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Abstract: Background: Parkinsonian tremors are sometimes confused with essential tremors or other
conditions. Recently, researchers conducted several studies on tremor evaluation using wearable
sensors and devices, which may support accurate diagnosis. Mechanical devices are also commonly
used to treat tremors and have been actively researched and developed. Here, we aimed to review
recent progress and the efficacy of the devices related to Parkinsonian tremors. Methods: The PubMed
and Scopus databases were searched for articles. We searched for “Parkinson disease” and “tremor”
and “device”. Results: Eighty-six articles were selected by our systematic approach. Many studies
demonstrated that the diagnosis and evaluation of tremors in patients with PD can be done accurately
by machine learning algorithms. Mechanical devices for tremor suppression include deep brain
stimulation (DBS), electrical muscle stimulation, and orthosis. In recent years, adaptive DBS and
optimization of stimulation parameters have been studied to further improve treatment efficacy.
Conclusions: Due to developments using state-of-the-art techniques, effectiveness in diagnosing
and evaluating tremor and suppressing it using these devices is satisfactorily high in many studies.
However, other than DBS, no devices are in practical use. To acquire high-level evidence, large-scale
studies and randomized controlled trials are needed for these devices.

Keywords: Parkinson’s disease; essential tremor; diagnosis; stimulation; medical devices;
machine learning

1. Introduction

Parkinson’s disease (PD) is a progressive degenerative disorder primarily charac-
terized by the degeneration of dopamine neurons in the substantia nigra [1,2]. Its main
symptoms include tremor, rigidity, bradykinesia, akinesia, and postural instability [3].
Tremors are one of the most common motor symptoms of PD. PD can be classified into
different subtypes as follows: patients with predominant akinesia/rigidity, which is an
akinetic-rigid type (ART), and those with a tremor-dominant type (TDT) [4]. PD-ART
displays greater cognitive impairment and faster progression than TDT-PD [5]. This war-
rants understanding the status of tremors, considering their role in diagnosing the disease
and its symptoms. Non-pathological, slight physiological tremors can be found in normal
individuals. Pathological tremor affects more than 0.4% of the population [6], and its
incidence and prevalence increase substantially with age [7].
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Tremor is caused by a variety of conditions [8], and its exact underlying mechanism
is not understood [9]. Among several causes of tremor, the most common and incidental
types of tremor are seen in patients with PD and essential tremor (ET) [6]. ET is a major
differential diagnosis. According to the 2018 Movement Disorders Consensus Criteria, ET
is characterized by isolated bilateral upper limb movement tremor with a duration of at
least 3 years without other neurologic signs [9]. Tremor in patients with ET and PD is
sometimes confusing. PD is a complex neurodegenerative disorder, usually characterized
by asymmetrical onset bradykinesia, muscular rigidity, postural instability, and tremor.
Patients with PD present with resting tremor, as well as other symptoms, except during
the early stages. Resting tremors are often enhanced by walking and performing tasks,
such as calculation. In contrast, tremor severity tends to increase during kinetic tasks
in patients with ET. Despite the lack of a test to confirm diagnosis, medical interviews,
physical examinations, and blood tests should exclude other common causes of action
tremors, such as the side effects of certain medications or hyperthyroidism.

Tremor assessment is based on physical examination by a neurologist. Current di-
agnostic methods and quantification are based on the phenomenological demonstration
of tremor, principally with the help of movement disorder scales, such as the essential
tremor rating assessment scale [10], Fahn–Tolosa–Marin scale [11], and Unified Parkinson’s
Disease Rating Scale (UPDRS) [12]. The correct diagnosis of the different tremor types is
essential for treatment, which may depend on the specific etiology of each type. However,
tremor misdiagnosis owing to confusion between PD and ET can occur in 20% to 30%
of cases [13,14]. Thus, technological solutions may improve the quality of diagnosis and
quantify the disease stage.

In recent years, researchers have extensively investigated technologies that use wear-
able devices to distinguish between patients with PD and healthy individuals [15,16], as
well as between these patients and those with ET [17,18]. The use of novel technologies,
such as machine learning, has substantially improved the accuracy of such diagnostic
techniques. PD diagnosis is sometimes difficult, even for specialists, and is facilitated by the
aforementioned techniques. In addition, researchers are investigating technologies to assess
and monitor tremors using wearable sensors [19,20]. Monitoring reflects routine symptoms
because it does not comprise a time-limited snapshot, unlike assessments at clinics and
other facilities. In recent years, these evaluations have become possible and easier to handle
with familiar devices, such as smartphones [21,22] and smartwatches [23,24].

Because tremor is only one manifestation of PD (e.g., motor, and non-motor symptoms),
the patient’s medical condition should be decided by evaluating all symptoms. Regarding
tremors, pharmacotherapy is the primary treatment for PD. Approximately 30% of patients
with tremors do not respond to pharmacological intervention or they experience intolerable
secondary effects [25]. Deep brain stimulation (DBS) is another effective treatment for
medically refractory tremors. An upcoming notable technique of DBS may be the detection
of tremors using local field potential (LFP) [26,27]. This tremor detection technique will be
available in adaptive DBS (aDBS), which operates on the principle of closed-loop interaction.
Compared with DBS, electrical muscle stimulation (EMS) would be a safer treatment
that can improve symptoms with fewer side effects. EMS also comprises a closed-loop
system that detects tremors and stimulates them accordingly and is effective in suppressing
tremors [28,29]. Another approach encompasses tremor suppression using orthosis [30,31].
A common method is to estimate the tremor and apply a reverse cancellation signal.
Researchers are investigating techniques for tremor detection based on data acquired from
inertial sensors and other sources [32,33], which is essential to avoid the risk of suppressing
non-tremor movement. Treatment using mechanical devices in patients with PD has
been reported to be effective and is widely accepted [34]. In this systematic narrative
literature review, we will introduce recent technologies and research trends related to PD
tremor diagnosis using devices, device-based tremor treatment, and orthosis for tremor
control (Figure 1).
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Figure 1. An overview of the diagnostic and treatment devices for tremor. The figure indicates the
diagnosis and treatment of tremor, tremor type, and content. The numbers in parentheses show the
breakdown of the number of search hits, with PubMed and Scopus listed in that order.

2. Materials and Methods

All searches were performed on PubMed and Scopus. The study screening was done
independently by two reviewers, J.F. and R.M. We searched for “Parkinson disease” and
“tremor” and “device”. English language literature in the past 10 years was reviewed. After
removing duplicates, we included papers with at least one diagnostic outcome (identifi-
cation, evaluation, or monitoring) or the treatments. Titles and abstracts were screened
for eligibility by two researchers (J.F. and R.M.). The full texts were reviewed by the same
researchers with any disagreement in study selection being resolved through discussion.

3. Results

The search yielded 268 results in PubMed and 253 in Scopus. There were 73 relevant
articles in PubMed and 98 in Scopus. After removing the duplicate papers, two researchers
(JF and RM) assessed the remaining articles. In total, 86 articles (distinguishing between
PD and healthy individual, 7; distinguishing between PD and ET, 9; tremor evaluation,
23; tremor monitoring, 11; DBS, 15; EMS, 4; and other devices, 17) were compiled as a
narrative literature review. There were only two randomized controlled trials in the selected
literature: one article on DBS [35], and the other on EMS [28]. The number of literatures was
too small to perform a robust systematic review for each category. Therefore, we conducted
a systematic narrative review. Figure 1 shows the number of papers for each topic.
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3.1. Tremor Diagnosis Using Devices

Previous studies have proposed measurable technologies and analysis methods for
Parkinsonian tremor [22,36–46]. Researchers have used movement sensors, such as ac-
celerometers and gyroscopes, and electromyography (EMG) for monitoring, qualifying,
and detecting tremors, and differentiating between tremors due to PD, those due to other
causes (such as ET), or those in healthy people. Furthermore, new smartphones and smart-
watches with gyroscope and accelerometer functions can be used as accessible monitoring
tools. This chapter presents research on the diagnosis and evaluation of tremors using
these devices.

