarly, we have $fq^{-1} \in \mathbb{I}_X(D')$ for any $f \in \mathbb{I}_X(D)$. Therefore $\mathbb{I}_X(D) = q \cdot \mathbb{I}_X(D').$

2.1 Proof of Theorem 1.4

Let $B \subset \mathbb{P}^2$ be the smooth conic defined by $F := z^2 + xy = 0$, and let $\phi : X \to \mathbb{P}^2$ be the double cover branched along B. We can regard X and ϕ as the sub-variety of \mathbb{P}^3 defined by $w^2 - F = 0$ and the map $X \to \mathbb{P}^2$ given by $\phi(x : y : z : w) := [x : y : z]$, respectively. Let E^{\pm} be prime divisors on X defined by $x = w \pm z = 0$, respectively:

 $E^+ \subset X: x = w + z = 0, \qquad E^- \subset X: x = w - z = 0.$

Lemma 2.3. For each $m \in \mathbb{Z}_{\geq 0}$, $\mathbb{I}_X(mE^+ + mE^-) \subset R_X$ is the ideal generated by x^m :

$$\mathbb{I}_X(mE^+ + mE^-) = \langle x^m \rangle \subset R_X.$$

Proof. Put $\mathbb{I}_m := \mathbb{I}_X(mE^+ + mE^-)$. It is clear that $\mathbb{I}_0 = R_X = \langle x^0 \rangle$. Let $L_x \subset \mathbb{P}^2$ be the line defined by x = 0. Since $\phi^* mL_x = mE^+ + mE^-$, we have $\mathbb{I}_m = \langle x^m \rangle$.

Lemma 2.4. For each $m \in \mathbb{Z}_{\geq 0}$, $\mathbb{I}_X(mE^+)$ is the ideal of R_X generated by $x^{m-i}(w+z)^i$ for i = 0, ..., m:

$$\mathbb{I}_X(mE^+) = \langle x^{m-i}(w+z)^i \mid i = 0, \dots, m \rangle.$$

Proof. Put $\mathbb{I}_m := \mathbb{I}_X(mE^+)$, and $I_m := \langle x^{m-i}(w+z)^i \mid i = 0, \dots, m \rangle$. We prove the following claim.

Claim 2.5. Let k be an integer with $0 \le k \le m-1$. If $h_{k,i} \in R_X$ for $i = k, \ldots, m-1$ satisfies

$$f_k := \sum_{i=k}^{m-1} h_{k,i} x^{m-i-1} (w+z)^i \equiv 0 \pmod{\mathbb{I}_m},$$

then there are $h_{k+1,j} \in R_X$ for $j = k+1, \ldots, m-1$ such that

$$f_{k+1} := \sum_{i=k+1}^{m-1} h_{k+1,i} x^{m-i-1} (w+z)^i \equiv f_k \pmod{I_m}.$$

Proof of Claim 2.5. Let R_{X,E^+} be the local ring at $\mathbb{I}_1 = \mathbb{I}_x(E^+)$. Note that the maximal ideal $\mathfrak{m}_{X,E^+} \subset R_{X,E^+}$ is generated by x. Since $w^2 - z^2 = xy$, we obtain

$$f_k = \frac{x^{m-1}}{(w-z)^{m-1}} \sum_{i=k}^{m-1} h_{k,i} y^i (w-z)^{m-i-1}$$

as elements of R_{X,E^+} . Since $\mathfrak{m}_{X,E^+} \cap R_X = \mathbb{I}_1$ and $f_k \in \mathbb{I}_m$, we obtain

$$\sum_{i=k}^{m-1} h_{k,i} y^i (w-z)^{m-i-1} \in \mathbb{I}_1.$$

Since $x, w + z \in \mathbb{I}_1$, there are $h'_{k,i} \in \mathbb{C}[y, z]$ such that $h'_{k,i} \equiv h_{k,i} \pmod{\mathbb{I}_1}$. Moreover, we have

$$0 \equiv \sum_{i=k}^{m-1} h_{k,i} y^i (w-z)^{m-i-1} \equiv \sum_{i=k}^{m-1} h'_{k,i} y^i (-2z)^{m-i-1} \pmod{\mathbb{I}_1}.$$

Since $R_X/\mathbb{I}_1 \cong \mathbb{C}[y, z]$, we have

$$h'_{k,k}(-2z)^{m-k-1} + h'_{k,k+1}y^{k+1}(-2z)^{m-k-2} + \dots + h'_{k,m-1}y^{m-1} = 0$$

as polynomials in $\mathbb{C}[y, z]$. Hence there is $g_{k,k} \in \mathbb{C}[y, z]$ such that $h'_{k,k} = yg_{k,k}$. Since $x^{m-i}(w+z)^i, x^{m-i-1}(w+z)^{i+1} \in I_m$, we have in R_X/I_m

$$f_{k} = \sum_{i=k}^{m-1} h_{k,i} x^{m-i-1} (w+z)^{i} \equiv \sum_{i=k}^{m-1} h'_{k,i} x^{m-i-1} (w+z)^{i}$$

$$\equiv g_{k,k} (xy) x^{m-k-2} (w+z)^{k} + h'_{k,k+1} x^{m-k-2} (w+z)^{k+1} + \dots + h_{k,m-1} (w+z)^{m-1}$$

$$\equiv g_{k,k} (w^{2} - z^{2}) x^{m-k-2} (w+z)^{k} + h'_{k,k+1} x^{m-k-2} (w+z)^{k+1} + \dots + h_{k,m-1} (w+z)^{m-1}.$$

Since $w^2 - z^2 = -2z(w + z) + (w + z)^2$, by putting

$$h_{k+1,k+1} := -2zg_{k,k} + h'_{k,k+1},$$

$$h_{k+1,k+2} := xg_{k,k} + h'_{k,k+2},$$

$$h_{k+1,j} := h_{k,j} \qquad (j = k+3, \dots, m-1),$$

we obtain $f_k \equiv f_{k+1} \pmod{I_m}$.

