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Abstract

Let B ⊂ P
2 be a plane curve with even degree on the complex

projective plane P
2, and let φ : X → P

2 be the double cover branched

along B. In this paper, we compute ideals of certain divisors on X

for certain smooth curves B of degree ≤ 4 without using rationality

of X.
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1 Introduction

For two plane curves C1, C2 ⊂ P2, we say that C1 and C2 have the same

embedded topology if there is a homeomorphism h : P2 → P2. Let Ci =
Ci,1+ · · ·+Ci,ni

be the irreducible decomposition of a plane curve Ci ⊂ P2 for
each i = 1, 2. In the case where C1 and C2 have the same embedded topology,
it is known that the following conditions hold:
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(i) n1 = n2 =: n,

(ii) after relabeling C2,1, . . . , C2,n if necessary, the followings are satisfied:

(a) h(C1,i) = C2,i for each i = 1, . . . , n,

(b) degC1,i = degC2,i for each i = 1, . . . , n,

(c) the numbers and the topological types of singularities of C1,i are
same with C2,i for each i = 1, . . . , n.

(d) intersections of C1,1, . . . , C1,n are topologically same with those of
C2,1, . . . , C2,n.

One of problems on plane curves is to distinguish the embedded topology of
two plane curves C1, C2 ⊂ P2 satisfying the above conditions. The following
theorem is used for this problem effectively.

Theorem 1.1 (cf. [4, Corollary 1.4]). For each i = 1, 2, let Ci ⊂ P2 be a plane

curve consists of two irreducible components Bi, Ci ⊂ P2 with degBi = 2ℓ
for ℓ ∈ Z>0. Let φi : Xi → P

2 be the double cover branched along Bi for

each i = 1, 2. If there is a homeomorphism h : P2 → P2 with h(B1) = B2

and h(C1) = C2, then sφ1
(C1) = sφ2

(C2), where sφi
(Ci) is the number of

irreducible components of φ∗
iCi.

With the same notation of Theorem 1.1, if degC1 = degC2 �= 2ℓ, and
there is a homeomorphism h : P2 → P2 with h(C1) = C2, then h(B1) = B2

and h(C1) = C2, and hence sφ1
(C1) = sφ2

(C2).
Let φ : X → P2 be a double cover branched along B ⊂ P2. The number

sφ(C) is called the splitting number of C with respect to φ. In the case
of degB �= degC, Theorem 1.1 implies that the irreducibility of φ∗C is an
invariant of embedded topology of C = B + C. A criterion [4, Theorem 2.7]
for irreducibility of φ∗C is given if C is smooth (cf. [2]). On the other hand,
if Ci is singular, then such criterion is not known except for few cases (cf.
[1]). In this paper, we consider an approach for the irreducibility of φ∗C by
computing curves on the double cover X. Namely, we consider the following
problem.

Problem 1.2. Let B ⊂ P2 be a plane curve of degree 2ℓ, and let φ : X → P2

be the double cover branched along B.

(i) Compute generators and relations of the divisor class group Cl(X).

(ii) For each curve C ⊂ X, compute curves on X linearly equivalent to C.

(iii) For each class [C] ∈ Cl(X), give geometric characters (e.g. the arrange-
ment of singularities) of the image φ(C).

If B is smooth with degB = 2, 4, then X is a rational surface, and
Cl(X) = Pic(X) is well known. On the other hand, it seems difficult to
compute Cl(X) from data of B if degB ≥ 6 in general. The aim of this
paper is to compute curves on X linearly equivalent to certain curves C ⊂ X
for degB = 2, 4 without using rationality of X.

Let B ⊂ P
2 be a plane curve of degree 2ℓ, and let F ∈ C[x, y, z] be a

defining polynomial of B. Let φ : X → P2 be the double cover branched
along B. Then X can be regarded as the sub-variety in P(1, 1, 1, ℓ) defined
by w2−F = 0, where P(1, 1, 1, ℓ) is the weighted projective space with weight
(1, 1, 1, ℓ), and [x : y : z : w] is a system of coordinates with deg x = deg y =
deg z = 1 and degw = ℓ. Let RX be the homogeneous coordinate ring
C[x, y, z, w]/�w2 − F � of X:

X = V(w2 − F ) ⊂ P(1, 1, 1, ℓ), RX := C[x, y, z, w]/�w2 − F �.

By abuse of notation, let f denote the class [f ] in RX containing f ∈
C[x, y, z, w]. For d ∈ Z≥0, let

(RX)d ⊂ RX

denote the vector space over C generated by homogeneous elements of degree
d. A prime (Weil) divisor E ⊂ X defines a valuation vE : Q(RX) → Z∪{∞}
at E with vE(0) := ∞ since RX is normal (cf. [3, §9]), where Q(RX) is
the quotient field of RX . For an effective divisor D =

∑

E nEE on X, let
IX(D) be the ideal of RX generated by homogeneous elements f such that
vE(f) ≥ nE for any prime divisors E:

IX(D) :=
〈

f : homog.
∣

∣ vE(f) ≥ nE for ∀E ⊂ X: prime
〉

⊂ RX .

The main theorem of this paper is as follows.

The case of degB = 2. Put F := z2 + xy ∈ C[x, y, z], and let B ⊂ P
2

be the plane curve defined by F = 0. Let φ : X → P2 be the double cover
branched along B. Then X is the sub-variety of P3 defined by w2 − F = 0.
Let E± ⊂ X be the curves defined by w± z = x = 0, respectively. Note that
E± are prime divisors on X.
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Proposition 1.3. Let m,n ∈ Z≥0. The following equation holds:

IX(nE
+ +mE−) =

{ 〈

xn−i(w + z)i
∣

∣ i = 0, . . . , n−m
〉

if n ≥ m,
〈

xm−i(w − z)i
∣

∣ i = 0, . . . , m− n
〉

if n ≤ m.

Theorem 1.4. Let m,n ∈ Z≥0, and put Mmin := min(m,n). If an effec-

tive divisor D on X is linearly equivalent to nE+ + mE−, then there exist

h0, . . . , h|n−m| ∈ (RX)Mmin
such that

IX(D) =

〈

|n−m|
∑

j=0

hjx
n−m−i−j(w + z)i(w − z)j

∣

∣

∣

∣

∣

∣

i = 0, . . . , |n−m|

〉

An example of degB = 4. Let F := x4 + y4 − z4 ∈ C[x, y, z], and let
B ⊂ P2 be the quartic curve defined by F = 0. Let φ : X → P2 be the
double cover branched along B. Let E1 and E2 be two prime divisors on X
defined by the following equations:

E1 : y − z = w + x2 = 0, E2 : x− z = w + y2 = 0.

Put I
(4)
n,m := nE1 +mE2. We obtain the following results.

Proposition 1.5. Let m,n ∈ Z≥0, and put t1 := y − z, t2 := x − z, t3 :=
w + x2 + y2 − z2 in RX . Then the following equation holds:

I
(4)
n,m =

{ 〈

tn−i
1 tm−i

2 ti3, tn−j
1 tj3

∣

∣ i = 0, . . . , m, j = m+ 1, . . . , n
〉

if n ≥ m,
〈

tn−i
1 tm−i

2 ti3, tm−j
2 tj3

∣

∣ i = 0, . . . , n, j = n+ 1, . . . , m
〉

if n ≤ m.

Theorem 1.6. Let m,n ∈ Z≥0 and t1, t2, t3 ∈ RX be as Proposition 1.5. Let

Mmin := min(m,n) and Mmax := max(m,n). Put

Ai,j := tn−i
1 tm−i

2 ti−j
3 (x+ z)j(y + z)j for 0 ≤ i ≤ Mmin and 0 ≤ j ≤ i,

Bi,j := tn−j
1 tm−j

2 (2w − t3)
j−i(x+ z)i(y + z)i for

{

0 ≤ i ≤ Mmin

i ≤ j ≤ Mmin,

A′
i,j := tn−i

1 ti−j
3 (x+ z)j(y + z)j for 0 ≤ i ≤ n and m < j ≤ n if n > m,

A′′
i,j := tm−i

2 ti−j
3 (x+ z)j(y + z)j for 0 ≤ i ≤ n and n < j ≤ m if n < m.

Put A′
i,j = A′′

i,j = 0 if m = n. Then, for any divisor D on X linearly

equivalent to nE1 + mE2, there exist cj ∈ C for j = 0, . . . ,Mmax such that

IX(D) is the following ideal of RX :































�

i
�

j=0

cjAi,j +
m
�

j=i+1

(−2)i−jcjBi,j,
n

�

j=m+1

cjA
′
i,j

�

�

�

�

�

i = 0, . . . , m

�

if n ≥ m,

�

i
�

j=0

cjAi,j +
n

�

j=i+1

(−2)i−jcjBi,j,
m
�

j=n+1

cjA
′′
i,j

�

�

�

�

�

i = 0, . . . , n

�

if n ≤ m.