3.1.1. Distinguishing between Patients with PD and Healthy Individuals, Using Devices

With regard to tremor diagnosis, distinguishing between ET and PD is sometimes
challenging. Therefore, researchers are actively identifying ways to support differential
diagnosis by device-based objective evaluation (Table 1). The first step in diagnosis is
to distinguish a patient from a healthy individual. Giulia et al., used a wearable inertial
sensor to discriminate between patients with PD and healthy participants [47]. Thirty-six
patients with PD and 29 healthy controls performed the following seven motor tasks from
the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) III wearing inertial sensors: resting tremor, postural tremor,
rapid alternating hand movement, foot tapping, heel-to-toe tapping, timed up and go test
(TUG), and a pull test. Of these endpoints, SVM was performed using highly relevant
items, namely, tremor, bradycardia, pull test, and TUG, and was able to distinguish be-
tween patients with PD and healthy controls with a high accuracy of 97%. Channa et al.,
also developed the A-WEAR bracelet for diagnosis using 3D acceleration and gyroscopes,
which accurately identified PD with a 91.7% probability by K-nearest neighbors [48]. Such
research has been applied to smartphones and smartwatches. Kostikis et al., developed a
smartphone-based tool to assess upper limb tremor in patients [22]. Using machine learn-
ing, the system correctly classified 82% and 90% of the patients and healthy participants,
respectively, based on data from a smartphone’s accelerometer and gyroscope. Prototypes
have also been developed using smartwatches [15]. This system was tested with artificial
neural networks, random forests, and SVM, and trained on a sample comprising 192, 75,
and 51 patients with PD, other movement disorders, and healthy participants, respectively.
Artificial neural networks displayed the best results in distinguishing healthy participants
from others, including those with PD and other movement disorders, with precision and
recall of 0.94 (SD 0.03) and 0.92 (SD 0.04), respectively. Moreover, SVM demonstrated
the best performance in distinguishing patients with PD from those with other motor
disabilities, and healthy participants, with precision and recall of 0.81 (SD 0.01) and 0.89
(SD 0.04), respectively. Moreover, there are other validations of diagnostics using commer-
cially available smartwatches [49]. A study which used the Apple Watch series 3 and 4,
which are commonly distributed smartwatches, first evaluated their accuracy by comparing
it with the Nanometrics seismometer. Both series 3 and 4 were confirmed to be accurate,
with a maximum error of <0.01 Hz from the seismograph. The patient performed a test
designed by a disability specialist to obtain acceleration data while wearing the smartwatch.
Machine learning was used to discriminate between patients with PD, healthy participants,
and those with motor impairments other than PD (ET, Parkinsonism, etc.). The machine
learning classifiers used were as follows: SVM, CatBoost, multilayer perceptron, and simple
deep learning architecture. SVM, CatBoost, and multilayer perceptron displayed a balanced
accuracy of >80% and precision and recall rates of >90% for patients with PD and healthy
participants. In an advanced task that distinguishes PD and non-PD motor impairment,
the multilayer perceptron demonstrated a balanced accuracy, precision, and recall of 74.1%,
86.5%, and 90.5%, respectively. Thus, considerable identification accuracy can be achieved,
even with consumer products. Another study used inertial data from a commercially
available smartwatch to investigate eating behavior and evaluate the reduction in motor
symptoms in PD [50]. They evaluated plate-to-mouth (PtM) in seven healthy participants
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and 21 patients with PD. PtM is a measure related to the average time for the hands to
transfer food from the plate to the mouth when eating. Those with PD had higher PtM
values than healthy participants. Furthermore, a model using PtM was used to classify
patients and revealed precision, recall, and F1 (harmonic mean of fit and recall) of 0.882,
0.714, and 0.789, respectively. However, some of the aforementioned methods are difficult
to use because they require expertise in system operation and maintenance. Junior et al.,
developed a device that can be combined with a regular pen as an approach for easier
and simpler diagnosis [16]. It can distinguish patients with PD from healthy individuals
through a simple diadochokinetic paper test, which assists in diagnosing the early stages
of PD. The device was equipped with an accelerometer and gyroscope, and the acquired
data were classified using linear discriminant analysis, logistic regression, classification
and regression trees, K-nearest neighbors, SVM, and naive Bayes. The results confirmed
that the overall accuracy was approximately 100% for multiple classifiers.

3.1.2. Distinguishing between PD and ET Using Devices

The classic method of differentiating PD tremor from ET involves iodine-123-labelled
N-omega-(flu-oropropyl)-2beta-carbomethoxy-3beta-(4-iodophenyl) tropane and iodine-
123-labelled 2β-carbomethoxy-3β-(4-iodophenyl) tropane dopamine transporter imag-
ing with single-photon emission computed tomography using nuclear imaging tech-
niques [51–53]. However, its accuracy may be less than that of clinical diagnosis by move-
ment disorder specialists [54]. In addition, nuclear imaging techniques are widely unavail-
able because they involve radiopharmaceuticals and are expensive and time-consuming.
This warrants considering the mechanism of relatively inexpensive and widely available
wearable devices to identify PD and ET. Despite an overlap between the frequency ranges
exhibited by PD and ET tremors, the accelerometer power spectrum analysis signals can
effectively distinguish between PD and ET [42,44,55–58]. Thanawattano et al., proposed
a novel method for extracting temporal features based on variations in the frequency of
tremors with state [42]. They attached six-axis inertial sensors to the index fingers of
the participants and requested them to perform three tasks as follows: kinetic, postural,
and resting. Each task took 10 s to complete. The elliptical regions of two-dimensional
representations of the resting task for those with PD and ET were significantly different
(p < 0.05). Locatelli et al., developed a small, low-cost, wearable device with an inertial sen-
sor [59]. The device was worn on the wrist, and four standardized tasks were performed to
acquire data and build a classification model, which achieved an average accuracy of >90%.
Researchers have also used the acceleration from a smartwatch to identify PD and ET [44].
The use of the mean harmonic peak power obtained from the accelerometer could facilitate
calculation of the optimal discrimination threshold by a receiver operating characteristic
(ROC) analysis (sensitivity 90.9%, 95% CI 58.7–99.8%; specificity 100%, 95% CI 76.8–100%;
and Cohen’s kappa = 0.91, SE = 0.08). In addition, the accuracy of the smartwatch was
evaluated using an analog accelerometer and provided consistent estimates of the peak
frequency and proportional harmonic power. Studies have also been conducted using
smartphones: Woods et al., performed a task while holding a smartphone in the hand to
obtain acceleration information [57]. This application used discrete wavelet transforms
and SVM to classify the data and found an accuracy rate of over 96%. Barrantes et al.,
also used smartphones to identify PD and ET [17]. Patients with an undecided diagnosis
were included in the evaluation and were re-evaluated after 1 year. For the experiment,
smartphones were placed on the dorsal side of the hand, and recordings were obtained for
epochs of 30 s at rest and 30 s during arm stretching. They calculated the ROC of the total
spectral power to establish a threshold to separate participants with and without tremors.
The results demonstrated an accurate diagnosis of PD or ET in 27 of 32 patients (84.38%
discrimination accuracy). Of the patients with undecided diagnoses, all PD cases (two)
and two of four ET cases were correctly classified. Duque et al., also performed machine
learning classification using the linear acceleration of tremor recorded by the smartphone’s
built-in accelerometer, and showed performances ranging from 90.0% to 100.0% sensitivity,
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and 80% to 100% specificity [60]. Thus, the smartphone, a familiar device, is expected to
be utilized. Moon et al., evaluated the performance of several machine-learning methods,
including neural networks, SVM, K-nearest neighbor methods, decision trees, random
forests, and gradient boosting [18]. They used six inertial sensors (on the wrist, back of the
foot, sternum, and hip) to analyze balance and gait characteristics to distinguish between
PD and ET. The F1 score (harmonic mean of fit and recall), which is the most commonly
used performance metric in machine learning, was 0.61, 0.59, 0.56, 0.55, 0.53, and 0.49
for neural networks, gradient boosting, random forest, SVM, decision tree, and K-nearest
neighbors, respectively. It was superior to conventional logistic regression, thus confirming
the usefulness of machine learning for diagnosis. Most studies were diagnostic, based on
data obtained from inertial sensors, although some studies were conducted using EMG. A
study investigating the EEG characteristics of resting tremor in patients with ET and PD
confirmed that the parameter that best differentiated the two disorders was the pattern
of muscle activation [61]. Vescio et al., developed a µEMG device worn on the wrist to
record resting tremor [62]. Comparison with common EMG recordings confirmed a good
correlation between tremor frequency (r = 0.93, p < 0.001) and phase difference (r = 0.92,
p < 0.001). Thus, wearable devices have been used to classify PD and ET with high accuracy.
Further validation may provide more efficient diagnostic and prognostic tools that can
assist clinicians in decision-making processes.

