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Abstract

Background

The relationship between lifestyle and obesity is a major focus of research. Personalized

nutrition, which utilizes evidence from nutrigenomics, such as gene–environment interac-

tions, has been attracting attention in recent years. However, evidence for gene–
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environment interactions that can inform treatment strategies is lacking, despite some

reported interactions involving dietary intake or physical activity. Utilizing gene–lifestyle

interactions in practice could aid in optimizing interventions according to genetic risk.

Methods

This study aimed to elucidate the effects of gene–lifestyle interactions on body mass index

(BMI). Cross-sectional data from the Japan Multi-Institutional Collaborative Cohort Study

were used. Interactions between a multi-locus genetic risk score (GRS), calculated from 76

ancestry-specific single nucleotide polymorphisms, and nutritional intake or physical activity

were assessed using a linear mixed-effect model.

Results

The mean (standard deviation) BMI and GRS for all participants (n = 12,918) were 22.9

(3.0) kg/m2 and -0.07 (0.16), respectively. The correlation between GRS and BMI was r

(12,916) = 0.13 (95% confidence interval [CI] 0.11–0.15, P < 0.001). An interaction between

GRS and saturated fatty acid intake was observed (β = -0.11, 95% CI -0.21 to -0.02). An

interaction between GRS and n-3 polyunsaturated fatty acids was also observed in the

females with normal-weight subgroup (β = -0.12, 95% CI -0.22 to -0.03).

Conclusion

Our results provide evidence of an interaction effect between GRS and nutritional intake

and physical activity. This gene–lifestyle interaction provides a basis for developing preven-

tion or treatment interventions for obesity according to individual genetic predisposition.

Introduction

Obesity is one of the leading causes of death by increasing the risk of non-communicable dis-

eases, such as cardiovascular diseases, type-2 diabetes, musculoskeletal disorders, and cancers

[1]. The prevalence of obesity is increasing worldwide, necessitating the development of more

effective prevention and treatment strategies. Both environmental and genetic factors are

responsible for obesity. Environmental factors include diet, exercise, and the obesogenic envi-

ronment, including socioeconomic, ethnic, cultural, and geographical factors; notably, some

of these factors are beyond an individual’s control [2, 3]. In addition, an obesogenic environ-

ment could affect lifestyle factors, such as diet and exercise.

The independent effects of these factors on body mass index (BMI) are limited. Rather,

combinations and interactions between environmental and genetic factors have a relatively

large effect on BMI. Gene–environment interactions contributing to BMI have therefore

attracted substantial attention [4–6]; the effect of environmental factors on BMI is modified by

genetic factors. Recent research aims to identify gene–environment interactions that can serve

as a basis for the prevention or treatment of obesity. However, the results of these studies have

been contradictory and inconsistent, despite some evidence indicating that the effects of die-

tary intake, physical activity, or socioeconomic status on BMI differ according to genetic risk

[7–11]. The existence of gene–environment interactions indicates the importance of utilizing

gene–lifestyle interactions in primary preventive intervention to select optimal intervention
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according to genetic risk. For example, personalized nutrition based on nutrigenomic evidence

gives specific dietary advice to each individual based on one’s genetic information, rather than

a general recommendation about diet [12].

In this study, we focused on the genetic risk score (GRS) calculated from multiple single

nucleotide polymorphisms (SNPs) or loci (multi-locus GRS), diet, and physical activity to ana-

lyze gene–lifestyle interactions. Data are limited regarding the marginal effects of interactions

when including nutrients, such as carbohydrates, fat, protein, dietary fiber, vitamins, and phys-

ical activity in a single statistical model. Such a gene–lifestyle interaction would help advance

the utilization of genetic risk in managing obesity since diet and physical activity are the two

major components of lifestyle interventions for obesity. This study aimed to explore the inter-

action between genetic risk and lifestyle factors, such as nutritional intake and physical activity,

on BMI using cross-sectional data from the Japan Multi-Institutional Collaborative Cohort

Study (J-MICC Study).

