Asymptotic Properties of Solutions for Lanchester Type Models with Time Dependent Coefficients

By
Kosuke Ono
Department of Mathematical Sciences, Tokushima University, Tokushima 770-8502, JAPAN
e-mail : k.ono@tokushima-u.ac.jp
(Received September 30, 2023)

Abstract

We consider an ordinary differential system which is a so-called Lanchester's linear law model with time dependent coefficients. We study on asymptotic forms of solutions that decay to a point on the x-axis and y-axis.

2010 Mathematics Subject Classification. 34A34, 34D05

1 Introduction

In this paper, we consider the ordinary differential system of the form :

$$
\left\{\begin{array}{l}
x^{\prime}(t)=-a(t) x(t) y(t) \tag{1.1}\\
y^{\prime}(t)=-b(t) x(t) y(t)
\end{array}\right.
$$

where $a(t)$ and $b(t)$ are positive continuous functions on $[0, \infty)$, and satisfy

$$
\begin{equation*}
A(t)=\int_{0}^{t} a(s) d s \rightarrow \infty \quad \text { and } \quad B(t)=\int_{0}^{t} b(s) d s \rightarrow \infty \tag{1.2}
\end{equation*}
$$

as $t \rightarrow \infty$.
The initial value problem (1.1) with positive initial data

$$
\begin{equation*}
x(0)=x_{0}>0 \quad \text { and } \quad y(0)=y_{0}>0 \tag{1.3}
\end{equation*}
$$

has non-negative solutions.
System (1.1) is known as one of Lanchester type models, which describes many phenomena appearing in economics, logistics, biology, and so on.

In [5], F.W.Lanchester first poposed system (1.1) to describe combat situations (see Taylor [9] for a review). System (1.1) is said a model of guerrilla engagements (see [2], [3], [10] and the references cited therein).

There are some mathematically treated reseach works for Lanchester type models (see [4] and [11] for Lanchester linear-law models, and see [6] and [8] for Lanchester square-law models, and also see [1] and [7] for Lanchester models with mixed forces).

First, we consider the special case where $a(t)=\alpha$ and $b(t)=\beta$ for some positive constants $\alpha>0$ and $\beta>0$, that is,

$$
\left\{\begin{array}{l}
x^{\prime}(t)=-\alpha x(t) y(t) \tag{1.4}\\
y^{\prime}(t)=-\beta x(t) y(t)
\end{array}\right.
$$

with initial data (1.3), then we have that $A(t)=\alpha t$ and $B(t)=\beta t$ in (1.2). Using the exchange ratio $E=\alpha / \beta$ of (1.4), we can easily see that $(x(t)-$ $E y(t))^{\prime}=0$, and hence, $x(t)-E y(t)$ is a constant value which is denoted by symbol M, that is,

$$
\begin{equation*}
x(t)-E y(t)=x_{0}-E y_{0}=M \tag{1.5}
\end{equation*}
$$

Thus, we have from (1.4) and (1.5) that

$$
x^{\prime}(t)=-\alpha x(t) y(t)=-\beta x(t)(x(t)-M)
$$

and moreover, by fundamental calculation we obtain the following representation fomula of solution $(x(t), y(t))$ of (1.4) :
(1) When $M=0$ (i.e. $x_{0}=E y_{0}$),

$$
\begin{equation*}
x(t)=\left(x_{0}^{-1}+\beta t\right)^{-1} \quad \text { and } \quad y(t)=\left(y_{0}^{-1}+\alpha t\right)^{-1} \tag{1.6}
\end{equation*}
$$

for $t \geq 0$.
(2) When $M \neq 0$ (i.e. $x_{0} \neq E y_{0}$),

$$
\begin{equation*}
x(t)=\frac{M}{1-\left(1-M / x_{0}\right) e^{-M \beta t}}=\frac{\left(x_{0} /\left(x_{0}+E N\right)\right) E N e^{-E N \beta t}}{\left(1-\left(x_{0} /\left(x_{0}+E N\right)\right) e^{-E N \beta t}\right.} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
y(t)=\frac{\left(y_{0} /\left(y_{0}+M / E\right)\right)(M / E) e^{-(M / E) \alpha t}}{1-\left(y_{0} /\left(y_{0}+M / E\right)\right) e^{-(M / E) \alpha t}}=\frac{N}{1-\left(1-\left(N / y_{0}\right)\right) e^{-N \alpha t}} \tag{1.8}
\end{equation*}
$$