3.2. Tremor Evaluation Using Devices

In addition to identification, it is important to quantitatively assess the degree of
tremor. The UPDRS tremor scores are often used for tremor evaluation in clinical practice.
Moreover, evaluation systems using wearable devices are often designed to correlate sensor
measurements with the UPDRS. This section describes research on the evaluation of tremors
using the aforementioned device.

3.2.1. Tremor Evaluation Using Wearable Sensors

Raethjen et al., and Zhang et al., used EEG and EMG data to characterize tremors
in patients with PD [63,64]. Currently, surface electromyography (sEMG) is the standard
technique used for the characterization and monitoring of tremors in patients with PD [65].
Researchers have assessed the severity of tremors to determine the diagnostic usefulness
of sEMG. They compared 30 patients with PD with a healthy age-matched control group
by attaching bipolar sEMG to the biceps brachii muscle and evaluated muscle activity.
The recurrence and determinism rates were significantly higher in the PD group than
in the control group, and were correlated with the UPDRS scores [66]. Inertial sensors
have been increasingly used in recent years [67–70]. A study comparing the accuracy
of inertial sensors and EMG motion tracking showed that inertial sensors were more
accurate [71]. Data-processing approaches vary across studies. Rigas et al., successfully
estimated tremor severity based on acceleration acquired using accelerometers attached to
body segments and features extracted from a hidden Markov model [72]. Using a gradient
descent algorithm, Cai et al., isolated the acceleration caused by pure translational motion.
A multiple regression model of UPDRS was created from the features extracted from these
accelerations and angular velocities [73]. The performance of this model was r2 = 0.95
for resting tremor and r2 = 0.93 for postural tremor. Kim et al., developed SNUMAP, a
wrist-mounted evaluation device with a three-axis accelerometer and gyroscope [74]. They
trained recordings from 92 patients with PD using a convolutional neural network (CNN)
to create an estimated UPDRS model. The results displayed an average accuracy of 85%,
with a linearly weighted kappa of 0.85. CNNs could achieve higher accuracy than simple
machine learning methods, such as SVM or regression. Such machine learning-based
methods have been a trend in recent years, and numerous studies have been conducted.
Wu et al., extracted characteristic values from acceleration signals in the time, frequency,
and spectral domains, and tested multiple machine learning methods. The results showed
that the neural network model was more accurate than the SVM, random forest, and
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multivariate linear regression models [75]. Another method using CNNs is to learn a
convolved 2D image of the frequency response of the tremor signal [76]. This study used
data acquired from an accelerometer-based wearable device attached to the patient’s upper
extremity. The results showed an average accuracy of 91%, with a linearly weighted kappa
of 0.91. Moreover, researchers have proposed an approach to estimate UPDRS using fuzzy
inference rather than machine learning [77]. The fuzzy theory postulates that the truth
value is not binary, true, or false but rather deals with all intermediate values. Moreover, it
considers uncertainty. This method is scalable and easily tunable because it is modeled in a
manner similar to the human inference process. Garza-Rodríguez et al., also used fuzzy
inference to evaluate UPDRS from hand pronation/supination exercises, and found that in
most cases the results were consistent with expert evaluation [78]. While wearable sensors
have the advantage of monitoring patients in several situations, devices that do not require
attachment to the patient are also useful while measuring behavioral tremors under specific
conditions. This led to the development of Rehapiano, an ergonomically designed tremor
evaluation device with strain gauges placed on a two-handed handle [79]. The performance
evaluation also confirmed that the sensitivity was sufficient to quantify the tremor. The
other product is the TREMITAS-System, a pen-type device with an accelerometer, 3D
gyroscope, and 3D magnetometer [80]. This device was able to quantify tremors and
was significantly correlated with UPDRS and the tremor research group essential tremor
assessment scale subscores.

3.2.2. Tremor Evaluation Using Smartphones and Smartwatches

Smartphones have become the most popular devices in recent years, and studies
have been conducted on the evaluation of tremors using these devices. This is partly
attributable to the rapid increase in their computing power. Lemoyne et al., used a com-
mon smartphone to evaluate tremor frequency in patients with PD [81]. Araujo et al.,
demonstrated good consistency between a clinically obtained EMG, and accelerometer
data obtained using smartphone applications (Pearson > 0.8, p < 0.001) [82]. In this study,
22 patients with diagnoses of PD, ET, and Holmes’ tremor were tested, and three apps
were evaluated. Bermeo et al., developed an Android application that could assess the
status of patients with PD based on three tests in the MDS-UPDRS [83]. Kostikis et al.,
used a smartphone’s gyroscope and accelerometer to detect and quantify tremors. The
smartphone detected data on hand tremors, and the UPDRS hand tremor scores revealed
a good correlation (r > 0.7 and p < 0.01) [22]. These studies have often been conducted in
controlled environments, such as laboratories; however, some studies were performed in
free-living environments. Researchers have proposed an algorithm for tremor classification
using a multiple-instance learning method based on smartphone acceleration to cope with
noisy data, which demonstrated good classification performance [21]. van Brummelen et al.,
compared laboratory-grade and consumer product accelerometers and suggested that the
amplitude at peak frequency varied among the sensors, indicating that distal worn sensors
tended to measure higher amplitudes relative to proximal ones. Thus, the placement of
sensors may be an important part of evaluating tremor amplitude [84]. Thus, tremors can
be detected and evaluated with high precision without using dedicated sensors, besides
having considerably lower hurdles for their use.

