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Abstract: Iterative image reconstruction algorithms have considerable advantages over transform
methods for computed tomography, but they each have their own drawbacks. In particular, the
maximum-likelihood expectation-maximization (MLEM) algorithm reconstructs high-quality images
even with noisy projection data, but it is slow. On the other hand, the simultaneous multiplicative
algebraic reconstruction technique (SMART) converges faster at early iterations but is susceptible
to noise. Here, we construct a novel algorithm that has the advantages of these different iterative
schemes by combining ordered-subsets EM (OS-EM) and MART (OS-MART) with weighted geometric
or hybrid means. It is theoretically shown that the objective function decreases with every iteration
and the amount of decrease is greater than the mean between the decreases for OS-EM and OS-
MART. We conducted image reconstruction experiments on simulated phantoms and deduced that
our algorithm outperforms OS-EM and OS-MART alone. Our algorithm would be effective in
practice since it incorporates OS-EM, which is currently the most popular technique of iterative image
reconstruction from noisy measured projections.

Keywords: computed tomography; iterative reconstruction; ordered-subsets algorithm; maximum-
likelihood expectation-maximization; multiplicative algebraic reconstruction technique

MSC: 37N40; 94A08

1. Introduction

In computed tomography (CT), image reconstruction, an inverse problem of estimating
pixel values of a tomographic image from measured projections, is performed in practice
by using transform and iterative methods [1–7]. Iterative image reconstruction [2,5,6,8] al-
gorithms based on the optimization strategy have considerable advantages over transform
methods such as the filtered back-projection procedure. Although the maximum-likelihood
expectation-maximization (MLEM) [2] algorithm, a well-known iterative method, recon-
structs high-quality images even for noisy projection data, it is slow to converge [7,9–11]. On
the other hand, while the simultaneous multiplicative algebraic reconstruction technique
(SMART) [12–15] converges quickly at early iterations, it is susceptible to noise [16,17].

In this study, we constructed a novel algorithm that has the advantages of these
different iterative schemes by combining ordered-subsets versions of MLEM (OS-EM) [7,10]
and MART (OS-MART) [14] with a weighted mean. Our method employs combinations
of weighted geometric or hybrid means of iterative points. We theoretically show that the
objective function for the geometric mean decreases with every iteration and the amount of
decrease is greater than the mean between the decreases for OS-EM and OS-MART when the
tomographic inverse problem is consistent. By exploiting the complementary advantages
of MLEM and SMART, we have created a fast-converging algorithm for reconstructing
high-quality images.
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Furthermore, we developed a system of switched differential equations with a piece-
wise smooth vector field, whose numerical discretization corresponds to a combination
of the iterative equation for the OS-EM and OS-MART methods. Here, this approach is
considered to be an application of the dynamical method [18–23] for solving ill-posed
inverse problems. The dynamical systems that are applied to constrained tomographic
inverse problems [24–29] enable us to prove the stability of the equilibrium corresponding
to the true image by using the Lyapunov stability theorem [30] and provide a policy for
methodically designing a novel algorithm of iterative reconstruction.

A drawback of the weighted-mean iterative algorithm is that a sequential calculation
of its terms entails longer computation times per iteration than that of the terms of the
individual equation for OS-EM and OS-MART. We show that this issue can be resolved
by constructing a fast sequential algorithm with the above discretization scheme for the
dynamical system of differential equations. Moreover, we present a time-varying method
of improving performance by replacing the constant weight parameter included in the
autonomous system with a function of the iteration number.

We conducted numerical experiments on image reconstruction, and the results indicate
that our algorithm outperformed OS-EM and OS-MART.

2. Preliminary

The main problem in image reconstruction is to find pixel values x ∈ RJ
+ satisfying

y = Ax + δ (1)

where y ∈ RI
+, A ∈ RI×J

+ , and δ ∈ RI indicate the projection value, projection operator,
and noise, respectively, with R+ being the set of nonnegative real numbers. We call the
noise-free system in Equation (1) consistent when it has a solution e ∈ RJ

+. The tomographic
inverse problem of minimizing an objective function can be transformed into one of finding
an unknown x, which can be achieved by employing an optimization procedure using
either a discrete-time (iterative) or continuous-time system.

The following ideas are related to the ordered-subsets algorithms. Let Am ∈ RIm×J
+ be

a submatrix consisting of Im partial rows of A and ym ∈ RIm
+ be a subvector of y with the

same corresponding rows of Am, for m = 1, 2, . . . , M, with M indicating the total number
of divisions.