2 Proofs

In this section, we give proofs of the main results. Let φ : X → P2 be a
double cover branched along B ⊂ P2, and let ι : X → X be the covering
transformation of φ. Let E+ ⊂ X be a prime divisor with E+ �⊂ φ−1(B),
and put

E− := ι∗E+ ⊂ X, E := φ(E+) ⊂ P
2.

Let RX,E+ be the local ring of RX at E+, which is a DVR, and let mX,E+ ⊂
RX,E+ be the maximal ideal.

Lemma 2.1. If uE ∈ H0(P2,O(E)) is a defining polynomial of E, then

uE ∈ RX,E+ is a uniformizing parameter of RX,E+.

Proof. Let f ∈ IX(E
+) be any homogeneous element; if vE−(f) ≥ 1, then

f ∈ �uE� ⊂ RX since E+ �⊂ φ−1(B); if vE−(f) = 0, then ι∗f /∈ IX(E
+) and

f · ι∗f ∈ �uE�, hence there is h ∈ RX,E such that f = huE/ι
∗f . Thus mX,E+

is generated by uE in RX,E+ .

Lemma 2.2. For two effective divisors D =
�

nEE, D′ =
�

n′
EE, if D

and D′ are linearly equivalent, D ∼ D′, then there is a rational function

q ∈ C(X)× such that IX(D) = q · IX(D
′).

Proof. Since D ∼ D′, there is a rational function q ∈ C(X)× such that
D − D′ = (q), where (q) is the principal divisor on X defined by q. Then
we have f ′q ∈ IX(D) for any f ′ ∈ IX(D

′) and any prime divisor E on X
since vE(f

′q) ≥ nE . Similarly, we have fq−1 ∈ IX(D
′) for any f ∈ IX(D).

Therefore IX(D) = q · IX(D
′).
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�
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�

n′
EE, if D

and D′ are linearly equivalent, D ∼ D′, then there is a rational function
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2.1 Proof of Theorem 1.4

Let B ⊂ P2 be the smooth conic defined by F := z2 + xy = 0, and let
φ : X → P2 be the double cover branched along B. We can regard X and φ
as the sub-variety of P3 defined by w2 − F = 0 and the map X → P2 given
by φ(x : y : z : w) := [x : y : z], respectively. Let E± be prime divisors on X
defined by x = w ± z = 0, respectively:

E+ ⊂ X : x = w + z = 0, E− ⊂ X : x = w − z = 0.

Lemma 2.3. For each m ∈ Z≥0, IX(mE+ +mE−) ⊂ RX is the ideal gener-

ated by xm:

IX(mE+ +mE−) = �xm� ⊂ RX .

Proof. Put Im := IX(mE+ + mE−). It is clear that I0 = RX = �x0�. Let
Lx ⊂ P2 be the line defined by x = 0. Since φ∗mLx = mE++mE−, we have
Im = �xm�.

Lemma 2.4. For each m ∈ Z≥0, IX(mE+) is the ideal of RX generated by

xm−i(w + z)i for i = 0, . . . , m:

IX(mE+) = �xm−i(w + z)i | i = 0, . . . , m�.

Proof. Put Im := IX(mE+), and Im := �xm−i(w + z)i | i = 0, . . . , m�. We
prove the following claim.

Claim 2.5. Let k be an integer with 0 ≤ k ≤ m − 1. If hk,i ∈ RX for

i = k, . . . , m− 1 satisfies

fk :=

m−1
∑

i=k

hk,ix
m−i−1(w + z)i ≡ 0 (mod Im),

then there are hk+1,j ∈ RX for j = k + 1, . . . , m− 1 such that

fk+1 :=

m−1
∑

i=k+1

hk+1,ix
m−i−1(w + z)i ≡ fk (mod Im).

Proof of Claim 2.5. Let RX,E+ be the local ring at I1 = Ix(E
+). Note that

the maximal ideal mX,E+ ⊂ RX,E+ is generated by x. Since w2− z2 = xy, we
obtain

fk =
xm−1

(w − z)m−1

m−1
∑

i=k

hk,iy
i(w − z)m−i−1

as elements of RX,E+. Since mX,E+ ∩RX = I1 and fk ∈ Im, we obtain

m−1
∑

i=k

hk,iy
i(w − z)m−i−1 ∈ I1.

Since x, w + z ∈ I1, there are h′
k,i ∈ C[y, z] such that h′

k,i ≡ hk,i (mod I1).
Moreover, we have

0 ≡

m−1
∑

i=k

hk,iy
i(w − z)m−i−1 ≡

m−1
∑

i=k

h′
k,iy

i(−2z)m−i−1 (mod I1).

Since RX/I1 ∼= C[y, z], we have

h′
k,k(−2z)m−k−1 + h′

k,k+1y
k+1(−2z)m−k−2 + · · ·+ h′

k,m−1y
m−1 = 0

as polynomials in C[y, z]. Hence there is gk,k ∈ C[y, z] such that h′
k,k = ygk,k.

Since xm−i(w + z)i, xm−i−1(w + z)i+1 ∈ Im, we have in RX/Im

fk =
m−1
∑

i=k

hk,ix
m−i−1(w + z)i ≡

m−1
∑

i=k

h′
k,ix

m−i−1(w + z)i

≡ gk,k(xy)x
m−k−2(w + z)k + h′

k,k+1x
m−k−2(w + z)k+1

+ · · ·+ hk,m−1(w + z)m−1

≡ gk,k(w
2 − z2)xm−k−2(w + z)k + h′

k,k+1x
m−k−2(w + z)k+1

+ · · ·+ hk,m−1(w + z)m−1.

Since w2 − z2 = −2z(w + z) + (w + z)2, by putting

hk+1,k+1 := −2zgk,k + h′
k,k+1,

hk+1,k+2 := xgk,k + h′
k,k+2,

hk+1,j := hk,j (j = k + 3, . . . , m− 1),

we obtain fk ≡ fk+1 (mod Im).

Let us return to the proof of Lemma 2.4. If m = 0, 1, the equation
Im = Im is clear. Suppose that m > 1 and Im−1 = Im−1. By the definition of
Im, we have Im ⊃ Im. Let f ∈ Im be any homogeneous element of degree d.
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2.1 Proof of Theorem 1.4

Let B ⊂ P2 be the smooth conic defined by F := z2 + xy = 0, and let
φ : X → P2 be the double cover branched along B. We can regard X and φ
as the sub-variety of P3 defined by w2 − F = 0 and the map X → P2 given
by φ(x : y : z : w) := [x : y : z], respectively. Let E± be prime divisors on X
defined by x = w ± z = 0, respectively:

E+ ⊂ X : x = w + z = 0, E− ⊂ X : x = w − z = 0.

Lemma 2.3. For each m ∈ Z≥0, IX(mE+ +mE−) ⊂ RX is the ideal gener-

ated by xm:

IX(mE+ +mE−) = �xm� ⊂ RX .

Proof. Put Im := IX(mE+ + mE−). It is clear that I0 = RX = �x0�. Let
Lx ⊂ P2 be the line defined by x = 0. Since φ∗mLx = mE++mE−, we have
Im = �xm�.

Lemma 2.4. For each m ∈ Z≥0, IX(mE+) is the ideal of RX generated by

xm−i(w + z)i for i = 0, . . . , m:

IX(mE+) = �xm−i(w + z)i | i = 0, . . . , m�.

Proof. Put Im := IX(mE+), and Im := �xm−i(w + z)i | i = 0, . . . , m�. We
prove the following claim.

Claim 2.5. Let k be an integer with 0 ≤ k ≤ m − 1. If hk,i ∈ RX for

i = k, . . . , m− 1 satisfies

fk :=

m−1
∑

i=k

hk,ix
m−i−1(w + z)i ≡ 0 (mod Im),

then there are hk+1,j ∈ RX for j = k + 1, . . . , m− 1 such that

fk+1 :=

m−1
∑

i=k+1

hk+1,ix
m−i−1(w + z)i ≡ fk (mod Im).

Proof of Claim 2.5. Let RX,E+ be the local ring at I1 = Ix(E
+). Note that

the maximal ideal mX,E+ ⊂ RX,E+ is generated by x. Since w2− z2 = xy, we
obtain

fk =
xm−1

(w − z)m−1

m−1
∑

i=k

hk,iy
i(w − z)m−i−1

as elements of RX,E+. Since mX,E+ ∩RX = I1 and fk ∈ Im, we obtain

m−1
∑

i=k

hk,iy
i(w − z)m−i−1 ∈ I1.