In addition to smartphones, several smartwatches have become popular in recent
years, with the availability of numerous models. Smartwatches may be suitable for tremor
assessment because they are worn on the wrists. Several studies evaluated tremors using
sensors attached to the wrist. López-Blanco et al., quantified resting tremors by obtaining
the parameters of tremor intensity from the root mean square of angular velocity acquired
from a smartwatch [85]. Furthermore, they simultaneously performed a statistical analysis
of the quantified data with the UPDRS-III score, which revealed a strong correlation with a
Spearman’s correlation coefficient (ρ) of 0.81 (p < 0.001). In addition, satisfaction associated
with the device was high. Tremors can also be classified using machine learning based on
triaxial acceleration data from commercially available smartwatches [24]. Investigators have
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achieved high tremor detection performance using a multitasking CNN that uses both raw
signals and spectral data representations as inputs. They are exploring data measurement
characteristics necessary for the accurate detection of PD symptoms [23]. Following a
comparative evaluation of commercially available smartwatches and measurement sensors
with multiple functions, accelerometer data from the smartwatch alone were sufficient to
detect tremors. A sampling rate ≥ 30 Hz was required to detect tremors using acceleration.
In addition, they investigated the impact of the features used in machine learning (time,
frequency, entropy, correlation, and derivative) on accuracy. Entropy was identified to
be important for tremor detection. Entropy is computationally expensive and affects
real-time performance and battery consumption. Taken together, tremor detection using
smartwatches has reached a practical level and is expected to be utilized. The use of
affordable wearable technology is less burdensome and the most useful approach for
routine care and assessment of patients with PD.

3.3. Tremor Monitoring

Despite the variety of novel devices being designed to assess tremors at specific
times, several studies have aimed at continuous monitoring. Assessments in clinics and
other settings are time-limited and may not reflect routine symptoms. This warrants an
evaluation with prolonged monitoring to accurately assess disease status. Such monitoring
is also expected to be used as screening for the application of advanced treatments, such as
DBS [86]. In the early studies, there was a type of study in which tests were taken several
times a day [87]; however, in recent years, a continuous monitoring system has also been
realized. Pulliam et al., attached motion sensors to the limbs and obtained data for six
daily activities, such as eating and brushing teeth [88]. Assessments of 13 patients with PD
revealed that the ratings by ROC curves were consistent with the clinician’s UPDRS-III
ratings of the video recordings (ROC area > 0.8). Similarly, Hssayeni et al., measured tremor
severity from activities of daily living with wrist- and ankle-mounted three-axis gyroscopic
sensors; results from 24 patients with PD displayed the maximum correlation of 0.96 in
gradient tree boosting [89]. Researchers have proposed wearable sensors attached to the
wrist and chest combined with questionnaire-based assessment for continuous monitoring
of PD symptoms in daily life [90]. Overlapping frequency components make it difficult to
distinguish between daily activities and tremors; nonetheless, a method has been proposed
for detecting tremors using a two-step algorithm [91]. Another device that can detect PD
hand tremors from daily movements is the PD-Watch [92]. This device enables detection
by checking for movement frequency and supination–pronation characteristics. The index
calculated from 24 h of data obtained from this device was shown to correlate with the
UPDRS score. Furthermore, a system was proposed as a machine learning approach
to detect tremors in daily life data using a CNN and other techniques from a wearable
accelerometer system worn on the wrist [19]. This technology enabled the quantification
of the number of tremors in daily life. For a more user-friendly and complete sensor,
researchers developed the biosensor patch NIMBLE (MC10, Inc., Lexington, MA, USA)
with an accelerometer and myoelectric system [20]. It can adhere to the skin using adhesive
stickers. In addition, the measurements can be wirelessly transmitted to a smartphone or
tablet and a cloud server. Prediction scores using acquired data were within the range of
±1, with a probability of 91%. Moreover, their adhesion and safety were evaluated. Such
techniques may allow for better treatment by assessing tremors at higher frequencies in
daily activities.

3.4. Treatments for Tremor
3.4.1. DBS

DBS has been established as the standard of care for patients with movement disorders,
such as PD, ET, and dystonia. DBS is an effective and widely used treatment for these
patients, and the majority of them achieve good clinical results following surgery [93–95].
DBS improves bradykinesia [93], gait freezing in PD [96,97], camptocormia [98,99], and
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tremor [100]. Moreover, it is a safer treatment with lower complication rates than stereotactic
thalamotomy [101,102]. The subthalamic nucleus (STN) and internal globus pallidus (GPi)
are the most common targets for PD stimulation [103]. A meta-analysis evaluating the
effect of DBS on tremor suppression compared DBS ON and OFF conditions and found
a significant standardized difference mean effect (effect size = 0.36; 95% CI = 0.316–0.395;
p < 0.0001) [104]. The sum of UPDRS III, items 20 and 21, was used for this measure. These
results indicate moderate effectiveness. Z-test results showed no significant difference in
effect size between STN and GPi (p = 0.56). A 12-month follow-up study also confirmed
its effectiveness in reducing action/postural tremor and resting tremor [105]. The results
of this study also showed that the extent of tremor control by DBS for STN and GPi were
equivalent; however, it may take longer to achieve the same tremor control effect when
targeting GPi. It has also been found that the therapeutic effect varies with the stimulation
frequency. Meta-analyses have shown that stimulation greater than 100 Hz STN has
a greater effect on tremor. [106]. The method of electrode placement is also important.
Diffusion tensor imaging and tractography guided lead placement have been shown
to provide more stable placement and better tremor control compared to conventional
methods of lead placement [35]. Other targets include the ventral intermediate nucleus of
the thalamus (VIM), caudal zona incerta, and posterior subthalamic area, which have a
striking effect in improving tremors [107–112]. Therefore, if tremor is the main problem,
rather than bradykinesia for patients with PD, these targets are warranted to be considered
as first choice. A study of 98 patients with PD and ET showed sustained improvement
in tremor scores (UPDRS III, items 20 and 21; Fahn–Tolosa–Marin Tremor Rating Scale)
with VIM stimulation (mean improvement, 70% and 66% at 1 year and 63% and 48% at
>10 years, respectively, p < 0.05) [112]. There was no significant loss of a stimulation effect
over time (p > 0.05). Thus, the effects of DBS are long-lasting. Tremor can be controlled by
maintaining the activities of daily living, and there was high patient satisfaction during the
10-year follow-up [113]. However, DBS is not effective in all patients, and patients need to
determine whether they are appropriate candidates.

aDBS

Advances in DBS technology are ongoing, and novel research and development are
underway. aDBS is one of the most innovative techniques. An aDBS device operates on
the principle of closed-loop interaction, which can determine the effect of stimulation and
adjust it, in response to the observed effect. LFPs are used as biomarkers to achieve a closed
loop in aDBS. aDBS with LFPs has the advantage of being achieved by the online analysis
of deep brain recordings, without the need for additional measurement channels. It is
effective and is currently being used to treat patients with PD [114–117].