With R++ being the set of positive real numbers, we define the OS-EM algorithm of
images u(n) ∈ R++ as

uj(n + 1) = uj(n) f m
j (u(n)), u(0) = z0 ∈ RJ

++ (2)

and the OS-MART algorithm of images v(n) ∈ R++ as

vj(n + 1) = vj(n)gm
j (v(n)), v(0) = z0 ∈ RJ

++ (3)

for the iteration number n = 0, 1, 2, . . . , N − 1 and the subset number m = (n mod M) + 1,
where

f m
j (x) :=

1
Im

∑
i=1

Am
ij

Im

∑
i=1

Am
ij

ym
i

(Amx)i
(4)

and

gm
j (x) := exp

 1
Im

∑
i=1

Am
ij

Im

∑
i=1

Am
ij log

ym
i

(Amx)i

 (5)

for j = 1, 2, . . . , J. The iterative solutions u(n) and v(n), n = 0, 1, 2, . . . , N − 1 for the
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Equations (2) and (3) remain nonnegative due to the selection of the initial values.
As theoretical measures of convergence, we will use the generalized Kullback–Leibler

(KL) divergence [31,32],

KL(α, β) := ∑
`

α` log
α`
β`

+ β` − α` (6)

for nonnegative vectors α and β and the weighted KL-divergence,

WKL(e, x, Ψ) :=
J

∑
j=1

KL(ej, xj)
K

∑
k=1

Ψkj (7)

for evaluating x ∈ RJ
+ compared with e ∈ RJ

+ where Ψ ∈ RK×J denotes a projection
operator with K rows. The reason why the KL-divergence is used for evaluating the
convergence is that it can be considered as an objective function of which there exists a
minimizer for each of MLEM and SMART [27,32–34].

3. Results
3.1. Proposed Method

Our method of solving the tomographic inverse problem consists of iterative algo-
rithms and dynamical systems.

Weighted geometric mean:

The iterative reconstruction of an image z involves taking the weighted geometric
means of u and v in Equations (2) and (3) with a weight parameter α ∈ [0, 1] and a relaxation
or scaling parameter h > 0:

zj(n + 1) = zj(n)
(

f m
j (z(n))

)h(1−α)(
gm

j (z(n))
)hα

(8)

where z(0) = z0 ∈ RJ
++ for j = 1, 2, . . . , J, n = 0, 1, 2, . . . , N − 1, and m = (n mod M) + 1.

The accompanying system of equations is a continuous analog based on the dynamical
method. It is a switched nonlinear system consisting of the following family of M subsystems:

dxj(t)
dt

= xj(t)
(
(1− α) log( f m

j (x(t))) + α log(gm
j (x(t)))

)
(9)

where the derivative is taken with respect to the state variable x(t) as an image at t ∈
[tm−1 + kτ, tm + kτ) with x(0) = z0 and a sequence of times 0 = t0 < t1 < t2 < · · · <
tM = τ, where k = (n − m + 1)/M for j = 1, 2, . . . , J, n = 0, 1, 2, . . . , N − 1, and m =
(n mod M) + 1. It is easy to attain the iterative formula in (8) by using the multiplicative
Euler method [35,36] with a step size of h to discretize (9).

Weighted hybrid mean:

A second pair of discrete- and continuous-time systems can be constructed by making
a hybrid combination of additive and multiplicative calculi defined by the iteration,

zj(n + 1) = zj(n)
(

1 + h(1− α)( f m
j (z(n))− 1)

)
+

(
gm

j (z(n))
)hα

, (10)

of images z(n) with z(0) = z0, where, for a real number c, (c)+ := max{c, 0} and its
continuous analog:

dxj(t)
dt

= xj(t)
(
(1− α)( f m

j (x(t))− 1) + α log(gm
j (x(t)))

)
(11)

of images x(t) with x(0) = z0 for j = 1, 2, . . . , J. The conditions on n, m, t, t` for ` =
0, 1, . . . , M, τ, and k are the same as in Equations (8) and (9). When h(1− α) ≤ 1, the
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right-hand side of Equation (10) does not require the clipping operator (·)+. We can obtain
the iterative formula in Equation (10) by discretizing the differential equation in (11). Note
that ( f m

j (x) − 1) and log(gm
j (x)) are each zero if and only if x = e holds. The vector

field is constructed by adding the terms (1 − α)xj( f m
j (x) − 1) and αxj log(gm

j (x)), for
which additive and multiplicative discretizations using a hybrid Euler method [28] are
applied, respectively. The discrete formula in Equation (10) can be regarded as an ordered-
subsets version of the iterative reconstruction algorithm [28] derived from an optimization
of Jeffreys’ α-skew J-divergence [37,38] between the forward and measured projections.
Namely, Equation (10) with M = 1 and h = δ coincides with Equation (6) in [28].

Notice that each of the iterative equation (8) and (10) as combinations of weighted
geometric and hybrid means reduces to an OS-EM algorithm when α = 0 and h = 1 and to
the OS-MART algorithm when α = 1 and h = 1. A larger value of h in Equations (8) and (10)
can accelerate convergence, but the algorithm diverges or oscillates when it is too large.
The value of h in our theoretical and experimental results was chosen to be 1 according
to the experimental results of OS-EM and OS-MART algorithms as multiplicative Euler
discretizations of their continuous analogs [27,34].

3.2. Theoretical Findings

In this section, we present theoretical results on the discrete- and continuous-time
systems defined in the previous section under the assumption that the generalized subset
balance [33], described as

Im

∑
i=1

Am
ij = σm

I

∑
i=1

Aij (12)

for some positive constant σm, holds for m = 1, 2, . . . , M.