Since x, w + z ∈ I1, there are h′
k,i ∈ C[y, z] such that h′

k,i ≡ hk,i (mod I1).
Moreover, we have

0 ≡

m−1
∑

i=k

hk,iy
i(w − z)m−i−1 ≡

m−1
∑

i=k

h′
k,iy

i(−2z)m−i−1 (mod I1).

Since RX/I1 ∼= C[y, z], we have

h′
k,k(−2z)m−k−1 + h′

k,k+1y
k+1(−2z)m−k−2 + · · ·+ h′

k,m−1y
m−1 = 0

as polynomials in C[y, z]. Hence there is gk,k ∈ C[y, z] such that h′
k,k = ygk,k.

Since xm−i(w + z)i, xm−i−1(w + z)i+1 ∈ Im, we have in RX/Im

fk =
m−1
∑

i=k

hk,ix
m−i−1(w + z)i ≡

m−1
∑

i=k

h′
k,ix

m−i−1(w + z)i

≡ gk,k(xy)x
m−k−2(w + z)k + h′

k,k+1x
m−k−2(w + z)k+1

+ · · ·+ hk,m−1(w + z)m−1

≡ gk,k(w
2 − z2)xm−k−2(w + z)k + h′

k,k+1x
m−k−2(w + z)k+1

+ · · ·+ hk,m−1(w + z)m−1.

Since w2 − z2 = −2z(w + z) + (w + z)2, by putting

hk+1,k+1 := −2zgk,k + h′
k,k+1,

hk+1,k+2 := xgk,k + h′
k,k+2,

hk+1,j := hk,j (j = k + 3, . . . , m− 1),

we obtain fk ≡ fk+1 (mod Im).

Let us return to the proof of Lemma 2.4. If m = 0, 1, the equation
Im = Im is clear. Suppose that m > 1 and Im−1 = Im−1. By the definition of
Im, we have Im ⊃ Im. Let f ∈ Im be any homogeneous element of degree d.



70 Taketo Shirane and Akihito Sumitomo

Since Im ⊂ Im−1 = Im−1, there are homogeneous elements hi ∈ (RX)d−m+1

for i = 0, . . . , m− 1 such that

f =

m−1
∑

i=0

hix
m−i−1(w + z)i.

Put h0,i := hi for i = 0, . . . , m − 1, and f0 := f . With the notation of
Claim 2.5, we obtain

f = f0 ≡ f1 ≡ · · · ≡ fm−1 = hm−1,m−1(w + z)m−1 (mod Im).

Since f ∈ Im and Im ⊃ Im,

m ≤ vE+(hm−1,m−1(w + z)m−1).

Thus we have vE+(hm−1,m−1) ≥ 1, and hm−1,m−1 ∈ I1 = xRX + (w + z)RX .
Therefore f ≡ hm−1,m−1(w + z)m−1 ≡ 0 (mod Im).

By the same argument, we can prove the following lemma.

Lemma 2.6. For each m ∈ Z≥0, the following equation holds:

IX(mE−) = �xm−i(w − z)i | i = 0, . . . , m� ⊂ RX .

We are ready to prove Proposition 1.3.

Proof of Proposition 1.3. Put In,m := IX(nE
+ + mE−). We first suppose

that n ≥ m. Put

I+n,m := �xn−i(w + z)i | i = 0, . . . , n−m� ⊂ RX .

Let f ∈ I+n,m be a homogeneous element. Since vE±(xm) = m and vE+(w +
z) = 1, we have vE+(f) ≥ n, vE−(f) ≥ m, and hence f ∈ I+n,m.

Conversely, let f ∈ I+n,m be a homogeneous element. Since vE+(f) ≥
n ≥ m and vE−(f) ≥ m, there is a homogeneous element g ∈ RX such that
f = xmg. Then

n ≤ vE+(f) = vE+(xm) + vE+(g) = m+ vE+(g).

Thus we have vE+(g) ≥ n−m. Since

f ∈ �xn−m−i(w + z)i | i = 0, . . . , n−m�

by Lemma 2.4, there are homogeneous elements hi ∈ RX such that

g =

n−m
�

i=0

hix
n−m−i(w + z)i.

Therefore f ∈ I+n,m, and I+n,m = I+n,m.
In the case of n ≤ m, we can prove the assertion by the same argument

using Lemma 2.3 and 2.6.

Let SX ⊂ RX be the set of all homogeneous elements, which is a multi-
plicatively closed set. Note that the rational function field C(X) of X can be
regarded as the sub-field (S−1

X RX)0 of the localized ring S−1
X RX consisting of

homogeneous elements of degree 0 and the zero element.

Proposition 2.7. Let n,m ∈ Z≥0, and put Mmin := min(n,m). For q ∈
C(X)×, q · IX(nE

+ +mE−) ⊂ RX if and only if there are h0, . . . , h|n−m| ∈
(RX)Mmin

such that

q =



























n−m
�

i=0

hi

xm

�

w − z

x

�i

if n ≥ m,

m−n
�

i=0

hi

xn

�

w + z

x

�i

if n ≤ m.

To prove Proposition 2.7, we prove the following lemma.

Lemma 2.8. Let k, n ∈ Z≥0 with 0 ≤ k ≤ n, and let q ∈ C(X)×. If

qxn−j(w + z)j ∈ RX for each j = 0, . . . , k, then there are homogeneous

polynomials a0 ∈ C[x, y, z]n−k, b0 ∈ C[x, y, z]n−k−1 and a′i ∈ C[y, z]n−k for

i = 1, . . . , k such that

q =
a0 + b0w

xn−k
+

k
�

i=1

a′i
xn−k

�

w − z

x

�i

. (2.1)

Proof. We prove the assertion by the induction on k. In the case of k = 0,
qxn ∈ RX if and only if there is a homogeneous polynomials a0, b0 ∈ RX of
degree n and n− 1, respectively, such that q = (a0 + b0w)/x

n.
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Since Im ⊂ Im−1 = Im−1, there are homogeneous elements hi ∈ (RX)d−m+1

for i = 0, . . . , m− 1 such that

f =

m−1
∑

i=0

hix
m−i−1(w + z)i.

Put h0,i := hi for i = 0, . . . , m − 1, and f0 := f . With the notation of
Claim 2.5, we obtain

f = f0 ≡ f1 ≡ · · · ≡ fm−1 = hm−1,m−1(w + z)m−1 (mod Im).

Since f ∈ Im and Im ⊃ Im,

m ≤ vE+(hm−1,m−1(w + z)m−1).

Thus we have vE+(hm−1,m−1) ≥ 1, and hm−1,m−1 ∈ I1 = xRX + (w + z)RX .
Therefore f ≡ hm−1,m−1(w + z)m−1 ≡ 0 (mod Im).

By the same argument, we can prove the following lemma.

Lemma 2.6. For each m ∈ Z≥0, the following equation holds:

IX(mE−) = �xm−i(w − z)i | i = 0, . . . , m� ⊂ RX .

We are ready to prove Proposition 1.3.

Proof of Proposition 1.3. Put In,m := IX(nE
+ + mE−). We first suppose

that n ≥ m. Put

I+n,m := �xn−i(w + z)i | i = 0, . . . , n−m� ⊂ RX .

Let f ∈ I+n,m be a homogeneous element. Since vE±(xm) = m and vE+(w +
z) = 1, we have vE+(f) ≥ n, vE−(f) ≥ m, and hence f ∈ I+n,m.

Conversely, let f ∈ I+n,m be a homogeneous element. Since vE+(f) ≥
n ≥ m and vE−(f) ≥ m, there is a homogeneous element g ∈ RX such that
f = xmg. Then

n ≤ vE+(f) = vE+(xm) + vE+(g) = m+ vE+(g).

Thus we have vE+(g) ≥ n−m. Since

f ∈ �xn−m−i(w + z)i | i = 0, . . . , n−m�

by Lemma 2.4, there are homogeneous elements hi ∈ RX such that

g =

n−m
�

i=0

hix
n−m−i(w + z)i.

Therefore f ∈ I+n,m, and I+n,m = I+n,m.
In the case of n ≤ m, we can prove the assertion by the same argument

using Lemma 2.3 and 2.6.

Let SX ⊂ RX be the set of all homogeneous elements, which is a multi-
plicatively closed set. Note that the rational function field C(X) of X can be
regarded as the sub-field (S−1

X RX)0 of the localized ring S−1
X RX consisting of

homogeneous elements of degree 0 and the zero element.