With regard to tremor suppression, an aDBS device has not been used clinically. Per-
forming DBS only after the appearance of symptoms may reduce battery consumption.
Power consumption is important because battery replacement requires surgery. aDBS
necessitates the detection of tremors from the LFP. Reliable symptom detection is im-
portant for the implementation of aDBS. Tremor-related activity occurs throughout the
motor network [118,119]. Specifically, it includes the basal ganglia, thalamus, cerebellum,
and primary motor cortex, which coherently respond at tremor frequencies of 3–7 Hz
upon their presentation [120]. Other findings include an increase in low gamma power
(31–45 Hz) [121,122] and changes in high-frequency fluctuations in the subthalamic nu-
cleus [123]. Advanced techniques, such as machine learning, are required to capture the
aforementioned complex features. Hirschmann et al., used a hidden Markov model to clas-
sify tremors [27]. They obtained the LFP from the STN of 10 patients with PD, which was
evaluated using four frequency domains (power at the individual tremor frequency ± 1 Hz,
beta power, low gamma power, and high-frequency oscillations power ratio). The results
indicated a mean area under the ROC curve of 0.82 and a SD of 0.15. Furthermore, it
displayed good accuracy, even without training, for individual patients. High-frequency
domain is the most useful feature for detecting tremors. Camara et al., developed a system
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that simultaneously recorded LFP in the subthalamic nucleus and electromyographic ac-
tivity in the forearm and used fuzzy inference to detect tremors based on the relationship
between the signals [124]. The system displayed 100% accuracy in detecting tremors in four
of 10 patients with PD and attained >98.7% accuracy in seven patients. A complete system
can be built within the DBS hardware by extending this work to synchronization between
the thalamic LFP and other brain signals. Shah et al., proposed a tremor detection system
using a logistic regression-based classifier [26]. The system was trained by extracting vari-
ous features from the frequency and time domains of LFPs. The classification performance
ranged from an AUC of 0.67 to 0.93, thereby indicating that the power between 31 Hz
and 45 Hz was the most discriminating feature. A multi-feature neural-network-based
tremor detector was proposed as a machine-learning-based approach [125]. It achieved
an accuracy > 86% in four of eight patients. These technologies will help an aDBS system
realize accurate treatment.

The Optimization of Stimulation Parameters

The optimization of stimulation parameters is important for the efficient use of DBS.
Setting general DBS parameters often relies on subjective evaluation, which may not yield
optimal effects. In addition, multiple parameters, such as frequency, pulse width, and
amplitude, must be set appropriately within the time constraints. Thus, researchers pro-
posed next-generation methods to quantify tremors using wearable sensors as objective
indicators for determining stimulation parameters. Pulliam et al., proposed an algorithm
in which motion sensors, including accelerometers and gyroscopes, were attached to the
fingers to acquire motion data, which were subsequently used to set the DBS parame-
ters [126]. There were two algorithms, as follows: one to maximize the treatment effect
and the other to optimize the battery life. The algorithm that maximized the treatment
effect reduced motor symptoms by 13%; however, it increased the stimulus amplitude,
compared with the usual setting method. In contrast, the algorithm that optimized battery
life successfully reduced the stimulus amplitude by an average of 50% while maintaining
the level of therapeutic effect. Currently, the intraoperative parameter setting is subjectively
performed. A system was developed to assist in electrode placement and test stimulus
settings during DBS implantation surgery for awake patients. The system facilitated the
quantitative real-time visualization of neural activity recorded by microelectrode and motor
symptoms, such as tremors, recorded by an inertial measurement unit during surgery [127].
Dai et al., also developed a glove-type system that uses an inertial measurement unit and
force sensitive resistor to measure the immediate effects of DBS by tremors, bradykine-
sia, and rigidity assessments [128]. In addition, highly functional inertial sensors with
conformal, wireless, and data upload functions, and the Food and Drug Administration
(FDA)-approved BioStamp nPoint, have been developed [129]. These technologies will
realize next-generation methods of optimizing stimulation parameters in clinical settings.

3.4.2. EMS

Invasive devices, such as DBS electrodes, are a good option; however, the risk of
adverse events associated with the procedure should be carefully assessed. It is important
to identify novel and safe treatment options with fewer side effects, thus emphasizing the
need for non-invasive devices. EMS may be one such method. However, it has not received
FDA, CE Mark, or any other accreditation.

EMS Controlled by Motion Detectors

EMS, used to alleviate resting tremor, is based on modifications by changes in pe-
ripheral mechanical conditions, external joint motion, or EMG [130]. Jitkritsadakul et al.,
developed a glove-shaped portable device that detected and suppressed tremors [28]. It
consisted of three components, as follows: a glove with an embedded inertial sensor and an
EMS module, a control box that can be worn on the waist belt, and an Android smartphone.
An inertial sensor attached to the glove was used to detect and stimulate tremors. EMS was
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performed via two electrodes placed over the short thumb abductor muscle and the first
and second dorsal skeletal muscles. They evaluated the performance of this device using
a double-blind, 1:1 pair-designed, randomized, placebo-controlled design in 30 patients
with PD. The tremor glove effectively suppressed intractable resting hand tremors in these
patients, without serious adverse events. Specifically, they identified a significant reduction
in the root mean squared angular velocity (as a percentage) in every axis, in peak magnitude
in the axis (x-, y-), and in UPDRS tremor scores (glove: 5.27 ± 2.19, sham: 4.93 ± 2.37)
during stimulation with Tremor’s glove, compared with the sham groups (p < 0.05, each).
Gallego et al., developed a device that integrated neurostimulation electrodes, gyroscopes,
and control electronics [131]. It analyzed the characteristics of the tremor (instantaneous
amplitude and frequency) from the gyroscope recordings and regulated the level of muscle
co-contraction by injecting current into the antagonist pair, as appropriate. They obtained
significant attenuation of the tremor (p < 0.001) in patients with PD and ET, reducing its
amplitude to 52.33 ± 25.48%.

EMS Controlled by EMG Signals

Researchers have proposed a method for detecting tremors from the EMG signals
of muscles. Dosen et al., proposed a method of detecting tremors from the EMG of the
muscles causing the tremor and counteracting it by applying an out-of-phase electrical
stimulation to a similar muscle [132]. The device was evaluated in four and two patients
with PD and ET, respectively, and demonstrated an average tremor reduction of 46% to
81% and 35% to 48% in the five patients, respectively. In one patient, the system did not
attenuate the tremor. Myoelectric sensors implanted in muscles have been developed to
improve diagnostic accuracy [133]. The sensor can acquire EMG signals near muscle fibers,
and the implantable system ensures a stable relationship between the source and electrodes.
It has the advantage of being unaffected by external factors, such as sweat. Intramuscular
electrodes can be placed using a hypodermic needle. These electrodes usually have only
the function of a single recording; however, in recent years, investigators have developed
multichannel electrodes made of thin polyimide films [134–136]. In addition, a device that
not only records, but also simultaneously stimulates, has been developed [29]. It was built
on a polyimide substrate and comprises 12 recording sites and three stimulation sites made
of platinum. This device was tested on six patients with ET and three healthy participants
to assess basic information, such as perceptual thresholds and current limits. Furthermore,
the application of this electrode to the system created by Dosen et al., [132] suppressed
tremors and wrist angles by an average of 58%.

3.4.3. Other Devices

Common methods of tremor suppression include estimating the tremor and apply-
ing an opposite cancellation signal; however, mechanical suppression poses the risk of
suppressing movements that are not tremors. This necessitates developing a technique
to accurately detect tremors. Machine learning has been used in recent years to achieve
a significantly higher tremor prediction performance [32,137]. Ibrahim et al., proposed a
method for detecting tremors and voluntary motion based on neural networks [32]. They
trained the network using the acceleration and angular velocities obtained from patients
with PD using an inertial measurement device. Problems associated with such tremor
detection in a wearable tremor suppression device include the inability to adapt to the
nonlinear behavior of the tremor and the delay in tremor prediction, which reduces the
performance of suppression. To solve these problems, a modified version was proposed
that can learn the correlation and nonlinearity between tremors and voluntary movements
and make predictions with minimal delay [33]. They created a task- and user-independent
generalized model, which achieved an average estimation accuracy of 99.2%. The average
future spontaneous motion prediction percentage accuracies at 10, 20, 50, and 100 steps
ahead were 97.0%, 94.0%, 91.6%, and 89.9%, respectively. Moreover, the prediction time at
100 steps ahead was 1.5 ms. Delay reduction was achieved while maintaining an accuracy
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similar to that in previous studies. Additionally, TremorSense was developed to classify
tremor types [138]. TremorSense consists of a wrist-mounted accelerometer and gyroscope
that uses an 8-Layer CNN model to classify PD rest, posture, and action tremors with 94%
accuracy. These algorithms would be useful for orthoses and tools for suppressing tremors.
The devices introduced here have not received FDA or CE marking.