where $N=-M / E$ and hence

$$
\begin{equation*}
x(t)-M=\frac{\left(1-M / x_{0}\right) e^{-M \beta t}}{1-\left(1-M / x_{0}\right) e^{-M \beta t}} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
y(t)-N=\frac{\left(1-N / y_{0}\right) e^{-N \alpha t}}{1-\left(1-N / y_{0}\right) e^{-N \alpha t}} \tag{1.10}
\end{equation*}
$$

for $t \geq 0$.
In what follows, " $f(t) \sim g(t)$ as $t \rightarrow \infty$ " means that $\lim _{t \rightarrow \infty} f(t) / g(t)=1$ for positive functions $f(t)$ and $g(t)$ defined near $+\infty$. Similary, for vector-valued functions " $\left(f_{1}(t), f_{2}(t)\right) \sim\left(g_{1}(t), g_{2}(t)\right)$ as $t \rightarrow \infty$ " means that $f_{i}(t) \sim g_{i}(t)$ as $t \rightarrow \infty, i=1,2$.

Immediately, we can obtain from (1.6)-(1.10) the following decay properties of solution $(x(t), y(t))$ of (1.4) :
(i) When $M=0,(x(t), y(t)) \rightarrow(0,0)$ as $t \rightarrow \infty$ and

$$
\begin{equation*}
(x(t), y(t)) \sim\left((\beta t)^{-1},(\alpha t)^{-1}\right) \quad \text { as } \quad t \rightarrow \infty . \tag{1.11}
\end{equation*}
$$

(ii) When $M>0,(x(t), y(t)) \rightarrow(M, 0)$ as $t \rightarrow \infty$ and

$$
\begin{equation*}
(\log (x(t)-M), \log y(t)) \sim(-M \beta t,-(M / E) \alpha t) \quad \text { as } \quad t \rightarrow \infty \tag{1.12}
\end{equation*}
$$

and $x(t)-M=O\left(e^{-M \beta t}\right)$ and $y(t)=O\left(e^{-(M / E) \alpha t}\right)$.
(iii) When $N=-M / E>0,(x(t), y(t)) \rightarrow(0, N)$ as $t \rightarrow \infty$ and

$$
\begin{equation*}
(\log x(t), \log (y(t)-N)) \sim(-E N \beta t,-N \alpha t) \quad \text { as } \quad t \rightarrow \infty \tag{1.13}
\end{equation*}
$$

and $x(t)=O\left(e^{-E N \beta t}\right)$ and $y(t)-N=O\left(e^{-N \alpha t}\right)$.
Remark. When the time dependent coefficients $a(t)$ and $b(t)$ in (1.1) satisfy $a(t) / b(t)=$ const >0 for $t \geq 0$, we can obtain the similar representation formula of solution $(x(t), y(t))$ of (1.1) replaced αt and βt in (1.6)-(1.10) by $A(t)$ and $B(t)$, respectively.

In [4], Ito, Ogiwara and Usami have derived the following asymptotic forms (1.14) and (1.15) of solution $(x(t), y(t))$ of (1.1) decaying to the origin $(0,0)$, like (1.11) for (1.1) with constant coefficients :
(i) If $a(t)$ and $b(t)$ satisfy (1.2) and $\lim _{t \rightarrow \infty} a(t) / b(t)=$ const >0, then

$$
\begin{equation*}
(x(t), y(t)) \sim\left(B(t)^{-1}, A(t)^{-1}\right) \quad \text { as } \quad t \rightarrow \infty . \tag{1.14}
\end{equation*}
$$

(ii) If $a(t)$ and $b(t)$ are of class C^{1} and satisfy

$$
\left(\frac{a(t)}{b(t)}\right)^{\prime} \leq 0 \quad \text { for large } t
$$

and

$$
\lim _{t \rightarrow \infty} \frac{a(t) B(t)}{A(t) b(t)}=k>0 \quad \text { and } \quad \lim _{t \rightarrow \infty}\left(\frac{a(t) B(t)}{A(t) b(t)}\right)^{\prime} \frac{B(t)}{b(t)}=0
$$

then

$$
\begin{equation*}
(x(t), y(t)) \sim\left(k B(t)^{-1}, k^{-1} A(t)^{-1}\right) \quad \text { as } \quad t \rightarrow \infty . \tag{1.15}
\end{equation*}
$$

However, there is no known research work related to asymptotic forms of solutions of (1.1) decaying to a point other than the origin (0,0), like (1.12) and (1.13) for (1.4) with constant coefficients.