Proposition 2.7. Let n,m ∈ Z≥0, and put Mmin := min(n,m). For q ∈
C(X)×, q · IX(nE

+ +mE−) ⊂ RX if and only if there are h0, . . . , h|n−m| ∈
(RX)Mmin

such that

q =



























n−m
�

i=0

hi

xm

�

w − z

x

�i

if n ≥ m,

m−n
�

i=0

hi

xn

�

w + z

x

�i

if n ≤ m.

To prove Proposition 2.7, we prove the following lemma.

Lemma 2.8. Let k, n ∈ Z≥0 with 0 ≤ k ≤ n, and let q ∈ C(X)×. If

qxn−j(w + z)j ∈ RX for each j = 0, . . . , k, then there are homogeneous

polynomials a0 ∈ C[x, y, z]n−k, b0 ∈ C[x, y, z]n−k−1 and a′i ∈ C[y, z]n−k for

i = 1, . . . , k such that

q =
a0 + b0w

xn−k
+

k
�

i=1

a′i
xn−k

�

w − z

x

�i

. (2.1)

Proof. We prove the assertion by the induction on k. In the case of k = 0,
qxn ∈ RX if and only if there is a homogeneous polynomials a0, b0 ∈ RX of
degree n and n− 1, respectively, such that q = (a0 + b0w)/x

n.
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Suppose that k ≥ 1. By the assumption of the induction, there are a0 ∈
C[x, y, z]n−k+1, b0 ∈ C[x, y, z]n−k and a′i ∈ C[y, z]n−k+1 for i = 1, . . . , k − 1
such that

q =
a0 + b0w

xn−k+1
+

k−1
∑

i=1

a′i
xn−k+1

(

w − z

x

)i

.

Let a′0, b
′
0 ∈ C[y, z] and a′0, b

′
0 ∈ C[x, y, z] be the homogeneous polynomials

such that
a0 = a′′0x+ a′0, b0 = b′′0x+ b′0.

We consider the RX -module x−nRX and its quotient module (x−nRX)/RX .
Since (w + z)2 = 2z(w + z) + xy, we have

(w + z)i ≡ (2z)i−1(w + z) (mod xRX).

for each i ≥ 1. Since a0 + b0w = (a0 + b0z) + b0(w − z) and w2 − z2 = xy,

(a0 + b0w)(w + z) ≡ (ai + biz)(w + z) (mod xRX).

By qxn−k(w + z)k ∈ RX , we have in x−nRX/RX

0 ≡ qxn−k(w + z)k ≡
1

x

(

(2z)k−1(a′0 + b′0z) +

k−1
∑

i=1

a′iy
i(2z)k−i−1

)

(w + z)

Let q′0 ∈ C[y, z] be the element

q′0 := (2z)k−1(a′0 + b′0z) +
k−1
∑

i=1

a′iy
i(2z)k−i−1.

The above computation implies that q′0 ∈ xRX . Since q′ ∈ C[y, z], we obtain
q′0 = 0. Thus there is b′1 ∈ C[y, z] of degree n − k such that a′0 = yb′1 − zb′0.
Then we obtain

a′0 + b′0w

xn−k+1
=

b′0
xn−k

(

w − z

x

)

+
yb′1

xn−k+1
,

q′1 := (2z)k−2(a′1 + 2zb′1) +

k−1
∑

i=2

a′iy
i−1(2z)k−i−1 = 0.

We assume that there is b′j ∈ C[y, z] of n− k for j = 1, . . . , i (i < k− 1) such
that

a′j = yb′j+1 − 2zb′j (j = 1, . . . , i− 1),

q′j := (2z)k−j−1(a′j + 2zb′j) +

k−1
∑

i=j+1

a′iy
i−j(2z)k−i−1 = 0 (j = 1, . . . , i).

By q′i = 0, there is b′i+1 ∈ C[y, z] of degree n− k such that

a′i = yb′i+1 − 2zb′i,

q′i+1 := (2z)k−i−2(a′i+1 + 2zb′i) +
k−1
∑

s=i+2

a′sy
s−i−1(2z)k−s−1 = 0.

Since (w − z)2 = xy − 2(w − z), we obtain

yb′i
xn−k+1

(

w − z

x

)i−1

+
a′i

xn−k+1

(

w − z

x

)i

=
b′i

xn−k

(

w − z

x

)i

+
yb′i+1

xn−k+1

(

w − z

x

)i

Since q′k−1 = a′k−1 + 2zb′k−1 = 0,

yb′k−1

xn−k+1

(

w − z

x

)k−2

+
a′k−1

xn−k+1

(

w − z

x

)k−1

=
b′k−1

xn−k

(

w − z

x

)k

The above argument proves the assertion.

Proof of Proposition 2.7. Suppose that n ≥ m. If q = x−m
∑n−m

i=0 hix
−i(w −

z)i for some homogeneous elements hi ∈ (RX)m, then, for each j = 0, . . . , n−
m,

qxn−j(w + z)j =

n−m
∑

i=0

hix
n−m−i−j(w − z)i(w + z)j

=

n−m
∑

i=0

hix
n−m−i−j(xy)min(i,j)(w + εi,jz)

|i−j| ∈ RX ,

where εi,j = 1 if i ≤ j, and εi,j = −1 otherwise. Hence q · IX(nE
++mE−) ⊂

RX by Proposition 1.3.
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Suppose that k ≥ 1. By the assumption of the induction, there are a0 ∈
C[x, y, z]n−k+1, b0 ∈ C[x, y, z]n−k and a′i ∈ C[y, z]n−k+1 for i = 1, . . . , k − 1
such that

q =
a0 + b0w

xn−k+1
+

k−1
∑

i=1

a′i
xn−k+1

(

w − z

x

)i

.

Let a′0, b
′
0 ∈ C[y, z] and a′0, b

′
0 ∈ C[x, y, z] be the homogeneous polynomials

such that
a0 = a′′0x+ a′0, b0 = b′′0x+ b′0.

We consider the RX -module x−nRX and its quotient module (x−nRX)/RX .
Since (w + z)2 = 2z(w + z) + xy, we have

(w + z)i ≡ (2z)i−1(w + z) (mod xRX).

for each i ≥ 1. Since a0 + b0w = (a0 + b0z) + b0(w − z) and w2 − z2 = xy,

(a0 + b0w)(w + z) ≡ (ai + biz)(w + z) (mod xRX).

By qxn−k(w + z)k ∈ RX , we have in x−nRX/RX

0 ≡ qxn−k(w + z)k ≡
1

x

(

(2z)k−1(a′0 + b′0z) +

k−1
∑

i=1

a′iy
i(2z)k−i−1

)

(w + z)

Let q′0 ∈ C[y, z] be the element

q′0 := (2z)k−1(a′0 + b′0z) +
k−1
∑

i=1

a′iy
i(2z)k−i−1.

The above computation implies that q′0 ∈ xRX . Since q′ ∈ C[y, z], we obtain
q′0 = 0. Thus there is b′1 ∈ C[y, z] of degree n − k such that a′0 = yb′1 − zb′0.
Then we obtain

a′0 + b′0w

xn−k+1
=

b′0
xn−k

(

w − z

x

)

+
yb′1

xn−k+1
,

q′1 := (2z)k−2(a′1 + 2zb′1) +

k−1
∑

i=2

a′iy
i−1(2z)k−i−1 = 0.

We assume that there is b′j ∈ C[y, z] of n− k for j = 1, . . . , i (i < k− 1) such
that

a′j = yb′j+1 − 2zb′j (j = 1, . . . , i− 1),

q′j := (2z)k−j−1(a′j + 2zb′j) +

k−1
∑

i=j+1

a′iy
i−j(2z)k−i−1 = 0 (j = 1, . . . , i).

By q′i = 0, there is b′i+1 ∈ C[y, z] of degree n− k such that

a′i = yb′i+1 − 2zb′i,

q′i+1 := (2z)k−i−2(a′i+1 + 2zb′i) +
k−1
∑

s=i+2

a′sy
s−i−1(2z)k−s−1 = 0.

Since (w − z)2 = xy − 2(w − z), we obtain

yb′i
xn−k+1

(

w − z

x

)i−1

+
a′i

xn−k+1

(

w − z

x

)i

=
b′i

xn−k

(

w − z

x

)i

+
yb′i+1

xn−k+1

(

w − z

x

)i

Since q′k−1 = a′k−1 + 2zb′k−1 = 0,

yb′k−1

xn−k+1

(

w − z

x

)k−2

+
a′k−1

xn−k+1

(

w − z

x

)k−1

=
b′k−1

xn−k

(

w − z

x

)k

The above argument proves the assertion.

