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a b s t r a c t

In our previous studies (Inaba and Kousaka, (2020); Inaba and Tsubone, (2020)), we discovered
bifurcation structures represented by nested mixed-mode oscillations (MMOs) generated by a driven
Bonhoeffer–van der Pol (BVP) oscillator. BVP oscillators are equivalent to FitzHugh–Nagumo models
and have been a subject of intense research for the last six decades. In this study, we consider the
case in which the diode included in a driven BVP oscillator is assumed to operate as an ideal switch.
In this case, Poincaré return maps can be rigorously constructed one-dimensionally, which consist
of two downward convex branches. We also consider the Poincaré return map that is approximated
as a two-segment piecewise-linear discontinuous one-dimensional map. Such a piecewise-linear map
was proposed by Nagumo and Sato and generates nested period-adding bifurcations. We show that
un-nested, singly, and doubly nested MMO-incrementing bifurcations generated by the driven BVP
oscillator coincide with one of the possible un-nested, singly, and doubly nested period-adding
bifurcations, respectively, generated with the Nagumo–Sato map.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Canard explosions were one of the major discoveries in the
980s [1–7], and mixed-mode oscillations (MMOs) are a pheno-
enon that was observed in chemical and electro-chemical ex-
eriments [8–12] during approximately the same period. A basic
MOs pattern comprises L-large oscillations and s-small peaks

and are denoted by the notation Ls. Ever since recent numerical
and theoretical analyses for MMOs [12–16] clarified that they
can be generated in extended slow-fast and multiple time-scale
dynamics that can generate canard explosions [1–7], MMOs have
been the subject of intense research in many fields [17–36].
They can be numerically observed in various dynamics such as
noise-induced oscillators near relaxation oscillations or canards
[37–39], coupled and forced electric circuits [26–28,40–42], ex-
tended three-variable oscillators [22–24,29,43], fractional deriva-
tive dynamics [44], and medical systems [45].

∗ Corresponding author.
E-mail address: h.ito@kansai-u.ac.jp (H. Ito).
ttps://doi.org/10.1016/j.physd.2023.133667
167-2789/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
Maselko et al. [10] and Albahadily et al. [11] demonstrated
that MMOs occur in accordance with the rules of Farey arith-
metic. Maselko [10] introduced parents–daughter processes to
explain the concatenation events of two MMOs. If we denote
two basic MMO sequences using Ls11 and Ls22 notations, they can
e parents and generate a daughter Ls11 Ls22 between the Ls11 - and
s2
2 -generating regions, which satisfies Farey arithmetic because
he firing number L/(L + s) for Ls11 Ls22 is (L1 + L2)/{(L1 + L2) +

s1+s2)}. The parents–daughter processes occur sequentially, and
MO waveforms Ls11 (Ls22 )m emerge between the Ls11 (Ls22 )m−1- and

s2
2 -generating regions for successive m (≥ 1).
Shimizu et al. [26] discovered the simplest parents–daughter

rocesses 12(13)m or, more precisely, [12, 13
× m]m+1 in a driven

VP oscillator, which indicates that 12 is followed by 13 re-
eated m times in the (m + 1) period of the forcing term per
MO sequence. They called the resulting MMO-adding processes
MO-incrementing bifurcations (MMOIBs) [26]. Such processes

ncrement sequentially and terminate until the whole sequences
re replaced by successive 13s. MMOIBs are well-known parents–
aughter processes that were frequently observed in autonomous
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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22,23,46,47] and nonautonomous ordinary differential equations
ODEs) [28,29,48]; thus, we call them zero-degree (un-nested)
MOIBs, which are generated between two adjacent simple
MOs. Un-nested MMOIBs occur in a fashion similar to period-
dding bifurcations generated by circle maps [22,23,28,29,47,49,
0].
The fundamental mechanism causing simple MMOs has been

nalyzed theoretically by several researchers [15,17–19,30,31,34].
owever, at present, there are many things that are not clear
bout MMOIBs [22,23,26–29,43] even numerically. Un-nested
MOIBs have generated intensive research attention and have
een extensively studied numerically in both autonomous [13,16,
2,23,29,43,47] and nonautonomous [20,21,26,27,50,51] ODEs.
In previous works [48,51–54], we discovered bifurcation struc-

ures of nested MMOs generated by a driven BVP oscillator.
t is known that BVP oscillators are equivalent to FitzHugh–
agumo dynamics [55,56] and have been studied extensively.
hey can be nested at least twice [51,52,54]. The generation
atterns of nested MMOs are as follows. Let two adjacent simple
MOs be denoted by 1s

≡ A0 and 1s+1
≡ B0. The number of

arge oscillations L = 1 could be fundamental in extended and
orced BVP dynamics [46–48,51–53]. Then, un-nested MMOIBs
enerate MMO sequences denoted by [A0, B0 × m] for successive

m (≥ 1) between the [A0, B0 × (m − 1)]- and B0-generating
egions, where [A0, B0 × m] indicates that A0 is followed by B0
epeated m times. In this notation, [A0, B0 × 0] = A0. Next, let
wo adjacent un-nested MMOIB-generated MMOs be denoted by
A0, B0 × m] ≡ A1 and [A0, B0 × (m + 1)] ≡ B1, where m
s one of the integer values. We then call the following more
ighly nested MMOIB-generated MMOs that occur between two
djacent complex MMOs (i.e., A1 and B1) nested MMOs, which
xhibit nested trajectories on Poincaré return maps. To the best of
ur knowledge, nested MMOs can be observed in nonautonomous
DEs [51,52,54] and not in autonomous ODEs [22,23,47]. Singly
ested MMOIBs generate MMO sequences denoted by [A1, B1×p]

for successive p (≥ 1) between the [A1, B1 × (p − 1)]- and B1-
generating regions. Similarly, [A1, B1 × p] indicates that A1 is
followed by B1 repeated p times. The nested MMOIBs occur at
least twice. Let two adjacent singly nested MMOIB-generated
MMOs be denoted by [A1, B1 × p] ≡ A2 and [A1, B1 × (p +