The notations we use in this paper are standard. Positive constants will be denoted by C and will change from line to line.

2 Results

We will give asymptotic forms of solutions of (1.1) decaying to a point on the x-axis and y-axis.

Theorem 2.1 Let E, M and N be constants. Assume that $a(t)$ and $b(t)$ satisfy (1.2) and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{a(t)}{b(t)}=E>0 \tag{2.1}
\end{equation*}
$$

Then, we have the following:
(i) For $M>0$, every solution $(x(t), y(t))$ of (1.1) decaying to $(M, 0)$ has the asymptotic form

$$
\begin{equation*}
(\log (x(t)-M), \log y(t)) \sim(-M B(t),-(M / E) A(t)) \quad \text { as } \quad t \rightarrow \infty \tag{2.2}
\end{equation*}
$$

(ii) For $N>0$, every solution $(x(t), y(t))$ of (1.1) decaying to $(0, N)$ has the asymptotic form

$$
\begin{equation*}
(\log x(t), \log (y(t)-N)) \sim(-E N B(t),-N A(t)) \quad \text { as } \quad t \rightarrow \infty . \tag{2.3}
\end{equation*}
$$

Proof. (i) Let $M>0$ and $(x(t), y(t)) \rightarrow(M, 0)$ as $t \rightarrow \infty$. By L'Hospital's rule, we have from (2.1) that

$$
\begin{align*}
\lim _{t \rightarrow \infty} \frac{x(t)-M}{y(t)} & =\lim _{t \rightarrow \infty} \frac{x^{\prime}(t)}{y^{\prime}(t)}=\lim _{t \rightarrow \infty} \frac{-a(t) x(t) y(t)}{-b(t) x(t) y(t)} \\
& =\lim _{t \rightarrow \infty} \frac{a(t)}{b(t)}=E \tag{2.4}
\end{align*}
$$

and hence, we obtain from (2.1) and (2.4) that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{\log (x(t)-M)}{-M B(t)} & =\lim _{t \rightarrow \infty} \frac{(x(t)-M)^{-1} x^{\prime}(t)}{-M b(t)} \\
& =\lim _{t \rightarrow \infty} \frac{(x(t)-M)^{-1}(-a(t) x(t) y(t))}{-M b(t)} \\
& =\lim _{t \rightarrow \infty} \frac{a(t)}{b(t)} \frac{y(t)}{x(t)-M} \frac{x(t)}{M}=1,
\end{aligned}
$$

which implies $\log (x(t)-M) \sim-M B(t)$ as $t \rightarrow \infty$.
On the other hand, by L'Hospital's rule again, we have from (2.1) that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{\log y(t)}{-(M / E) A(t)} & =\lim _{t \rightarrow \infty} \frac{y(t)^{-1} y^{\prime}(t)}{-(M / E) a(t)}=\lim _{t \rightarrow \infty} \frac{y(t)^{-1}(-b(t) x(t) y(t))}{-(M / E) a(t)} \\
& =E \lim _{t \rightarrow \infty} \frac{b(t)}{a(t)} \frac{x(t)}{M}=1,
\end{aligned}
$$

which implies $\log y(t) \sim-(M / E) A(t)$ as $t \rightarrow \infty$.
(ii) Next, let $N>0$ and $(x(t), y(t)) \rightarrow(0, N)$ as $t \rightarrow \infty$. By L'Hospital's rule, we have from (2.1) that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{\log x(t)}{-E N B(t)} & =\lim _{t \rightarrow \infty} \frac{x(t)^{-1} x^{\prime}(t)}{-E N b(t)}=\lim _{t \rightarrow \infty} \frac{x(t)^{-1}(-a(t) x(t) y(t))}{-E N b(t)} \\
& =\frac{1}{E} \lim _{t \rightarrow \infty} \frac{a(t)}{b(t)} \frac{y(t)}{N}=1,
\end{aligned}
$$

which implies $\log x(t) \sim-E N B(t)$ as $t \rightarrow \infty$.
On the other hand, by L'Hospital's rule again, we have from (2.1) that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{x(t)}{y(t)-N}=\lim _{t \rightarrow \infty} \frac{x^{\prime}(t)}{y^{\prime}(t)}=\lim _{t \rightarrow \infty} \frac{a(t)}{b(t)}=E, \tag{2.5}
\end{equation*}
$$