Let us return to the proof of Lemma 2.4. If m = 0, 1, the equation $\mathbb{I}_m = I_m$ is clear. Suppose that m > 1 and $\mathbb{I}_{m-1} = I_{m-1}$. By the definition of \mathbb{I}_m , we have $\mathbb{I}_m \supset I_m$. Let $f \in \mathbb{I}_m$ be any homogeneous element of degree d.

Since $\mathbb{I}_m \subset \mathbb{I}_{m-1} = I_{m-1}$, there are homogeneous elements $h_i \in (R_X)_{d-m+1}$ for $i = 0, \ldots, m-1$ such that

$$f = \sum_{i=0}^{m-1} h_i x^{m-i-1} (w+z)^i.$$

Put $h_{0,i} := h_i$ for i = 0, ..., m - 1, and $f_0 := f$. With the notation of Claim 2.5, we obtain

$$f = f_0 \equiv f_1 \equiv \dots \equiv f_{m-1} = h_{m-1,m-1} (w+z)^{m-1} \pmod{I_m}.$$

Since $f \in \mathbb{I}_m$ and $\mathbb{I}_m \supset I_m$,

$$m \le v_{E^+}(h_{m-1,m-1}(w+z)^{m-1}).$$

Thus we have $v_{E^+}(h_{m-1,m-1}) \ge 1$, and $h_{m-1,m-1} \in \mathbb{I}_1 = xR_X + (w+z)R_X$. Therefore $f \equiv h_{m-1,m-1}(w+z)^{m-1} \equiv 0 \pmod{I_m}$.

By the same argument, we can prove the following lemma.

Lemma 2.6. For each $m \in \mathbb{Z}_{>0}$, the following equation holds:

$$\mathbb{I}_X(mE^-) = \langle x^{m-i}(w-z)^i \mid i = 0, \dots, m \rangle \subset R_X$$

We are ready to prove Proposition 1.3.

Proof of Proposition 1.3. Put $\mathbb{I}_{n,m} := \mathbb{I}_X(nE^+ + mE^-)$. We first suppose that $n \geq m$. Put

$$I_{n,m}^+ := \langle x^{n-i}(w+z)^i \mid i = 0, \dots, n-m \rangle \subset R_X.$$

Let $f \in I_{n,m}^+$ be a homogeneous element. Since $v_{E^{\pm}}(x^m) = m$ and $v_{E^+}(w + z) = 1$, we have $v_{E^+}(f) \ge n$, $v_{E^-}(f) \ge m$, and hence $f \in \mathbb{I}_{n,m}^+$.

Conversely, let $f \in \mathbb{I}_{n,m}^+$ be a homogeneous element. Since $v_{E^+}(f) \ge n \ge m$ and $v_{E^-}(f) \ge m$, there is a homogeneous element $g \in R_X$ such that $f = x^m g$. Then

$$n \le v_{E^+}(f) = v_{E^+}(x^m) + v_{E^+}(g) = m + v_{E^+}(g).$$

Thus we have $v_{E^+}(g) \ge n - m$. Since

$$f \in \langle x^{n-m-i}(w+z)^i \mid i=0,\dots,n-m \rangle$$

by Lemma 2.4, there are homogeneous elements $h_i \in R_X$ such that

$$g = \sum_{i=0}^{n-m} h_i x^{n-m-i} (w+z)^i.$$

Therefore $f \in I_{n,m}^+$, and $\mathbb{I}_{n,m}^+ = I_{n,m}^+$.

In the case of $n \leq m$, we can prove the assertion by the same argument using Lemma 2.3 and 2.6.

Let $S_X \subset R_X$ be the set of all homogeneous elements, which is a multiplicatively closed set. Note that the rational function field $\mathbb{C}(X)$ of X can be regarded as the sub-field $(S_X^{-1}R_X)_0$ of the localized ring $S_X^{-1}R_X$ consisting of homogeneous elements of degree 0 and the zero element.

Proposition 2.7. Let $n, m \in \mathbb{Z}_{\geq 0}$, and put $M_{\min} := \min(n, m)$. For $q \in \mathbb{C}(X)^{\times}$, $q \cdot \mathbb{I}_X(nE^+ + mE^-) \subset R_X$ if and only if there are $h_0, \ldots, h_{|n-m|} \in (R_X)_{M_{\min}}$ such that

$$q = \begin{cases} \sum_{i=0}^{n-m} \frac{h_i}{x^m} \left(\frac{w-z}{x}\right)^i & \text{if } n \ge m, \\ \sum_{i=0}^{m-n} \frac{h_i}{x^n} \left(\frac{w+z}{x}\right)^i & \text{if } n \le m. \end{cases}$$

To prove Proposition 2.7, we prove the following lemma.

Lemma 2.8. Let $k, n \in \mathbb{Z}_{\geq 0}$ with $0 \leq k \leq n$, and let $q \in \mathbb{C}(X)^{\times}$. If $qx^{n-j}(w+z)^j \in R_X$ for each $j = 0, \ldots, k$, then there are homogeneous polynomials $a_0 \in \mathbb{C}[x, y, z]_{n-k}$, $b_0 \in \mathbb{C}[x, y, z]_{n-k-1}$ and $a'_i \in \mathbb{C}[y, z]_{n-k}$ for $i = 1, \ldots, k$ such that

$$q = \frac{a_0 + b_0 w}{x^{n-k}} + \sum_{i=1}^k \frac{a'_i}{x^{n-k}} \left(\frac{w-z}{x}\right)^i.$$
 (2.1)

Proof. We prove the assertion by the induction on k. In the case of k = 0, $qx^n \in R_X$ if and only if there is a homogeneous polynomials $a_0, b_0 \in R_X$ of degree n and n-1, respectively, such that $q = (a_0 + b_0 w)/x^n$.