1)] ≡ B2, where p is one of the integer values. Then, doubly
nested MMOIBs generate MMO sequences denoted by [A2, B2×q]
sequentially between the [A2, B2 × (q − 1)]- and B2-generating
regions. Similarly, [A2, B2 × q] indicates that A2 is followed by
B2 repeated q times. However, our previous results [48,51–53]
have focused on the BVP oscillator in a rather complex case with
the bistability of a stable focus and a relaxation oscillation in the
absence of perturbation that exist as a result of a subcritical Hopf
bifurcation. For clarity, we summarize the definition of un-nested
and nested MMOs in Table 1.

In this study, we focus on the slow-fast BVP oscillator in a
simpler case where the dynamics have a small amplitude oscil-
lation (canard without a head) as a result of a supercritical Hopf
bifurcation in the absence of perturbations [54]. Furthermore, to
analyze un-nested, singly and doubly nested MMOIB-generated
MMOs, we consider an idealized case where the diode contained
in the oscillator is approximated as an ON–OFF switch [57–59].
This idealization of the diode corresponds to a degenerated case
where one of the parameters tends to infinity and the governing
equation is derived as a constrained equation. In this case, one-
dimensional (1D) Poincaré return maps can be constructed from
the oscillator. It has been clarified that MMOIBs occur on the
two downward convex branches in the invariant interval on the
return map. In addition, numerical results have been verified in
circuit experiments.

To investigate how nested MMOIB-generated MMOs emerge,
we consider a piecewise-linear discontinuous approximation for
2

Table 1
Definition of un-nested and nested MMOs.
Definition Pattern

un-nested MMOIB-generated
MMOs

[A0, B0 × m] for successive m (≥ 1),
where A0 = 1s and B0 = 1s+1

singly nested MMOIB-generated
MMOs

[A1, B1 × p] for successive p (≥ 1),
where A1 = [A0, B0 × m] and
B1 = [A0, B0 × (m + 1)]

doubly nested MMOIB-generated
MMOs

[A2, B2 × q] for successive q (≥ 1),
where A2 = [A1, B1 × p] and
B2 = [A1, B1 × (p + 1)]

1D Poincaré return maps. Such a piecewise-linear discontinuous
1D map has been analyzed by Nagumo and Sato, Hata, Yoshida,
Doi, and Leonov [60–68]. We call the piecewise-linear discontin-
uous 1D map a Nagumo–Sato map. The contents of the Nagumo–
Sato map discussed by Leonov are briefly described in Ref. [69]
by Mira. In the Nagumo–Sato map, period-adding bifurcations are
nested infinitely many times, and a devil’s staircase emerges [60,
69]. There are large differences between the driven BVP oscillator
and the Nagumo–Sato map, however; mirror sequences always
appear in the Nagumo–Sato map, whereas mirror sequences do
not emerge in the driven BVP oscillator because both branches
in the Poincaré return map are downward convex in the BVP
oscillator. For example, in the Nagumo–Sato map, period-adding
bifurcations occur when either of the two branches approaches
a diagonal line, whereas the lower branch of the Poincaré return
map cannot be tangential to the diagonal line in the BVP oscillator
because the branch is downward convex. Thus, among the possi-
ble solutions in the Nagumo–Sato map, only one solution with the
same symbol appears as an attractor in the driven BVP oscillator.
Namely, the lower and upper branches in the Nagumo–Sato map
correspond to 1 and 0, respectively, and 0 and 1 correspond to
A0 and B0, respectively. Then, ‘‘0111 · · · ’’ and ‘‘1000 · · · ’’ appear
n the Nagumo–Sato map, whereas only ‘‘0111 · · · ’’ can appear
n the driven BVP oscillator, i.e., we conclude that the Farey
rees in the BVP oscillator are asymmetric. Since the period-
dding bifurcations can be nested as many times as desired in the
agumo–Sato map, these results suggest that more deeply nested
MOs could exist in the driven BVP oscillator.

. Circuit setup of constrained BVP oscillator with diode under
eak periodic perturbations

Fig. 1 shows a circuit diagram for a driven BVP oscillator with
he idealized diode discussed in Ref. [50–52]. In the figure, L, C ,
, E0, and E1 sinω1t are an inductor, capacitor, linear resistor,
C bias, and sinusoidal voltage source. In addition, G1 and G2
re nonlinear conductors, where G1 has third-order nonlinear
oltage–current characteristics, i.e., G1(v) = −g1v + g3v3, and G2
epresents a piecewise linear diode:

2(v) =

{
0, v < V ,

g(v − V ), v ≥ V ,
(1)

here g1, g3, g, V > 0. g is the ON conductance of the diode
nd is usually large. Since G0(v) = I1 + I2 (see Fig. 1), the

current flowing through the capacitor in the reverse direction of
v is Cdv/dt , and the voltage generated across the inductor in the
reverse direction of i is Ldi/dt , the governing equation is written
by the following system of two nonautonomous ODEs.⎧⎪⎨⎪⎩
C
dv
dt

= i − G0(v),

L
di

= −v − Ri + E0 + E1 sinω1t,
(2)
dt
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Fig. 1. Driven BVP circuit with idealized diode.
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here ω1 = 2π f (f is the frequency of the forcing term), and

G0(v) =

{
I1(v) + I2(v) = −g1v + g3v3, v < V ,

I1(v) + I2(v) = −g1v + g3v3
+ g(v − V ), v ≥ V .