and hence, we obtain from (2.1) and (2.5) that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{\log (y(t)-N)}{-N A(t)} & =\lim _{t \rightarrow \infty} \frac{(y(t)-N)^{-1} y^{\prime}(t)}{-N a(t)} \\
& =\lim _{t \rightarrow \infty} \frac{(y(t)-N)^{-1}(-b(t) x(t) y(t))}{-N a(t)} \\
& =\lim _{t \rightarrow \infty} \frac{b(t)}{a(t)} \frac{x(t)}{y(t)-N} \frac{y(t)}{N}=1,
\end{aligned}
$$

which implies $\log (y(t)-N) \sim-N A(t)$ as $t \rightarrow \infty$.
Theorem 2.2 Let M be a constant. Assume that $a(t)$ and $b(t)$ are of class C^{1} and satisfy (1.2) and

$$
\begin{equation*}
\left(\frac{a(t)}{b(t)}\right)^{\prime} \leq 0 \quad \text { for large } t \tag{2.6}
\end{equation*}
$$

Then, for $M>0$, every solution $(x(t), y(t))$ of (1.1) decaying to $(M, 0)$ has

$$
\begin{equation*}
x(t)-M=O\left(e^{-M B(t)}\right) . \tag{2.7}
\end{equation*}
$$

In addition, if there exists a positive constant K such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{a(t)^{2} e^{M B(t)}}{b(t)^{2} e^{K A(t)}}=\text { const }>0 \tag{2.8}
\end{equation*}
$$

then

$$
\begin{equation*}
y(t)=O\left(e^{-K A(t)}\right) . \tag{2.9}
\end{equation*}
$$

Proof. Since $x(t) \rightarrow M$ as $t \rightarrow \infty$ and $(-x(t))^{\prime}=(a(t) / b(t))(-y(t))^{\prime}$, it follows that

$$
\begin{aligned}
x(t)-M & =\int_{t}^{\infty}(-x(s))^{\prime} d s=\int_{t}^{\infty} \frac{a(s)}{b(s)}(-y(s))^{\prime} d s \\
& =\frac{a(t)}{b(t)} y(t)+\int_{t}^{\infty}\left(\frac{a(s)}{b(s)}\right)^{\prime} y(s) d s
\end{aligned}
$$

for large t, and from (2.6) that there exists $t_{1}>0$ such that

$$
y(t) \geq \frac{b(t)}{a(t)}(x(t)-M) \quad \text { for } t \geq t_{1}
$$

Then we have

$$
x^{\prime}(t)=-a(t) x(t) y(t) \leq b(t) x(t)(x(t)-M)
$$

for $t \geq t_{1}$. Solving this differential inequality of a separeble type on $\left[t_{1}, t\right]$, we obtain

$$
\frac{1}{M} \log \frac{x(t)}{x_{1}} \frac{x_{1}-M}{x(t)-M} \geq B(t)-B_{1}
$$

and

$$
x(t) \leq \frac{M}{1-\left(1-M / x_{1}\right) e^{-M\left(B(t)-B_{1}\right)}} \leq C e^{-M B(t)},
$$

where we use symbols $x_{1}=x\left(t_{1}\right)$ and $B_{1}=B\left(t_{1}\right)$, and hence,

$$
\begin{equation*}
x(t)-M \leq \frac{\left(1-M / x_{1}\right) e^{-M\left(B(t)-B_{1}\right)}}{1-\left(1-M / x_{1}\right) e^{-M\left(B(t)-B_{1}\right)}} \leq C e^{-M B(t)} \tag{2.10}
\end{equation*}
$$

for $t \geq t_{1}$, which implies (2.7).
On the other hand, since $y(t) \rightarrow 0$ as $t \rightarrow \infty$ and $(-y(t))^{\prime}=(b(t) / a(t))$. $(-(x(t)-M))^{\prime}$, it follows that

$$
\begin{align*}
y(t) & =\int_{t}^{\infty}(-y(s))^{\prime} d s=\int_{t}^{\infty} \frac{b(s)}{a(s)}(-(x(s)-M))^{\prime} d s \\
& =\frac{b(t)}{a(t)}(x(t)-M)+\int_{t}^{\infty}\left(\frac{b(s)}{a(s)}\right)^{\prime}(x(s)-M) d s \tag{2.11}
\end{align*}
$$

for large t. Here, since it follows from (2.8) that

$$
\begin{equation*}
0 \leq \frac{b(t)}{a(t)} e^{-M B(t)}=\frac{a(t)}{b(t)} \frac{b(t)^{2}}{a(t)^{2}} e^{-M B(t)} \leq C e^{-K A(t)} \quad \text { for larte } t \tag{2.12}
\end{equation*}
$$