Suppose that $k \geq 1$. By the assumption of the induction, there are $a_0 \in \mathbb{C}[x, y, z]_{n-k+1}$, $b_0 \in \mathbb{C}[x, y, z]_{n-k}$ and $a'_i \in \mathbb{C}[y, z]_{n-k+1}$ for $i = 1, \ldots, k-1$ such that

$$q = \frac{a_0 + b_0 w}{x^{n-k+1}} + \sum_{i=1}^{k-1} \frac{a'_i}{x^{n-k+1}} \left(\frac{w-z}{x}\right)^i.$$

Let $a_0',b_0'\in\mathbb{C}[y,z]$ and $a_0',b_0'\in\mathbb{C}[x,y,z]$ be the homogeneous polynomials such that

$$a_0 = a_0'' x + a_0', \qquad b_0 = b_0'' x + b_0'.$$

We consider the R_X -module $x^{-n}R_X$ and its quotient module $(x^{-n}R_X)/R_X$. Since $(w+z)^2 = 2z(w+z) + xy$, we have

$$(w+z)^i \equiv (2z)^{i-1}(w+z) \pmod{xR_X}.$$

for each $i \ge 1$. Since $a_0 + b_0 w = (a_0 + b_0 z) + b_0 (w - z)$ and $w^2 - z^2 = xy$,

$$(a_0 + b_0 w)(w + z) \equiv (a_i + b_i z)(w + z) \pmod{xR_X}.$$

By $qx^{n-k}(w+z)^k \in R_X$, we have in $x^{-n}R_X/R_X$

$$0 \equiv qx^{n-k}(w+z)^k \equiv \frac{1}{x} \left((2z)^{k-1}(a'_0 + b'_0 z) + \sum_{i=1}^{k-1} a'_i y^i (2z)^{k-i-1} \right) (w+z)$$

Let $q'_0 \in \mathbb{C}[y, z]$ be the element

$$q'_0 := (2z)^{k-1}(a'_0 + b'_0 z) + \sum_{i=1}^{k-1} a'_i y^i (2z)^{k-i-1}.$$

The above computation implies that $q'_0 \in xR_X$. Since $q' \in \mathbb{C}[y, z]$, we obtain $q'_0 = 0$. Thus there is $b'_1 \in \mathbb{C}[y, z]$ of degree n - k such that $a'_0 = yb'_1 - zb'_0$. Then we obtain

$$\frac{a'_0 + b'_0 w}{x^{n-k+1}} = \frac{b'_0}{x^{n-k}} \left(\frac{w-z}{x}\right) + \frac{yb'_1}{x^{n-k+1}},$$
$$q'_1 := (2z)^{k-2}(a'_1 + 2zb'_1) + \sum_{i=2}^{k-1} a'_i y^{i-1} (2z)^{k-i-1} = 0$$

We assume that there is $b'_j \in \mathbb{C}[y, z]$ of n - k for $j = 1, \ldots, i$ (i < k - 1) such that

$$a'_{j} = yb'_{j+1} - 2zb'_{j} \qquad (j = 1, \dots, i - 1),$$

$$q'_{j} := (2z)^{k-j-1}(a'_{j} + 2zb'_{j}) + \sum_{i=j+1}^{k-1} a'_{i}y^{i-j}(2z)^{k-i-1} = 0 \qquad (j = 1, \dots, i).$$

By $q'_i = 0$, there is $b'_{i+1} \in \mathbb{C}[y, z]$ of degree n - k such that

$$a'_{i} = yb'_{i+1} - 2zb'_{i},$$

$$q'_{i+1} := (2z)^{k-i-2}(a'_{i+1} + 2zb'_{i}) + \sum_{s=i+2}^{k-1} a'_{s}y^{s-i-1}(2z)^{k-s-1} = 0.$$

Since $(w-z)^2 = xy - 2(w-z)$, we obtain

$$\frac{yb'_i}{x^{n-k+1}} \left(\frac{w-z}{x}\right)^{i-1} + \frac{a'_i}{x^{n-k+1}} \left(\frac{w-z}{x}\right)^i = \frac{b'_i}{x^{n-k}} \left(\frac{w-z}{x}\right)^i + \frac{yb'_{i+1}}{x^{n-k+1}} \left(\frac{w-z}{x}\right)^i$$

Since $q'_{k-1} = a'_{k-1} + 2zb'_{k-1} = 0$,

$$\frac{yb'_{k-1}}{x^{n-k+1}}\left(\frac{w-z}{x}\right)^{k-2} + \frac{a'_{k-1}}{x^{n-k+1}}\left(\frac{w-z}{x}\right)^{k-1} = \frac{b'_{k-1}}{x^{n-k}}\left(\frac{w-z}{x}\right)^k$$

The above argument proves the assertion.

Proof of Proposition 2.7. Suppose that $n \ge m$. If $q = x^{-m} \sum_{i=0}^{n-m} h_i x^{-i} (w - z)^i$ for some homogeneous elements $h_i \in (R_X)_m$, then, for each $j = 0, \ldots, n - z$ m,

$$qx^{n-j}(w+z)^{j} = \sum_{i=0}^{n-m} h_{i}x^{n-m-i-j}(w-z)^{i}(w+z)^{j}$$
$$= \sum_{i=0}^{n-m} h_{i}x^{n-m-i-j}(xy)^{\min(i,j)}(w+\varepsilon_{i,j}z)^{|i-j|} \in R_{X},$$

where $\varepsilon_{i,j} = 1$ if $i \leq j$, and $\varepsilon_{i,j} = -1$ otherwise. Hence $q \cdot \mathbb{I}_X(nE^+ + mE^-) \subset$ R_X by Proposition 1.3.