(3)

In Eq. (2), C is assumed to be small. Therefore, the governing
equation then represents slow-fast dynamics, where v and i are
fast and slow variables, respectively. (Note that we use the no-
tation L to express the number of large excursions in MMOs, but
these two cannot be confused.)

Using the following rescaling,

τ =
t

Lg1
, ε =

C
g2
1 L

, k1 = g1R, ω = Lg1ω1,

B0 =

√
g3
g1

E0, B1 =

√
g3
g1

E1, x =

√
g3
g1

v,

y =

√
g3
g3
1
i, u =

g
g1

, α =

√
g3
g1

V ,

(4)

In this study, we also used the notation B0 as a simple MMO
attern 1s+1, but there should be no confusion.) Eq. (2) is trans-
ormed to the following equation.

εẋ = y − g0(x),
ẏ = −x − k1y + B0 + B1 sinωτ,

(5)

here ε is a small parameter, where the dot over the variables
enotes the first-order derivative with respect to time τ and g0
s written by

0(x) =

{
−x + x3, x < α,

−x + x3 + u(x − α), x ≥ α.
(6)

Here, we consider the limit where u tends to infinity. The
voltage–current characteristics of g0(x) that includes an ON–OFF
diode are shown in Fig. 2. In this idealized case, x is constrained
to a constant α, and the dynamics are approximated by the
following constrained ODEs:

1. diode OFF:{
εẋ = y − g0(x),
ẏ = −x − k1y + B0 + B1 sinωτ,

⇓ x = α ⇑ y = −α + α3(= g0(α)),
2. diode ON:{

x = α,

ẏ = −α − k1y + B0 + B1 sinωτ.

(7)

The symbols ⇓ and ⇑ represent the transition conditions. Since
x is a constant when the diode is in the ON state, the lower pair
of equations can be expressed by a one-variable nonautonomous
equation. The transition ⇑ occurs when y = −α + α3(= g0(α))
because ẋ = 0 (x is constant when the diode is in the ON
3

Fig. 2. Voltage–current characteristics of nonlinear conductance g0(x) that
ontains ON–OFF diode with complete saturation (α = 1).

tate), and therefore, the current flowing through the nonlinear
onductor satisfies the equation g0(α) = y at the transition from
he ON state to the OFF state.

Such an idealization method using constrained ODEs was pro-
osed by Inaba et al. [57–59] to precisely analyze chaos and
orus breakdown generated by extended and driven van der Pol
scillators with a diode in the 1980s–1990s. These constrained
ynamics with an idealized diode have similar characteristics to
tick–slip mechanical oscillators with dry friction [70–72]. Inaba
t al. [47,49–52] succeeded in explaining successive MMOIB-
enerated MMOs precisely generated by extended and driven BVP
scillators using 1D Poincaré return maps.
In the following discussion, we set α = 1 (see Figs. 2 and 3),

= 0.1, k1 = 0.2, B0 = 0.49, and B1 = 0.008, and we select ω as
the bifurcation parameter.

A structure on the x–y plane in the absence of perturbation is
shown in Fig. 3. In the case of B1 = 0, a small amplitude oscilla-
tion (canard without a head) exists as a result of a supercritical
Hopf bifurcation [54]. By adding weak periodic perturbations,
various MMOs emerge.

In Ref. [54], we focused on nested MMOs between the 13-
and 14-generating regions, which occur in the BVP oscillator that
has a canard without a head in the absence of perturbations,
where the constrained ODEs with an idealized diode was not
considered. In this study, we do so between the 12- and 13-
generating regions and adopt the idealization of a diode. If this
idealization is used, Poincaré return maps can be constructed
one-dimensionally. Figs. 4(a.1) and (e) show time series wave-
forms of simple 12 and 13 MMOs. Fig. 4(a.2) shows the projection
of Fig. 4(a.1) onto the x–y plane. From this figure, we can see
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Fig. 3. Structure on x–y plane in absence of perturbation (α = 1, ε = 0.1, k1 =

.2, B0 = 0.49, and B1 = 0). x-nullcline: red, y-nullcline: black, and canard
scillation without head: blue.

hat the attractor is constrained onto x = α(= 1). Figs. 4(b)–
d) show time series waveforms of un-nested MMOIB-generated
12, 13

× m]m+1 MMOs for m = 1–3, respectively.

3. One-parameter bifurcation diagrams and un-nested, singly
and doubly nested MMOs in driven BVP oscillator

To analyze MMO bifurcations precisely, Poincaré return maps
are introduced. Since the equation for the ON state is given by 1D
nonautonomous ODEs, 1D Poincaré return maps can be exactly
defined as follows.

To define the 1D Poincaré return maps, we define a line Σ1
and half plane π1 as

π1 = {(τ , x, y)|x − α = 0, y − g0(x) < 0 (ẋ < 0) }, (8)

Σ1 = {(τ , x, y)|x − α = 0, y − g0(x) = 0 },

4

(see Fig. 5). π1 is a half plane where the diode is in the ON state,
and Σ1 is a line at which the transition ⇑ from the ON state to
the OFF state occurs.

