Page 1 of 44

Journal of Orthopaedic Research

This is the peer reviewed version of the following article: Matsumoto, T, Hashimoto, K, Okada, H, Discretizing low-intensity whole-body vibration into bouts with short rest intervals promotes bone defect repair in osteoporotic mice. Journal of Orthopaedic Research, which has been published in final form at https://doi.org/10.1002/jor.25781. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.

1 Discretizing low-intensity whole-body vibration into bouts with short rest intervals

2 promotes bone defect repair in osteoporotic mice

- 3
- 4 Takeshi Matsumoto, Keishi Hashimoto, Hyuga Okada
- 5
- 6 Graduate School of Technology, Industrial and Social Sciences, Tokushima University
- 7
- 8 Corresponding author: Takeshi Matsumoto
- 9 Graduate School of Technology, Industrial and Social Sciences, Tokushima University
- 10 2-1 Minamijyousanjima-cho, Tokushima 770-8506, Japan
- 11 Tel./fax: +81 886567374; E-mail: <u>t.matsumoto@tokushima-u.ac.jp</u>
- 12
- 13 Running title: Vibration bouts with short rests
- 14
- 15 Author Contributions Statement
- 16 Takeshi Matsumoto: study design, funding acquisition, supervision, data collection, data
- 17 analysis, drafting of the manuscript, review of the manuscript. Keishi Hashimoto: data

- 18 collection, data analysis, drafting of the manuscript, review of the manuscript. Hyuga Okada:
- 19 data collection, data analysis, review of the manuscript. All authors approved the final
- 20 submitted manuscript.

to per porio

21 Abstract

22	Continuous administration of low-intensity whole-body vibration (WBV) gradually
23	diminishes bone mechanosensitivity over time, leading to a weakening of its osteogenic
24	effect. We investigated whether discretizing WBV into bouts with short rest intervals was
25	effective in enhancing osteoporotic bone repair. Ten-week-old female mice were
26	ovariectomized and underwent drill-hole defect surgery (day 0) on the right tibial diaphysis at
27	11 weeks of age. The mice underwent one of three regimens starting from day 1 for 5
28	days/week: continuous WBV at 45 Hz and 0.3 g for 7.5 minutes/day (cWBV); 3-second bouts
29	of WBV at 45 Hz, 0.3 g followed by 9-second rest intervals, repeated for 30 minutes/day
30	(rWBV); or a sham treatment. Both the cWBV and rWBV groups received a total of 20,250
31	vibration cycles per day. On either day 7 or 14 post-euthanasia ($n = 6/group/timepoint$), the
32	bone and angiogenic vasculature in the defect were CT imaged using synchrotron lights. By
33	day 14, the bone repair was most advanced in the rWBV group, showing a higher bone
34	volume fraction and a more uniform mineral distribution compared with the sham group. The
35	cWBV group exhibited an intermediate level of bone repair between the sham and rWBV
36	groups. The rWBV group had a decrease in large-sized angiogenic vessels, while the cWBV
37	group showed an increase in such vessels. In conclusion, osteoporotic bone repair was

- enhanced by WBV bouts with short rest intervals, which may potentially be attributed to the 38
- 39 improved mechanosensitivity of osteogenic cells and alterations in angiogenic vasculature.
- 40
- 41 Keywords: osteoporosis, bone repair, mechanosensitivity, angiogenic vasculature

rep.

42 **1. INTRODUCTION**

43	As a corollary of the aging global population, osteoporosis has become an important
44	healthcare issue for millions of older adults, predominantly postmenopausal women. The risk
45	of future immobilization in postmenopausal Japanese women is reported to increase by 1.83-
46	fold with osteoporosis. ¹ The most prevalent complication of osteoporosis is fracture, which
47	affects one in three women and one in five men aged 50 years and over worldwide. ² It is well
48	documented that the fracture healing process is impaired in rodent models of osteoporosis by
49	ovariectomy (OVX). ^{3–5} Impaired bone healing may prolong bed rest or physical immobility,
50	induce deconditioning and motor deterioration, and result in severe secondary complications
51	that require long-term nursing care, or even lead to in-hospital death. ^{6,7} It is vital to enhance
52	osteoporotic fracture healing, thereby achieving early remobilization, to avoid osteoporotic
53	patients being bedridden or in need of nursing care.
54	Bone regenerative capacity is mechanically stimulus-dependent, and moderate
55	loading accelerates the healing of fractures. ^{8,9} Therefore, the application of mechanical stimuli
56	soon after fracture treatment may accelerate the healing of osteoporotic fractures toward the
57	early achievement of structural resistance needed to undergo rehabilitation. ¹⁰ One mechanical
58	modality available during the early stage of fracture healing is low-intensity whole-body

59	vibration (WBV), with its frequency and magnitude generally ranging from 20–100 Hz and <
60	$1 \times g$ (= 9.81 m/s ²), respectively. Mechanical stimuli of WBV safely propagate to bone tissue
61	wherein low strains (<10 $\mu\epsilon$) and high-frequency accelerations arise, increasing the
62	osteogenic capacity of osteoblasts and bone marrow mesenchymal stem cells (MSCs). ^{11,12}
63	Bone strain dynamics induced by WBV are comparable with those attributed to postural
64	muscle activity, ^{13,14} thereby enabling WBV to serve as a safe passive exercise suitable for
65	osteoporotic patients. Numerous animal studies have demonstrated the efficacy of WBV for
66	healing osteoporotic fractures, ¹⁵ which relies on estrogen receptor α -signaling under estrogen
67	deficiency. ¹⁶ Furthermore, WBV improves angiogenic vascularization in osteoporotic
68	fractures. ^{17,18} Angiogenesis within bone injury is essential in early stage healing to provide a
69	supply route of oxygen and nutrients necessary for high metabolic activity in osteoblasts, as
70	well as a migration route for MSCs and a source of bone growth factors that mediate
71	osteoblastic differentiation. ^{19–21}
72	Bone sensitivity to WBV decreases with long-term exposure, as implied by the
73	absence of bone gains in the spine or hip of postmenopausal women with increased exposure
74	duration to WBV. ²² Such desensitization to mechanical stimuli has been observed in a load-
75	induced osteogenic response, which is sharply blunted after the first few load cycles. ²³

