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Abstract
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1 Introduction

In this paper, we consider the ordinary differential system of the form :

{
x′(t) = −a(t)x(t)y(t)

y′(t) = −b(t)x(t)y(t)
(1.1)

where a(t) and b(t) are positive continuous functions on [0,∞), and satisfy

A(t) =

∫ t

0

a(s) ds → ∞ and B(t) =

∫ t

0

b(s) ds → ∞ (1.2)

as t → ∞.
The initial value problem (1.1) with positive initial data

x(0) = x0 > 0 and y(0) = y0 > 0 (1.3)

has non-negative solutions.
System (1.1) is known as one of Lanchester type models, which describes

many phenomena appearing in economics, logistics, biology, and so on.
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In [5], F.W.Lanchester first poposed system (1.1) to describe combat situ-
ations (see Taylor [9] for a review). System (1.1) is said a model of guerrilla
engagements (see [2], [3], [10] and the references cited therein).

There are some mathematically treated reseach works for Lanchester type
models (see [4] and [11] for Lanchester linear-law models, and see [6] and [8] for
Lanchester square-law models, and also see [1] and [7] for Lanchester models
with mixed forces).

First, we consider the special case where a(t) = α and b(t) = β for some
positive constants α > 0 and β > 0, that is,

{
x′(t) = −αx(t)y(t)

y′(t) = −βx(t)y(t)
(1.4)

with initial data (1.3), then we have that A(t) = αt and B(t) = βt in (1.2).
Using the exchange ratio E = α/β of (1.4), we can easily see that (x(t) −
Ey(t))′ = 0, and hence, x(t) − Ey(t) is a constant value which is denoted by
symbol M , that is,

x(t)− Ey(t) = x0 − Ey0 = M. (1.5)

Thus, we have from (1.4) and (1.5) that

x′(t) = −αx(t)y(t) = −βx(t)(x(t)−M) ,

and moreover, by fundamental calculation we obtain the following representa-
tion fomula of solution (x(t), y(t)) of (1.4) :

(1) When M = 0 (i.e. x0 = Ey0),

x(t) = (x−1
0 + βt)−1 and y(t) = (y−1

0 + αt)−1 (1.6)

for t ≥ 0.
(2) When M ̸= 0 (i.e. x0 ̸= Ey0),

x(t) =
M

1− (1−M/x0)e−Mβt
=

(x0/(x0 + EN))ENe−ENβt

(1− (x0/(x0 + EN))e−ENβt
(1.7)

and

y(t) =
(y0/(y0 +M/E))(M/E)e−(M/E)αt

1− (y0/(y0 +M/E))e−(M/E)αt
=

N

1− (1− (N/y0))e−Nαt
(1.8)

where N = −M/E and hence

x(t)−M =
(1−M/x0)e

−Mβt

1− (1−M/x0)e−Mβt
(1.9)

2

and

y(t)−N =
(1−N/y0)e

−Nαt

1− (1−N/y0)e−Nαt
(1.10)

for t ≥ 0.
In what follows, ”f(t) ∼ g(t) as t → ∞” means that limt→∞ f(t)/g(t) = 1

for positive functions f(t) and g(t) defined near +∞. Similary, for vector-valued
functions ”(f1(t) , f2(t)) ∼ (g1(t) , g2(t)) as t → ∞” means that fi(t) ∼ gi(t)
as t → ∞, i = 1, 2.

Immediately, we can obtain from (1.6)–(1.10) the following decay properties
of solution (x(t), y(t)) of (1.4) :

(i) When M = 0, (x(t), y(t)) → (0, 0) as t → ∞ and

(x(t) , y(t)) ∼ ((βt)−1 , (αt)−1) as t → ∞ . (1.11)

(ii) When M > 0, (x(t), y(t)) → (M, 0) as t → ∞ and

(log(x(t)−M) , log y(t)) ∼ (−Mβt , −(M/E)αt) as t → ∞ (1.12)

and x(t)−M = O(e−Mβt) and y(t) = O(e−(M/E)αt).
(iii) When N = −M/E > 0, (x(t), y(t)) → (0, N) as t → ∞ and

(log x(t) , log(y(t)−N)) ∼ (−ENβt , −Nαt) as t → ∞ (1.13)

and x(t) = O(e−ENβt) and y(t)−N = O(e−Nαt).