Discrete-time systems:

We consider the discrete-time system in Equation (8) under the assumption h = 1 and
prove that the iterative sequence,

{WKL(e, z(n), A)}∞
n=0 (13)

with z(n) ∈ RJ
+ for n = 0, 1, 2, . . . is decreasing.

Theorem 1. Let y = Ae for some e ∈ RJ
++. Given a solution z to the system in Equation (8) for

h = 1, the inequality,

WKL(e, z(0), A)−WKL(e, z(1), A) ≥ 1
σm KL(ym, Amz(0)), (14)

is satisfied for any M and m = 1, 2, . . . , M.

Note that, in Theorem 1 and its proof below, since a discrete time shift has no effect
on the autonomous difference system, we have written iteration numbers 0 and 1 instead
of n and n + 1, respectively, for any given m = 1, 2, . . . , M with n = m− 1, m, m + 1, . . ., in
order to facilitate the description.

Proof. From the assumption of the generalized subset balance in Equation (12), Inequal-
ity (14) is equivalent to

WKL(e, z(0), Am)−WKL(e, z(1), Am) ≥ KL(ym, Amz(0)). (15)

Let
uj(1) := uj(0) f m

j (u(0)) (16)

and
vj(1) := vj(0)gm

j (v(0)) (17)
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for j = 1, 2, . . . , J, which are one-step updates of the OS-EM and OS-MART equation on the
variables u and v with initial values u(0) and v(0). Then, we have

WKL(e, z0, Am)−WKL(e, u(1), Am) ≥ KL(ym, Amz0) (18)

and
WKL(e, z0, Am)−WKL(e, v(1), Am) ≥ KL(ym, Amz0) (19)

where the initial values u(0) and v(0) are the same and equal to z0 (namely, u(0) = v(0) =
z0). The proof of Inequality (18) is given in [39]. Inequality (19) was first obtained by
Byrne [33]. It can also be obtained by applying the procedure of direct reduction [39] using
the concavity of the log function and Jensen’s inequality. By multiplying the first and
second inequalities by (1− α) and α, respectively, and adding the resulting two inequalities
side-by-side together, we obtain

WKL(e, z0, Am)− ((1− α)WKL(e, u(1), Am) + α WKL(e, v(1), Am)) (20)

≥ KL(ym, Amz0).

Then, the one-step update z(1) of the algorithm in Equation (8) with h = 1 and the
same initial value,

zj(0) =
(
uj(0)

)1−α(vj(0)
)α

= z0
j , (21)

can be written as
zj(1) =

(
uj(1)

)1−α(vj(1)
)α (22)

for j = 1, 2, . . . , J. Therefore, we have

WKL(e, z0, Am)−WKL(e, z(1), Am) (23)

≥WKL(e, z0, Am)− ((1− α)WKL(e, u(1), Am) + α WKL(e, v(1), Am))

according to the following inequality:

(1− α)uj(1) + αvj(1) ≥
(
uj(1)

)1−α(vj(1)
)α (24)

which is in turn derived from Jensen’s inequality,

log

(
(1− α)

uj(1)
ej

+ α
vj(1)

ej

)
≥ (1− α) log

uj(1)
ej

+ α log
vj(1)

ej
. (25)

The theorem follows directly from inequalities (20) and (23).

Continuous-time systems:

When there is no noise and the system in Equation (1) is consistent, we demonstrate
that any solution to the continuous analog converges to the wanted solution.

Theorem 2. Assume there exists e ∈ RJ
++ satisfying y = Ae. Then, e is an equilibrium for each

of the continuous-time systems in Equations (9) and (11) and is asymptotically stable.

Proof. Notice that e is an equilibrium for each mth subsystem since f m
j (e) = 1 and

gm
j (e) = 1 simultaneously hold for j = 0, 1, . . . , J and m = 1, 2, . . . , M. The solutions

to the subsystem are in RJ
++ because the initial state value at tm−1, m = 1, 2, . . . , M, belongs

to RJ
++ and the flow cannot traverse the invariant subspace xj = 0 for j = 1, 2, . . . , J in the

state space. Thus, the following nonnegative function:

V(x) := WKL(e, x, A) =
J

∑
j=1

∫ xj

ej

w− ej

w
dw

I

∑
i=1

Aij



Mathematics 2022, 10, 4277 6 of 17

of xj > 0 is a well-defined common Lyapunov function. Then, we have the derivatives of
V along the trajectories of Equations (9) and (11):

dV
dt

(x)
∣∣∣∣
(9)

=
J

∑
j=1

xj − ej

xj

dxj

dt

I

∑
i=1

Aij

= −(1− α)
J

∑
j=1

(ej − xj) log

 1
Im

∑
i=1

Am
ij

Im

∑
i=1

Am
ij

ym
i

(Amx)i


I

∑
i=1

Aij

− α

σm

J

∑
j=1

(ej − xj)
Im

∑
i=1

Am
ij log

ym
i

(Amx)i

≤ −1− α

σm

Im

∑
i=1

ym
i log

ym
i

(Amx)i

+
1− α

σm

Im

∑
i=1

(Amx)i

(
ym

i
(Amx)i

− 1
)