76	However, it has been reported that intervals inserted between each period of mechanical
77	stimuli, even short intervals, are effective in maintaining bone mechanosensitivity. A 10-
78	second interval following each single bending load cycle (0.25 N peak) enhances osteogenesis
79	to a similar degree as continuous loading under magnitudes 10 times greater in turkey ulnae. ²⁴
80	Additionally, rat tibiae subjected to single-loading in bending (54 N peak) at 14-second
81	intervals show elevated bone formation rates relative to those subjected to the same number of
82	loading cycles without intervals, while those single-loaded at intervals of \leq 7 seconds do
83	not. ²⁵ Rest insertion is also favorable for osteogenesis in high-frequency loading regimes; 1-
84	second bouts of 30-Hz loading applied at 10-second intervals in bending at peak of 800
85	microstrains exerts a greater bone-anabolic effect on mouse tibiae than continuous 30-Hz
86	loading, despite a 10-fold reduction in the total number of loading cycles. ²⁶ Thus, although
87	bone deformation induced by these rest-inserted mechanical stimuli is not at the microstrain
88	level observed in bone exposed to WBV, ^{27,28} it is anticipated that bouts of WBV with short
89	rest intervals might be more bone-anabolic than continuous WBV and may be effective for
90	the treatment of osteoporotic fractures.
91	It is of value to confirm whether WBV bouts with short rest intervals effectively

92 enhance osteoporotic fracture healing. However, to our knowledge, no data have been

93 presented on the benefits of incorporating short rest periods in the WBV treatment of

- osteoporotic fracture. Therefore, this study was performed to test the hypothesis that WBV in 94
- bouts with short rest intervals augments its effectiveness for bone defect repair in OVX mice. 95
- In addition, we investigated the effect of short rest insertion within WBV on vascular 96
- ingrowth, which is essential for bone healing. 97

tone hea.

98 2. MATERIALS AND METHODS

- 99 The protocol for the animal treatment was in accordance with the guiding principles of the
 100 Care and Use of Laboratory Animals of Tokushima University and was approved by the
 101 Ethics Committee on Animal Experiments of Tokushima University (permit no. T2020-126).
 102
- 103 2.1 Animal model and experimental design
- 104 Thirty-six female C57BL/6JJcl mice (CLEA Japan, Tokyo, Japan), which is an inbred strain exhibiting highly mechanosensitive bones,²⁹ were bilaterally ovariectomized under anesthesia 105 induced by an intraperitoneal injection of ketamine (100 mg/kg) and xylazine (10 mg/kg) at 106 the age of 10 weeks. One week later, the mice were anesthetized with isoflurane, and the skin 107 over the medial aspect of the right lower leg was shaved, swabbed with povidone-iodine, and 108 109 incised. A full-thickness unicortical hole was created approximately 2 mm proximal to the tibia-fibula junction using a 0.5-mm diameter drill rotating at 11,000 rpm (Muromachi Kikai, 110 111 Kyoto, Japan). Drill margins were frequently irrigated with saline to avoid thermal necrosis 112 and remove bone fragments. 113 The day after drill-hole surgery (day 0), the mice were randomly divided into three
- 114 groups (n = 12 per group) and treated for 5 days/week as follows. The continuous WBV

115	group (cWBV) were subjected to WBV at 45 Hz, 0.3 g (0-to-peak) continuously for 7.5
116	minutes/day; the rest-inserted WBV group (rWBV) were subjected to 3-second bouts of
117	WBV at 45 Hz, 0.3 g followed by 9-second rest intervals, repeated for 30 minutes/day; and
118	the sham-treated group (sham) were treated similarly for 7.5 minutes but without vibration
119	exposure. Both the cWBV and rWBV groups received 20,250 total vibration cycles per day.
120	Four mice at a time were placed in a compartmentalized cage that was firmly fixed
121	by screws to a rigid vibration platform. ³⁰ The platform was driven by an electromagnetic
122	actuator connected to a power supply/amplifier/controller (Big-Wave; Asahi Seisakujo,
123	Tokyo, Japan). Using data received from an accelerometer attached to the platform, the
124	vibration controller produced the required sine-wave vibration. All mice were routinely
125	treated between 10:00 and 11:00.
126	During the experimental period, the mice were single-housed in plastic cages under
127	controlled conditions (12-hour light/dark cycle, 25°C, 60% humidity) and allowed free access
128	to a standard diet (CE-2; CLEA Japan) and tap water.
129	

130 **2.2 Sample preparation**

131 On post-surgery days 7 and 14, six mice per group on each day of observation underwent

132	vascular casting as described elsewhere. ³¹ Briefly, under isoflurane anesthesia, mice were
133	thoracotomized and a polyethylene catheter was inserted into the left ventricle. Following
134	isoflurane overdose for euthanasia, the right atrium was cut open and the vascular bed was
135	flushed with heparinized saline and then with phosphate buffer solution into the left ventricle.
136	The vascular bed was then thoroughly perfused with an agarose suspension of zirconium
137	dioxide submicron particles (ZrCA) at 120 mmHg. The mice were laparotomized for
138	clamping of the abdominal artery and vein and immersed in an ice-cold water bath for 1 hour.
139	The right tibia with the drilled defect was harvested and fixed in 4% paraformaldehyde until
140	CT scanning.
141	
142	2.3 Synchrotron radiation-based subtraction computed tomography
143	Each specimen, while immersed in 4% paraformaldehyde, was scanned at beamline 20B2 of
144	SPring-8 (Harima, Japan) using monochromatic synchrotron lights just above (18.05 keV)
145	and below (17.95 keV) the K edge of ZrCA. A scientific CMOS camera (C11440-22C;
146	Hamamatsu Photonics, Hamamatsu, Japan) combined with a beam monitor (BM2;
147	Hamamatsu Photonics) with a 10-µm-thick phosphor screen (Gd ₂ O ₂ S:Tb+) was used to detect

148 transmitted X-rays. Scanning was performed over an angular range of 0–180° at 0.1° with a

149	0.2-second exposure per frame. After corrections for X-ray source instability and detector
150	background, each scan dataset was reconstructed with a two-dimensional filtered backward
151	projection algorithm provided by SPring-8, yielding a two-dimensional image stack
152	composed of 2.75-µm cubic voxels in 8-bit grayscale.
153	The 17.95- and 18.05-keV images were calibrated to enhance the vascular contrast in
154	18.05-keV images through the ZrCA K-edge effect and to reduce the bone contrast in both
155	images to the same gray levels by matching the range of the linear absorption coefficient (μ ,
156	/cm) of 0 to 40/cm with the full grayscale range of 0 [black] to 255 [white]. Thereby, selective
157	visualization of vascular structure was possible by subtraction between a pair of 17.95- and
158	18.05-keV images. ³¹ The vascular image yielded by image subtraction was filtered by $3 \times 3 \times$
159	3 voxels averaging and binarized using Otsu's thresholding method.
160	Bone was segmented from the 17.95-keV image after calibrating to match the μ
161	range of 0 to 14/cm with the full grayscale and subtracting the binarized vascular image
162	obtained in advance. The use of monochromatic synchrotron light made it possible to
163	translate the reconstructed image into the distribution of bone mineral density (ρ , g/cm ³)
164	based on the equation: $\mu = 7.58 \times \rho + 1.03$ (r ² > 0.999), which was obtained from the 17.95-
165	keV scan dataset of K ₂ HPO ₄ phantom solutions (0–1 g/mL). All voxels of μ > 4.82/cm,