Conversely, if $q \cdot \mathbb{I}_X(nE^+ + mE^-) \subset R_X$, then $qx^{n-j}(w+z)^j \in R_X$ for each $j = 0, \ldots, n-m$ by Proposition 1.3; and there are $h_0, \ldots, h_{n-m} \in (R_X)_m$ such that

$$q = \sum_{i=0}^{n-m} \frac{h_i}{x^m} \left(\frac{w-z}{x}\right)^i$$

This prove the assertion in the case of $n \ge m$. We can prove this proposition in the case of n < m by the same argument. We omit the details here. \Box

Next we prove Thorem 1.4.

Proof of Theorem 1.4. Assume that D be an effective divisor on X linearly equivalent to $nE^+ + mE^-$. Then there exists a rational function $q \in \mathbb{C}(X)$ such that

$$\mathbb{I}_X(D) = q \cdot \mathbb{I}_X(nE^+ + mE^-).$$

Suppose that $n \ge m$. Since

$$x^{n-i}(w+z)^{i}\sum_{j=0}^{n-m}\frac{h_{j}}{x^{m}}\left(\frac{w-z}{x}\right)^{j} = \sum_{j=0}^{n-m}h_{j}x^{n-m-i-j}(w+z)^{i}(w-z)^{j}$$

for homogeneous elements $h_j \in R_X$ of degree m, the assertion follows from Proposition 1.3 and 2.7. We can prove the assertion in the case of n < m by the same argument.

2.2 An example of deg B = 4

Put $F := x^4 + y^4 - z^4$, and let $B \subset \mathbb{P}^2$ be the plane curve defined by F = 0. Let $\phi : X \to \mathbb{P}^2$ be the double cover branched along B, and we regard X as the sub-variety of $\mathbb{P}(1, 1, 1, 2)$ defined by $w^2 - F = 0$. Let E_1, E_2 be the divisors on X defined by $y - z = w + x^2 = 0$ and $x - z = w + y^2 = 0$, respectively:

$$E_1 \subset X : y - z = w + x^2 = 0,$$
 $E_2 \subset X : x - z = w + y^2 = 0.$

Note that E_1 and E_2 are prime divisors on X. Put

$$t_{1} := y - z, \qquad t_{2} := x - z, \qquad t_{3} := w + x^{2} + y^{2} - z^{2}$$
$$I_{n,m} := \begin{cases} \left\langle t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i}, t_{1}^{n-j} t_{3}^{j} \mid i = 0, \dots, m, j = m + 1, \dots, n \right\rangle & \text{if } n \ge m, \\ \left\langle t_{1}^{n-i} t_{2}^{m-i} t_{3}^{i}, t_{2}^{m-j} t_{3}^{j} \mid i = 0, \dots, n, j = n + 1, \dots, m \right\rangle & \text{if } n \le m. \end{cases}$$

Lemma 2.9. Let $n \in \mathbb{Z}_{\geq 0}$. the following equations hold:

$$\mathbb{I}_X(nE_1) = I_{n,0}, \qquad \mathbb{I}_X(nE_2) = I_{0,n}.$$

Proof. We prove $\mathbb{I}_X(nE_1) = I_{n,0}$ by the induction on n. We have $\mathbb{I}_X(0) =$ $I_{0,0} = R_X$ and $\mathbb{I}_X(E_1) = I_{1,0}$. Suppose that n > 1, and $f \in \mathbb{I}_X(nE_1)$. By the assumption of the induction, there are $h_0, \ldots, h_{n-1} \in R_X$ such that

$$f = \sum_{i=0}^{n-1} h_i t_1^{n-i-1} t_3^i.$$

On the local ring R_{X,E_1} at E_1 , we have

$$f = \sum_{i=0}^{n-1} h_i (y-z)^{n-i-1} \left(\frac{y^4 - z^4}{w - x^2} + y^2 - z^2 \right)^i$$

= $\sum_{i=0}^{n-1} h_i (y-z)^{n-i-1} \left(\frac{(y^2 + z^2)(y^2 - z^2) + (y+z)(w - x^2)}{w - x^2} \right)^i$
= $\frac{t_1^{n-1}}{(w - x^2)^{n-1}} \sum_{i=0}^{n-1} h_i (w - x^2)^{n-i-1} (w - x^2 + y^2 + z^2)^i (y + z)^i.$

Since $(y - z)R_{X,E_1}$ is the maximal ideal of R_{X,E_1} by Lemma 2.1, we have $(y-z)R_{X,E_1} \cap R_X = \mathbb{I}_X(E_1)$. Since $v_{E_1}(f) \ge n$ by $f \in \mathbb{I}_X(nE_1)$,

$$f' := \sum_{i=0}^{n-1} h_i (w - x^2)^{n-i-1} (w - x^2 + y^2 + z^2)^i (y + z)^i \in \mathbb{I}_X(E_1).$$

Since $z \equiv y, w \equiv -x^2 \pmod{\mathbb{I}_X(E_1)}$, there are $h'_i \in \mathbb{C}[x, y]$ such that $h'_i \equiv h_i$ (mod $\mathbb{I}_X(E_1)$) for $i = 0, \ldots, n-1$. Hence we obtain, on $R_X/\mathbb{I}_X(E_1)$,

$$0 \equiv f' \equiv \sum_{i=0}^{n-1} h'_i (-2x^2)^{n-i-1} (-2x^2 + 2y^2)^i (2y)^i$$
$$\equiv \sum_{i=0}^{n-1} h'_{k,i} (-2x^2)^{n-i-1} \left(-4y(x^2 - y^2) \right)^i.$$

Since $R_X/\mathbb{I}_X(E_1) \cong \mathbb{C}[x, y],$

$$\sum_{i=0}^{n-1} h'_i (-2x^2)^{n-i-1} \left(-4y(x^2 - y^2) \right)^i = 0$$
(2.2)

as a polynomial in $\mathbb{C}[x, y]$. Thus there is $g_{n-1} \in \mathbb{C}[x, y]$ such that

$$h'_{n-1} = -2x^2g_{n-1} = -\left(t_3 - (y+z)t_1\right)g_{n-1} + (w-x^2)g_{n-1}.$$