Materials and methods

Study population

Data were obtained from the J-MICC Study (ver. 20190720), a genomic cohort study

launched in 2005. Details of the J-MICC study are described elsewhere [13, 14]. In brief,

participants were residents of Japan who participated in health checkups held by local gov-

ernments, volunteers, or patients recruited at their first visit to the cancer hospital, aged 35

to 69 years. Information on lifestyle and medical conditions were collected by a self-admin-

istered questionnaire, and various parameters, such as anthropometric traits and laboratory

data from blood samples, including genomic information, were obtained in the baseline

survey. Participants were recruited from 12 different areas throughout Japan (Aichi, Chiba,

Fukuoka, Kagoshima, Kyoto, Kyushu-KOPS, Okazaki, Sakuragaoka, Saga, Shizuoka-Daiko,

Takashima, and Tokushima) between 2004 and 2013. Written informed consent was

obtained from all participants. The J-MICC Study was approved by the Ethics Committees

of Nagoya University Graduate School of Medicine and the other institutions participating

in the J-MICC study. This analysis was also approved by the ethics committee of the Kana-

gawa Cancer Center.

Genotyping, quality control, and genotype imputation

DNA was extracted from the buffy coat using a BioRobot M48 Workstation (QIAGEN

Group, Tokyo, Japan). SNP genotyping was performed by the RIKEN Center for Integrative

Medical Sciences using the Illumina OmniExpressExome Array (Illumina, San Diego, CA,

USA). Inconsistencies in sex information between the questionnaire and genotype-based

estimates were excluded (n = 26). The identity-by-descent method implemented in PLINK

1.9 found 388 closely related pairs (pi-hat > 0.1875), and one sample in each pair was

excluded [15, 16]. Subjects whose ancestries were estimated to be outside of the Japanese

population detected by a principal component analysis with a 1000 Genomes reference

panel (phase 3) were excluded (n = 34) [17–19]. SNPs with a genotype call rate of <0.98

and/or a Hardy–Weinberg equilibrium exact test p-value of <1 × 10−6, a low minor allele

frequency (MAF) of <0.01, or an allele frequency difference > 20% between the scaffold

and 1000 genomes phase 3 EAS (East Asian) samples were excluded. Quality control filter-

ing resulted in 14,086 individuals and 570,162 SNPs [20]. Genotype imputation was per-

formed using SHAPEIT version 2 and Minimac3 based on the 1000 Genomes Project

(phase 3) as a cosmopolitan reference panel [21, 22].
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Genetic risk score

SNPs used to calculate the GRS were selected from a genome-wide association study (GWAS)

of the Japanese population reported by Akiyama et al. [23]. Details including the MAF and r2

of the selected 76 SNPs are shown in S1 Table. SNPs on chromosome X and SNPs identified

by a sex-stratified analysis were excluded. The GRS was calculated from the β coefficients of

these 76 SNPs using a previously reported weighting method [7, 8, 23]. In brief, GRS was cal-

culated by summing the allelic dosage (0 to 2) for each SNP, which was weighted by the β coef-

ficient reported in GWAS [2]. GRS was constructed with a theoretical range of -2.256

(possessing no predisposition allele) to 2.334 (possessing 152 predisposition alleles), where

higher scores indicate a higher genetic predisposition to obesity. The calculated GRS was cate-

gorized into lower and upper groups according to the score in order to make the number of

participants approximately equal in each group.

Phenotypes

Weight and height were measured at baseline and were used to calculate BMI (kg/m2). Missing

values were complemented by BMI calculated using the self-reported height and weight (ques-

tionnaire). Daily nutritional intake and physical activity were assessed using the J-MICC Study

questionnaire at baseline. The questionnaires were reviewed by trained staff for their credibility

and consistency. Daily nutritional intake was assessed using a validated food frequency ques-

tionnaire (S1 Fig) [24–26]. Nutritional intake was adjusted by total energy intake using the resid-

ual method. Daily physical activity was calculated, based on a previously reported method, in

terms of metabolic equivalents-hours per day (METs-h/day) [27]. In brief, daily life activity and

leisure-time activity were estimated based on the International Physical Activity Questionnaire

[28]. The intensity of activity was categorized into five levels: walking, 3.0; and heavy physical

work or exercise, 4.5 METs in daily life activities and 3.4, 7.0, and 10.0 METs for leisure-time

activities. The intensity was multiplied by the length and frequency of each activity to obtain

METs-h/day. We did not include standing time (2.0 METs) as we intended to assess moderate-

to-vigorous physical activity (> 3 METs) in our analysis. Sitting time (h/day) was obtained from

the questionnaire. Information for all parameters was available for 13,913 participants.