Let us consider a solution where the initial condition is sit-
uated on line Σ1 at (τ , x, y) = (τ0, 1, −α + α3(= g0(α))) as
shown in Fig. 5. The solution leaving line Σ1 enters the diode-
OFF region, strikes π1 at a point marked P , and strikes Σ1 again
at (τ , x, y) = (τ1, 1, −α + α3(= g0(α))). Therefore, we can define
the 1D Poincaré return map T that transforms τ0 to τ1 as

T : Σ1 → Σ1, θ0 ↦→ θ1, (9)

where θ0 = ωτ0/2π , and θ1 = ωτ1/2π mod 1.
Even if the diode is not assumed to operate as an ideal switch,

similar return maps, which we refer to as first return plots
[51,54], can be defined in a similar manner. Such first return
plots are only approximately defined in one-dimensional space.
We emphasize that the diode idealization permits the exact
construction of 1D Poincaré return maps.

Fig. 6 shows a global view of a one-parameter bifurcation
diagram between the 12

≡ A0- and 13
≡ B0-generating regions.

Un-nested MMOIB-generated [A0, B0 × m] = [12, 13
× m]m+1

MMOs can be observed sequentially for successive m, which
indicate that A0 is followed by B0 repeated m times. Note that
the subscript indicates the number of periods of the forcing term
per MMO, and it equals the number of large oscillations.

Figs. 7(a)–(d) show 1D Poincaré return maps and the corre-
sponding trajectories for [A0, B0×m] = [12, 13

×m]m+1 with m =

1, 2, 3, and 10, respectively. Since MMOIBs occur sequentially
until the 13 branch is tangential to the diagonal line, they could
occur as many times as we track. We call this tangent point
an MMO increment–terminating tangent bifurcation [51,52]. The
parameter values at the tangent point can be derived by solving
the following simultaneous equations numerically:

T (θ, ω) = θ,
∂

∂θ
T (θ, ω) = 1.

(10)

The return map T at the tangent point is shown in Fig. 8. Note
that since the branch generating 12 in the invariant interval of the
Poincaré return map cannot be tangential to the diagonal line, the
dynamics can generate asymmetric Farey trees.
Fig. 4. Time series waveforms and attractor, showing (a.1) 12 with ω = 0.68, (a.2) projection of attractor of (a.1) onto x–y plane, (b) [12, 13
× 1]2 with ω = 0.612,

(c) [12, 13
× 2]3 with ω = 0.592, (d) [12, 13

× 3]4 with ω = 0.581, and (e) 13 with ω = 0.55.



N. Inaba, T. Tsubone, H. Ito et al. Physica D 446 (2023) 133667

m
t
r

Fig. 5. Definition of 1D Poincaré return maps for constrained circuit with
idealized diode represented by Eq. (7).

Fig. 6. Global view of one-parameter bifurcation diagram between the 12- and
13-generating regions.

Fig. 7. 1D Poincaré return maps and corresponding trajectories for un-nested
MMOIB-generated MMOs [12, 13

× m]m+1 , showing (a) m = 1 with ω = 0.612,
(b) m = 2 with ω = 0.592, (c) m = 3 with ω = 0.581, and (d) m = 10 with
ω = 0.5649.

Next, we focus on the parameter interval between the [12, 13
×

1] ≡ A - and [12, 13
×2] ≡ B -generating regions. Fig. 9 shows a
2 1 3 1

5

Fig. 8. T at MMO incrementing–terminating bifurcation point for [A1, B1 × m]

with m → ∞ for ω = 0.5587274.

Fig. 9. Magnified view of one-parameter bifurcation diagram between [12, 13
×

1]2- and [12, 13
× 2]3-generating regions.

agnified one-parameter bifurcation diagram. Self-similar struc-
ures can be observed, i.e., between the A1- and B1-generating
egions, [A1, B1 × p] = [[12, 13

× 1]2, [12, 13
× 2]3 × p]3p+2

can be observed sequentially for successive p, which exhibit
singly nested MMOs. As a consequence, the driven BVP dynamics
can generate very complex time series waveforms, as shown
in Ref. [54], which could not be easily distinguished only by
observing the MMO waveforms alone [51,52,54].

Our numerical results suggest that, in general, singly nested
MMOIBs generate [[1s, 1s+1

× m]m+1, [1s, 1s+1
× (m + 1)]m+2 ×

p](m+2)p+(m+1) for successive p and integer values of s and m. The
above-mentioned singly nested MMOs correspond to the s = 2
and m = 1 cases.

Figs. 10(a)–(f) show Poincaré return maps and the correspond-
ing trajectories for singly nested MMOIB-generated [[12, 13

×

1]2, [12, 13
× 2]3 × p]3p+2 MMOs with p = 1–6. The singly nested

MMOs could occur as many times as we track.
The singly nested [A1, B1 × p] MMOs could increment sequen-

tially and terminate with p → ∞ toward MMO increment–
terminating tangent bifurcation point for T applied thrice (be-
cause the number of the forcing term (the final subscript) of
B1 = [12, 13

×2]3 at which these singly nested MMOs accumulate
is three). T 3(θ ) at the tangent point for [A1, B1 × p] with p → ∞

is shown in Fig. 11. The tangent bifurcation point for the singly
nested MMO sequences can be obtained by solving the following
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Fig. 10. 1D Poincaré return maps and corresponding trajectories of singly nested MMOIB-generated [[12, 13
× 1]2, [12, 13

× 2]3 × p]3p+2 MMOs, showing (a) p = 1
ith ω = 0.5995, (b) p = 2 with ω = 0.5966, (c) p = 3 with ω = 0.59525, (d) p = 4 with ω = 0.59459, (e) p = 5 with ω = 0.59417, and (f) p = 6 with ω = 0.59389.
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Fig. 11. T 3(θ ) at MMO incrementing–terminating tangent bifurcation point for
singly nested [A1, B1 × p] MMOs with p → ∞ for ω = 0.592864855.

simultaneous equations:

T 3(θ, ω) = θ,
∂

∂θ
T 3(θ, ω) = 1.