and from $(b(t) / a(t))^{\prime}=-(b(t) / a(t))^{2}(a(t) / b(t))^{\prime} \geq 0$ for large t and (2.8) that

$$
\begin{align*}
0 & \leq \int_{t}^{\infty}\left(\frac{b(s)}{a(s)}\right)^{\prime} e^{-M B(s)} d s \\
& =-\frac{b(t)}{a(t)} e^{-M B(t)}+\int_{t}^{\infty} \frac{b(s)}{a(s)} M b(s) e^{-M B(s)} d s \\
& \leq-\frac{b(t)}{a(t)} e^{-M B(t)}+C \int_{t}^{\infty} K a(s) e^{-K A(s)} d s \\
& =-\frac{b(t)}{a(t)} e^{-M B(t)}+C \int_{t}^{\infty}\left(-e^{-K A(s)}\right)^{\prime} d s \\
& \leq C e^{-K A(t)} \quad \text { for large } t, \tag{2.13}
\end{align*}
$$

we obtain from (2.10)-(2.13) that

$$
y(t) \leq C e^{-K A(t)}+C e^{-K A(t)} \quad \text { for large } t,
$$

which implies (2.9).
Remark. (i) When $a(t)=\alpha>0$ and $b(t)=\beta>0$, we see that $(a(t) / b(t))^{\prime}=0$ and the limit value of (2.8) is $\alpha^{2} / \beta^{2}>0$ by taking $K=M \beta / \alpha$.
(ii) When $a(t)=(1+t)^{-1}$ and $b(t)=(e+t)^{-1}$, we see that $(a(t) / b(t))^{\prime}<0$ and the limit value of (2.8) is $e^{-M}>0$ by taking $K=M$.

By the similar argument of Theorem 2.2 we have the following theorem.
Theorem 2.3 Let N be a constant. Assume that $a(t)$ and $b(t)$ are of class C^{1} and satisfy (1.2) and

$$
\left(\frac{b(t)}{a(t)}\right)^{\prime} \leq 0 \quad \text { for large } t
$$

Then, for $N>0$, every solution $(x(t), y(t))$ of (1.1) decaying to $(0, N)$ has

$$
y(t)-N=O\left(e^{-N A(t)}\right) .
$$

In addition, if there exists a positive constant K such that

$$
\lim _{t \rightarrow \infty} \frac{b(t)^{2} e^{N A(t)}}{a(t)^{2} e^{K B(t)}}=\text { const }>0
$$

then

$$
x(t)=O\left(e^{-K B(t)}\right)
$$

References

[1] M.J. Artelli and R.F. Deckro, Modeling the Lanchester laws with system dynamics, J. Defence Modeling and Simulation, 5 (2008) 1-20.
[2] D.R. Howes and R.M. Thrall, A theory of ideal linear weights for heterogeneous combat forces, Naval Research Logistics Quartery, 20 (1973) 645-659.
[3] G. Isac and A. Gosselin, A military application of viability: winning cones, differential inclusions, and Lanchester type models for combats, Pareto Optimality, Game Theory and Equilibria, 759-797, Springer Optim. Appl., 17, Springer, New York 2008.
[4] T. Ito, T.Ogiwara, and H. Usami, Asymptotic properties of solutions of a Lanchester-type model, Differential Equations \& Applications 12 (2020) 1-12.
[5] F.W. Lanchester, Aircraft in Warfare: The Dawn of the Fourth Arm, 1916 (Reprinted by Forgotten Books, 2015).
[6] K.Y. Lin and N. J. MacKay, The optimal policy for the one-against-many heterogeneous Lanchester, Oper. Res. Lett. 42 (2014) 473-477.
[7] N.J. MacKay, Lanchester models for mixed forces with semi-dynamical target allocation, J. Oper. Res. Soc. 60 (2009) 1421-1427.
[8] T. Ogiwara and H. Usami, On the behavior of solutions for Lanchester square-law models with time-dependent coefficients, Josai Mathematical Monographs, 11 (2018) 15-25.
[9] J.G. Taylor, Lanchester Models of Warfare, I and II, Operations Research Society of America 1983.
[10] J.G. Taylor, Battle-outcome prediction for an extended system of Lanchester type differential equations, J. Math. Anal. Appl., 103 (1984) 371379.
[11] H.T. Tran and H. Usami, Asymptotic behavior of positive solutions of a Lanchester-type model, Differential Equations and Applications, 9 (2017) 241-252.