Remark. When the time dependent coefficients a(t) and b(t) in (1.1) satisfy
a(t)/b(t) = const > 0 for t ≥ 0, we can obtain the similar representation
formula of solution (x(t), y(t)) of (1.1) replaced αt and βt in (1.6)–(1.10) by
A(t) and B(t), respectively.

In [4], Ito, Ogiwara and Usami have derived the following asymptotic forms
(1.14) and (1.15) of solution (x(t), y(t)) of (1.1) decaying to the origin (0, 0),
like (1.11) for (1.1) with constant coefficients :

(i) If a(t) and b(t) satisfy (1.2) and limt→∞ a(t)/b(t) = const > 0, then

(x(t) , y(t)) ∼ (B(t)−1 , A(t)−1) as t → ∞ . (1.14)

(ii) If a(t) and b(t) are of class C1 and satisfy

(
a(t)

b(t)

)′

≤ 0 for large t

and

lim
t→∞

a(t)B(t)

A(t)b(t)
= k > 0 and lim

t→∞

(
a(t)B(t)

A(t)b(t)

)′
B(t)

b(t)
= 0 ,

3
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then

(x(t) , y(t)) ∼ (kB(t)−1 , k−1A(t)−1) as t → ∞ . (1.15)

However, there is no known research work related to asymptotic forms of
solutions of (1.1) decaying to a point other than the origin (0, 0), like (1.12)
and (1.13) for (1.4) with constant coefficients.

The notations we use in this paper are standard. Positive constants will be
denoted by C and will change from line to line.

2 Results

We will give asymptotic forms of solutions of (1.1) decaying to a point on
the x-axis and y-axis.

Theorem 2.1 Let E, M and N be constants. Assume that a(t) and b(t) satisfy
(1.2) and

lim
t→∞

a(t)

b(t)
= E > 0 . (2.1)

Then, we have the following :
(i) For M > 0, every solution (x(t), y(t)) of (1.1) decaying to (M, 0) has

the asymptotic form

(log(x(t)−M) , log y(t)) ∼ (−MB(t) , −(M/E)A(t)) as t → ∞ . (2.2)

(ii) For N > 0, every solution (x(t), y(t)) of (1.1) decaying to (0, N) has
the asymptotic form

(log x(t) , log(y(t)−N)) ∼ (−ENB(t) , −NA(t)) as t → ∞ . (2.3)

Proof. (i) Let M > 0 and (x(t), y(t)) → (M, 0) as t → ∞. By L’Hospital’s
rule, we have from (2.1) that

lim
t→∞

x(t)−M

y(t)
= lim

t→∞

x′(t)

y′(t)
= lim

t→∞

−a(t)x(t)y(t)

−b(t)x(t)y(t)

= lim
t→∞

a(t)

b(t)
= E , (2.4)

and hence, we obtain from (2.1) and (2.4) that

lim
t→∞

log(x(t)−M)

−MB(t)
= lim

t→∞

(x(t)−M)−1x′(t)

−Mb(t)

= lim
t→∞

(x(t)−M)−1(−a(t)x(t)y(t))

−Mb(t)

= lim
t→∞

a(t)

b(t)

y(t)

x(t)−M

x(t)

M
= 1 ,

4

which implies log(x(t)−M) ∼ −MB(t) as t → ∞.
On the other hand, by L’Hospital’s rule again, we have from (2.1) that

lim
t→∞

log y(t)