Statistical analysis

Statistical analyses were performed using R version 3.6.3 [29]. Pearson’s product-moment cor-

relation between GRS and BMI was calculated, and a simple linear regression analysis was per-

formed. A linear mixed-effects model (LMM) was constructed and fit by maximum likelihood

using lme4 version 1.1-23 [30]. The effective degrees of freedom were approximated using the

Welch-Satterthwaite method implemented in lmerTest version 3.1-2 [31]. The dependent vari-

able was BMI with a recruited site-specific random intercept, and the fixed effects were GRS

(lower and upper halves were coded 0 and 1, respectively), age, sex, BMI measurement method

(estimates based on examined or self-reported were coded 0 and 1, respectively), 21 lifestyle

factors, interaction terms between age and sex and between GRS and age, sex, and lifestyle fac-

tors. The interaction terms were assessed for their effects on BMI. The 21 lifestyle factors

included daily nutritional intake (energy, protein, saturated fatty acids, monounsaturated fatty

acids, n-3 polyunsaturated fatty acids, n-6 polyunsaturated fatty acids, carbohydrates, soluble

dietary fiber, insoluble dietary fiber, retinol, vitamin D, vitamin E, vitamin B1, vitamin B2,

folate, vitamin C, iron, and calcium), alcohol intake, MVPA, and sitting time. Continuous vari-

ables other than BMI and GRS were standardized based on z-score. Additionally, 995/13,913

(7.2%) participants were excluded owing to influential data points according to the residual,

leverage, and Cook’s distance. Variable selection was performed by backward elimination with
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an alpha level of 0.05, partly using the step function in lmerTest [31]. Visual inspection of

residual plots did not reveal any obvious deviations from homoscedasticity or normality. We

performed a sensitivity analysis excluding the 1,082 participants recruited at the Cancer Center

(Aichi 1, S2 Table). A subgroup analysis was also performed according to BMI (normal weight

[>18.5 kg/m2, <25 kg/m2] or obesity [�25 kg/m2]) and sex; subgroups 1–4 corresponded to

males with normal weight, females with normal weight, males with obesity, and females with

obesity, respectively. As sex was used as stratifying factor, it was dismissed in the subgroup

analysis. Monounsaturated fatty acids and vitamin E in subgroup 2 were excluded from the

model owing to multicollinearity. Variance inflation factors (VIF) were checked for multicolli-

nearity using the vif function in car version 3.0-3 [32], and the highest VIF among all variables

in 5 models was 3.4, indicating no substantial influence of multicollinearity on model results.

The gene–lifestyle interaction was further explored using a different approach: candidate life-

style factors were explored in the subgroup analysis according to GRS, followed by interaction

analysis factor by factor (candidate approach). The detail of the candidate approach is

described in detail in the S1 Appendix.

Results

Characteristics of the participants

Demographic, lifestyle, and genetic factors for study participants are shown in Table 1, includ-

ing characteristics according to GRS subgroups used to generate covariance matrixes in the

LMM. Participants were recruited from 12 sites, ranging from 466/12,918 participants (3.6%)

at the smallest site to 1,888/12,918 participants (14.6%) (S2 Table). The mean (standard devia-

tion) BMI for all participants was 22.9 (3.0) kg/m2, for male was 23.6 (2.8) kg/m2, and for

female was 22.2 (3.0) kg/m2. In subgroups, there were 9,173 participants of normal weight

(male/female 3,952/5,221) and 2,945 participants with obesity (male/female, 1,683/1,262) (S3

Table). There were no statistical differences in age, sex distribution, BMI, or the captured envi-

ronmental variables between the two subgroups of the GRS (Table 1). The correlation between

GRS and BMI was rho(12,916) = 0.13 (95% confidence interval [CI] 0.11–0.15, p< 0.001), and

the increase in BMI for every unit increase in the GRS was 2.45 (95% CI 2.13–2.77, p< 0.001).