(11)

he successive generation of these singly nested MMOs is well ex-
lained by this map. T (θ ) applied thrice is tangential to the diago-
al line at three points, P1,3, P2,3, and P3,3. T (P1,3) = P2,3, T (P2,3) =

3,3, and T (P3,3) = P1,3 hold at this tangent point.
Finally, we discuss doubly nested MMOs. Let two adjacent

ingly nested MMOs be denoted by [A1, B1 × 1] = [[12, 13
×

]2, [12, 13
× 2]3 × 1]5 ≡ A2 and [A1, B1 × 2] = [[12, 13

×

1]2, [12, 13
× 2]3 × 2]8 ≡ B2. Between the A2- and B2-generating

regions, doubly nested MMOIB-generated MMOs produce se-
quences represented by [A , B × q] = [[[12, 13

× 1] , [12, 13
×
2 2 2

6

Fig. 12. Highly magnified view of one-parameter bifurcation diagram between
the A2 = [[12, 13

× 1]2, [12, 13
× 2]3 × 1]5- and B2 = [[12, 13

× 1]2, [12, 13
×

]3 × 2]8-generating regions where doubly nested MMOs can be observed.

]3 × 1]5, [[12, 13
× 1]2, [12, 13

× 2]3 × 2]8 × q]8q+5 sequentially
ith successive values of q. A highly magnified view of a one-
arameter bifurcation diagram is shown in Fig. 12. Since the
oubly nested MMO sequences are very long, they appear in small
ntervals of the bifurcation parameter ω. However, they could be
bserved as many times as we track. The doubly nested MMO
ttractors for q = 1–6 are shown in Figs. 13(a)–(f), respectively.
hese phenomena could be almost indistinguishable just by ob-
erving the time series waveforms alone [51,52,54]. In addition, it
s difficult to distinguish them even if we use 1D Poincaré return
aps because the period of the sequence is already 53 when
= 6.
The doubly nested [A2, B2 × q] MMOs could increment se-

uentially and terminate with q → ∞ toward MMO increment–
erminating tangent bifurcation point. Since the number of the
orcing term (the final subscript) of B2 is 8, T applied 8 times is
angential to the diagonal line at the tangent bifurcation point. T
pplied 8 times at the tangent point is shown in Fig. 14. The tan-
ent bifurcation point for these doubly nested MMO sequences
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Fig. 13. 1D Poincaré return maps and corresponding trajectories of doubly nested MMOIB-generated [[[12, 13
× 1]2, [12, 13

× 2]3 × 1]5, [[12, 13
× 1]2, [12, 13

× 2]3 ×

]8 × q]8q+5 MMOs, showing (a) q = 1 with ω = 0.59728, (b) q = 2 with ω = 0596903, (c) q = 3 with ω = 0.597765, (d) p = 4 with ω = 0.5967192, (e) p = 5 with
= 0.59668805, and (f) p = 6 with ω = 0.59666905.
a

Fig. 14. T 8(θ ) at MMO incrementing–terminating tangent bifurcation point for
doubly nested [A2, B2 × q] MMOs with q → ∞ for ω = 0.592864855.

an be obtained by solving the following simultaneous equations
umerically:

T 8(θ, ω) = θ,
∂

∂θ
T 8(θ, ω) = 1.

(12)

ur numerical results suggest that doubly nested MMOIBs could
enerate [[[1s, 1s+1

×m]m+1, [1s, 1s+1
×(m+1)]m+2×p](m+2)p+(m+1),

[[1s, 1s+1
×m]m+1, [1s, 1s+1

×(m+1)]m+2×(p+1)](m+2)(p+1)+(m+1)×

q](m+2)(p+1)q+(m+1)q+(m+2)p+(m+1) between the [[1s, 1s+1
× m]m+1,

[1s, 1s+1
× (m + 1)]m+2 × p](m+2)p+(m+1)- and [[1s, 1s+1

× m]m+1,

[1s, 1s+1
×(m+1)]m+2×(p+1)](m+2)(p+1)+(m+1)-generating regions

for integer values of s,m, and p and successive q. The above-
mentioned numerical results correspond to the s = 2,m = 1,
7

Fig. 15. 12 attractor in x–y plane for f = 1, 200 Hz.

nd p = 1 cases. In the figure, the relationships Pk+1,8 = T (Pk,8)
for k = 1–7 and P1,8 = T (P8,8) are satisfied.

4. Circuit experiments for un-nested and nested MMOs

In this section, we conduct laboratory measurements and ob-
serve un-nested and nested MMOIB-generated MMOs. In addi-
tion, we realize circuit equipment for observing Poincaré return
maps experimentally.

We set L = 200 mH, C = 10 nF, R = 400 �, E0 = 5.0 V,
E1 = 100 mV, and V = 10 V and realized g1 = 5.0 × 10−4 A/V
and g3 = 5.0 × 10−6 A3/V using an element that included some
diodes. We varied f as the bifurcation parameter.