Proof of Proposition 2.7. Suppose that n ≥ m. If q = x−m
∑n−m

i=0 hix
−i(w −

z)i for some homogeneous elements hi ∈ (RX)m, then, for each j = 0, . . . , n−
m,

qxn−j(w + z)j =

n−m
∑

i=0

hix
n−m−i−j(w − z)i(w + z)j

=

n−m
∑

i=0

hix
n−m−i−j(xy)min(i,j)(w + εi,jz)

|i−j| ∈ RX ,

where εi,j = 1 if i ≤ j, and εi,j = −1 otherwise. Hence q · IX(nE
++mE−) ⊂

RX by Proposition 1.3.
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Conversely, if q ·IX(nE
++mE−) ⊂ RX , then qxn−j(w+z)j ∈ RX for each

j = 0, . . . , n − m by Proposition 1.3; and there are h0, . . . , hn−m ∈ (RX)m
such that

q =

n−m
∑

i=0

hi

xm

(

w − z

x

)i

.

This prove the assertion in the case of n ≥ m. We can prove this proposition
in the case of n < m by the same argument. We omit the details here.

Next we prove Thorem 1.4.

Proof of Theorem 1.4. Assume that D be an effective divisor on X linearly
equivalent to nE+ +mE−. Then there exists a rational function q ∈ C(X)
such that

IX(D) = q · IX(nE
+ +mE−).

Suppose that n ≥ m. Since

xn−i(w + z)i
n−m
∑

j=0

hj

xm

(

w − z

x

)j

=
n−m
∑

j=0

hjx
n−m−i−j(w + z)i(w − z)j

for homogeneous elements hj ∈ RX of degree m, the assertion follows from
Proposition 1.3 and 2.7. We can prove the assertion in the case of n < m by
the same argument.

2.2 An example of degB = 4

Put F := x4 + y4 − z4, and let B ⊂ P2 be the plane curve defined by F = 0.
Let φ : X → P2 be the double cover branched along B, and we regard X
as the sub-variety of P(1, 1, 1, 2) defined by w2 − F = 0. Let E1, E2 be the
divisors on X defined by y − z = w + x2 = 0 and x − z = w + y2 = 0,
respectively:

E1 ⊂ X : y − z = w + x2 = 0, E2 ⊂ X : x− z = w + y2 = 0.

Note that E1 and E2 are prime divisors on X. Put

t1 := y − z, t2 := x− z, t3 := w + x2 + y2 − z2

In,m :=

{ 〈

tn−i
1 tm−i

2 ti3, tn−j
1 tj3

∣

∣ i = 0, . . . , m, j = m+ 1, . . . , n
〉

if n ≥ m,
〈

tn−i
1 tm−i

2 ti3, tm−j
2 tj3

∣

∣ i = 0, . . . , n, j = n+ 1, . . . , m
〉

if n ≤ m.

Lemma 2.9. Let n ∈ Z≥0. the following equations hold:

IX(nE1) = In,0, IX(nE2) = I0,n.

Proof. We prove IX(nE1) = In,0 by the induction on n. We have IX(0) =
I0,0 = RX and IX(E1) = I1,0. Suppose that n > 1, and f ∈ IX(nE1). By the
assumption of the induction, there are h0, . . . , hn−1 ∈ RX such that

f =
n−1
∑

i=0

hit
n−i−1
1 ti3.

On the local ring RX,E1
at E1, we have

f =

n−1
∑

i=0

hi(y − z)n−i−1

(

y4 − z4

w − x2
+ y2 − z2

)i

=

n−1
∑

i=0

hi(y − z)n−i−1

(

(y2 + z2)(y2 − z2) + (y + z)(w − x2)

w − x2

)i

=
tn−1
1

(w − x2)n−1

n−1
∑

i=0

hi(w − x2)n−i−1(w − x2 + y2 + z2)i(y + z)i.

Since (y − z)RX,E1
is the maximal ideal of RX.E1

by Lemma 2.1, we have
(y − z)RX,E1

∩ RX = IX(E1). Since vE1
(f) ≥ n by f ∈ IX(nE1),

f ′ :=

n−1
∑

i=0

hi(w − x2)n−i−1(w − x2 + y2 + z2)i(y + z)i ∈ IX(E1).

Since z ≡ y, w ≡ −x2 (mod IX(E1)), there are h
′
i ∈ C[x, y] such that h′

i ≡ hi

(mod IX(E1)) for i = 0, . . . , n− 1. Hence we obtain, on RX/IX(E1),

0 ≡ f ′ ≡

n−1
∑

i=0

h′
i(−2x2)n−i−1(−2x2 + 2y2)i(2y)i

≡

n−1
∑

i=0

h′
k,i(−2x2)n−i−1

(

− 4y(x2 − y2)
)i

.

Since RX/IX(E1) ∼= C[x, y],

n−1
∑

i=0

h′
i(−2x2)n−i−1

(

− 4y(x2 − y2)
)i

= 0 (2.2)
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Conversely, if q ·IX(nE
++mE−) ⊂ RX , then qxn−j(w+z)j ∈ RX for each

j = 0, . . . , n − m by Proposition 1.3; and there are h0, . . . , hn−m ∈ (RX)m
such that

q =

n−m
∑

i=0

hi

xm

(

w − z

x

)i

.

This prove the assertion in the case of n ≥ m. We can prove this proposition
in the case of n < m by the same argument. We omit the details here.

Next we prove Thorem 1.4.

Proof of Theorem 1.4. Assume that D be an effective divisor on X linearly
equivalent to nE+ +mE−. Then there exists a rational function q ∈ C(X)
such that

IX(D) = q · IX(nE
+ +mE−).

Suppose that n ≥ m. Since

xn−i(w + z)i
n−m
∑

j=0

hj

xm

(

w − z

x

)j

=
n−m
∑

j=0

hjx
n−m−i−j(w + z)i(w − z)j

for homogeneous elements hj ∈ RX of degree m, the assertion follows from
Proposition 1.3 and 2.7. We can prove the assertion in the case of n < m by
the same argument.

2.2 An example of degB = 4

Put F := x4 + y4 − z4, and let B ⊂ P2 be the plane curve defined by F = 0.
Let φ : X → P2 be the double cover branched along B, and we regard X
as the sub-variety of P(1, 1, 1, 2) defined by w2 − F = 0. Let E1, E2 be the
divisors on X defined by y − z = w + x2 = 0 and x − z = w + y2 = 0,
respectively:

E1 ⊂ X : y − z = w + x2 = 0, E2 ⊂ X : x− z = w + y2 = 0.

Note that E1 and E2 are prime divisors on X. Put

t1 := y − z, t2 := x− z, t3 := w + x2 + y2 − z2

In,m :=

{ 〈

tn−i
1 tm−i

2 ti3, tn−j
1 tj3

∣

∣ i = 0, . . . , m, j = m+ 1, . . . , n
〉

if n ≥ m,
〈

tn−i
1 tm−i

2 ti3, tm−j
2 tj3

∣

∣ i = 0, . . . , n, j = n+ 1, . . . , m
〉

if n ≤ m.

Lemma 2.9. Let n ∈ Z≥0. the following equations hold:

IX(nE1) = In,0, IX(nE2) = I0,n.

Proof. We prove IX(nE1) = In,0 by the induction on n. We have IX(0) =
I0,0 = RX and IX(E1) = I1,0. Suppose that n > 1, and f ∈ IX(nE1). By the
assumption of the induction, there are h0, . . . , hn−1 ∈ RX such that

f =
n−1
∑

i=0

hit
n−i−1
1 ti3.

On the local ring RX,E1
at E1, we have

f =

n−1
∑

i=0

hi(y − z)n−i−1

(

y4 − z4

w − x2
+ y2 − z2

)i

=

n−1
∑

i=0

hi(y − z)n−i−1

(

(y2 + z2)(y2 − z2) + (y + z)(w − x2)

w − x2

)i

=
tn−1
1

(w − x2)n−1

n−1
∑

i=0

hi(w − x2)n−i−1(w − x2 + y2 + z2)i(y + z)i.

Since (y − z)RX,E1
is the maximal ideal of RX.E1

by Lemma 2.1, we have
(y − z)RX,E1

∩ RX = IX(E1). Since vE1
(f) ≥ n by f ∈ IX(nE1),

f ′ :=

n−1
∑

i=0

hi(w − x2)n−i−1(w − x2 + y2 + z2)i(y + z)i ∈ IX(E1).