Gene–lifestyle interaction analysis

The results of the gene–lifestyle interaction analysis are summarized in Table 2. The final

LMM included 15 predictors of relevance selected via stepwise regression with backward selec-

tion: GRS, age, sex, 8 nutritional factors, sitting time, and interaction terms for age × sex,

GRS × age, and GRS × saturated fatty acids as fixed effects. BMI was approximated using the

following equation:

Yij ¼ 23:3þ
X11

j¼1
ðyj þ gj � sitejÞ þ ð0:63� GRSijÞ þ

P11

k¼1
ðbk � XkijÞ þ ð0:56� ½ageij � sexij�Þ

þð� 0:10� ½GRSij � ageij�Þ þ ð� 0:11� ½GRSij � saturated fatty acidsij�Þ þ �ij;

where Yij = BMI (kg/m2), θj is the random intercept for the jth site dummy variable, γj is the

coefficient for the jth site dummy variable, βk = coefficient for fixed effect k, Xkij = value of the

fixed effect k for participant I at site j, �ij = residual for participant I in recruited site j; and

fixed effect k is either age, sex, protein, saturated fatty acids, n-3 polyunsaturated fatty acids,

carbohydrate, soluble dietary fiber, retinol, vitamin D, vitamin B1 or sitting time. There were

differences in BMI between the recruited sites with a variance of 0.39 kg/m2. The only interac-

tion term with GRS and lifestyle factor that remained after the variable selection procedure

was saturated fatty acids intake (Table 2). The interaction between GRS and saturated fatty
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acid intake (P = 0.021) is described in Fig 1. A negative association between saturated fatty

acid intake and GRS was exaggerated in participants with a high GRS subgroup (upper half).

The differences in BMI associated with 10 grams (4.0 standardized units) of saturated fatty

acids per day were 0.27 kg/m2 and 0.74 kg/m2 in the low and high GRS subgroups, respec-

tively. A comparable result was obtained from the sensitivity analysis (S4 Table).

Subgroup analysis according to BMI and sex

The results of a subgroup analysis are shown in Table 3, and the results of the interaction anal-

ysis are graphically presented in Fig 2. Among the lifestyle factors, gene–lifestyle interactions

were observed for n-3 polyunsaturated fatty acids, vitamin B1, and sitting time. These interac-

tions were prevalent only in subgroups of female participants. Notably, the association

between lifestyle factors and GRS was exaggerated in the high GRS subgroups compared with

the low GRS subgroup. Association between sitting time and BMI was only observed for the

Table 1. Characteristics of the study participants.