Fig. 15 shows an experimentally realized 12 attractor in the
x–y plane, which was constrained to V = 10 V when the diode
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Fig. 16. Time series waveforms, showing (a) 12 for f = 1, 200 Hz and (b) 13 for f = 860 Hz.
Fig. 17. (1) Time series waveforms and (2) corresponding Poincaré return maps, showing (a) [12, 13
× 1]2 for f = 980 Hz, (b) [12, 13

× 2]3 for f = 946 Hz, and (c)
12, 13

× 3]4 for f = 922 Hz.
t
r

c
1
w

as in the ON state and agrees with the numerically obtained
olution shown in Fig. 4(a.2).
Figs. 16(a) and (b) show time series waveforms of simple 12

nd 13 MMOs, which agrees with the numerically obtained ones
hown in Figs. 4(a.1) and (e), respectively.
Figs. 17(a.1)–(c.1) and (a.2)–(c.2) show time series waveforms

nd the corresponding Poincaré return maps for un-nested
MOIB-generated [12, 13

× 1]2, [12, 13
× 2]3, and [12, 13

× 3]4
MOs, respectively, obtained experimentally, which agrees with
8

he numerical results shown in Figs. 4(b)–(d) and Figs. 7(a)–(c),
espectively.

Finally, Figs. 18(1) and (2) show time series waveforms and the
orresponding Poincaré return maps of singly nested [[12, 13

×

]2, [12, 13
× 2]3 × 1]5 MMOs obtained experimentally, which

ere observed between the [12, 13
× 1]2- and [12, 13

× 2]3-
generating regions and agrees with the numerical results shown
in Fig. 10(a). We successfully observed simple, un-nested, and
nested MMOs in the experimental measurements.
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Fig. 18. (1) Time series waveforms and (2) corresponding Poincaré return maps of singly nested MMOs obtained experimentally, showing [[12, 13
× 1]2, [12, 13

×

2]3 × 1]5 for f = 954 Hz.
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Fig. 19. Behavior of solutions caused by period-adding bifurcations. (a) ‘‘0111’’
for a = 8 and b = 1 and (b) ‘‘1000’’ for a = 0.125 and b = 1.

5. Nagumo–Sato piecewise-linear discontinuous 1D map

5.1. Introduction of Nagumo–Sato piecewise-linear discontinuous
1D map

In this section, we precisely review a 1D map proposed by
Nagumo and Sato [60,66–68]. It is given by the following two-
segment piecewise-linear discontinuous 1D map:

xn = T (xn) =

{
T1(xn) = λ1xn + a if xn < 0,
T2(xn) = λ2xn − b if xn > 0, (13)

where a > 0, b > 0, 0 < λ1 < 1, and 0 < λ2 < 1 are assumed,
and where ∆1 = a/b is selected as the bifurcation parameter.
We call Eq. (13) the Nagumo–Sato map. The dynamics always
generate periodic solutions because the gradient of the map is
less than unity for any xn ∈ R. Since the Nagumo–Sato map
is piecewise-linear, all solutions and parameter conditions are
explicit. See Refs. [60–69] for more details on the Cantor function
and a devil’s staircase. Brief commentary on the 0 < λ1 < 1 and
0 < λ2 < 1 cases can be found in [69].

We focus on periodic solutions generated by the Nagumo–Sato
map. Using T1 and T2, T 4(x) can be written as T2(T2(T2(T1(x)))) if
x < 0, T1(x) > 0, T2(T1(x)) > 0, and T2(T2(T1(x))) > 0. This can be
written using the notation T 3

2 T1.
Fix b = 1. Then, ∆1 = a is the bifurcation parameter. If

a is larger and smaller, period-adding sequences are generated
sequentially. It is assumed that 0 is output when the solution
strikes branch T1 and that 1 is output when the solution strikes
branch T2. The solution is uniquely determined by the output
sequences of the symbolic dynamics.

The attractors in Figs. 19(a) and (b) are identified by the output
sequences ‘‘0111’’ and ‘‘1000’’, respectively.

Note that T p
2 T

q
1 does not exist for p ≥ 2 and q ≥ 2. We prove

this as follows. In order for the solution to output successive
9

multiple 0s, T1(−b) must be less than 0. In order for the solution
to output multiple 1s, T (a) must be larger than 0. Therefore,

−λ1b + a < 0, λ2a − b > 0. (14)

Thereby, λ1λ2 > 1 must be satisfied. However, this is contrary to
the assumption.

5.2. Analysis of un-nested period-adding bifurcations of Tm
2 T1 and

Tm
1 T2 types for successive m (m ≥ 1)

In this section, we consider un-nested period-adding bifur-
cations, one of which corresponds to un-nested MMOIBs. First,
we consider the case in which Tm

2 T1 (m ≥ 1) has a stable fixed
point. In this case, un-nested period-adding bifurcations 1m0 are
generated for successive m. When considering that the symbols
are cyclic, symbolic sequence 1m0 can be identified as 01m, so, we
rite 1m0 = 01m. Tm

2 T1 is written as

m
2 T1(x) = λ1λ

m
2 x + λm

2 a −
b(1 − λm

2 )
1 − λ2

. (15)

et the fixed point of Tm
2 T1(x) be denoted by x̄. From Tm

2 T1(x̄) = x̄,
¯ can be derived as

¯ =

λm
2 a −

b(1 − λm
2 )

1 − λ2

1 − λ1λ
m
2

. (16)

n order for x̄ to be a fixed point, −b < x̄ < 0 must be satisfied. By
olving this, the parameter condition that generates x̄ is expressed
s