Tremor Suppression Using Orthosis

Several studies have used suppressive orthoses for tremor suppression [139,140]
Herrnstadt and Menon developed a one-degree-of-freedom elbow brace that can be worn
by people with tremors [141]. This system consisted of a suppression motor, gears, sensors,
including force transducers and encoders, and braces on the upper arm and forearm. They
evaluated the brace in nine patients diagnosed with mild to severe tremors, including PD,
and observed a 94.4% (p < 0.001) reduction in the mean power of the tremor [142]. This type
of tremor-suppression device requires a power supply and is termed an active device. In
contrast, researchers have developed passive devices that operate by damping or absorbing
vibration energy [143]. Buki et al., developed a passive device based on energy absorption,
termed a Vib bracelet [30]. This device absorbs vibrations in the frequency range associated
with tremors using the principle of a dynamic vibration absorber. This technology is widely
used to absorb vibrations caused by earthquakes in bridges and high-rise buildings. It has a
simple structure, weighs 280 g, and has a small and lightweight outer radius of 57 mm. The
evaluation of the mechanical forearm enabled attenuation of the vibration in the range of
4 Hz to 5.75 Hz, with an amplitude attenuation of 86% (approximately one in 7.3) at 4.75 Hz.
Further performance improvement can be achieved by personalizing the device according
to the frequency of the tremor. Faizan et al., developed a passive bracelet-type device [31]
that comprised a dual-parallel configuration passive vibration absorber. Their theoretical
evaluation revealed that the device reduced the amplitude of angular motion of the wrist
by 57.25%. Furthermore, an evaluation of patients with PD confirmed that rectangular
sketching partially improved the tremors while using the device. While most of these
studies have targeted wrist tremor, a glove-type device that independently controls tremor
in each finger joint has also been proposed [144,145]. This device is designed to manage
tremor in the index metacarpophalangeal joint, thumb metacarpophalangeal joint, and
the wrist. Results show overall suppression of 73.1%, 80.7%, and 85.5% in resting tremor,
70.2%, 79.5%, and 81% in postural tremor, and 60.0%, 58.7%, and 65.0% in kinetic tremor in
the index finger metacarpophalangeal joint, the thumb metacarpophalangeal joint, and the
wrist, respectively. In addition, Wanasinghe et al., developed a lighter and less bulky glove-
type device based on layer jamming [146]. When a vacuum is supplied to the layer jamming
elements, which contain a stack of attached layers, this device increases the stiffness of
the glove and suppresses hand tremor. An assessment of 11 tremor patients revealed
mean frequency power reductions of 41.74, 41.99, and 24.7% for the index and middle
fingers and in grasping, respectively, with a maximum power reduction of 59.15%. The
above-mentioned studies are examples of reports on the impacts of engineering solutions.

Tools with Tremor Control Function

Additional approaches include research that incorporates a mechanism to suppress
unintended movements in tools rather than the tremor itself. For example, researchers de-
veloped a tray to transport objects, which included a vibration stabilization function [147].
This tray includes a mechanical platform and an electronic system to suppress the vibra-
tion of the base plate. It is stabilized by controlling three servomotors in a direction that
counteracts the changes based on the data acquired by the inertial sensors. Some tableware
contains a tremor control function. The Liftware SteadyTM (Liftware, Inc., San Francisco,
CA, USA) comprises an electronically controlled stabilizing handle and numerous attach-
ments, including a spoon, fork, and spork, to facilitate eating for patients with tremors. A
pilot study demonstrated an improvement in tremor with the Liftwear SteadyTM using the
Fahn–Tolosa–Marin Tremor Rating Scale [148]. In addition, investigators have attempted
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to use such spoons for tremor assessment [149]. In this study, the tremors were assessed
using a linear model trained from motion signals that recorded the tremors. A modified
Fahn–Tolosa–Marin scale was used for the assessment, and the correlation coefficient be-
tween the expert rating and the model score was 0.91 (p < 0.001). It demonstrated practical
accuracy and can be used for daily objective monitoring. In addition, technologies have
been proposed to assist in computer mouse control [150]. This method uses adaptive path
smoothing via the B-spline to provide a smooth mouse path.

Table 1. Diagnosis of Parkinson’s disease tremor using wearable devices.

Reference Method Performance

Distinguishing between
Patients with PD and HC

Channa et al., 2021 [48]

Developed A-WEAR bracelet
including 3D acceleration and
gyroscope. During the clinical
evaluation, based on UPDRS,
upper limb motor activities
employed by the neurologist were
performed and temporal and
spectral features were acquired by
A-WERE. Machine learning was
performed on this data to
discriminate between healthy
controls and PD patients.

Accurately identified 91.7% by
K-nearest neighbors.

Varghese et al., 2021 [49]

The patients performed a test
designed by a disability specialist
while wearing a smartwatch to
obtain the acceleration data.
Machine learning was used to
discriminate between patients
with PD, healthy participants, and
those with motor impairments
other than PD (e.g., ET,
Parkinsonism).

SVM, CatBoost, and multilayer
perceptron revealed a balanced
accuracy > 80% and precision and
recall rates > 90% for those with
PD and healthy participants. In a
more advanced task, the
multilayer perceptron displayed a
balanced accuracy, precision, and
recall of 74.1%, 86.5%, and 90.5%,
respectively, while distinguishing
PD from non-PD motor
impairment.

Vescio et al., 2021 [62]

A µEMG device was developed to
be attached to the wrist. Resting
tremor was recorded using the
µEMG device and a
common EMG.

Comparison of the two EMGs
revealed good correlation
between tremor frequency
(r = 0.93, p < 0.001) and phase
difference (r = 0.92, p < 0.001).

Di Lazzaro et al., 2020 [47]

65 patients (36 patients with PD
and 29 HC) were fitted with
inertial sensors and performed
seven MDS-UPDRS III motor
tasks as follows: rest tremor,
postural tremor, rapid alternating
hand movement, foot tapping,
heel-to-toe tapping, TUG, and
pull test. Relief ranking and
Kruskal–Wallis feature-selection
were used to extract the relevant
tasks, and SVM was used to
identify them.

SVM was performed using tremor,
bradykinesia, pull test, and TUG.
It could distinguish PD from HC
with a high accuracy of 97%.

Junior et al., 2020 [16]

Performed diadochokinesis test
using a pen with an attached
sensor device. The device was
equipped with an accelerometer
and gyroscope, and the acquired
data were classified using Linear
Discriminant Analysis, Logistic
Regression, Classification and
regression trees, K-Nearest
Neighbors, SVM, and
Naive Bayes.

Overall accuracy was
approximately 100% for
multiple classifiers.
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Table 1. Cont.

Reference Method Performance

Kyritsis et al., 2020 [50]

Used a smartwatch to calculate
the PtM, a measure related to the
average time spent in transferring
food from the plate to the mouth
during eating. The classification
was performed using a collected
dataset of 28 participants (seven
healthy controls and 21 patients
with PD).

PtM generated precision, recall,
and F1 of 0.882, 0.714, and 0.789,
respectively, towards classifying
the eating of meals from the
patients with PD and
healthy controls.