Characteristics Subgroups, according to GRS

All participants Lower half Upper half

n = 12,918 n = 6,461 n = 6,457

Age (years) 54.7 ± 9.3 54.8 ± 9.3 54.6 ± 9.3

Sex (F, %) 7126 ± 55.2 3545 ± 54.9 3581 ± 55.5

BMI (kg/m2) 22.9 ± 3.0 22.6 ± 2.9 23.2 ± 3.1

Measurement method (self-report, %) 2549 ± 19.7 1279 ± 19.8 1270 ± 19.7

Daily nutritional intakes

Energy (kcal) 1685.1 ± 336.2 1686.6 ± 335.4 1683.6 ± 337.1

Protein (g) 52.7 ± 7.0 52.6 ± 6.9 52.8 ± 7.1

Saturated fatty acids (g) 11.2 ± 2.5 11.1 ± 2.5 11.2 ± 2.4

Monounsaturated fatty acids (g) 16.0 ± 3.5 16.0 ± 3.4 16.1 ± 3.6

n-3 polyunsaturated fatty acids (g) 2.2 ± 0.5 2.2 ± 0.5 2.2 ± 0.5

n-6 polyunsaturated fatty acids (g) 10.9 ± 2.7 10.8 ± 2.7 10.9 ± 2.8

Carbohydrate (g) 240.6 ± 23.4 241.0 ± 23.4 240.2 ± 23.3

Total dietary fiber (g) 10.5 ± 2.8 10.5 ± 2.8 10.5 ± 2.8

Soluble dietary fiber (g) 1.9 ± 0.6 1.9 ± 0.6 1.9 ± 0.6

Insoluble dietary fiber (g) 7.6 ± 2.0 7.6 ± 2.0 7.6 ± 2.0

Retinol (mcg) 923.7 ± 360.6 919.7 ± 360.4 927.6 ± 360.9

Vitamin D (mcg) 7.1 ± 2.9 7.1 ± 2.9 7.1 ± 2.9

Vitamin E (mg) 8.0 ± 1.8 8.0 ± 1.8 8.0 ± 1.8

Vitamin B1 (mg) 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1

Vitamin B2 (mg) 1.1 ± 0.2 1.1 ± 0.2 1.1 ± 0.2

Folate (mcg) 326.0 ± 94.6 325.2 ± 93.7 326.7 ± 95.6

Vitamin C (mg) 94.3 ± 33.8 94.2 ± 33.5 94.5 ± 34.0

Calcium (mg) 505.1 ± 139.2 504.0 ± 140.2 506.3 ± 138.1

Iron (mg) 6.9 ± 1.7 6.9 ± 1.7 6.9 ± 1.7

Ethanol (g) 13.4 ± 22.5 13.2 ± 22.2 13.5 ± 22.8

Physical activity (METs-h/day) 13.7 ± 12.5 13.7 ± 12.4 13.6 ± 12.6

Sitting time (hours/day) 4.9 ± 3.7 4.9 ± 3.7 4.9 ± 3.7

GRS -0.07 ± 0.16 -0.20 ± 0.09 0.06 ± 0.10

Data are presented as means ± standard deviation, unless otherwise specified. GRS, genetic risk score; g, grams; mcg, micrograms; METs-h/day, metabolic equivalents-

hours per day.

https://doi.org/10.1371/journal.pone.0279169.t001
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high GRS subgroup in females with obesity (subgroup 2). Variances of BMI between the

recruited sites were largest in this subgroup. No gene-lifestyle interaction was observed for

subgroup 1, while the association between MVPA and BMI was only observed for this

subgroup.

Results of the candidate approach

The LMM for the subgroups in the first to fourth quartiles of the GRS (details in S1 Appendix)

is shown in S5 Table. Candidate variables for the interaction analysis were protein, saturated

fatty acids, n-3 polyunsaturated fatty acids, n-6 polyunsaturated fatty acids, carbohydrates, reti-

nols, vitamins D, E, B1, and calcium. The β-coefficients and P-values for the interaction term

between GRS and each candidate variable are shown in S6 Table and S2 Fig. Calcium intake

showed the strongest evidence for the existence of gene–lifestyle interaction (P = 0.0031), fol-

lowed by saturated fatty acids (P = 0.0078).

Discussion

In this study, the gene–lifestyle interaction between GRS, calculated from 76 SNPs known to

be related to BMI based on an ancestry-specific GWAS, and broad lifestyle factors, such as

nutrition intake and physical activity, were assessed simultaneously in a single model. The

Table 2. Effects of gene–lifestyle interactions on BMI.

Parameters

Random effects Variance Standard deviation

Recruited sites (intercept) 0.39 0.62

Residual 7.81 2.78

Fixed effects Coefficient estimate 95% confidence interval p-value

Intercept 23.34 22.98, 23.70 < 0.001

GRS (high GRS subgroup) 0.63 0.54, 0.73 < 0.001

Age 0.02 -0.08, 0.11 0.738

Sex (female) -1.35 -1.46, -1.24 < 0.001

Protein 0.20 0.10, 0.30 < 0.001

Saturated fatty acids -0.07 -0.16, 0.02 0.151

n-3 polyunsaturated fatty acids 0.21 0.14, 0.29 < 0.001

Carbohydrate 0.08 0.02, 0.14 0.008

Soluble dietary fiber -0.29 -0.35, -0.22 < 0.001

Retinol 0.09 0.03, 0.14 0.003

Vitamin D -0.19 -0.27, -0.10 < 0.001

Vitamin B1 0.07 0.01, 0.13 0.033

Sitting time 0.08 0.02, 0.15 0.012

Age � sex 0.56 0.46, 0.66 < 0.001

Genetic risk score � age -0.10 -0.20, -0.002 0.045

Genetic risk score � saturated fatty acids -0.11 -0.21, -0.02 0.021

Continuous variables other than BMI and GRS were standardized based on z-score. Variables selected by the backward reduction from the following fixed effects are