166	equivalent to $\rho > 0.5$ g/cm ³ , were classified as bone. A custom C program and ImageJ 1.54b
167	software were used for this series of image processing.
168	
169	2.4 Quantitative parameters for bone and vascular structures
170	A cylindrical region of interest (diameter, 495 μ m; height, 110 μ m) was chosen in the cortical
171	defect. The thickness was less than but close to the thickness of a nearby intact cortical bone.
172	The bone volume fraction (B.Vf, %), bone thickness (B.Th, μ m), bone spacing or thickness of
173	the background (B.Sep, μ m), vascular volume fraction (V.Vf, %), vessel thickness (V.Th,
174	μ m), and number density of node-to-node or node-to-free-end vessel segments (V.N, /mm ³)
175	were calculated. The BoneJ plugin 1.3.5 for ImageJ ³² was used to determine all indices,
176	except for V.Th. For calculating V.Th, the local thickness was first calculated as the diameter
177	of the largest sphere falling inside the vascular space with its center on a vascular skeleton
178	line provided by a thinning algorithm. Then, V.Th was determined as an average of these
179	thicknesses on overall skeleton lines. The thickness of each vessel segment also was
180	determined as an average of local vessel thicknesses over its skeleton line, and size-specific
181	V.N was calculated. Using the linear μ - ρ relation, local ρ values were determined for newly
182	formed bone.

184 **2.5 Statistical analysis**

- 185 The data are expressed as means \pm SD except for ρ frequency distribution, in which means \pm
- 186 SE are shown for clarity. Non-parametric statistical analysis was performed because the
- 187 Kolmogorov–Smirnov test determined that the data of some experimental groups were not
- 188 normally distributed. The Kruskal-Wallis test followed by the two-tailed Dunn's post hoc test
- 189 were used to identify statistically significant differences between the sham, cWBV, and
- 190 rWBV groups. Intragroup differences were assessed using the two-tailed Mann–Whitney U
- 191 test and the two-tailed Wilcoxon signed-rank test for independent and paired data,
- 192 respectively. All data were analyzed by Prism 8 (GraphPad Software; San Diego, CA). P <

Lich

193 0.05 was considered statistically significant.

195	The mean body weights in the sham, cWBV, and rWBV groups, respectively, were 20.8 \pm
196	$0.8, 20.7 \pm 1.0, \text{ and } 20.5 \pm 1.0 \text{ g on day } 0, 21.8 \pm 0.8, 21.0 \pm 1.1, \text{ and } 21.2 \pm 0.8 \text{ g on day } 7,$
197	and 20.8 ± 0.8 , 21.0 ± 0.6 , and 20.7 ± 0.8 g on day 14. Body weight did not change over time
198	or differ between the groups. All animals were included in each analysis.
199	Three-dimensional reconstruction of microstructure in the bone defect is exemplified
200	for each group on each observation day in Figure 1. The structural bone and vasculature
201	parameters are shown in Tables 1 and 2. On day 7, newly formed bone appeared with vascular
202	ingrowth in each group, filling the defect with a higher proportion of woven-like bone than
203	with blood vessels (B.Vf > V.Vf). At this stage, there were no differences between the three
204	groups in any of the bone and vascular structure parameters. From days 7 to 14, B.Vf and
205	B.Th increased in every group, while B.Sep increased in the sham and cWBV groups but not
206	in the rWBV group. Vascular ingrowth progressed to regression. V.Th decreased in the sham
207	and rWBV groups, while V.N decreased in the cWBV and rWBV groups. On day 14, as a
208	result of advanced bone repair, the rWBV group had a higher B.Vf and lower B.Sep than the
209	sham group. The rWBV group had a smaller V.Th than the cWBV group.
210	The percent frequencies of bone mineral density within the defects on days 7 and 14

194 **3. RESULTS**

211	are shown in Figure 2. On day 7, there was no difference in distribution between the three
212	groups. The mean and median values, respectively, were 0.685 \pm 0.024 and 0.670 \pm 0.028
213	g/cm ³ in the sham group, 0.673 ± 0.032 and 0.647 ± 0.022 g/cm ³ in the cWBV group, and
214	0.693 ± 0.033 and 0.652 ± 0.019 g/cm ³ in the rWBV group. From days 7 to 14, the
215	distribution changed from monotonically decreasing to unimodal. The mean and median
216	values, respectively, on day 14 were 0.935 ± 0.047 and 0.970 ± 0.053 g/cm ³ in the sham
217	group, 0.932 ± 0.028 and 0.979 ± 0.031 g/cm ³ in the cWBV group, and 0.953 ± 0.039 and
218	0.994 ± 0.037 g/cm ³ in the rWBV group. Each distribution peaked at a similar value, but the
219	negative skewness tended to be larger in the rWBV group than in the sham group (-0.590 \pm
220	0.238 vs0.863 \pm 0.169, <i>P</i> = 0.080). Furthermore, the coefficient of variations was
221	significantly smaller in the rWBV group than in the sham group $(0.174 \pm 0.008 \text{ vs. } 0.190 \pm$
222	0.009, $P < 0.05$). The kurtosis did not differ between the three groups.
223	Figure 3 shows V.N for the thicknesses of < 11.0 and $> 11.0 \mu m$ on days 7 and 14.
224	On day 7, V.N was higher for the > 11.0 μ m thickness than the < 11.0 μ m thickness in the
225	cWBV group, and V.N for the > 11.0 μ m thickness tended to be higher in the sham group (P
226	= 0.0625) and the rWBV group ($P = 0.0938$). No intergroup difference in V.N was observed
227	for either of the two thickness ranges. From day 7 to 14, V.N for the $< 11.0 \mu$ m thickness

228	tended to decrease in the rWBV group ($P = 0.0931$), while V.N for the > 11.0 µm thickness
229	decreased in the rWBV group and tended to decrease in the cWBV group ($P = 0.0649$). On
230	day 14, V.N was higher for the > 11.0 μ m thickness than the < 11.0 μ m thickness in the sham
231	and cWBV groups but was similar between the two thickness ranges in the rWBV group.
232	Although V.N for the $< 11.0 \mu m$ thickness was similar between the groups, V.N for the > 11.0
233	μ m thickness was smaller in the rWBV group than in the cWBV group.
234	Figure 4 shows the percentage of vessel number density (%V.N) for seven (day 7) or
235	eight (day 14) thickness ranges. On day 7, all groups showed a similar %V.N distribution
236	with a peak in the thickness range of $11.0-16.5 \mu m$, and there were no differences between
237	the three groups in any size-specific %V.N. On day 14, the rWBV group had a higher %V.N
238	and a trend toward a higher %V.N for the $< 11.0 \ \mu m$ thickness than the cWBV group and the
239	sham group ($P = 0.080$), respectively. In contrast, the cWBV group had a higher %V.N than
240	the sham group in the thickness ranges of 33.0–44.0 and 38.5–44.0 μ m and had a
241	higher %V.N than the rWBV group in the thickness range of 38.5 – $44.0 \ \mu\text{m}$. These differences
242	in size-specific %V.N indicate that the size of angiogenic vessels was more uniform around
243	the microvessels (< 11.0 μ m) in the rWBV group than in the other groups.