(26)

− α

σm

Im

∑
i=1

(ym
i − (Amx)i)(log(ym

i )− log((Amx)i))

= −1− α

σm KL(ym, Amx)

− α

σm (KL(ym, Amx) + KL(Amx, ym))

= − 1
σm (KL(ym, Amx) + α KL(Amx, ym))

≤ 0

and

dV
dt

(x)
∣∣∣∣
(11)

=
J

∑
j=1

xj − ej

xj

dxj

dt

I

∑
i=1

Aij

= −1− α

σm

J

∑
j=1

(ej − xj)
Im

∑
i=1

Am
ij

(
ym

i
(Amx)i

− 1
)

− α

σm

J

∑
j=1

(ej − xj)
Im

∑
i=1

Am
ij log

ym
i

(Amx)i

= −1− α

σm

Im

∑
i=1

(ym
i − (Amx)i)

(
ym

i
(Amx)i

− 1
)

(27)

− α

σm

Im

∑
i=1

(ym
i − (Amx)i)(log(ym

i )− log((Amx)i))

= −1− α

σm

Im

∑
i=1

(
ym

i − (Amx)i
)2

(Amx)i

− α

σm (KL(ym, Amx) + KL(Amx, ym))

≤ 0.
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Therefore, for each system, V is a common Lyapunov function and the equilibrium e
is uniformly asymptotically stable.

The above theorem ensures that the suggested difference system as a first-order
approximation to the differential equation has a stable fixed point e when the chosen step
size h is small enough to guarantee numerical stability.

3.3. Fast Discretization Algorithm

In Equations (8) and (10), the computational cost of both terms f m
j (z) and gm

j (z) is
higher than that of each single term. Thus, a sequential calculation of the two terms results
in a longer computation time. However, because the parts

Am
ij

Im

∑
i=1

Am
ij

(28)

and
ym

i
(Amz)i

(29)

for m = 1, 2, . . . , M, i = 1, 2, . . . , I, and j = 1, 2, . . . , J are commonly included in both terms,
an effective coding of the program can reduce the computational cost. On the other hand,
if approximately the same computation time as OS-EM or OS-MART is required, another
method that works by discretizing the continuous-time systems with lower accuracy can
be used.

Here, we provide a fast sequential calculation algorithm in the case where M = 1 and
h = 1, e.g., for the weighted geometric mean:

zj(1) = zj(0)pj(0) with calculating pj(0) := f j(z(0)) and using an initial zj(0) = z0
j

zj(2) = zj(1)
(

pj(0)
)1−α(qj(1)

)α with calculating qj(1) := gj(z(1)) and using pj(0)

zj(3) = zj(2)
(

pj(2)
)1−α(qj(1)

)α with calculating pj(2) := f j(z(2)) and using qj(1)

zj(4) = zj(3)
(

pj(2)
)1−α(qj(3)

)α with calculating qj(3) := gj(z(3)) and using pj(2)

zj(5) = zj(4)
(

pj(4)
)1−α(qj(3)

)α with calculating pj(4) := f j(z(4)) and using qj(3)
...

for j = 1, 2, . . . , J at each step. The vectors p and q whose elements are pj and qj, respectively,
for j = 1, 2, . . . , J are calculated alternately. Namely, to calculate the state variable z in
the current step, one vector, p or q, is calculated from the previous step and the other is
the same one from two steps ago. Although the use of a vector derived from an old state
variable leads to a similar effect as having a larger step size and may unstabilize the steady
state, the computational cost required for the sequential algorithm is the same as that for
either MLEM or SMART. A fast iterative algorithm for the weighted hybrid mean method
can be derived in a similar manner by applying the additive and multiplicative terms in
Equation (10).

3.4. Time Varying System

In the vector fields of the continuous-time dynamical systems in Equations (9) and (11)
with a small value of α, the second term αxj log(gm

j (x)) can be considered to be a regulariza-
tion with which to optimize the metric for OS-MART. When replacing the constant α with a
discrete time-varying parameter α0λn where the coefficients α0 and λ are in the range of 0

to 1, one takes λn → 0, and then the corresponding discretized term zj(n)
(

gm
j (z(n))

)α0λn

tends to zj(n) for n → ∞. The iterative process has the effect of a time-dependent regu-
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larization, which makes it possible to optimize dynamically multiple metrics for OS-EM
and OS-MART. The discrete time-varying parameter strategy includes the hybrid-cascaded
method [40], a two-phased algorithm using the simultaneous algebraic reconstruction tech-
nique (SART) as the primary reconstruction to produce an initial estimate for the secondary
steps by MLEM, when the constant parameter α is replaced with either 1 if n ≤ L, or 0
otherwise, for a given nonnegative integer L and iteration numbers n = 0, 1, 2, . . . , N − 1,
although the primary reconstruction method used in [40] is not SMART but rather SART.