shown: GRS (low and high GRS subgroups coded as 0 and 1), age, sex, BMI measurement method (calculated from examined or self-reported height and weight coded

as 0 and 1), energy, protein, saturated fatty acids, monounsaturated fatty acids, n-3 polyunsaturated fatty acids, n-6 polyunsaturated fatty acids, carbohydrate, soluble

dietary fiber, insoluble dietary fiber, retinol, vitamin D, vitamin E, vitamin B1, vitamin B2, folate, vitamin C, iron, and calcium, alcohol intake, moderate-to-vigorous

physical activity, sitting time, interaction terms between age and sex, and GRS and age, sex, and each lifestyle factor. GRS, genetic risk score.

https://doi.org/10.1371/journal.pone.0279169.t002
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existence of gene–lifestyle interactions in obesity has been controversial. However, our results

provide evidence for an effect of a gene–lifestyle interaction on the BMI phenotype.

Interactions between GRS and saturated fatty acids were observed in our analysis of all par-

ticipants, including lean and obese participants. The mean intake of saturated fatty acids was

11.1, and 11.2 grams per day in high, and low GRS groups respectively, whereas for partici-

pants reporting low saturated fatty acid intake, BMI was higher in the high GRS group. This

may be interpreted as reverse causation based on research in nutrition science, rather than an

effect of saturated fatty acid intake on BMI. In other words, individuals who possess a higher

BMI tend to abstain from saturated fatty acid intake (e.g., milk, beef, and pork [S1 Fig]).

Results contradicting the results from prior studies [33, 34] might be due to the differences in

ethnicity. Another reason might be the nature of the partial regression coefficient obtained

from the analysis, while other predictors were held constant. Although this is the same for

other predictor variables, individuals who possess a high GRS and higher BMI could focus on

factors associated with BMI described in Table 2 other than saturated fatty acids, such as

decreasing energy intake (protein, fats, and carbohydrate), increasing soluble dietary fiber

intake and decreasing sitting time, because these are consistent with the known evidence [35,

36]. Incorporating a dietary pattern, which is also indicated in the prior literature, in the future

study is an idea to solve challenges in interpreting the partial regression coefficient.

This study had a few key strengths. For example, whereas most studies of gene–lifestyle

interactions have focused on specific genes [4, 5], which may be sufficient for single-gene dis-

orders, we used a GRS involving multiple loci, which is more appropriate for multifactorial

diseases like obesity. Accounting for many SNPs can lead to a more precise evaluation of the

disease risk [23, 37]. In addition, we calculated GRS based on a GWAS of a population with

the same ancestry as the study population [23]. GWAS results often differ depending on popu-

lations [38]; however, these differences have not been considered in some previous studies of

gene–lifestyle interactions [4]. We observed a gene–lifestyle interaction in subgroup 4 (females

Fig 1. Graphical representation of the interaction between GRS and saturated fatty acid intake. Red and blue lines

indicate regression lines for individuals with GRS values in the lower half (GRS = 0) and upper half (GRS = 1). The

shading around each regression line shows the 95% confidence interval. One unit of standardized saturated fatty acids

intake (x-axis) corresponds to 2.5 g/day. The association between BMI and saturated fatty acid intake is greater in the

group with a high GRS. GRS, genetic risk score.

https://doi.org/10.1371/journal.pone.0279169.g001
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with obesity), while the sample size in this subgroup was the smallest among all four sub-

groups. This suggests that the use of SNPs and beta coefficients reported in the GWAS on the

Japanese population contributed to observing the gene–environment interaction in the small-

est subgroup. Moreover, the results of the subgroup analyses are important for indicating an

interaction effect for the groups that are classified with a combination of population group

Table 3. Subgroup analysis of effects of gene–lifestyle interactions on BMI.