244 **4. DISCUSSION**

245	The present study tested the hypothesis that discretizing WBV into short bouts by inserting
246	short rest intervals is beneficial in promoting osteoporotic bone repair. Using synchrotron
247	radiation CT combined with vascular casting, we demonstrated the efficacy of WBV bouts
248	with short rest intervals for healing tibial drill-hole injuries in OVX mice. This effect was
249	accompanied by modifications to the angiogenic vasculature, characterized by the reduction
250	in large-sized vessels. Even when performed with the same total number of vibratory cycles
251	as WBV bouts with short rest intervals, continuous WBV exhibited only intermediate effects
252	on bone repair. Furthermore, continuous WBV led to an increase in large-sized vessels and an
253	elevation of heterogeneity in angiogenic vasculature.
254	Despite inducing only extremely low bone strain, WBV is effective in enhancing
255	osteoblastogenesis via canonical Wnt signaling. ¹¹ Therefore, WBV is applicable for the
256	treatment of osteoporotic fractures and has been shown to promote osteoporotic fracture
257	healing in rodent models. ^{33,34} We found that the therapeutic effect of WBV was further
258	enhanced by dividing it into short bouts administered intermittently with short intervals in
259	between, similar to the increased osteogenesis obtained by inserting rest periods into the
260	mechanical regime using larger stimuli. ^{24–26} In addition, although no effect was found on

Page 19 of 44

261	mean mineral density, WBV bouts with short rests resulted in greater negative skewness and a
262	lower coefficient of variation of mineral distribution than continuous WBV, implying a faster
263	progression of mineral maturation.
264	Low-intensity vibration directly stimulates bone marrow MSCs via downregulating
265	adipogenic differentiation, and stimulates osteoblastic cells toward osteogenesis. ^{12,35–37}
266	Despite receiving the same total vibratory stimuli, the promotion of bone repair was
267	significant in the rWBV group but not in the cWBV group, implying the increased osteogenic
268	activities of these cells owing to rest intervals. Although no studies have evaluated the
269	efficacy of WBV discretization on osteogenic activity, one study investigated the significance
270	of intermittent mechanical stimulation in fluid shear-induced calcium transients, an indicator
271	of cell mechanosensitivity, in osteoblastic cells. ³⁸ Osteoblastic cells exposed cumulatively for
272	3 minutes to 10-second durations of oscillatory flow (1 Hz at a peak shear stress of 1 or 2 Pa)
273	with intervals of 10 or 15 seconds exhibit multiple calcium transients with increased
274	magnitude and frequency and elevation of mRNA levels of osteopontin, compared with cells
275	exposed to 3-minute continuous oscillatory flow. ³⁸ Thus, the intermittent stimulation in the
276	rWBV group may have improved the mechanosensitivity of osteogenic cells to WBV and led
277	to the promotion of bone defect repair. Furthermore, it has been reported that even continuous

278	oscillating flow (2 Hz at a peak shear stress of 2 Pa) may induce multiple calcium transients
279	in osteoblastic cells after prolonged (15 minutes) exposure. ³⁹ Indeed, bone repair in the drill-
280	hole defect of mouse tibial bone is promoted by applying prolonged WBV (30 minutes/day,
281	30 Hz, 0.05 g). ²⁸ However, the 7.5-minutes/day stimulation in the cWBV group may not be
282	long enough to generate multiple calcium transients in osteoblastic cells, failing to improve
283	the mechanosensitivity of osteogenic cells to WBV.
284	On days 7 and 14, the number density of angiogenic vessels with $< 11 \mu m$ thickness
285	did not differ between groups. In cranial bone defect repair, angiogenic vessels with $< 10 \ \mu m$
286	thickness correlate with osteoblast volume better than those with $> 10 \ \mu m$ thickness, and such
287	close association of osteoblasts with capillary-sized vessels (angiogenesis-osteogenesis
288	coupling) is suggested to be critical for bone repair. ⁴⁰ Thus, we speculated that the
289	angiogenesis-osteogenesis coupling was at a comparable level in all groups, at least
290	concerning the number density of capillary-sized vessels. However, the number density of
291	angiogenic vessels with $> 11\ \mu m$ thickness differed between the cWBV and rWBV groups on
292	day 14. In the rWBV group, vessels with > 11 μ m thickness decreased down to the number
293	density of vessels with $< 11 \ \mu m$ thickness from days 7 to 14, resulting in a reduced
294	heterogeneity of vessel size distribution, with a predominance of vessels with $<11\ \mu m$

295	thickness. The reduction in these large-sized vessels potentially suggests that vessels not
296	contributing to perfusion throughout the defect were adaptively pruned. ⁴¹ In other words,
297	WBV bouts with short rest intervals might facilitate the formation of more efficient and
298	streamlined angiogenic vasculature. This modification to angiogenic vasculature besides the
299	potential enhancement in mechanosensitivity of osteogenic cells may offer a rationale for the
300	amelioration in osteogenic outcomes resulting from WBV bouts with short rest intervals. In
301	contrast, in the cWBV group on day 14, many angiogenic vessels with > 11 μ m thickness had
302	not yet been pruned, and the proportion of large-sized vessels with a thickness of 33.0-44.0
303	μm was higher in the cWBV group than the other groups, indicating an increased
304	heterogeneity of vessel size distribution. The large-sized vessels may act as shunts for blood
305	flow, diminishing perfusion to small-sized vessels, ⁴² which could disturb the angiogenesis-
306	osteogenesis coupling, consequently impeding the effects of WBV-induced mechanical
307	stimulation on osteogenic cells. It was recently reported that VEGF-loaded fibrin gel added to
308	a cortical defect promotes angiogenesis, especially in the formation of vessels with 5–30 μm
309	thickness, and accelerates bone repair in a similar mouse model. ⁴³ The enhancement of
310	angiogenesis may potentially improve the outcomes of osteogenesis, depending on the
311	distribution of vessel sizes.