−(M/E)A(t)
= lim

t→∞

y(t)−1y′(t)

−(M/E)a(t)
= lim

t→∞

y(t)−1(−b(t)x(t)y(t))

−(M/E)a(t)

= E lim
t→∞

b(t)

a(t)

x(t)

M
= 1 ,

which implies log y(t) ∼ −(M/E)A(t) as t → ∞.
(ii) Next, let N > 0 and (x(t), y(t)) → (0, N) as t → ∞. By L’Hospital’s

rule, we have from (2.1) that

lim
t→∞

log x(t)

−ENB(t)
= lim

t→∞

x(t)−1x′(t)

−ENb(t)
= lim

t→∞

x(t)−1(−a(t)x(t)y(t))

−ENb(t)

=
1

E
lim
t→∞

a(t)

b(t)

y(t)

N
= 1 ,

which implies log x(t) ∼ −ENB(t) as t → ∞.
On the other hand, by L’Hospital’s rule again, we have from (2.1) that

lim
t→∞

x(t)

y(t)−N
= lim

t→∞

x′(t)

y′(t)
= lim

t→∞

a(t)

b(t)
= E , (2.5)

and hence, we obtain from (2.1) and (2.5) that

lim
t→∞

log(y(t)−N)

−NA(t)
= lim

t→∞

(y(t)−N)−1y′(t)

−Na(t)

= lim
t→∞

(y(t)−N)−1(−b(t)x(t)y(t))

−Na(t)

= lim
t→∞

b(t)

a(t)

x(t)

y(t)−N

y(t)

N
= 1 ,

which implies log(y(t)−N) ∼ −NA(t) as t → ∞. □

Theorem 2.2 Let M be a constant. Assume that a(t) and b(t) are of class C1

and satisfy (1.2) and

(
a(t)

b(t)

)′

≤ 0 for large t . (2.6)

Then, for M > 0, every solution (x(t), y(t)) of (1.1) decaying to (M, 0) has

x(t)−M = O(e−MB(t)) . (2.7)

5
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5
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In addition, if there exists a positive constant K such that

lim
t→∞

a(t)2eMB(t)

b(t)2eKA(t)
= const > 0 , (2.8)

then

y(t) = O(e−KA(t)) . (2.9)

Proof. Since x(t) → M as t → ∞ and (−x(t))′ = (a(t)/b(t))(−y(t))′, it
follows that

x(t)−M =

∫ ∞

t

(−x(s))′ ds =

∫ ∞

t

a(s)

b(s)
(−y(s))′ ds

=
a(t)

b(t)
y(t) +

∫ ∞

t

(
a(s)

b(s)

)′

y(s) ds

for large t, and from (2.6) that there exists t1 > 0 such that

y(t) ≥ b(t)

a(t)
(x(t)−M) for t ≥ t1 .

Then we have

x′(t) = −a(t)x(t)y(t) ≤ b(t)x(t)(x(t)−M)

for t ≥ t1. Solving this differential inequality of a separeble type on [t1, t], we
obtain

1

M
log

x(t)

x1

x1 −M

x(t)−M
≥ B(t)−B1

and

x(t) ≤ M

1− (1−M/x1)e−M(B(t)−B1)
≤ Ce−MB(t) ,

where we use symbols x1 = x(t1) and B1 = B(t1), and hence,

x(t)−M ≤ (1−M/x1)e
−M(B(t)−B1)

1− (1−M/x1)e−M(B(t)−B1)
≤ Ce−MB(t) (2.10)

for t ≥ t1, which implies (2.7).
On the other hand, since y(t) → 0 as t → ∞ and (−y(t))′ = (b(t)/a(t))·

(−(x(t)−M))′, it follows that

y(t) =

∫ ∞

t

(−y(s))′ ds =

∫ ∞

t

b(s)

a(s)
(−(x(s)−M))

′
ds

=
b(t)

a(t)
(x(t)−M) +

∫ ∞

t

(
b(s)

a(s)