4. Experiments and Discussion

We will demonstrate the above-mentioned theory and efficiency of the suggested
method by conducting numerical CT experiments. Image reconstructions using combina-
tions of weighted geometric and hybrid means (referred to as GM and HM, respectively)
were compared with those of MLEM and SMART. The experiments were conducted using
a 3.5 GHz Intel Xeon processor with 96 GB memory and computing tools provided by
MATLAB (MathWorks, Natick, USA) without a multi-threading or parallel-processing.

We used a modified Shepp–Logan phantom image composed of e ∈ [0, 1]J and
256× 256 pixels (J = 65,536), as shown in Figure 1, and a projection y ∈ RI

+ created by spec-
ifying the number of projections and detectors to 360 and 365, respectively (I = 131,400),
with 180-degree sampling. The calculation of the forward projection is performed using a
highly optimized library for matrix-vector multiplication in MATLAB.

Figure 1. Image of phantom.

4.1. Verification of Theory

We performed a reconstruction using the weighted geometric mean defined in Equation (8)
with h = 1, M = 30, α = 0.01, and a noise-free projection y = Ae ∈ RI

+. An example
indicating the validity of Equation (15) is shown in Figure 2, which plots KL(ym, Amz(0))
versus WKL(e, z(0), Am)−WKL(e, z(1), Am) applying a one-step iteration z(1) computed
from a given initial state z(0) through random elements for m = 1, 2, . . . , 30. It can be seen
that all the points lie above the line of equality (identity line), as stated in Theorem 1. Another
experiment with different values of α yielded similar results.
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Figure 2. Scatter plot with the line of equality (red) for OS-GM in Equation (8) with m = 1, 2, . . . , 30.

4.2. Evaluation of Reconstructed Images

The noisy projection y ∈ RI
+ obtained from the phantom image was simulated em-

ploying Equation (1) with δ standing for white Gaussian noise so that the signal-to-noise
ratio (SNR) was 30 dB unless otherwise specified. We also set a fixed initial value z0

j for
j = 1, 2, . . . , J and h = 1 in Equations (2), (3), (8), and (10). Although putting h > 1 would
hasten convergence, the alteration of h is outside the area of this paper.

To compare the reconstructed image x with the true image e, we defined evalua-
tion functions

dj(e, x) := |ej − xj| (30)

for j = 1, 2, . . . , J and

D(e, x) := ||e− x||2 =

(
J

∑
j=1

(
dj(e, x)

)2
) 1

2

(31)

which can evaluate the quality of images more directly than WKL(e, x, A) with weighted co-
efficients.

Figure 3 displays the evaluation functions D(e, z(n)) defined in accordance with
Equation (31) for the case of M = 1, α = 0.01, and noisy projection data for n = 0, 1, 2, . . . , 50.
Here, we can observe the following. In the early iterations, the SMART algorithm decreases
the value of the evaluation function. While the time course of SMART does not exhibit a
monotonic decrease, the evaluation function for MLEM monotonically decreases as the
number of iterations increases in this range of iterations. It can be seen that the proposed
algorithm reduces the evaluation function more than MLEM or SMART.
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Figure 3. Evaluation functions for proposed and conventional algorithms at each iteration. The
values of the plotted points for GM and HM are almost identical.

Figure 4 graphs the evaluation functions D(e, z(n)) versus the real computation time
s(n) (in seconds) as a function of the iteration number n for n = 0, 1, 2, . . . , 50 under the
same settings as in Figure 3. At each iteration of the one-step algorithm, the coefficient in
Equation (28) was pre-calculated for all algorithms, and the ratio between the measured
and forward projections defined in Equation (29) for each of GM and HM was calculated
at every i = 1, 2, . . . , I. The reconstruction time of the proposed algorithm is approximately
22 seconds, whereas MLEM and SMART take approximately 20 seconds in total. Although
the proposed algorithm takes 10% longer than the conventional ones, it provides a smaller
evaluation function for almost the same computation time (s(43) for GM or HM) as
MLEM or SMART at the 50th iteration. Figure 5 shows images reconstructed by MLEM,
SMART, and GM, and the corresponding subtraction images at every pixel, defined as in
Equation (30) with x = u(50), v(50), and z(43). The density value of d is on a common
scale. By comparing, e.g., the edges of the high-density outer rims in the images, it can be
seen that GM generates high-quality reconstructions; this is quantitatively confirmed by
the small evaluation function between the phantom and reconstructed images.
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Figure 4. Evaluation functions of proposed and conventional algorithms versus computation time
for n = 0, 1, 2, . . . , 50. The values of the plotted points for GM and HM are almost identical.