312	The present findings contrast with those of a previous study that failed to show the
313	benefits of WBV bouts with short rest intervals against decreasing the bone formation level in
314	growing mice. ⁴⁴ This discrepancy is affected by whether angiogenesis is essential to drive
315	osteogenesis, as well as the difference in bone mechanosensitivity to WBV between OVX
316	mice and growing male mice. ^{16,45} Furthermore, to maintain the same number of total vibratory
317	stimuli in the previous study, ⁴⁴ 1-second WBV bouts given at 10-second intervals needed 11
318	times longer experimental time than continuous WBV (165 vs. 15 minutes/day), whereas the
319	rWBV group needed an experimental time that was four times longer than the cWBV group
320	(30 vs. 7.5 minutes/day). Such prolonged animal restraint time accompanying the
321	discretization of WBV as well as the different duration of each WBV bout (1 vs. 3 seconds)
322	would affect the outcomes of WBV bouts with short rest intervals.
323	The present study has some limitations. The first limitation is the specificity of bone
324	repair in the drill-hole defect model. Angiogenesis and osteogenesis are both influenced by
325	WBV in a manner dependent on the degree of stability at injury sites, i.e., whether
326	ossification is endochondral, intramembranous, or a combination of both. Thus, the actions of
327	WBV on angiogenesis, osteogenesis, and their coupling likely differ between cortical drill-
328	hole defect injury and clinically relevant orthopedic trauma. In the latter, enhanced

329	angiogenesis accompanies the WBV-stimulated promotion of fracture repair. ¹⁷ Therefore, the
330	bone repair is affected by the dynamics of mechanical properties at the fracture site, as well as
331	the callus formation, and the presence of adjacent muscles. The second limitation is the lack
332	of CT observation at varying stages of bone repair; in particular, we did not observe vascular
333	invasion before or around the initiation of osteogenesis. In OVX mice, angiogenic vessels
334	invade the cortical drill-hole defect 3 days after surgery, ⁴⁶ and WBV may potentially
335	influence the vasculature at this early stage, with consequences on osteogenesis thereafter.
336	However, in the present study, no effect of WBV on angiogenesis or osteogenesis was
337	observed on day 7. In an earlier study, dynamic tibial compression (2 Hz, 6 N, 120
338	cycles/day) applied from days 2 to 5 after tibial defect surgery had no effect on vessel
339	population in the defect on day 10, although compression applied from days 5 to 8 led to an
340	increase in vessels with approximately 10- μ m thickness. ⁴⁷ Thus, WBV applied in the phase
341	dominated by angiogenesis may have less impact on the repair process. In this phase, the
342	regenerated tissue in the defect is less solid due to the limited generation of extracellular
343	matrix, which likely makes it less conducive to transmitting high-frequency vibrations.
344	Finally, no mechanical property of regenerated bone was evaluated. Assessment of stiffness
345	and toughness of regenerated bone is critical for enhancing the therapeutic value of WBV in

346 fracture treatment.

347	In conclusion, WBV bouts with short rest intervals promoted cortical defect repair in
348	OVX mice in terms of both bone volume and mineral density, which did not accompany
349	further induction of angiogenesis but rather reduced large-sized vessels. Continuous WBV,
350	despite having the same total number of vibratory cycles as WBV bouts with short rest
351	intervals, failed to effectively promote defect repair to the same extent and was instead
352	associated with an increase in large-sized angiogenic vessels. The enhanced outcomes of bone
353	repair in WBV bouts with short rest intervals may be attributed to improved
354	mechanosensitivity of osteogenic cells. Additionally, the differences in angiogenic
355	vasculature between the two WBV treatments might potentially be associated with
356	discrepancies in bone repair outcomes. Further studies are necessary to clarify the interaction
357	between the effects of WBV on osteogenesis and angiogenesis in the context of bone repair.
358	Notably, the capacity of bone marrow MSCs to differentiate towards osteogenic lineages and
359	potentially toward endothelial lineages underscores their pivotal role in bone repair.48,49 The
360	prospective impacts of WBV on MSC behaviors, osteogenesis, angiogenesis, and their
361	interconnections in osteoporosis introduce further complexity, warranting a comprehensive
362	investigation.

363 ACKNOWLEDGMENTS

- 364 The synchrotron radiation experiments were performed at SPring-8 with the approval of the
- 365 Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2017B1446,
- 366 2018B1107, 2019B1389, and 2021B1309). The authors would like to thank Drs. Kentaro
- 367 Uesugi and Masato Hoshino (SPring-8/JASRI) for their valuable support and assistance
- 368 throughout the synchrotron radiation experiments and Kelly Zammit, BVSc, from Edanz
- 369 (https://jp.edanz.com/ac) for editing a draft of this manuscript. A part of this study was
- 370 supported by a grant from the Suzuken Memorial Foundation (16-027).
- 371

372 **Declaration of Interests**

373 The authors declare that they have no conflicts of interest.

374 **REFERENCES**

375	1.	Shiraki M, Kuroda T	, Shiraki Y,	et al. Effects	of bone	mineral	density of	f the lumba	ır spine
-----	----	---------------------	--------------	----------------	---------	---------	------------	-------------	----------

- and prevalent vertebral fractures on the risk of immobility. Osteoporos Int.
- 377 2010;21:1545–1551.
- 2. Ström O, Borgström F, Kanis JA, et al. Osteoporosis: burden, health care provision and
- 379 opportunities in the EU: a report prepared in collaboration with the International
- 380 Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry
- 381 Associations (EFPIA). Arch Osteoporos. 2011;6:59–155.
- 382 3. Namkung-Matthai H, Appleyard R, Jansen J, et al. Osteoporosis influences the early
- 383 period of fracture healing in a rat osteoporotic model. Bone. 2001;28:80–86.
- 4. Pang J, Ye M, Gu X, et al. Ovariectomy-induced osteopenia influences the middle and
- late periods of bone healing in a mouse femoral osteotomy model. Rejuvenation Res.
- 386 2015;18:356–365.
- 387 5. Cheung WH, Miclau T, Chow SK, et al. Fracture healing in osteoporotic bone. Injury.
- 388 2016;47(Suppl 2):S21–S26.
- 389 6. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated
- 390 with osteoporotic fractures. Osteoporos Int. 2006;17:1726–1733.

391	7.	Bliuc D, Nguyen ND, Milch VE, et al. Mortality risk associated with low-trauma
392		osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009;301:513-
393		521.
394	8.	Szczesny SE, Lee CS, Soslowsky LJ. Remodeling and repair of orthopedic tissue: role of
395		mechanical loading and biologics. Am J Orthop. 2010;39:525–530.
396	9.	Boerckel JD, Kolambkar YM, Stevens HY, et al. Effects of in vivo mechanical loading
397		on large bone defect regeneration. J Orthop Res. 2012;30:1067–1075.
398	10.	Barcik J, Ernst M, Buchholz T, et al. The absence of immediate stimulation delays bone
399		healing. Bone. 2023:116834.
400	11.	Gao H, Zhai M, Wang P, et al. Low-level mechanical vibration enhances
401		osteoblastogenesis via a canonical Wnt signaling-associated mechanism. Mol Med Rep
402		2017;16:317–324.
403	12.	Lu Y, Zhao Q, Liu Y, et al. Vibration loading promotes osteogenic differentiation of bone
404		marrow-derived mesenchymal stem cells via p38 MAPK signaling pathway. J Biomech
405		2018;71:67–75.
406	13.	Huang RP, Rubin CT, McLeod KJ. Changes in postural muscle dynamics as a function of
407		age. J Gerontol A Biol Sci Med Sci. 1999;54:B352-B357.