Since z ≡ y, w ≡ −x2 (mod IX(E1)), there are h
′
i ∈ C[x, y] such that h′

i ≡ hi

(mod IX(E1)) for i = 0, . . . , n− 1. Hence we obtain, on RX/IX(E1),

0 ≡ f ′ ≡

n−1
∑

i=0

h′
i(−2x2)n−i−1(−2x2 + 2y2)i(2y)i

≡

n−1
∑

i=0

h′
k,i(−2x2)n−i−1

(

− 4y(x2 − y2)
)i

.

Since RX/IX(E1) ∼= C[x, y],

n−1
∑

i=0

h′
i(−2x2)n−i−1

(

− 4y(x2 − y2)
)i

= 0 (2.2)
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as a polynomial in C[x, y]. Thus there is gn−1 ∈ C[x, y] such that

h′
n−1 = −2x2gn−1 = −

(

t3 − (y + z)t1

)

gn−1 + (w − x2)gn−1.

By (2.2) again, there is gk,n−2 ∈ C[x, y] such that

h′
k,n−2 = −2x2gk,n−2 + 4y(x2 − y2)gk,n−1.

Since αβ ∈ In,0 for any α ∈ In−1,0 and β ∈ IX(E1), and t3(w − x2) =
t1(y + z)(w − x2 + y2 + z2) on RX , we obtain on RX/In,0

f ≡ gn−1(−2x2)tn−1
3 +

n−2
∑

i=0

h′
it
n−i−1
1 ti3

≡ gn−1

(

(w − x2)t3 + 4y(x2 − y2)t1

)

tn−2
3

+ gn−2(−2x2)t1t
n−2
3 +

n−3
∑

i=0

h′
it
n−i−1
1 ti3

≡ gn−1(y − z)
(

(y + z)(w − x2 + y2 + z2)− 4y(x2 − y2)
)

tn−2
3

+ gn−2(−2x2)t1t
n−2
3 +

n−3
∑

i=0

h′
it
n−i−1
1 ti3

≡ gn−2(−2x2)t1t
n−2
3 +

n−3
∑

i=0

h′
it
n−i−1
1 ti3.

By repeating this operation as the proof of Proposition 1.3, IX(nE1) ⊂ In,0
can be proved. The inclusion IX(nE1) ⊃ In,0 is trivial. Hence we obtain
IX(nE1) = In,0. By the same argument, we can prove IX(nE2) = I0,n.

Proof of Proposition 1.5. We prove IX(nE1+mE2) = In,m in the case of n ≥
m. Let f be a homogeneous element of In,m. Then there are h0, . . . , hn ∈ RX

such that

f =

m
∑

i=0

hit
n−i
1 tm−i

2 ti3 +

n
∑

i=m+1

hit
n−i
1 ti3.

Note that we have

(w − x2)t3 = (y + z)(w − x2 + y2 + z2)t1,

(w − y2)t3 = (x+ z)(w + x2 − y2 + z2)t2,

vE1
(t3) = vE2

(t3) = 1.

Thus vE1
(f) ≥ n, vE2

(f) ≥ m, and hence f ∈ IX(nE1 +mE2).
We prove IX(nE1 + mE2) = In,m by the induction on m. Recall that

t1 := y − z, t2 := x − z, t3 := w + x2 + y2 − z2. By Lemma 2.9, the above
equation holds when m = 0. Suppose that m > 0, and f ∈ IX(nE1 +mE2).
By the assumption of the induction, there are h0, . . . , hn ∈ RX such that

f =

m−1
∑

i=0

hit
n−i
1 tm−i−1

2 ti3 +

n
∑

i=m

hit
n−i
1 ti3.

On the local ring RX,E2
, we have

f ≡
tm−1
2

(w − y2)m−1

m−1
∑

i=0

hit
n−i
1 (x+ z)i(w − y2)m−i−1(w + x2 − y2 + z2)i

modulo tm2 RX,E2
. Since f ∈ tm2 RX,E2

, we obtain

m−1
∑

i=0

hit
n−i
1 (x+ z)i(w− y2)m−i−1(w+ x2 − y2+ z2)i ∈ t2RX,E2

∩RX = IX(E2).

Since z ≡ x, w ≡ −y2 (mod IX(E2)), there are h
′
i ∈ C[x, y] such that hi ≡ h′

i

(mod IX(E2)) for i = 0, . . . , m− 1. Moreover,

0 ≡
m−1
∑

i=0

hit
n−i
1 (x+ z)i(w − y2)m−i−1(w + x2 − y2 + z2)i

≡

m−1
∑

i=0

h′
i(y − x)n−i(−2y2)m−i−1(2x)i(2x2 − 2y2)i (mod IX(E2)).

Since RX/IX(E2) ∼= C[x, y], we have

m−1
∑

i=0

h′
i(y − x)n−i(−2y2)m−i−1(2x)i(2x2 − 2y2)i = 0. (2.3)

Hence there is ghm−1
∈ C[x, y] such that

h′
m−1 = −2y2(y − x)gm−1.

By (2.3), there is gm−2 ∈ C[x, y] such that

h′
m−2 = −2y2(y − x)gm−2 − 2x(2x2 − 2y2)gm−1.
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as a polynomial in C[x, y]. Thus there is gn−1 ∈ C[x, y] such that

h′
n−1 = −2x2gn−1 = −

(

t3 − (y + z)t1

)

gn−1 + (w − x2)gn−1.

By (2.2) again, there is gk,n−2 ∈ C[x, y] such that

h′
k,n−2 = −2x2gk,n−2 + 4y(x2 − y2)gk,n−1.

Since αβ ∈ In,0 for any α ∈ In−1,0 and β ∈ IX(E1), and t3(w − x2) =
t1(y + z)(w − x2 + y2 + z2) on RX , we obtain on RX/In,0

f ≡ gn−1(−2x2)tn−1
3 +

n−2
∑

i=0

h′
it
n−i−1
1 ti3

≡ gn−1

(

(w − x2)t3 + 4y(x2 − y2)t1

)

tn−2
3

+ gn−2(−2x2)t1t
n−2
3 +

n−3
∑

i=0

h′
it
n−i−1
1 ti3

≡ gn−1(y − z)
(

(y + z)(w − x2 + y2 + z2)− 4y(x2 − y2)
)

tn−2
3

+ gn−2(−2x2)t1t
n−2
3 +

n−3
∑

i=0

h′
it
n−i−1
1 ti3

≡ gn−2(−2x2)t1t
n−2
3 +

n−3
∑

i=0

h′
it
n−i−1
1 ti3.

By repeating this operation as the proof of Proposition 1.3, IX(nE1) ⊂ In,0
can be proved. The inclusion IX(nE1) ⊃ In,0 is trivial. Hence we obtain
IX(nE1) = In,0. By the same argument, we can prove IX(nE2) = I0,n.

Proof of Proposition 1.5. We prove IX(nE1+mE2) = In,m in the case of n ≥
m. Let f be a homogeneous element of In,m. Then there are h0, . . . , hn ∈ RX

such that

f =

m
∑

i=0

hit
n−i
1 tm−i

2 ti3 +

n
∑

i=m+1

hit
n−i
1 ti3.

Note that we have

(w − x2)t3 = (y + z)(w − x2 + y2 + z2)t1,

(w − y2)t3 = (x+ z)(w + x2 − y2 + z2)t2,

vE1
(t3) = vE2

(t3) = 1.

Thus vE1
(f) ≥ n, vE2

(f) ≥ m, and hence f ∈ IX(nE1 +mE2).
We prove IX(nE1 + mE2) = In,m by the induction on m. Recall that

t1 := y − z, t2 := x − z, t3 := w + x2 + y2 − z2. By Lemma 2.9, the above
equation holds when m = 0. Suppose that m > 0, and f ∈ IX(nE1 +mE2).
By the assumption of the induction, there are h0, . . . , hn ∈ RX such that

f =

m−1
∑

i=0

hit
n−i
1 tm−i−1

2 ti3 +

n
∑

i=m

hit
n−i
1 ti3.

On the local ring RX,E2
, we have

f ≡
tm−1
2

(w − y2)m−1

m−1
∑

i=0

hit
n−i
1 (x+ z)i(w − y2)m−i−1(w + x2 − y2 + z2)i

modulo tm2 RX,E2
. Since f ∈ tm2 RX,E2

, we obtain

m−1
∑

i=0

hit
n−i
1 (x+ z)i(w− y2)m−i−1(w+ x2 − y2+ z2)i ∈ t2RX,E2

∩RX = IX(E2).