Locatelli et al., 2020 [59]

An inertial sensor was attached to
a wearable device on the wrist
and data was acquired by
performing four tasks to
standardize the device. Applied
supervised learning methods to
build several
classification models.

The classifier built from
inertial-based, power-related
features performed best,
achieving over 90% accuracy.

Moon et al., 2020 [18]

524 patients with PD and
43 patients with ET were fitted
with six inertial sensors (wrist,
back of the foot, sternum, and hip)
and distinguished based on
balance and gait characteristics
collected from these sensors.

The neural network generated the
highest F1-score (0.61), followed
by gradient boosting (0.59),
random forest (0.56), SVM (0.55),
decision tree (0.53), and K-nearest
neighbor (0.49).

Varghese et al., 2020 [15]

Developed a smartwatch-based
prototype system. This system
was tested with artificial neural
networks, random forests, and
SVM, and was trained on a
sample of 192, 75, and 51 patients
with PD, other movement
disorders, and healthy
participants, respectively.

The artificial neural networks
demonstrated the best results for
distinguishing healthy
individuals from those with PD
and other movement disorders,
with a precision and recall of 0.94
(SD 0.03) and 0.92 (SD 0.04),
respectively. The SVM displayed
the best results while
distinguishing patients with PD
from those with other motor
disabilities and healthy
individuals, with a precision and
recall of 0.81 (SD 0.01) and 0.89
(SD 0.04), respectively.

Kostikis et al., 2015 [22]

Quantified tremor by calculating a
series of metrics using signals
from a smartphone’s
accelerometer and gyroscope in a
small-scale clinical study
comprising 25 patients with PD
and 20 age-matched
healthy participants.

Accurately classified 82% and 90%
of patients with PD and healthy
participants, respectively.

Distinguishing between
Patients with PD and ET

Loaiza Duque et al., 2019 [60]

Dynamic features were extracted
from the linear acceleration of
tremors recorded by the
smartphone’s built-in acceleration
sensor. Classification was
performed by machine learning.

Sensitivity of 90.0% to 100.0% and
specificity of 80% to 100%
were achieved.

Barrantes et al., 2017 [17]

Measured tremor by attaching a
smartphone to the dorsum of the
hand. It calculated the ROC of the
total spectral power to establish a
threshold to separate participants
with and without tremor.

The smartphone generated an
accurate diagnosis of PD or ET in
27 of 32 patients (84.38%
discrimination accuracy). Of those
with an undecided diagnosis, all
patients with PD (two) and two of
four patients with ET were
correctly classified; one patient
with PD plus ET was classified
as PD.
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Table 1. Cont.

Reference Method Performance

Thanawattano et al., 2015 [42]

Attached six-axis inertial sensors
to the index fingers of participants
and requested them to perform
three tasks, as follows: kinetic,
postural, and resting tasks.

The elliptical regions of
two-dimensional representations
of the resting task for those with
PD and ET were statistically
significantly different (p < 0.05).

Bhidayasiri et al., 2014 [58]

Developed a low-cost device
consisting of a 3-axis
accelerometer and a 3-axis
gyroscope. Performed three
tremor tasks including resting,
postural, and motor tremor
according to the motor section of
the UPDRS.

Patients with ET showed
significantly higher peak
frequency during y-axis postural
movements than patients with PD
(p < 0.05).

Wile et al., 2014 [44]
Obtained the mean harmonic
peak power from the
accelerometer of the smartwatch.

Using the mean harmonic peak
power obtained from the
accelerometer, the optimal
discrimination threshold could be
calculated by ROC analysis
(sensitivity 90.9%, 95% CI
58.7–99.8%; specificity 100%, 95%
CI 76.8–100%; and
Cohen’s kappa = 0.91, SE = 0.08)

Woods et al., 2014 [57]

Six tasks were performed with the
smartphone in the hand, eyes
open, eyes closed, etc. Each task
was performed for 10 s and was
performed with each of the
two hands.

Used discrete wavelet transforms
and SVMs to classify the data and
found an accuracy rate of 96.4%.

PD: Parkinson’s disease; HC: healthy controls; MDS-UPDRS: Movement Disorder Society-Sponsored Revision
of the Unified Parkinson’s Disease Rating Scale; TUG: Timed-Up-and-Go test; SVM: Support Vector machines;
ET: essential tremor; PtM: plate-to-mouth; ROC: receiver operating characteristic.

4. Discussion

In this systematic narrative literature review, we introduced recent technologies and
research trends related to PD diagnosis and treatment related to tremors. Initially, we
reviewed studies that distinguished between patients with PD and healthy individuals
and between PD and ET. Objective evaluation with respect to diagnosis is difficult, and
conventional methods using nuclear imaging technology and other methods may not be as
accurate as those used by movement disorder specialists [54]. Hence, misdiagnosis owing
to confusion between PD and ET may occur in 20% to 30% of cases [13,14]. Therefore,
device-based diagnostic technology that is both simple and highly accurate is important.
Device-based diagnosis is becoming more realistic as technology advances and sensors
become smaller and less expensive. Moreover, machine learning has been used in recent
years to achieve a high degree of accuracy [18]. In addition to distinguishing between
healthy individuals and patients with PD, it enables distinguishing the tremors of PD and
ET [17,18]. While such diagnostic devices are expected to be utilized in the medical field,
the early detection of PD is expected to be realized in the future through screening at the
population level by using familiar devices, such as smartphones and smartwatches, to
differentiate patients with PD from healthy individuals. As shown in Table 1, a device-
dependent diagnosis may result in an objective diagnosis with a high degree of accuracy,
close to 100% in some cases. Clinicians who are not usually engaged in tremor diagnosis
could find these devices especially useful to enhance their diagnostic accuracy. However,
they are not perfect and should be used as an adjunct to clinical evaluation at this time.
In addition to diagnosis, it is important to assess the degree of tremors quantitatively.
The UPDRS is often used for tremor evaluation in clinical practice; however, this score
depends on a rater’s subjective assessment. An evaluation system using a wearable device
might enable an accurate and objective evaluation of the degree of tremor [74,77]. Many of
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the studies presented aim to replicate expert UPDRS evaluations with devices [73,76,78].
For example, sensor information for expert evaluations can be modeled using machine
learning. While this is quite useful in current practice, future research would include an
absolute evaluation that is not limited to the UPDRS. This would allow for more detailed
evaluation. Moreover, these devices are currently limited to lab-based research and are not
yet in a state where clinicians can use them. Practical use in a clinical setting will evoke
new issues. In addition, researchers have investigated approaches to evaluate disease
states by monitoring daily routines using wearable sensors [19,20]. Monitoring techniques
have also not yet reached general practical use. This requires the implementation of a
simpler, more sophisticated system, as it may be used by patients who are not familiar
with electronic devices. Data storage in the cloud, security, and other data handling issues
also need to be addressed. Inexpensive, easy-to-use, high-performance devices, such
as smartphones and smartwatches, are likely to be key to the progress and diffusion of
monitoring technology. Researchers have also explored the potential of smartphones [21,22]
and smartwatches [23,24] to decrease hurdles in evaluating medical conditions in the future.
This has been verified using actual products and is close to practical use. Thus, research
is now beginning to be conducted at the practical level, in addition to lab-level research.
Some studies comparing the performance of smartwatches with research-level sensors have
shown that they are sufficient for tremor detection [24], and the technical problems that
have been overcome in recent years should accelerate practical application. Furthermore, it
is also important to distinguish between dyskinesia and tremor in the advanced stage of
PD. Advances in this technology are expected in the future.