408	14. Fritton SP, McLeod KJ, Rubin CT. Quantifying the strain history of bone: spatial
409	uniformity and self-similarity of low-magnitude strains. J Biomech. 2000;33:317–325.
410	15. Wang J, Leung KS, Chow SK, Cheung WH. The effect of whole body vibration on
411	fracture healing - a systematic review. Eur Cell Mater. 2017;34:108–127.
412	16. Wehrle E, Liedert A, Heilmann A, et al. The impact of low-magnitude high-frequency
413	vibration on fracture healing is profoundly influenced by the oestrogen status in mice. Dis
414	Model Mech. 2015;8:93–104.
415	17. Cheung WH, Sun MH, Zheng YP, et al. Stimulated angiogenesis for fracture healing
416	augmented by low-magnitude, high-frequency vibration in a rat model-evaluation of
417	pulsed-wave doppler, 3-D power Doppler ultrasonography and micro-CT
418	microangiography. Ultrasound Med Biol. 2012;38:2120–2129.
419	18. Li W, Wang K, Liu Z, Ding W. HIF-1 α change in serum and callus during fracture
420	healing in ovariectomized mice. Int J Clin Exp Pathol. 2015;8:117–126.
421	19. Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev
422	Mol Cell Biol. 2011;13:27–38.
423	20. Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts,
424	move into developing and fractured bones along with invading blood vessels. Dev Cell.

425	2010;19:329-344.

- 426 21. Mundy GR, Chen D, Zhao M, et al. Growth regulatory factors and bone. Rev Endocr
- 427 Metab Disord. 2001;2:105–115.
- 428 22. Marin-Cascales E, Alcaraz PE, Ramos-Campo DJ, et al. Whole-body vibration training
- 429 and bone health in postmenopausal women: A systematic review and meta-analysis.
- 430 Medicine (Baltimore). 2018;97:e11918.
- 431 23. Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc
- 432 Sport Sci Rev. 2003;31:45–50.
- 433 24. Srinivasan S, Weimer DA, Agans SC, et al. Low-magnitude mechanical loading becomes
- 434 osteogenic when rest is inserted between each load cycle. J Bone Miner Res.
- 435 2002;17:1613–1620.
- 436 25. Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to
- 437 dynamically loaded bone. J Exp Biol. 2001;204:3389–3399.
- 438 26. LaMothe JM, Zernicke RF. Rest insertion combined with high-frequency loading
- 439 enhances osteogenesis. J Appl Physiol. 2004;96:1788–1793.
- 440 27. Garman R, Gaudette G, Donahue LR, et al. Low-level accelerations applied in the
- 441 absence of weight bearing can enhance trabecular bone formation. J Orthop Res.

- 442 2007;25:732–740.
- 443 28. Matsumoto T, Goto D. Effect of low-intensity whole-body vibration on bone defect
- 444 repair and associated vascularization in mice. Med Biol Eng Comput. 2017;55:2257–
- 445 2266.
- 446 29. Robling AG, Turner CH. Mechanotransduction in bone: genetic effects on
- 447 mechanosensitivity in mice. Bone. 2002;31:562–569.
- 448 30. Matsumoto T, Itamochi S, Hashimoto Y. Effect of concurrent use of whole-body
- vibration and parathyroid hormone on bone structure and material properties of
- 450 ovariectomized mice. Calcif Tissue Int. 2016;98:520–529.
- 451 31. Matsumoto T, Goto D, Sato S. Subtraction micro-computed tomography of angiogenesis
- 452 and osteogenesis during bone repair using synchrotron radiation with a novel contrast
- 453 agent. Lab Invest. 2013;93:1054–1063.
- 454 32. Doube M, Kłosowski MM, Arganda-Carreras I, et al. BoneJ: Free and extensible bone
- 455 image analysis in ImageJ. Bone. 2010;47:1076–1079.
- 456 33. Shi HF, Cheung WH, Qin L, et al. Low-magnitude high-frequency vibration treatment
- 457 augments fracture healing in ovariectomy-induced osteoporotic bone. Bone.
- 458 2010;46:1299–1305.

459	34. Matsumoto T, Sato D, Hashimoto Y. Individual and combined effects of noise-like
460	whole-body vibration and parathyroid hormone treatment on bone defect repair in
461	ovariectomized mice. Proc Inst Mech Eng H. 2016;230:30-38.
462	35. Uzer G, Pongkitwitoon S, Ete Chan M, Judex S. Vibration induced osteogenic
463	commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not
464	fluid shear. J Biomech. 2013;46:2296–2302.
465	36. Haffner-Luntzer M, Lackner I, Liedert A, et al. Effects of low-magnitude high-frequency
466	vibration on osteoblasts are dependent on estrogen receptor α signaling and cytoskeletal
467	remodeling. Biochem Biophys Res Commun. 2018;503:2678–2684.
468	37. Li H, Wu W, He X, et al. Applying vibration in early postmenopausal osteoporosis
469	promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells and
470	suppresses postmenopausal osteoporosis progression. Biosci Rep.
471	2019;39:BSR20191011.
472	38. Batra NN, Li YJ, Yellowley CE, et al. Effects of short-term recovery periods on fluid-
473	induced signaling in osteoblastic cells. J Biomech. 2005;38:1909–1917.
474	39. Donahue SW, Donahue HJ, Jacobs CR. Osteoblastic cells have refractory periods for
475	fluid-flow-induced intracellular calcium oscillations for short bouts of flow and display

- 476 multiple low-magnitude oscillations during long-term flow. J Biomech. 2003;36:35–43.
- 477 40. Huang C, Ness VP, Yang X, et al. Spatiotemporal analyses of osteogenesis and
- 478 angiogenesis via intravital imaging in cranial bone defect repair. J Bone Miner Res.
- 479 2015;30:1217–1230.
- 480 41. Pries AR, Secomb TW. Making microvascular networks work: angiogenesis, remodeling,
- 481 and pruning. Physiology (Bethesda). 2014;29:446–455.
- 482 42. Durand MJ, Ait-Aissa K, Gutterman DD. Regenerative Angiogenesis: Quality Over
- 483 Quantity. Circ Res. 2017;120:1379–1380.
- 484 43. Chen Q, Wang Z, Yang C, et al. High resolution intravital photoacoustic microscopy
- reveals VEGF-induced bone regeneration in mouse tibia. Bone. 2023;167:116631.
- 486 44. Xie L, Jacobson JM, Choi ES, et al. Low-level mechanical vibrations can influence bone
- resorption and bone formation in the growing skeleton. Bone. 2006;39:1059–1066.
- 488 45. Rubinacci A, Marenzana M, Cavani F, et al. Ovariectomy sensitizes rat cortical bone to
- 489 whole-body vibration. Calcif Tissue Int. 2008;82:316–326.
- 490 46. He YX, Zhang G, Pan XH, et al. Impaired bone healing pattern in mice with
- 491 ovariectomy-induced osteoporosis: A drill-hole defect model. Bone. 2011;48:1388–1400.
- 492 47. Liu C, Cabahug-Zuckerman P, Stubbs C, et al. Mechanical loading promotes the