By (2.2) again, there is $g_{k,n-2} \in \mathbb{C}[x,y]$ such that

$$h'_{k,n-2} = -2x^2 g_{k,n-2} + 4y(x^2 - y^2)g_{k,n-1}.$$

Since $\alpha\beta \in I_{n,0}$ for any $\alpha \in I_{n-1,0}$ and $\beta \in \mathbb{I}_X(E_1)$, and $t_3(w-x^2) = t_1(y+z)(w-x^2+y^2+z^2)$ on R_X , we obtain on $R_X/I_{n,0}$

$$f \equiv g_{n-1}(-2x^2)t_3^{n-1} + \sum_{i=0}^{n-2} h'_i t_1^{n-i-1} t_3^i$$

$$\equiv g_{n-1} \Big((w - x^2)t_3 + 4y(x^2 - y^2)t_1 \Big) t_3^{n-2} + g_{n-2}(-2x^2)t_1 t_3^{n-2} + \sum_{i=0}^{n-3} h'_i t_1^{n-i-1} t_3^i$$

$$\equiv g_{n-1}(y - z) \Big((y + z)(w - x^2 + y^2 + z^2) - 4y(x^2 - y^2) \Big) t_3^{n-2} + g_{n-2}(-2x^2)t_1 t_3^{n-2} + \sum_{i=0}^{n-3} h'_i t_1^{n-i-1} t_3^i$$

$$\equiv g_{n-2}(-2x^2)t_1 t_3^{n-2} + \sum_{i=0}^{n-3} h'_i t_1^{n-i-1} t_3^i.$$

By repeating this operation as the proof of Proposition 1.3, $\mathbb{I}_X(nE_1) \subset I_{n,0}$ can be proved. The inclusion $\mathbb{I}_X(nE_1) \supset \mathbb{I}_{n,0}$ is trivial. Hence we obtain $\mathbb{I}_X(nE_1) = I_{n,0}$. By the same argument, we can prove $\mathbb{I}_X(nE_2) = I_{0,n}$.

Proof of Proposition 1.5. We prove $\mathbb{I}_X(nE_1+mE_2) = I_{n,m}$ in the case of $n \ge m$. Let f be a homogeneous element of $I_{n,m}$. Then there are $h_0, \ldots, h_n \in R_X$ such that

$$f = \sum_{i=0}^{m} h_i t_1^{n-i} t_2^{m-i} t_3^i + \sum_{i=m+1}^{n} h_i t_1^{n-i} t_3^i.$$

Note that we have

$$(w - x^{2})t_{3} = (y + z)(w - x^{2} + y^{2} + z^{2})t_{1},$$

$$(w - y^{2})t_{3} = (x + z)(w + x^{2} - y^{2} + z^{2})t_{2},$$

$$v_{E_{1}}(t_{3}) = v_{E_{2}}(t_{3}) = 1.$$

On effective divisors on certain double covers and their linearly equivalent classes 77

Thus $v_{E_1}(f) \ge n$, $v_{E_2}(f) \ge m$, and hence $f \in \mathbb{I}_X(nE_1 + mE_2)$.

We prove $\mathbb{I}_X(nE_1 + mE_2) = I_{n,m}$ by the induction on m. Recall that $t_1 := y - z, t_2 := x - z, t_3 := w + x^2 + y^2 - z^2$. By Lemma 2.9, the above equation holds when m = 0. Suppose that m > 0, and $f \in \mathbb{I}_X(nE_1 + mE_2)$. By the assumption of the induction, there are $h_0, \ldots, h_n \in R_X$ such that

$$f = \sum_{i=0}^{m-1} h_i t_1^{n-i} t_2^{m-i-1} t_3^i + \sum_{i=m}^n h_i t_1^{n-i} t_3^i.$$

On the local ring R_{X,E_2} , we have

$$f \equiv \frac{t_2^{m-1}}{(w-y^2)^{m-1}} \sum_{i=0}^{m-1} h_i t_1^{n-i} (x+z)^i (w-y^2)^{m-i-1} (w+x^2-y^2+z^2)^i$$

modulo $t_2^m R_{X,E_2}$. Since $f \in t_2^m R_{X,E_2}$, we obtain

$$\sum_{i=0}^{m-1} h_i t_1^{n-i} (x+z)^i (w-y^2)^{m-i-1} (w+x^2-y^2+z^2)^i \in t_2 R_{X,E_2} \cap R_X = \mathbb{I}_X(E_2).$$

Since $z \equiv x$, $w \equiv -y^2 \pmod{\mathbb{I}_X(E_2)}$, there are $h'_i \in \mathbb{C}[x, y]$ such that $h_i \equiv h'_i \pmod{\mathbb{I}_X(E_2)}$ for $i = 0, \ldots, m - 1$. Moreover,

$$0 \equiv \sum_{i=0}^{m-1} h_i t_1^{n-i} (x+z)^i (w-y^2)^{m-i-1} (w+x^2-y^2+z^2)^i$$
$$\equiv \sum_{i=0}^{m-1} h'_i (y-x)^{n-i} (-2y^2)^{m-i-1} (2x)^i (2x^2-2y^2)^i \pmod{\mathbb{I}_X(E_2)}.$$

Since $R_X/\mathbb{I}_X(E_2) \cong \mathbb{C}[x, y]$, we have

$$\sum_{i=0}^{m-1} h'_i (y-x)^{n-i} (-2y^2)^{m-i-1} (2x)^i (2x^2 - 2y^2)^i = 0.$$
 (2.3)