1 +
1 − λm−1

2

λm−1
2 (1 − λ2)

< ∆1 <
1 − λm

2

λm
2 (1 − λ2)

. (17)

Similarly, we derive a condition in which Tm
1 T2 (m ≥ 1) has

fixed point. In this case, un-nested period-adding bifurcations
m1 = 10m are generated for successive m. Tm

1 T2(x) is derived as
ollows.

m
1 T2(x) = λ2λ

m
1 x − λm

1 b + a
1 − λm

1

1 − λ1
. (18)

et the fixed point of Tm
1 T2(x) be denoted by ¯̄x. From Tm

1 T2( ¯̄x) = ¯̄x,
¯̄ can be given by

¯̄ =

−λm
1 b + a

1 − λm
1

1 − λ1

1 − λ2λ
m
1

, (19)

nd such ¯̄x (0 < ¯̄x < a) exists if

2 +
1 − λm−1

1
m−1 <

1
<

1 − λm
1

m . (20)

λ1 (1 − λ1) ∆1 λ1 (1 − λ1)
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At first glance, un-nested period-adding bifurcations Tm
1 T2 and

1Tm
2 appear to be similar to un-nested MMOIBs. However, only

12, 13
× m]m+1 can be generated sequentially for successive m

and the mirror sequence [12
× m, 13

]m+1 cannot emerge in the
driven BVP oscillator because only branch 13 can be tangent to
the diagonal line, but branch 12 can never be tangent to the
iagonal line, as shown in Fig. 8. This is the main difference in the
ifurcation structures between the Nagumo–Sato map and driven
VP oscillator. Namely, one of two un-nested period-adding bifur-
ations generated with the Nagumo–Sato map explains un-nested
MOIBs.
Note that the parameter interval of Eq. (20) for m = 1

coincides with that of Eq. (17) for m = 1. Note also that there
re gaps between the parameter intervals, i.e., there are intervals
f ∆1 that satisfy the following equation:
1 − λm

2

λm
2 (1 − λ2)

< ∆1 < λ1 +
1 − λm

2

λm
2 (1 − λ2)

, m = 1, 2, 3 · · · , (21)

1 − λm
1

λm
1 (1 − λ1)

<
1

∆1
< λ2 +

1 − λm
1

λm
1 (1 − λ1)

, m = 1, 2, 3 · · · . (22)

5.3. Analysis for nested period-adding bifurcations of (Tm+1
2 T1)p(Tm

2
T1) and (Tm+1

2 T1)(Tm
2 T1)p (m ≥ 1) types for successive p (p ≥ 1)

We analyze what phenomena are observed in the parameter
gaps given by Eq. (21). From Eq. (17), these parameter gaps are
regions between the intervals where Tm

2 T1 and Tm+1
2 T1 have a

stable fixed point. In these regions,

(Tm+1
2 T1)p(Tm

2 T1) for p ≥ 1, (23)

and

(Tm+1
2 T1)(Tm

2 T1)p for p ≥ 1, (24)

have a stable fixed point where m is a fixed integer, and singly
nested period-adding bifurcations

(1m+10)p(1m0) = (01m)(01m+1)p for p ≥ 1, (25)

and

(1m+10)(1m0)p = (01m)p(01m+1) for p ≥ 1, (26)

can occur, which are among the four possible singly nested
period-adding bifurcations.

To analyze nested period-adding bifurcations, let us consider
the following composite map:

Π1(x) = Tm
2 T1(x). (27)

Solving Π (x⊤) = 0 yields

x⊤
= −

a
λ1

+
b(1 − λm

2 )
λ1λ

m
2 (1 − λ2)

. (28)

herefore, Π1(x) on the interval −b ≤ x < 0 is represented by

1(x) =

⎧⎪⎨⎪⎩
λ1λ

m
2 x + λm

2 a −
b(1 − λm

2 )
1 − λ2

for − b ≤ x < x⊤,

λ1λ
m+1
2 x + λm+1

2 a −
b(1 − λm+1

2 )
1 − λ2

for x⊤ < x < 0.

(29)

Via the transformation of y = x − x⊤ and Π = Π1 − x⊤, Π (y) is
represented as

Π (y) =

⎧⎪⎪⎨⎪⎪⎩
λ1λ

m
2 y +

1
λ1λm2

(
λm
2 a −

b(1 − λm
2 )

1 − λ2

)
for y < 0,

λ1λ
m+1
2 y − b +

1
λ1λm2

(
λm
2 a −

b(1 − λm
2 )

1 − λ2

)
for y > 0.
(30)
10
Thus, Π is written by the following form.

yn+1 = Π (yn) =

{
λ1
1yn + a1, for yn < 0,

λ1
2yn − b1, for yn > 0, (31)

where

λ1
1 = λ1λ

m
2 , λ1

2 = λ1λ
m+1
2 ,

a1 =
1

λ1λ
m
2

(
λm
2 a − b

1 − λm
2

1 − λ2

)
,

b1 = b −
1

λ1λ
m
2

(
λm
2 a − b

1 − λm
2

1 − λ2

)
.