493	expansion of primitive osteoprogenitors and organizes matrix and vascular morphology
494	in long bone defects. J Bone Miner Res. 2019;34:896–910.
495	48. Liu J, Liu C, Sun B, et al. Differentiation of rabbit bone mesenchymal stem cells into
496	endothelial cells in vitro and promotion of defective bone regeneration in vivo. Cell
497	Biochem Biophys. 2014;68:479–487.
498	49. Dan P, Velot É, Decot V, Menu P. The role of mechanical stimuli in the vascular

differentiation of mesenchymal stem cells. J Cell Sci. 2015;128:2415–2422.

ee periez

Table 1 Bone parameters

day 7			day 14		
sham	cWBV	rWBV	sham	cWBV	rWBV
26.9 ± 4.7	23.0 ± 4.0	24.1 ± 7.6	44.0 ± 6.7	52.6 ± 7.3	59.6 ± 5.9**
18.6 ± 1.9	18.2 ± 2.2	19.1 ± 4.3	43.0 ± 5.1	46.1 ± 4.7	47.7 ± 5.3
55.2 ± 14.6	54.8 ± 5.9	53.1 ± 4.5	90.7 ± 19.8	77.0 ± 17.4	$62.2 \pm 10.2^{**}$
-	sham 26.9 ± 4.7 18.6 ± 1.9 55.2 ± 14.6	shamcWBV 26.9 ± 4.7 23.0 ± 4.0 18.6 ± 1.9 18.2 ± 2.2 55.2 ± 14.6 54.8 ± 5.9	shamcWBVrWBV 26.9 ± 4.7 23.0 ± 4.0 24.1 ± 7.6 18.6 ± 1.9 18.2 ± 2.2 19.1 ± 4.3 55.2 ± 14.6 54.8 ± 5.9 53.1 ± 4.5	shamcWBVrWBVsham 26.9 ± 4.7 23.0 ± 4.0 24.1 ± 7.6 44.0 ± 6.7 18.6 ± 1.9 18.2 ± 2.2 19.1 ± 4.3 43.0 ± 5.1 55.2 ± 14.6 54.8 ± 5.9 53.1 ± 4.5 90.7 ± 19.8	shamcWBVrWBVshamcWBV 26.9 ± 4.7 23.0 ± 4.0 24.1 ± 7.6 44.0 ± 6.7 52.6 ± 7.3 18.6 ± 1.9 18.2 ± 2.2 19.1 ± 4.3 43.0 ± 5.1 46.1 ± 4.7 55.2 ± 14.6 54.8 ± 5.9 53.1 ± 4.5 90.7 ± 19.8 77.0 ± 17.4

502 B.Sep differed between days 7 and 14 in the sham (P < 0.05) and cWBV (P < 0.01) groups.

**P < 0.01 vs. the sham group on day 14.

504 cWBV, continuous whole-body vibration; rWBV, repeated bouts of whole-body vibration with short

rest intervals; B.Vf, bone fraction volume; B.Th, bone thickness; B.Sep, bone spacing or thickness of

Cerpeview

506 the background.

507	Table 2 Blood vessel parameters						
			day 7		day 14		
	-	sham	cWBV	rWBV	sham	cWBV	rWBV
	V.Vf [%]	5.5 ± 1.9	5.7 ± 1.6	4.4 ± 1.7	4.0 ± 2.4	6.4 ± 3.3	2.8 ± 2.3
	V.Th [µm]	$[\mu m] 26.6 \pm 3.0 25.0 \\ mm^3] 1679 \pm 655 2250$	25.6 ± 3.3	$23.4 \pm 4.2 \\1859 \pm 495$	$15.8 \pm 3.1^{\dagger\dagger}$ 1163 ± 684	21.9 ± 6.3 $1366 \pm 567^{\dagger}$	$12.4 \pm 2.0^{\dagger\dagger, \#}$ $758 \pm 283^{\dagger\dagger}$
	V.N [/mm ³]		2256 ± 749				
508					Ť	$P < 0.05, \dagger^{\dagger}P < 0.05, \bullet^{\dagger}P < $	< 0.01 vs. day 7.
509					$^{\#\#}P < 0.01 \text{ vs}$	s. the cWBV g	roup on day 14.

510 cWBV, continuous whole-body vibration; rWBV, repeated bouts of whole-body vibration with short

511 rest intervals; V.Vf, vascular volume fraction; V.Th, vessel thickness; V.N, vessel number density.

Peer Peurez

512 Figure legends

513	Figure 1.	Computed tomographic images of bone (gray) and blood vessels (red) in a
514		cylindrical region (diameter, 495 μ m; height, 110 μ m) located in the tibial
515		cortical bone defect on days 7 and 14. Bone regions are displayed as regions with
516		mineral density > 0.5 g/cm ³ . The lighter the gray, the higher the mineral density.
517		On day 7, a woven-like bone structure was observed in every group. On day 14,
518		bone regeneration advanced and blood vessels occupied a smaller space in the
519		rWBV group than in the other two groups. In the cWBV group, thick blood
520		vessels were observed at a relatively high frequency. The lengths of the
521		orthogonal thick-line segments are all 100 μ m. cWBV, continuous whole-body
522		vibration; rWBV, repeated bouts of whole-body vibration with short rest intervals.
523	Figure 2.	Percent distributions of bone volume versus bone mineral density in the cortical
524		defect on days 7 and 14, where bone volume at each density value (bin width:
525		0.022 g/cm ³) is expressed as a percentage of the total volume with mineral
526		density > 0.5 g/cm ³ . On day 14, compared with the sham group, the rWBV group
527		showed a low coefficient of variations and a trend toward low negative skewness,
528		indicating advanced bone repair in terms of mineralization. cWBV, continuous

529		whole-body vibration; rWBV, repeated bouts of whole-body vibration with short rest
530		intervals.
531	Figure 3.	Vessel number density (V.N) in the cortical defect shown for the vessel thickness
532		ranges of < 11.0 and > 11.0 μm on days 7 and 14. On day 7, V.N was higher or
533		tended to be higher for > 11.0 μ m thickness than < 11.0 μ m thickness in every
534		group. From days 7 to 14, V.N for $> 11.0 \ \mu m$ thickness decreased and tended to
535		decrease in the rWBV and cWBV groups, respectively, while V.N for $<11.0\ \mu m$
536		thickness tended to decrease in the rWBV group. On day 14, V.N was higher for
537		> 11.0 μ m thickness than < 11.0 μ m thickness in the sham and cWBV groups, but
538		V.N was similar between the two thickness ranges in the rWBV group. cWBV,
539		continuous whole-body vibration; rWBV, repeated bouts of whole-body vibration with
540		short rest intervals.
541	Figure 4.	Percent distributions of size-specific vessel number density (%V.N) in the
542		cortical defect on days 7 and 14 are shown in boxplots. On day 14, the rWBV
543		group had a dominant distribution of vessels with < 11.0 -µm thickness, showing
544		higher %V.N than the cWBV group and a trend toward higher %V.N than the
545		sham group in the thickness of $<$ 11.0 $\mu m.$ Additionally, the cWBV group

546	showed a high heterogeneous distribution of vessel size, showing higher $\% V.N$

- 547 for relatively large-sized vessels compared with the other groups. cWBV,
- 548 continuous whole-body vibration; rWBV, repeated bouts of whole-body vibration with
- 549 short rest intervals.