)′

(x(s)−M) ds (2.11)

6

for large t. Here, since it follows from (2.8) that

0 ≤ b(t)

a(t)
e−MB(t) =

a(t)

b(t)

b(t)2

a(t)2
e−MB(t) ≤ Ce−KA(t) for larte t , (2.12)

and from (b(t)/a(t))′ = −(b(t)/a(t))2(a(t)/b(t))′ ≥ 0 for large t and (2.8) that

0 ≤
∫ ∞

t

(
b(s)

a(s)

)′

e−MB(s) ds

= − b(t)

a(t)
e−MB(t) +

∫ ∞

t

b(s)

a(s)
Mb(s)e−MB(s) ds

≤ − b(t)

a(t)
e−MB(t) + C

∫ ∞

t

Ka(s)e−KA(s) ds

= − b(t)

a(t)
e−MB(t) + C

∫ ∞

t

(−e−KA(s))′ ds

≤ Ce−KA(t) for large t , (2.13)

we obtain from (2.10)–(2.13) that

y(t) ≤ Ce−KA(t) + Ce−KA(t) for large t ,

which implies (2.9). □

Remark. (i) When a(t) = α > 0 and b(t) = β > 0, we see that (a(t)/b(t))′ = 0
and the limit value of (2.8) is α2/β2 > 0 by taking K = Mβ/α.

(ii) When a(t) = (1+ t)−1 and b(t) = (e+ t)−1, we see that (a(t)/b(t))′ < 0
and the limit value of (2.8) is e−M > 0 by taking K = M .

By the similar argument of Theorem 2.2 we have the following theorem.

Theorem 2.3 Let N be a constant. Assume that a(t) and b(t) are of class C1

and satisfy (1.2) and
(
b(t)

a(t)

)′

≤ 0 for large t .

Then, for N > 0, every solution (x(t), y(t)) of (1.1) decaying to (0, N) has

y(t)−N = O(e−NA(t)) .

In addition, if there exists a positive constant K such that

lim
t→∞

b(t)2eNA(t)

a(t)2eKB(t)
= const > 0 ,

then

x(t) = O(e−KB(t)) .
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In addition, if there exists a positive constant K such that
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t→∞
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∫ ∞

t
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∫ ∞

t

a(s)

b(s)
(−y(s))′ ds

=
a(t)

b(t)
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∫ ∞

t

(
a(s)

b(s)

)′

y(s) ds
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a(t)
(x(t)−M) for t ≥ t1 .
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1

M
log

x(t)

x1

x1 −M

x(t)−M
≥ B(t)−B1
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x(t) ≤ M
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≤ Ce−MB(t) ,
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t

b(s)

a(s)
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′
ds

=
b(t)

a(t)
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∫ ∞

t

(
b(s)

a(s)

)′

(x(s)−M) ds (2.11)

6
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and satisfy (1.2) and
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)′

≤ 0 for large t .

Then, for N > 0, every solution (x(t), y(t)) of (1.1) decaying to (0, N) has
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Abstract

In this paper, we define Euclidean geometry and prove the existence
theorem of Euclidean geometry by using the axiomatic method.

Thereby we give the system of Axioms of Euclidean Geometry and
prove its consistency.

Thus we give the complete solution of the problem of the foundation
of Euclidean geometry.

2000 Mathematics Subject Classification. Primary, 51M05.

Introduction

In this paper, we give the true expression of Euclid’s system of axioms.
Thereby we define Euclidean geometry and prove the existence theorem of
Euclidean geometry.

Euclidean geometry was originated by Euclid’s “Principle”. In Euclid’s
system of axioms, the concepts of the point, the line and the plane were not
defined clearly.

Therefore there was the problem of its truth. Hilbert gave the regularization
of Euclidean geometry by using Hilbert’s system of axioms in his “foundation
of geometry”.
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