Hence there is $g_{h_{m-1}} \in \mathbb{C}[x, y]$ such that

$$h'_{m-1} = -2y^2(y-x)g_{m-1}$$

By (2.3), there is $g_{m-2} \in \mathbb{C}[x, y]$ such that

$$h'_{m-2} = -2y^2(y-x)g_{m-2} - 2x(2x^2 - 2y^2)g_{m-1}.$$

Since $\alpha\beta \in I_{n,m}$ for any $\alpha \in I_{n,m-1}$ and $\beta \in \mathbb{I}_X(E_2)$, and

$$\begin{aligned} -2y^2t_3 &= (w-y^2)(w+x^2+y^2-z^2) - (w+y^2)(w+x^2+y^2-z^2) \\ &= (x+z)(w+x^2-y^2+z^2)t_2 - (w+y^2)t_3 \\ &= (x+z)(t_3-2y^2+2z^2)t_2 - (t_3-x^2+z^2)t_3 \\ &= 2(x+z)t_2t_3 - 2(x+z)(y+z)t_1t_2 - t_3^2, \end{aligned}$$

on R_X , we obtain on $R_X/I_{n,m}$

$$h_{m-1}t_1^{n-m+1}t_3^{m-1} + h_{m-2}t_1^{n-m+2}t_2t_3^{m-2} \equiv -2y^2(y-x)t_1^{n-m+2}t_2t_3^{m-2}g_{m-2} \pmod{I_{n,m}}.$$

By repeating this operation as the proof of Proposition 1.3, $\mathbb{I}_X(nE_1+mE_2) \subset I_{n,m}$ can be proved. The inclusion $\mathbb{I}_X(nE_1+mE_2) \supset \mathbb{I}_{n,m}$ is trivial. Hence we obtain $\mathbb{I}_X(nE_1+mE_2) = I_{n,m}$ if $n \geq m$. By the same argument, we can prove $\mathbb{I}_X(nE_1+mE_2) = I_{n,m}$ in the case of $n \leq m$.

From now we prove Theorem 1.6 in the case of $n \ge m$. Note that we can prove it in the case of n < m by the same argument. We first prove the following proposition.

Proposition 2.10. Let $n, m \in \mathbb{Z}_{\geq 0}$, and put $M_{\min} := \min(n, m)$. For $q \in \mathbb{C}(X^{\times})$, $q \cdot \mathbb{I}_X(nE_1 + mE_2) \subset R_X$ if and only if there are $c_0, \ldots, c_{M_{\min}} \in \mathbb{C}$ such that

$$q = \sum_{i=0}^{M_{\min}} c_i \frac{(x+z)^i (y+z)^i}{(w+x^2+y^2-z^2)^i}.$$

We prove this proposition in the case of $n \ge m$. By Proposition 1.5, we have

$$\mathbb{I}_X(nE_1 + mE_2) = \langle t_1^{n-i} t_2^{m-i} t_3^i, t_1^{n-j} t_3^j \mid i = 0, \dots, m, \ j = m+1, \dots, n \rangle$$

where $t_1 := y - z$, $t_2 := x - z$, $t_3 := w + x^2 + y^2 - z^2$. In order to prove the above proposition, put $Q(R_X) := \mathbb{C}(x, y, z)[w]/\langle w^2 - F \rangle$, which is the quotient field of R_X . We call $q \in Q(R_X)$ a homogeneous element if there are homogeneous elements $q', q'' \in R_X$ with $q'' \neq 0$ such that q = q'/q'', and put deg $q := \deg q' - \deg q''$. Note that $\mathbb{C}(X)$ can be regarded as the \mathbb{C} -vector space $Q(R_X)_0 \subset Q(R_X)$ generated by homogeneous elements of degree 0. **Lemma 2.11.** Let $q \in Q(R_X)$ be a homogeneous element of degree d. If q. $t_1^j t_2^j t_3^{m-j} \in R_X$ for any $j = 0, \ldots, k$, then there are $c_0, \ldots, c_k \in (R_X)_{d+2(m-k)}$ such that

$$q = \frac{1}{t_3^{m-k}} \sum_{i=0}^k c_i \frac{(x+z)^i (y+z)^i}{t_3^i}.$$

Proof. We prove this lemma by the induction on k. If k = 0, then $c_0 :=$ $q \cdot t_3^m \in R_X$ is a homogeneous element of degree d + m with $q = c_0 t_3^{-m}$. Suppose that k > 0, and $q \cdot t_1^j t_2^j t_3^{m-j} \in R_X$ for each $j = 0, \ldots, k$. By the assumption of the induction, there are $c_0, \ldots, c_{k-1} \in (R_X)_{d+(m-k+1)}$ such that

$$q = \frac{1}{t_3^{m-k+1}} \sum_{i=0}^{k-1} c_i \frac{(x+z)^i (y+z)^i}{t_3^i}.$$

Let $\alpha_i \in (R_X)_{d+2(m-k)}$ and $\beta_i \in \mathbb{C}[x, y, z]_{d+2(m-k+1)}$ be the elements such that

$$c_i = \alpha_i t_3 + \beta_i$$

for each i = 0, ..., k - 1. Since $-2(y^2 - z^2)(x^2 - z^2) = (w + x^2 + y^2 - z^2)(w - z^2)(w - z^2)(w - z^2)$ $x^2 - y^2 + z^2),$

$$\frac{t_1 t_2}{t_3} = -\frac{w - x^2 - y^2 + z^2}{2(x+z)(y+z)} = \frac{2(x^2 + y^2 - z^2) - t_3}{2(x+z)(y+z)}.$$
(2.4)

Hence we obtain, on the R_X -module $Q(R_X)/R_X$,

$$0 \equiv q \cdot t_1^k t_2^k t_3^{m-k} = \frac{1}{t_3} \sum_{i=0}^{k-1} (\alpha_i t_3 + \beta_i) t_1^{k-i} t_2^{k-i} (x^2 + y^2 - z^2 - 2^{-1} t_3)^i$$
$$\equiv \frac{1}{t_3} \sum_{i=0}^{k-1} \beta_i t_1^{k-i} t_2^{k-i} (x^2 + y^2 - z^2)^i$$
$$\equiv -\frac{w - x^2 - y^2 + z^2}{2(x+z)(y+z)} \sum_{i=0}^{k-1} \beta_i t_1^{k-i-1} t_2^{k-i-1} (x^2 + y^2 - z^2)^i.$$