553

555

Figure 3

Perez.

557

Figure 4

AR RIVE

The ARRIVE Guidelines Checklist

Animal Research: Reporting In Vivo Experiments

Carol Kilkenny¹, William J Browne², Innes C Cuthill³, Michael Emerson⁴ and Douglas G Altman⁵

¹The National Centre for the Replacement, Refinement and Reduction of Animals in Research, London, UK, ²School of Veterinary Science, University of Bristol, Bristol, Bristol, UK, ³School of Biological Sciences, University of Bristol, Bristol, UK, ⁴National Heart and Lung Institute, Imperial College London, UK, ⁵Centre for Statistics in Medicine, University of Oxford, Oxford, UK.

	ITEM	RECOMMENDATION	Section/ Paragraph
Title	1	Provide as accurate and concise a description of the content of the article as possible.	Title
Abstract	2	Provide an accurate summary of the background, research objectives, including details of the species or strain of animal used, key methods, principal findings and conclusions of the study.	Abstract
INTRODUCTION			
Background	3	 a. Include sufficient scientific background (including relevant references to previous work) to understand the motivation and context for the study, and explain the experimental approach and rationale. b. Explain how and why the animal species and model being used can address the scientific objectives and, where appropriate, the study's 	Introductio n/P1-P4
Objectives	4	Clearly describe the primary and any secondary objectives of the study, or specific hypotheses being tested.	Introductio n/P4
METHODS			
Ethical statement	5	Indicate the nature of the ethical review permissions, relevant licences (e.g. Animal [Scientific Procedures] Act 1986), and national or institutional guidelines for the care and use of animals, that cover the research.	Materials and methods/P 1
Study design	6	 For each experiment, give brief details of the study design including: a. The number of experimental and control groups. b. Any steps taken to minimise the effects of subjective bias when allocating animals to treatment (e.g. randomisation procedure) and when assessing results (e.g. if done, describe who was blinded and when). c. The experimental unit (e.g. a single animal, group or cage of animals). A time-line diagram or flow chart can be useful to illustrate how complex study designs were carried out. 	Materials and methods/P 3
Experimental procedures	7	 For each experiment and each experimental group, including controls, provide precise details of all procedures carried out. For example: a. How (e.g. drug formulation and dose, site and route of administration, anaesthesia and analgesia used [including monitoring], surgical procedure, method of euthanasia). Provide details of any specialist equipment used, including supplier(s). b. When (e.g. time of day). c. Where (e.g. home cage, laboratory, water maze). d. Why (e.g. rationale for choice of specific anaesthetic, route of administration, drug dose used). 	Materials and methods/P 2-P5
Experimental animals	8	 a. Provide details of the animals used, including species, strain, sex, developmental stage (e.g. mean or median age plus age range) and weight (e.g. mean or median weight plus weight range). b. Provide further relevant information such as the source of animals, international strain nomenclature, genetic modification status (e.g. knock-out or transgenic), genotype, health/immune status, drug or test naïve, previous procedures, etc. 	Materials and methods/P 2

The ARRIVE guidelines. Originally published in PLoS Biology, June 2010¹

Housing and	9	Provide details of:	Materials
nusbandry		a. Housing (type of facility e.g. specific pathogen free [SPF]; type of cage or housing; bedding material; number of cage companions; tank shape and material etc. for fish).	methods/P 5
		 b. Husbandry conditions (e.g. breeding programme, light/dark cycle, temperature, quality of water etc for fish, type of food, access to food and water, environmental enrichment). 	
		 c. Welfare-related assessments and interventions that were carried out prior to, during, or after the experiment. 	
Sample size	10	a. Specify the total number of animals used in each experiment, and the number of animals in each experimental group.	Materials and
		 Explain how the number of animals was arrived at. Provide details of any sample size calculation used. 	2, P3
		 c. Indicate the number of independent replications of each experiment, if relevant. 	
Allocating animals to	11	a. Give full details of how animals were allocated to experimental groups, including randomisation or matching if done.	N/A
experimental groups		 Describe the order in which the animals in the different experimental groups were treated and assessed. 	
Experimental outcomes	12	Clearly define the primary and secondary experimental outcomes assessed (e.g. cell death, molecular markers, behavioural changes).	N/A
Statistical	13	a. Provide details of the statistical methods used for each analysis.	Materials
methods		b. Specify the unit of analysis for each dataset (e.g. single animal, group of animals, single neuron).	methods/P
		 c. Describe any methods used to assess whether the data met the assumptions of the statistical approach. 	
RESULTS			
Baseline data	14	For each experimental group, report relevant characteristics and health status of animals (e.g. weight, microbiological status, and drug or test naïve) prior to treatment or testing. (This information can often be tabulated).	Results/P1
Numbers analysed	15	 Report the number of animals in each group included in each analysis. Report absolute numbers (e.g. 10/20, not 50%²). 	Results/P1
		b. If any animals or data were not included in the analysis, explain why.	
Outcomes and estimation	16	Report the results for each analysis carried out, with a measure of precision (e.g. standard error or confidence interval).	Results/P2- P5
Adverse events	17	a. Give details of all important adverse events in each experimental group.	N/A
		 Describe any modifications to the experimental protocols made to reduce adverse events. 	
DISCUSSION			
Interpretation/ scientific	18	 a. Interpret the results, taking into account the study objectives and hypotheses, current theory and other relevant studies in the literature. 	Discussion/ P3-P6
implications		b. Comment on the study limitations including any potential sources of bias, any limitations of the animal model, and the imprecision associated with the results ² .	
		c. Describe any implications of your experimental methods or findings for the replacement, refinement or reduction (the 3Rs) of the use of animals in research.	
Generalisability/ translation	19	Comment on whether, and how, the findings of this study are likely to translate to other species or systems, including any relevance to human biology.	N/A
Funding	20	List all funding sources (including grant number) and the role of the funder(s) in the study.	Acknowled gments/P1

References:

N 3

- Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. *PLoS Biol* 8(6): e1000412. doi:10.1371/journal.pbio.1000412
 Schulz KF, Altman DG, Moher D, the CONSORT Group (2010) CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. *BMJ* 340:c332.