(32)

ote that Π in Eq. (31) has the same form as T in Eq. (13).
herefore, the period-adding bifurcations can be nested. Further-
ore, by considering the similar discussions for the nested map of
q. (31), it can be understood easily that the bifurcation structures
f period-adding bifurcations can be nested as many times as
esired.
By applying Eqs. (17) and (20) to Eq. (31), one of the four singly

ested maps (Tm+1
2 T1)p(Tm

2 T1) has a stable fixed point if

1
1 +

1 − (λ1
2)

p−1

(λ1
2)p−1(1 − λ1

2)
< ∆2 <

1 − (λ1
2)

p

(λ1
2)p(1 − λ1

2)
, (33)

nd (Tm+1
2 T1)(Tm

2 T1)p has a stable fixed point if

1
2 +

1 − (λ1
1)

p−1

(λ1
1)p−1(1 − λ1

1)
<

1
∆2

<
1 − (λ1

1)
p

(λ1
1)p(1 − λ1

1)
, (34)

here ∆2 = a1/b1. Note that Eq. (33) coincides with Eq. (34)
f p = 1. The existence of fixed points of (Tm+1

2 T1)p(Tm
2 T1) and

(Tm+1
2 T1)(Tm

2 T1)p indicate that the following sequences exist:

(1m+10)p(1m0) = (01m)(01m+1)p for p ≥ 1, (35)

and

(1m+10)(1m0)p = (01m+1)(01m)p for p ≥ 1, (36)

which are among four possible singly nested period-adding bifur-
cations.

By conducting similar discussions for

Π2(x) = Tm
1 T2(x), (37)

the existence of the fixed point for the other singly nested maps
(Tm

1 T2)p(Tm+1
1 T2) and (Tm+1

1 T2)p(Tm
1 T2) can be proven. They indi-

cate that the following sequences exist:

(0m1)p(0m+11), for p ≥ 1, (38)

and

(0m+11)p(0m1), for p ≥ 1, (39)

which are among the four possible singly nested period-adding
bifurcations.

Eqs. (35), (36), (38), and (39) represent the four possible singly
nested period-adding bifurcations.

5.4. Relationship for nested solutions generated between driven BVP
oscillator and Nagumo–Sato map

To consider the relationship for the nested solutions generated
between the driven BVP oscillator discussed in this study and the
Nagumo–Sato map, make 13 correspond to 0 and 12 to 1 where
the s = 2 case is considered. It is shown in this paper that one
of the possible solutions of un-nested, singly and doubly nested
period-adding bifurcations generated by the Nagumo–Sato map
coincide with un-nested, singly and doubly nested MMOIBs in the

BVP oscillator.
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Fig. 20. Behavior of solutions caused by un-nested period-adding bifurcations,
showing (a) ‘‘01’’ for a = 1 and b = 1 and (b) ‘‘011’’ for a = 4 and b = 1.

Fig. 21. Behavior of solutions caused by singly nested period-adding bifurca-
tions, showing (a) ‘‘01011’’ for a = 2.3 and b = 1, (b) 01(011)2 for a = 2.47
nd b = 1, (c) 01(011)3 for a = 2.497 and b = 1, and (d) magnified view of (c).

For the un-nested case, MMOIBs that correspond to period-
dding bifurcations for maps represented by 1m0 = 01m can
ccur sequentially for successive m, but MMOIBs represented by
m1 = 10m cannot do so because both branches in the invariant
nterval of the Poincaré return map T are downward convex.
igs. 7(a)–(d) show m = 1, 2, 3, and 10 cases for the driven BVP
scillator. Figs. 20(a) and (b) and 19(a) show trajectories of the
agumo–Sato map for m = 1, 2, and 3, respectively.
For the same reason, singly nested MMOIBs (01m)(01m+1)p can

ccur for successive p, which is one of the four possible singly
ested period-adding bifurcations (Eqs. (35), (36), (38), and (39))
enerated by the Nagumo–Sato map. Figs. 21(a), (b), and (c) show
he solution of Eq. (35) for the m = 1, and p = 1, 2, and 3
ases, respectively. Fig. 21(d) shows a magnified view of Fig. 21(c).
igs. 10(a)–(f) show the m = 1 and p = 1, 2, 3, 4, 5, and 6 cases
or the driven BVP oscillator.

For the same reason, ((01m)(01m+1)p)((01m)(01m+1)p+1)q can
ccur for integer values of m and p and successive q between the
01m)(01m+1)p- and (01m)(01m+1)p+1-generating regions, which is
mong the eight possible cases for doubly nested period-adding
11
Fig. 22. Behavior of solution caused by doubly nested bifurcation, showing (a)
‘‘0101101011011’’ for a = 2.445 and b = 1 and (b) a magnified view of (a).

bifurcations generated by the Nagumo–Sato map. Figs. 22(a) and
(b) show the attractor and a magnified view for the m = p = q =

1 cases. Figs. 13(a)–(f) correspond to the m = p = 1 and q = 1–6
cases, respectively, for the driven BVP oscillator.

The period-adding bifurcation structures generated by the
Nagumo–Sato map suggest that more deeply nested MMOIBs
exist in the driven BVP oscillator.

6. Conclusion

We analyzed a driven Bonhoeffer–van der Pol oscillator where
the diode in the circuit was assumed to be an ideal switch. In
this case, Poincaré return maps can be derived exactly as 1D
and mixed-mode oscillation-incrementing bifurcations that are
nested at least twice are precisely explained. In addition, the
return maps are downward convex in the invariant interval. We
considered a piecewise linear discontinuous approximation for
the return map in the invariant interval. The piecewise linear
map is called the Nagumo–Sato map, generating infinitely many
nested period-adding bifurcations. We confirmed that un-nested,
singly and doubly nested mixed-mode oscillation-incrementing
bifurcations in the driven BVP oscillator coincide with one of the
possible period-adding solutions generated by the Nagumo–Sato
map because mirror sequences do not exist in the driven BVP
oscillator.
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