Hence we have

$$q' := \sum_{i=0}^{k-1} \beta_i t_1^{k-i-1} t_2^{k-i-1} (x^2 + y^2 - z^2)^i \in (x+z)(y+z)\mathbb{C}[x,y,z].$$

79

Let $a_i \in \mathbb{C}[x, y, z]$ and $a'_i \in \mathbb{C}[x, y]$ be the polynomials such that $\beta_i = a_i(x + z) + a'_i$. Since the above polynomial is divisible by x + z, we have

$$0 \equiv q' \equiv \sum_{i=0}^{k-1} a'_i (2x)^{k-i-1} (x+y)^{k-i-1} y^{2i} \pmod{x+z}.$$

Since $\mathbb{C}[x, y, z]/\langle x + z \rangle \cong \mathbb{C}[x, y],$

$$\sum_{i=0}^{k-1} a'_i (2x)^{k-i-1} (x+y)^{k-i-1} y^{2i} = 0.$$

Thus there are $g_0, \ldots, g_{k-1} \in \mathbb{C}[x, y]$ such that

$$a'_0 = y^2 g_0, \qquad a'_i = y^2 g_i - 2x(x+y)g_{i-1} \quad (i = 1, \dots, k-1), \qquad g_{k-1} = 0.$$

Since

$$y^{2}g_{i}(t_{1}t_{2})^{k-i-1}(x^{2}+y^{2}-z^{2})^{i}+b_{i+1}(t_{1}t_{2})^{k-i-2}(x^{2}+y^{2}-z^{2})^{i+1}$$

$$=\left(y^{2}t_{1}t_{2}-2x(x+y)(x^{2}+y^{2}-z^{2})\right)(t_{1}t_{2})^{k-i-2}(x^{2}+y^{2}-z^{2})^{i}g_{i}$$

$$+y^{2}g_{i+1}(t_{1}t_{2})^{k-i-2}(x^{2}+y^{2}-z^{2})^{i+1}$$

$$=-(x+z)G(t_{1}t_{2})^{k-i-2}(x^{2}+y^{2}-z^{2})^{i}g_{i}$$

$$+y^{2}g_{i+1}(t_{1}t_{2})^{k-i-2}(x^{2}+y^{2}-z^{2})^{i+1},$$

where $G := 2x^3 + 2x^2y - 2zx^2 + 2xy^2 - 2xyz + y^3 - y^2z$, we obtain

$$q' = (x+z)\sum_{i=0}^{k-1} (a_i + Gg_i)t_1^{k-i-1}t_2^{k-i-1}(x^2 + y^2 - z^2)^i.$$

Hence we may assume that $\beta_i \in (x+z)\mathbb{C}[x, y, z]$. Let $\beta'_i \in \mathbb{C}[x, y, z]$ be the polynomial with $\beta_i = (x+z)\beta'_i$ for each $i = 0, \ldots, k-1$. Then

$$\sum_{i=0}^{k-1} \beta'_i t_1^{k-i-1} t_2^{k-i-1} (x^2 + y^2 - z^2)^i \in (y+z)\mathbb{C}[x, y, z].$$

By the same argument, we may assume that $\beta'_i \in (y+z)\mathbb{C}[x, y, z]$ for each $i = 0, \ldots, k-1$. Then there are $b_0, \ldots, b_{k-1} \in \mathbb{C}[x, y, z]$ such that $\beta_i =$

 $(x+z)(y+z)b_i$ for each *i*, and

$$q = \frac{1}{t_3^{m-k+1}} \sum_{i=0}^{k-1} (\alpha_i t_3 + b_i (x+z)(y+z)) \frac{(x+z)^i (y+z)^i}{t_3^i}$$
$$= \frac{1}{t_3^{m-k}} \left(\sum_{i=0}^{k-1} \alpha_i \frac{(x+z)^i (y+z)^i}{t_3^i} + \sum_{i=0}^{k-1} b_i \frac{(x+z)^{i+1} (y+z)^{i+1}}{t_3^{i+1}} \right).$$

Therefore the assertion holds.

Lemma 2.12. Let $q \in Q(R_X)$ be a homogeneous element of degree 0. If $q \cdot \mathbb{I}_X(nE_1 + mE_2) \subset R_X$, then there are $c_0, \ldots, c_m \in (R_X)_0$ such that

$$q = \sum_{i=0}^{m} c_i \frac{(x+z)^i (y+z)^i}{t_3^i}.$$

Proof. We prove the assertion by the induction on n. Since

$$\mathbb{I}_X(mE_1 + mE_2) = \langle t_1^{m-i}, t_2^{m-i}t_3^i \mid i = 0, \dots, m \rangle$$

by Proposition 1.5, it follows from Lemma 2.11 if n = m.