MLEM SMART GM

Figure 5. Reconstructed images (top plate) and subtraction images (bottom plate) for MLEM and
SMART at 50th iteration and for GM at 43rd iteration

To examine the effectiveness of the sequential discretization algorithm discussed in
Section 3.3, we performed reconstructions under the same settings. The time courses of
the evaluation functions for MLEM, SMART, GM, and F-GM (short for the fast sequential
algorithm using the weighted geometric mean) are plotted in Figure 6 as functions of the
computation time. We can see that F-GM has both the same level of performance as GM
and the same computational time as MLEM or SMART alone. The oscillatory phenomenon
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in the iterations that affects F-GM is due to the low accuracy of discretizing the continuous-
time system using the state two steps ago. The oscillation can be reduced by choosing the
step size h to be less than one in exchange for an increase in computation time, though it is
not necessary in this case.
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Figure 6. Evaluation functions of proposed and conventional algorithms versus computation time
for n = 0, 1, 2, . . . , 50

The proper selection of parameter α is important. As shown in Figure 7, which
represents the evaluation functions for GM with α = 0.005, 0.01, and 0.05, 0.01 provides
the best performance. However, Figure 8 shows the effect of changing the SNR of the
projections from 30 to 20 dB. Compared with the nonmonotonic decrease in the evaluation
function when the SNR is 20 dB and α is 0.05 (Figure 8), the time-varying system defined
in Section 3.4 yields an improvement; for example, by using the exponential function
α0λn with coefficients α0 = 0.05 and λ = 0.95 plotted in Figure 9, the values of the
evaluation function monotonically decrease up to the 40th iteration. On the other hand, a
discontinuous time-varying approach mimicking the hybrid-cascaded method that can be
obtained by using SMART in the initial step (L = 0) and using MLEM in the remaining
steps is inferior to the continuous time-varying system (Figure 9). The reason why iterations
by the discontinuous time-varying (or MLEM after the second iteration in this case) and
pure MLEM algorithms converge to a steady state with the same evaluation function value
is conjectured to be that there is a global nonnegative minimizer of an objective function
for MLEM.
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Figure 7. Evaluation functions of GM for different values of α versus computation time for
n = 0, 1, 2, . . . , 50
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Figure 8. Evaluation functions of GM using projections with SNR of 20 dB versus computation time
for n = 0, 1, 2, . . . , 50
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Figure 9. Evaluation functions of proposed and conventional algorithms using projections with SNR
of 20 dB at each iteration. U denotes a unit step function.

The purpose of the next example is to verify the effectiveness of using divided subsets
for fixed α = 0.01. Projections in 180 directions were divided into M nonoverlapping
subsets. The ordering of the M subsets was determined using a random projection permu-
tation [41,42]. We can see in Figure 10 that OS-GM with M = 8 provides better convergence
performance with respect to the speed and the evaluation function value compared with
not only OS-EM and OS-MART with the same M but also GM and OS-GM with M = 2. We
can also see that, for M = 8, OS-GM is capable of suppressing the oscillatory phenomenon
that appears for successive M iterations in the results of OS-EM. Figure 11 shows images
reconstructed by OS-EM with M = 8 (at the 20th iteration) and GM and OS-GM with
M = 8 (at the 48th and 20th iterations, respectively) and the corresponding subtraction
images that were evaluated using the difference from the true image. We can see that
OS-GM with M = 8 provides the best image quality in terms of contrast and artifact.
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Figure 10. Evaluation functions for OS-EM, OS-MART, GM, and OS-GM versus computation time
for n = 0, 1, 2, . . . , N along with N equal 60, 45, and 20 for M being 1, 2, and 8, respectively.

GM OS-EM OS-GM
(M = 1) (M = 8) (M = 8)

Figure 11. Reconstructed images (top plate) and images of subtraction (bottom plate) for GM at 48th
iteration and for OS-EM and OS-GM with M = 8 at 20th iteration.

5. Conclusions

We presented a novel iterative algorithm that combines OS-EM and OS-MART by
using weighted geometric or hybrid means. The theoretical results support the convergence
of iterative points in view of decreasing of the objective function with increasing of the
iteration number. Numerical experiments illustrate that the suggested algorithm and its
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fast version using a sequential calculation have advantages over the optimization of the
evaluation function by MLEM after sufficient iterations as well as by SMART in early
iterations. Moreover, our experimental results indicate that the iterative algorithms with
a time-varying parameter and the ordered-subsets scheme perform well. In the future,
we will use methodologies such as machine learning to make decisions about the best
applicable parameter controlled by the numbers of pixels and projections and the noise
level of projections, etc.

Author Contributions: Conceptualization, T.Y.; data curation, O.M.A.A.-O. and T.Y.; formal analysis,
O.M.A.A.-O., R.K., Y.Y., T.K. and T.Y.; methodology, O.M.A.A.-O., R.K., Y.Y., T.K. and T.Y.; software,
R.K., Y.Y. and T.Y.; supervision, T.Y.; validation, O.M.A.A.-O. and T.Y.; writing—original draft,
O.M.A.A.-O. and T.Y.; and writing—review and editing, O.M.A.A.-O., R.K., Y.Y., T.K. and T.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by JSPS KAKENHI, Grant Number 21K04080.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used to support the findings of this study are included within
the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ramachandran, G.N.; Lakshminarayanan, A.V. Three-dimensional reconstruction from radiographs and electron micrographs:

application of convolutions instead of Fourier transforms. Proc. Natl. Acad. Sci. USA 1971, 68, 2236–2240. [CrossRef] [PubMed]
2. Shepp, L.A.; Vardi, Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1982, 1, 113–122.