Since z ≡ x, w ≡ −y2 (mod IX(E2)), there are h
′
i ∈ C[x, y] such that hi ≡ h′

i

(mod IX(E2)) for i = 0, . . . , m− 1. Moreover,

0 ≡
m−1
∑

i=0

hit
n−i
1 (x+ z)i(w − y2)m−i−1(w + x2 − y2 + z2)i

≡

m−1
∑

i=0

h′
i(y − x)n−i(−2y2)m−i−1(2x)i(2x2 − 2y2)i (mod IX(E2)).

Since RX/IX(E2) ∼= C[x, y], we have

m−1
∑

i=0

h′
i(y − x)n−i(−2y2)m−i−1(2x)i(2x2 − 2y2)i = 0. (2.3)

Hence there is ghm−1
∈ C[x, y] such that

h′
m−1 = −2y2(y − x)gm−1.

By (2.3), there is gm−2 ∈ C[x, y] such that

h′
m−2 = −2y2(y − x)gm−2 − 2x(2x2 − 2y2)gm−1.
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Since αβ ∈ In,m for any α ∈ In,m−1 and β ∈ IX(E2), and

−2y2t3 = (w − y2)(w + x2 + y2 − z2)− (w + y2)(w + x2 + y2 − z2)

= (x+ z)(w + x2 − y2 + z2)t2 − (w + y2)t3

= (x+ z)(t3 − 2y2 + 2z2)t2 − (t3 − x2 + z2)t3

= 2(x+ z)t2t3 − 2(x+ z)(y + z)t1t2 − t23,

on RX , we obtain on RX/In,m

hm−1t
n−m+1
1 tm−1

3 + hm−2t
n−m+2
1 t2t

m−2
3

≡− 2y2(y − x)tn−m+2
1 t2t

m−2
3 gm−2 (mod In,m).

By repeating this operation as the proof of Proposition 1.3, IX(nE1+mE2) ⊂
In,m can be proved. The inclusion IX(nE1 +mE2) ⊃ In,m is trivial. Hence
we obtain IX(nE1 +mE2) = In,m if n ≥ m. By the same argument, we can
prove IX(nE1 +mE2) = In,m in the case of n ≤ m.

From now we prove Theorem 1.6 in the case of n ≥ m. Note that we
can prove it in the case of n < m by the same argument. We first prove the
following proposition.

Proposition 2.10. Let n,m ∈ Z≥0, and put Mmin := min(n,m). For q ∈
C(X×), q · IX(nE1 + mE2) ⊂ RX if and only if there are c0, . . . , cMmin

∈ C

such that

q =

Mmin
∑

i=0

ci
(x+ z)i(y + z)i

(w + x2 + y2 − z2)i
.

We prove this proposition in the case of n ≥ m. By Proposition 1.5, we
have

IX(nE1 +mE2) = �tn−i
1 tm−i

2 ti3, t
n−j
1 tj3 | i = 0, . . . , m, j = m+ 1, . . . , n�,

where t1 := y − z, t2 := x − z, t3 := w + x2 + y2 − z2. In order to prove
the above proposition, put Q(RX) := C(x, y, z)[w]/�w2 − F �, which is the
quotient field of RX . We call q ∈ Q(RX) a homogeneous element if there are
homogeneous elements q′, q′′ ∈ RX with q′′ �= 0 such that q = q′/q′′, and put
deg q := deg q′ − deg q′′. Note that C(X) can be regarded as the C-vector
space Q(RX)0 ⊂ Q(RX) generated by homogeneous elements of degree 0.

Lemma 2.11. Let q ∈ Q(RX) be a homogeneous element of degree d. If q ·
tj1t

j
2t

m−j
3 ∈ RX for any j = 0, . . . , k, then there are c0, . . . , ck ∈ (RX)d+2(m−k)

such that

q =
1

tm−k
3

k
∑

i=0

ci
(x+ z)i(y + z)i

ti3
.

Proof. We prove this lemma by the induction on k. If k = 0, then c0 :=
q · tm3 ∈ RX is a homogeneous element of degree d + m with q = c0t

−m
3 .

Suppose that k > 0, and q · tj1t
j
2t

m−j
3 ∈ RX for each j = 0, . . . , k. By the

assumption of the induction, there are c0, . . . , ck−1 ∈ (RX)d+(m−k+1) such
that

q =
1

tm−k+1
3

k−1
∑

i=0

ci
(x+ z)i(y + z)i

ti3
.

Let αi ∈ (RX)d+2(m−k) and βi ∈ C[x, y, z]d+2(m−k+1) be the elements such
that

ci = αit3 + βi

for each i = 0, . . . , k−1. Since −2(y2−z2)(x2−z2) = (w+x2+y2−z2)(w−
x2 − y2 + z2),

t1t2
t3

= −
w − x2 − y2 + z2

2(x+ z)(y + z)
=

2(x2 + y2 − z2)− t3
2(x+ z)(y + z)

. (2.4)

Hence we obtain, on the RX -module Q(RX)/RX ,

0 ≡ q · tk1t
k
2t

m−k
3 =

1

t3

k−1
∑

i=0

(αit3 + βi)t
k−i
1 tk−i

2

(

x2 + y2 − z2 − 2−1t3
)i

≡
1

t3

k−1
∑

i=0

βit
k−i
1 tk−i

2 (x2 + y2 − z2)i

≡ −
w − x2 − y2 + z2

2(x+ z)(y + z)

k−1
∑

i=0

βit
k−i−1
1 tk−i−1

2 (x2 + y2 − z2)i.

Hence we have

q′ :=
k−1
∑

i=0

βit
k−i−1
1 tk−i−1

2 (x2 + y2 − z2)i ∈ (x+ z)(y + z)C[x, y, z].
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Since αβ ∈ In,m for any α ∈ In,m−1 and β ∈ IX(E2), and

−2y2t3 = (w − y2)(w + x2 + y2 − z2)− (w + y2)(w + x2 + y2 − z2)

= (x+ z)(w + x2 − y2 + z2)t2 − (w + y2)t3
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hm−1t
n−m+1
1 tm−1

3 + hm−2t
n−m+2
1 t2t

m−2
3

≡− 2y2(y − x)tn−m+2
1 t2t

m−2
3 gm−2 (mod In,m).

By repeating this operation as the proof of Proposition 1.3, IX(nE1+mE2) ⊂
In,m can be proved. The inclusion IX(nE1 +mE2) ⊃ In,m is trivial. Hence
we obtain IX(nE1 +mE2) = In,m if n ≥ m. By the same argument, we can
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From now we prove Theorem 1.6 in the case of n ≥ m. Note that we
can prove it in the case of n < m by the same argument. We first prove the
following proposition.

Proposition 2.10. Let n,m ∈ Z≥0, and put Mmin := min(n,m). For q ∈
C(X×), q · IX(nE1 + mE2) ⊂ RX if and only if there are c0, . . . , cMmin

∈ C

such that

q =

Mmin
∑

i=0

ci
(x+ z)i(y + z)i

(w + x2 + y2 − z2)i
.

We prove this proposition in the case of n ≥ m. By Proposition 1.5, we
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IX(nE1 +mE2) = �tn−i
1 tm−i

2 ti3, t
n−j
1 tj3 | i = 0, . . . , m, j = m+ 1, . . . , n�,
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Lemma 2.11. Let q ∈ Q(RX) be a homogeneous element of degree d. If q ·
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j
2t

m−j
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1

tm−k
3

k
∑

i=0

ci
(x+ z)i(y + z)i

ti3
.
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q · tm3 ∈ RX is a homogeneous element of degree d + m with q = c0t

−m
3 .
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j
2t

m−j
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3

k−1
∑

i=0

ci
(x+ z)i(y + z)i

ti3
.
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for each i = 0, . . . , k−1. Since −2(y2−z2)(x2−z2) = (w+x2+y2−z2)(w−
x2 − y2 + z2),

t1t2
t3

= −
w − x2 − y2 + z2

2(x+ z)(y + z)
=
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. (2.4)
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k
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1
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i=0
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1 tk−i

2

(
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t3

k−1
∑
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βit
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k−1
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Hence we have

q′ :=
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Let ai ∈ C[x, y, z] and a′i ∈ C[x, y] be the polynomials such that βi = ai(x+
z) + a′i. Since the above polynomial is divisible by x+ z, we have

0 ≡ q′ ≡

k−1
∑

i=0

a′i(2x)
k−i−1(x+ y)k−i−1y2i (mod x+ z).

Since C[x, y, z]/�x+ z� ∼= C[x, y],

k−1
∑

i=0

a′i(2x)
k−i−1(x+ y)k−i−1y2i = 0.