Suppose that n > m, and $q \cdot \mathbb{I}_X(nE_1 + mE_2) \subset R_X$. Since

$$\mathbb{I}_X(nE_1+mE_2) = \langle t_3^n \rangle + t_1 \cdot \mathbb{I}_X((n-1)E_1+mE_2),$$

there are homogeneous elements $c_0, \ldots, c_m \in (R_X)_1$ such that

$$q = \frac{1}{t_1} \sum_{i=0}^{m} c_i \frac{(x+z)^i (y+z)^i}{t_3^i}$$

by the assumption of the induction. Since $c_i \in (R_X)_1$ for each *i*, there are $\alpha_i \in \mathbb{C}$ and $\beta_i \in \mathbb{C}[x, y]_1$ such that

$$c_i = \alpha_i t_1 + \beta_i.$$

By $qt_3^n \in R_X$, we have, on the R_X -module $Q(R_X)/R_X$,

$$0 \equiv qt_3^n = \frac{1}{t_1} \sum_{i=0}^m (\alpha_i t_1 + \beta_i) t_3^{n-i} (x+z)^i (y+z)^i$$
$$\equiv \frac{w+x^2}{t_1} \sum_{i=0}^m \beta_i (2x^2)^{n-i-1} (2y)^i (x+y)^i \pmod{R_X}$$

since $z \equiv y$ and $(w + x^2)^k \equiv (2x^2)^{k-1}(w + x^2) \pmod{t_1 R_X}$. Hence we obtain

$$\sum_{i=0}^{m} \beta_i (2x^2)^{n-i-1} (2y)^i (x+y)^i = 0$$

as a polynomial of $\mathbb{C}[x, y]$. Then there are $g_0, \ldots, g_m \in \mathbb{C}[x, y]$ such that

$$\beta_0 = 2y(x+y)g_0, \qquad \beta_i = 2y(x+y)g_i - 2x^2g_{i-1} \quad (i=1,\ldots,m), \qquad g_m = 0.$$

Since deg $\beta_i \leq 1$, we have $g_i = 0$ for each i = 0, ..., m, and $c_i = \alpha_i t_1$. This prove the assertion.

Proof of Proposition 2.10. Let $q \in \mathbb{C}(X)^{\times}$ be a rational function with $q \cdot \mathbb{I}_X(nE_1 + mE_2) \subset R_X$. Since

$$\mathbb{I}_X(nE_1 + mE_2) = \left\langle t_1^{n-i} t_2^{m-i} t_3^i, \ t_1^{n-j} t_3^j \ \big| \ i = 0, \dots, m, \ j = m+1, \dots, n \right\rangle$$

by Proposition 1.5, there are homogeneous elements $c_0, \ldots, c_m \in (R_X)_0 = \mathbb{C}$ such that

$$q = \sum_{i=0}^{m} c_i \frac{(x+z)^i (y+z)^i}{t_3^i}$$
(2.5)

by Lemma 2.11.

Conversely, suppose that $q \in \mathbb{C}(X)^{\times}$ is of the form in (2.5). Since

$$t_1^{n-i}t_3^i \cdot \frac{(x+z)^j(y+z)^j}{t_3^j} = t_1^{n-i}t_3^{i-j}(x+z)^j(y+z)^j \in R_X$$
(2.6)

for i = m + 1, ..., n and j = 0, ..., m, we have $q \cdot t_1^{n-i} t_3^i \in R_X$ if i > m. It is enough to prove that $q \cdot t_1^{n-i} t_2^{m-i} t_3^i \in R_X$ for each i = 0, ..., m. For each i, j = 0, ..., m, put

$$q_{i,j} := t_1^{n-i} t_2^{m-i} t_3^i \cdot \frac{(x+z)^j (y+z)^j}{t_3^j}.$$

If $0 \leq j \leq i \leq m$, then we have

$$q_{i,j} = (x+z)^j (y+z)^j t_1^{n-i} t_2^{m-i} t_3^{i-j} \in R_X.$$
(2.7)

If $0 \le i < j \le m$, then

$$t_{1}^{n-i}t_{2}^{m-i}t_{3}^{i} \cdot \frac{(x+z)^{j}(y+z)^{j}}{t_{3}^{j}}$$

$$= \left(\frac{t_{1}t_{2}}{t_{3}}\right)^{j-i}t_{1}^{n-j}t_{2}^{m-j}(x+z)^{j}(y+z)^{j}$$

$$= \left(-\frac{w-x^{2}-y^{2}+z^{2}}{2(x+z)(y+z)}\right)^{j-i}t_{1}^{n-j}t_{2}^{m-j}(x+z)^{j}(y+z)^{j}$$

$$= \left(-\frac{1}{2}\right)^{j-i}t_{1}^{n-j}t_{2}^{m-j}(x+z)^{i}(y+z)^{i}(w-x^{2}-y^{2}+z^{2})^{j-i} \in R_{X}$$

$$(2.4).$$

by (2.4).

We prove Theorem 1.6 in the case of $n \ge m$.

Proof of Theorem 1.6. Let D be an effective divisor on X with $D \sim nE_1 +$ mE_2 . By Lemma 2.2, there is $q \in \mathbb{C}(X)^{\times}$ such that

$$q \cdot \mathbb{I}_X(nE_1 + mE_2) = \mathbb{I}_X(D) \subset R_X.$$

By Proposition 2.10, there are $c_0, \ldots, c_m \in \mathbb{C}$ such that

$$q = \sum_{j=0}^{m} c_j \frac{(x+z)^j (y+z)^j}{t_3^j}.$$

By (2.6), (2.7) and (2.8), $\mathbb{I}_X(D) \subset R_X$ is generated by

$$\sum_{j=0}^{i} c_j A_{i,j} + \sum_{j=i+1}^{m} (-2)^{i-j} c_j B_{i,j} \quad \text{and} \quad \sum_{j=m+1}^{n} c_j A'_{i,j}$$

for i = 0, ..., m.

References

[1] Shinzo Bannai and Taketo Shirane. Nodal curves with a contact-conic and Zariski pairs. Adv. Geom., 19(4):555-572, 2019.

- [2] Benoît Guerville-Ballé and Taketo Shirane. Non-homotopicity of the linking set of algebraic plane curves. J. Knot Theory Ramifications, 26(13):13, 2017. Id/No 1750089.
- [3] Hideyuki Matsumura. Commutative ring theory. Transl. from the Japanese by M. Reid, volume 8. Cambridge University Press, Cambridge, 1986.
- [4] Taketo Shirane. A note on splitting numbers for Galois covers and π_1 -equivalent Zariski k-plets. Proc. Am. Math. Soc., 145(3):1009–1017, 2017.