[CrossRef] [PubMed]
3. Lewitt, R.M. Reconstruction algorithms: Transform methods. Proc. IEEE 1983, 71, 390–408. [CrossRef]
4. Natterer, F. Computerized tomography. In The Mathematics of Computerized Tomography; Springer: Berlin/Heidelberg, Germany,

1986; pp. 1–8.
5. Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; IEEE Press: Piscataway, NJ, USA, 1988.
6. Stark, H. Image Recovery: Theory and Application; Academic Press: Washington, DC, USA, 1987.
7. Hudson, H.M.; Larkin, R.S. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging

1994, 13, 601–609. [CrossRef] [PubMed]
8. Gordon, R.; Bender, R.; Herman, G.T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and

X-ray photography. J. Theor. Biol. 1970, 29, 471–481. [CrossRef]
9. Fessler, J.A.; Hero, A.O. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms.

IEEE Trans. Image Process. 1995, 4, 1417–1429. [CrossRef]
10. Byrne, C.L. Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative methods. IEEE Trans.

Image Process. 1998, 7, 100–109. [CrossRef]
11. DoSik, H.; Gengsheng, Z.L. Convergence study of an accelerated ML-EM algorithm using bigger step size. Phys. Med. Biol. 2006,

51, 237–252.
12. Darroch, J.; Ratcliff, D. Generalized iterative scaling for log-linear models. Ann. Math. Stat. 1972, 43, 1470–1480. [CrossRef]
13. Schmidlin, P. Iterative separation of sections in tomographic scintigrams. J. Nucl. Med. 1972, 11, 1–16. [CrossRef]
14. Badea, C.; Gordon, R. Experiments with the nonlinear and chaotic behaviour of the multiplicative algebraic reconstruction

technique (MART) algorithm for computed tomography. Phys. Med. Biol. 2004, 49, 1455–1474. [CrossRef]
15. Byrne, C.L. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 2004,

20, 103–120. [CrossRef]
16. Gustavsson, B. Tomographic inversion for ALIS noise and resolution. J. Geophys. Res. Space Phys. 1998, 103, 26621–26632.

[CrossRef]
17. Jiang, W.; Zhang, X. Relaxation Factor Optimization for Common Iterative Algorithms in Optical Computed Tomography. Math.

Probl. Eng. 2017, 2017, 4850317. [CrossRef]
18. Schropp, J. Using dynamical systems methods to solve minimization problems. Appl. Numer. Math. 1995, 18, 321–335. [CrossRef]
19. Airapetyan, R.G.; Ramm, A.G.; Smirnova, A.B. Continuous analog of gauss-newton method. Math. Model. Methods Appl. Sci.

1999, 9, 463–74. [CrossRef]
20. Airapetyan, R.G.; Ramm, A.G. Dynamical systems and discrete methods for solving nonlinear ill-posed problems. In Applied

Mathematics Reviews; GA, A., Ed.; World Scientific Publishing Company: Singapore, 2000; Volume 1, pp. 491–536.

http://doi.org/10.1073/pnas.68.9.2236
http://www.ncbi.nlm.nih.gov/pubmed/5289381
http://dx.doi.org/10.1109/TMI.1982.4307558
http://www.ncbi.nlm.nih.gov/pubmed/18238264
http://dx.doi.org/10.1109/PROC.1983.12597
http://dx.doi.org/10.1109/42.363108
http://www.ncbi.nlm.nih.gov/pubmed/18218538
http://dx.doi.org/10.1016/0022-5193(70)90109-8
http://dx.doi.org/10.1109/83.465106
http://dx.doi.org/10.1109/83.650854
http://dx.doi.org/10.1214/aoms/1177692379
http://dx.doi.org/10.1055/s-0038-1624769
http://dx.doi.org/10.1088/0031-9155/49/8/006
http://dx.doi.org/10.1088/0266-5611/20/1/006
http://dx.doi.org/10.1029/98JA00678
http://dx.doi.org/10.1155/2017/4850317
http://dx.doi.org/10.1016/0168-9274(95)00065-3
http://dx.doi.org/10.1142/S0218202599000233


Mathematics 2022, 10, 4277 17 of 17

21. Airapetyan, R.G.; Ramm, A.G.; Smirnova, A.B. Continuous methods for solving nonlinear ill-posed problems. In Operator Theory
and Its Applications; Ramm, A.G., Shivakumar, P.N., Vilgelmovich Strauss, A., Eds.; American Mathematical Society: Providence,
RI, USA, 2000; Volume 25, pp. 111–136.