Thus there are g0, . . . , gk−1 ∈ C[x, y] such that

a′0 = y2g0, a′i = y2gi − 2x(x+ y)gi−1 (i = 1, . . . , k − 1), gk−1 = 0.

Since

y2gi(t1t2)
k−i−1(x2 + y2 − z2)i + bi+1(t1t2)

k−i−2(x2 + y2 − z2)i+1

=
(

y2t1t2 − 2x(x+ y)(x2 + y2 − z2)
)

(t1t2)
k−i−2(x2 + y2 − z2)igi

+ y2gi+1(t1t2)
k−i−2(x2 + y2 − z2)i+1

=− (x+ z)G(t1t2)
k−i−2(x2 + y2 − z2)igi

+ y2gi+1(t1t2)
k−i−2(x2 + y2 − z2)i+1,

where G := 2x3 + 2x2y − 2z x2 + 2x y2 − 2xyz + y3 − y2z, we obtain

q′ = (x+ z)
k−1
∑

i=0

(ai +Ggi)t
k−i−1
1 tk−i−1

2 (x2 + y2 − z2)i.

Hence we may assume that βi ∈ (x + z)C[x, y, z]. Let β ′
i ∈ C[x, y, z] be the

polynomial with βi = (x+ z)β ′
i for each i = 0, . . . , k − 1. Then

k−1
∑

i=0

β ′
it
k−i−1
1 tk−i−1

2 (x2 + y2 − z2)i ∈ (y + z)C[x, y, z].

By the same argument, we may assume that β ′
i ∈ (y + z)C[x, y, z] for each

i = 0, . . . , k − 1. Then there are b0, . . . , bk−1 ∈ C[x, y, z] such that βi =

(x+ z)(y + z)bi for each i, and

q =
1

tm−k+1
3

k−1
∑

i=0

(αit3 + bi(x+ z)(y + z))
(x+ z)i(y + z)i

ti3

=
1

tm−k
3

(

k−1
∑

i=0

αi

(x+ z)i(y + z)i

ti3
+

k−1
∑

i=0

bi
(x+ z)i+1(y + z)i+1

ti+1
3

)

.

Therefore the assertion holds.

Lemma 2.12. Let q ∈ Q(RX) be a homogeneous element of degree 0. If

q · IX(nE1 +mE2) ⊂ RX , then there are c0, . . . , cm ∈ (RX)0 such that

q =

m
∑

i=0

ci
(x+ z)i(y + z)i

ti3
.

Proof. We prove the assertion by the induction on n. Since

IX(mE1 +mE2) = �tm−i
1 , tm−i

2 ti3 | i = 0, . . . , m�

by Proposition 1.5, it follows from Lemma 2.11 if n = m.
Suppose that n > m, and q · IX(nE1 +mE2) ⊂ RX . Since

IX(nE1 +mE2) = �tn3 �+ t1 · IX
(

(n− 1)E1 +mE2

)

,

there are homogeneous elements c0, . . . , cm ∈ (RX)1 such that

q =
1

t1

m
∑

i=0

ci
(x+ z)i(y + z)i

ti3

by the assumption of the induction. Since ci ∈ (RX)1 for each i, there are
αi ∈ C and βi ∈ C[x, y]1 such that

ci = αit1 + βi.

By qtn3 ∈ RX , we have, on the RX -module Q(RX)/RX ,

0 ≡ qtn3 =
1

t1

m
∑

i=0

(αit1 + βi)t
n−i
3 (x+ z)i(y + z)i

≡
w + x2

t1

m
∑

i=0

βi(2x
2)n−i−1(2y)i(x+ y)i (mod RX)
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Proof. We prove the assertion by the induction on n. Since
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by Proposition 1.5, it follows from Lemma 2.11 if n = m.
Suppose that n > m, and q · IX(nE1 +mE2) ⊂ RX . Since

IX(nE1 +mE2) = �tn3 �+ t1 · IX
(

(n− 1)E1 +mE2
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,

there are homogeneous elements c0, . . . , cm ∈ (RX)1 such that

q =
1
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m
∑

i=0

ci
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ti3

by the assumption of the induction. Since ci ∈ (RX)1 for each i, there are
αi ∈ C and βi ∈ C[x, y]1 such that

ci = αit1 + βi.

By qtn3 ∈ RX , we have, on the RX -module Q(RX)/RX ,

0 ≡ qtn3 =
1
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(αit1 + βi)t
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2)n−i−1(2y)i(x+ y)i (mod RX)
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since z ≡ y and (w+x2)k ≡ (2x2)k−1(w+x2) (mod t1RX). Hence we obtain

m
∑

i=0

βi(2x
2)n−i−1(2y)i(x+ y)i = 0

as a polynomial of C[x, y]. Then there are g0, . . . , gm ∈ C[x, y] such that

β0 = 2y(x+y)g0, βi = 2y(x+y)gi−2x2gi−1 (i = 1, . . . , m), gm = 0.

Since deg βi ≤ 1, we have gi = 0 for each i = 0, . . . , m, and ci = αit1. This
prove the assertion.

Proof of Proposition 2.10. Let q ∈ C(X)× be a rational function with q ·
IX(nE1 +mE2) ⊂ RX . Since

IX(nE1 +mE2) =
〈

tn−i
1 tm−i

2 ti3, tn−j
1 tj3

∣

∣ i = 0, . . . , m, j = m+ 1, . . . , n
〉

by Proposition 1.5, there are homogeneous elements c0, . . . , cm ∈ (RX)0 = C

such that

q =
m
∑

i=0

ci
(x+ z)i(y + z)i

ti3
(2.5)

by Lemma 2.11.
Conversely, suppose that q ∈ C(X)× is of the form in (2.5). Since

tn−i
1 ti3 ·

(x+ z)j(y + z)j

tj3
= tn−i

1 ti−j
3 (x+ z)j(y + z)j ∈ RX (2.6)

for i = m + 1, . . . , n and j = 0, . . . , m, we have q · tn−i
1 ti3 ∈ RX if i > m. It

is enough to prove that q · tn−i
1 tm−i

2 ti3 ∈ RX for each i = 0, . . . , m. For each
i, j = 0, . . . , m, put

qi,j := tn−i
1 tm−i

2 ti3 ·
(x+ z)j(y + z)j

tj3
.

If 0 ≤ j ≤ i ≤ m, then we have

qi,j = (x+ z)j(y + z)jtn−i
1 tm−i

2 ti−j
3 ∈ RX . (2.7)

If 0 ≤ i < j ≤ m, then

tn−i
1 tm−i

2 ti3 ·
(x+ z)j(y + z)j

tj3

=

(

t1t2
t3

)j−i

tn−j
1 tm−j

2 (x+ z)j(y + z)j

=

(

−
w − x2 − y2 + z2

2(x+ z)(y + z)

)j−i

tn−j
1 tm−j

2 (x+ z)j(y + z)j

=

(

−
1

2

)j−i

tn−j
1 tm−j

2 (x+ z)i(y + z)i(w − x2 − y2 + z2)j−i ∈ RX

(2.8)

by (2.4).

We prove Theorem 1.6 in the case of n ≥ m.

Proof of Theorem 1.6. Let D be an effective divisor on X with D ∼ nE1 +
mE2. By Lemma 2.2, there is q ∈ C(X)× such that

q · IX(nE1 +mE2) = IX(D) ⊂ RX .

By Proposition 2.10, there are c0, . . . , cm ∈ C such that

q =

m
∑

j=0

cj
(x+ z)j(y + z)j

tj3
.

By (2.6), (2.7) and (2.8), IX(D) ⊂ RX is generated by

i
∑

j=0

cjAi,j +

m
∑

j=i+1

(−2)i−jcjBi,j and

n
∑

j=m+1

cjA
′
i,j

for i = 0, . . . , m.
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Abstract

We consider an ordinary differential system which is a so-called
Lanchester’s linear law model with time dependent coefficients. We
study on asymptotic forms of solutions that decay to a point on the
x-axis and y-axis.
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1 Introduction

In this paper, we consider the ordinary differential system of the form :

{
x′(t) = −a(t)x(t)y(t)

y′(t) = −b(t)x(t)y(t)
(1.1)

where a(t) and b(t) are positive continuous functions on [0,∞), and satisfy

A(t) =

∫ t

0

a(s) ds → ∞ and B(t) =

∫ t

0

b(s) ds → ∞ (1.2)

as t → ∞.
The initial value problem (1.1) with positive initial data

x(0) = x0 > 0 and y(0) = y0 > 0 (1.3)

has non-negative solutions.
System (1.1) is known as one of Lanchester type models, which describes

many phenomena appearing in economics, logistics, biology, and so on.