Many studies have focused on DBS [26,27], EMS [28,29], and orthoses for tremor
suppression [30,31]. There has been remarkable progress in alleviating tremors using
DBS. In recent years, advanced information technologies, such as machine learning, have
substantially improved [26,27]. This could further increase the potential of DBS in managing
movement disorders. In addition, DBS has been established as the standard of care and is
one of the most reliable treatments, with measures taken to ensure long-term safety [113].
Furthermore, new technologies such as aDBS and stimulation methods have been actively
researched, developed, and put into practical use, and future developments are expected.
However, DBS is an invasive process; hence there is a need for the development of non-
invasive techniques that have a lower risk of adverse effects. One such technique, closed-
loop EMS, stimulates muscles when it detects tremors from EMG. This feedback approach
has been reported to significantly suppress tremors [29,132]. Interestingly, invasive EMS
that requires surgical intervention has also been developed [29] However, this should be
used in patients only after a thorough risk–benefit analysis. There has been substantial
research and development in the use of orthoses and other devices to mechanically suppress
tremors. In this treatment, it is important to detect tremors with a high degree of accuracy
for adequate suppression, because there is a risk of suppressing movements that are not
tremors. This can be accomplished by using machine learning [32,33]. The use of orthosis
and tools is shown to suppress tremors under certain conditions, but not drastically. In
addition, although most studies have focused on wrist tremor, there is a need to address
various types of tremors in other parts of the body. These devices need to be evaluated
in daily use regarding comfort, usability, and habituation. The effects of these treatment
devices on tremor are summarized in Table 2. Thus, the tremor suppression effect of DBS is
significant, and long-term evaluations of more than 10 years have been conducted. Some
studies have confirmed that EMS is effective in suppressing tremor by 50% or more, so a
certain level of effectiveness can be expected. Orthosis has been devised in a variety of
ways and may have an even greater inhibitory effect. While some orthotic restraint devices
and tools, such as Liftware SteadyTM, have been commercialized, most orthotics are at the
stage of lab-based research. There is a need to develop sophisticated products that are
easy for patients to use. For example, there are concerns about difficulty in wearing and
operating devices because of tremors. It is important to design products that take these
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concerns into account. In addition, an interface that is easy and intuitive to use is necessary.
It is also important for patients to be aware of these products.

Table 2. Effects of therapeutic devices on tremor suppression.

Device Invasive/Non-Invasive Reference CE Marking and FDA
Certification Efficacy

Deep brain stimulation
directly targeting the

dentatorubrothalamic tract
with tractography

Invasive Low et al., 2019 [35] CE marking and FDA
approved

60 months post- surgery, the
Fahn–Tolosa–Martin tremor
rating, treated tremor score
for arm and leg, and treated

tremor score for the arm were
80.72%, 93.89% and 93.35%

better than conventional lead
insertion.

Deep brain stimulation of the
subthalamic nucleus and
internal globus pallidus

Invasive Wong et al., 2019 [104] CE marking and FDA
approved

A meta-analysis using the
sum of the UPDRS III, items

20 and 21, found effect
size = 0.36; 95%

CI = 0.316–0.395; p < 0.0001.

Deep brain stimulation of the
ventral intermediate nucleus

of the thalamus
Invasive Cury et al., 2017 [112] CE marking and FDA

approved

Sustained improvement in
tremor score (UPDRS III,

items 20 and 21;
Fahn–Tolosa–Marin tremor

rating scale). Mean
improvement, 70% at 1 year

and 63% at >10 years, p < 0.05.

Electrical muscle stimulation

Invasive Muceli et al., 2019 [134] Not approved Suppressed tremors and wrist
angles by an average of 58%.

Non-invasive

Jitkritsadakul et al., 2017 [28] Not approved

Significant reduction in the
root mean squared angular
velocity (as a percentage) in

every axis, peak magnitude in
the axis (x-, y-), and UPDRS

tremor scores
(glove: 5.27 ± 2.19,
sham: 4.93 ± 2.37).

Dosen et al., 2015 [132] Not approved

Evaluated in four and two
patients with PD and ET,

respectively, and
demonstrated an average

reduction in tremor of 46% to
81% and 35% to 48% in the

five patients.

Gallego et al., 2013 [131] Not approved
Significant attenuation of

tremor (p < 0.001) reducing its
amplitude to 52.33 ± 25.48%.

Orthosis Non-invasive

Wanasinghe et al., 2021 [146] Not approved

Revealed a mean frequency
power reduction of 41.74,

41.99, and 24.7% for the index
and middle fingers and in

grasping, respectively, with a
maximum power reduction

of 59.15%.

Zhou et al., 2021 [144] Not approved

Overall suppression of 73.1%,
80.7%, and 85.5% in resting

tremor, 70.2%, 79.5%, and 81%
in postural tremor, and 60.0%,

58.7%, and 65.0% in kinetic
tremor in the index finger

metacarpophalangeal joint,
the thumb

metacarpophalangeal joint,
and the wrist, respectively.

Faizan et al., 2020 [31] Not approved
Reduced the amplitude of

angular motion of the wrist
by 57.25%.
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Table 2. Cont.

Device Invasive/Non-Invasive Reference CE Marking and FDA
Certification Efficacy

Buki et al., 2018 [30] Not approved

Enabled attenuation of the
vibration in the range of 4 Hz
to 5.75 Hz, with an amplitude

attenuation of 86%
(approximately one in 7.3)

at 4.75 Hz.

Herrnstadt and Menon 2016
[141] Not approved

Braces on the upper arm and
forearm. Observed a 94.4%
(p < 0.001) reduction in the
mean power of the tremor.

PD: Parkinson’s disease; UPDRS: Unified Parkinson’s Disease Rating Scale; ET: essential tremor; FDA: Food and
Drug Administration.

In this way, although various studies on devices and their effects have been reported,
few studies have been conducted to date with a high level of evidence; therefore, large-scale
studies and randomized controlled trials are needed. Except for DBS and Liftware SteadyTM,
no FDA certification or CE mark has been acquired for these devices against tremors,
which is another hurdle for clinical use. Furthermore, the validation of performance
and improvement in tremor are not standardized, making it difficult to compare studies.
Another issue is the phenomenon of habituation. These devices are effective in the short
term, and investigators have conducted long-term assessments as well. In addition, most
of the studies have focused on hand tremors. It is important to develop techniques that
alleviate axial tremors, such as head and vocal tremors.

Limitations of this literature review include simple search terms. Many pertinent
papers were extracted; however, there may be missing, relevant articles. Due to the small
number of randomized controlled trials, it was impossible to conduct an objective and
rigorous evaluation through a systematic review.

5. Conclusions

This review summarizes the diagnosis and treatment of tremor in PD using devices.
Research trends and issues in devices for tremor have been identified. Many studies have
demonstrated that the diagnosis and evaluation of tremor in patients with PD can be highly
accurate using machine learning algorithms. Wearable devices can be prognostic tools that
assist clinicians in decision-making processes. The use of wearable mobile devices enables
the monitoring of routine symptoms. Tremors can be detected and evaluated with high
precision without using dedicated sensors, with considerably lower hurdles for their use.
DBS has been established as the standard of care for patients with PD. In recent years, aDBS
and optimization of stimulation parameters have been studied to further improve treatment
efficacy. EMS, orthosis, and tools for tremor suppression are still in the experimental stage.
Other than DBS, no devices are in practical use for tremor treatments. To acquire high-level
evidence, large-scale studies and randomized controlled trials are needed for these devices.
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