22. Ramm, A.G. Dynamical systems method for solving operator equations. Commun. Nonlinear Sci. Numer. Simul. 2004, 9, 383–402.
[CrossRef]

23. Li, L.; Han, B. A dynamical system method for solving nonlinear ill-posed problems. Appl. Math. Comput. 2008, 197, 399–406.
[CrossRef]

24. Fujimoto, K.; Abou Al-Ola, O.M.; Yoshinaga, T. Continuous-time image reconstruction using differential equations for computed
tomography. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1648–1654. [CrossRef]

25. Abou Al-Ola, O.M.; Fujimoto, K.; Yoshinaga, T. Common Lyapunov function based on Kullback–Leibler divergence for a
switched nonlinear system. Math. Probl. Eng. 2011, 2011, 723509. [CrossRef]

26. Yamaguchi, Y.; Fujimoto, K.; Abou Al-Ola, O.M.; Yoshinaga, T. Continuous-time image reconstruction for binary tomography.
Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2081–2087. [CrossRef]

27. Tateishi, K.; Yamaguchi, Y.; Abou Al-Ola, O.M.; Yoshinaga, T. Continuous Analog of Accelerated OS-EM Algorithm for Computed
Tomography. Math. Probl. Eng. 2017, 2017, 1564123. [CrossRef]

28. Kasai, R.; Yamaguchi, Y.; Kojima, T.; Yoshinaga, T. Tomographic Image Reconstruction Based on Minimization of Symmetrized
Kullback-Leibler Divergence. Math. Probl. Eng. 2018, 2018, 8973131. [CrossRef]

29. Kasai, R.; Yamaguchi, Y.; Kojima, T.; Abou Al-Ola, O.M.; Yoshinaga, T. Noise-Robust Image Reconstruction Based on Minimizing
Extended Class of Power-Divergence Measures. Entropy 2021, 23, 1005. [CrossRef] [PubMed]

30. Lyapunov, A.M. Stability of Motion; Academic Press: New York, NY, USA, 1966.
31. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
32. Byrne, C.L. Iterative image reconstruction algorithms based on cross-entropy minimization. IEEE Trans. Image Process. 1993,

2, 96–103. [CrossRef]
33. Byrne, C.L. Block-iterative algorithms. Int. Trans. Oper. Res. 2009, 16, 427–463. [CrossRef]
34. Tateishi, K.; Yamaguchi, Y.; Abou Al-Ola, O.M.; Kojima, T.; Yoshinaga, T. Continuous analog of multiplicative algebraic

reconstruction technique for computed tomography. In Proceedings of the SPIE, Medical Imaging 2016; SPIE Medical Imaging:
San Diego, CA, USA, 2016; Volume 9783-4Q.

35. Aniszewska, D. Multiplicative Runge–Kutta methods. Nonlinear Dyn. 2007, 50, 265–272. [CrossRef]
36. Bashirov, A.E.; Kurpinar, E.M.; Oezyapici, A. Multiplicative calculus and its applications. J. Math. Anal. Appl. 2008, 337, 36–48.

[CrossRef]
37. Jeffreys, H. Theory of Probability; Clarendon Press: Oxford, UK, 1939.
38. Jeffreys, H. An invariant form for the prior probability in estimation problems. R. Soc. Lond. 1946, 186, 453–461.
39. Ishikawa, K.; Yamaguchi, Y.; Abou Al-Ola, O.M.; Kojima, T.; Yoshinaga, T. Block-Iterative Reconstruction from Dynamically

Selected Sparse Projection Views Using Extended Power-Divergence Measure. Entropy 2022, 24, 740. [CrossRef]
40. Tiwari, S.; Srivastava, R. A Hybrid-Cascaded Iterative Framework for Positron Emission Tomography and Single-Photon

Emission Computed Tomography Image Reconstruction. J. Med. Imaging Health Inform. 2016, 6, 1001–1012. [CrossRef]
41. Kazantsev, I.G.; Matej, S.; Lewitt, R.M. Optimal Ordering of Projections using Permutation Matrices and Angles between

Projection Subspaces. Electron. Notes Discret. Math. 2005, 20, 205–216. [CrossRef]
42. Van Dijke, M.C. Iterative Methods in Image Reconstruction. Ph.D. Thesis, Rijksuniversiteit Utrecht, Utrecht, The Netherlands, 1992.

http://dx.doi.org/10.1016/S1007-5704(03)00006-6
http://dx.doi.org/10.1016/j.amc.2007.07.070
http://dx.doi.org/10.1016/j.cnsns.2009.06.025
http://dx.doi.org/10.1155/2011/723509
http://dx.doi.org/10.1016/j.cnsns.2013.01.001
http://dx.doi.org/10.1155/2017/1564123
http://dx.doi.org/10.1155/2018/8973131
http://dx.doi.org/10.3390/e23081005
http://www.ncbi.nlm.nih.gov/pubmed/34441145
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1109/83.210869
http://dx.doi.org/10.1111/j.1475-3995.2008.00683.x
http://dx.doi.org/10.1007/s11071-006-9156-3
http://dx.doi.org/10.1016/j.jmaa.2007.03.081
http://dx.doi.org/10.3390/e24050740
http://dx.doi.org/10.1166/jmihi.2016.1779
http://dx.doi.org/10.1016/j.endm.2005.05.064

	Introduction
	Preliminary
	Results
	Proposed Method
	Theoretical Findings
	Fast Discretization Algorithm
	Time Varying System

	Experiments and Discussion
	Verification of Theory
	Evaluation of Reconstructed Images

	Conclusions
	References