Subgroupsa

Parameters Subgroup 1 (Normal weight,

male)

Subgroup 2 (Normal weight,

female)

Subgroup 3 (Obese, male) Subgroup 4 (Obese, female)

Number of participants n = 3,952 n = 5,221 n = 1,683 n = 1,262

Random effects Variance Standard

deviation

Variance Standard

deviation

Variance Standard

deviation

Variance Standard

deviation

Recruited sites

(intercept)

0.03 0.18 0.10 0.32 0.03 0.17 0.04 0.21

Residual 2.50 1.58 2.65 1.63 2.75 1.66 2.74 1.66

Fixed effects Estimate 95% CI p-value Estimate 95% CI p-value Estimate 95% CI p-value Estimate 95% CI p-value

Intercept 22.35 22.22, 22.47 < 0.001 21.56 21.38, 21.75 < 0.001 26.83 26.67, 26.98 < 0.001 26.90 26.71, 27.09 < 0.001

GRS (high GRS

subgroup)

0.21 0.11, 0.31 < 0.001 0.21 0.12, 0.30 < 0.001 0.32 0.16, 0.48 < 0.001 0.22 0.03, 0.40 0.022

Age (years) 0.10 0.05, 0.15 < 0.001 0.27 0.22, 0.32 < 0.001 0.04 -0.09, 0.16 0.652 -

Protein - - - 0.14 0.02, 0.25 0.018

Saturated fatty acids 0.07 0.01, 0.12 0.01 - - -

n-3 polyunsaturated

fatty acids

- 0.03 -0.06, 0.11 0.524 - -

n-6 polyunsaturated

fatty acids

- 0.12 0.05, 0.19 < 0.001 - -

Carbohydrate - 0.07 0.02, 0.12 0.003 - 0.14 0.04, 0.24 0.008

Soluble dietary fiber -0.10 -0.16, -0.03 -0.16 - -0.13 -0.22, -0.04 0.005 -0.14 -0.24, -0.03 0.011

Insoluble dietary fiber - -0.12 -0.17, -0.07 < 0.001 - -

Retinol 0.06 0.002, 0.11 0.002 - - -

Vitamin E 0.10 0.04, 0.16 0.04 - - -

Vitamin B1 - 0.04 -0.03, 0.11 0.308 - -

Calcium - - -0.12 -0.21, -0.03 0.012 -

Moderate-to-vigorous

physical activity

-0.07 -0.12, -0.01 -0.12 - - -

Sitting time - - - -0.03 -0.18, 0.13 0.757

GRS � age - - -0.26 -0.43, -0.10 0.001 -

GRS � n-3

polyunsaturated fatty

acids

- -0.12 -0.22, -0.03 0.011 - -

GRS � vitamin B1 - 0.10 0.01, 0.20 0.035 - -

GRS � sitting time - - - 0.20 0.01, 0.39 0.036

Continuous variables other than BMI and GRS were standardized based on z-score. Variables selected by the backward reduction from the following fixed effects are

shown: GRS (lower and upper halves coded as 0 and 1), age, BMI measurement method (calculated from examined or self-reported height and weight coded as 0 and 1),

energy, protein, saturated fatty acids, monounsaturated fatty acids, n-3 polyunsaturated fatty acids, n-6 polyunsaturated fatty acids, carbohydrate, soluble dietary fiber,

insoluble dietary fiber, retinol, vitamin D, vitamin E, vitamin B1, vitamin B2, folate, vitamin C, iron, and calcium, alcohol intake, moderate-to-vigorous physical activity,

sitting time, interaction terms between GRS and age, and each lifestyle factor. Hyphens indicate variables that were eliminated in the variable selection procedure. GRS,

genetic risk score; CI, confidence interval.
aSubgroup 1; male, BMI >18.5 kg/m2”nd <‘5 kg/m2: Subgroup 2; female BMI >18.5 kg/m2 and <25 kg/m2: Subgroup 3; male BMI�25 kg/m2: Subgroup 4; female BMI

�25 kg/m2.

https://doi.org/10.1371/journal.pone.0279169.t003
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(sex) and phenotypic information (BMI), which includes basic key tiers considered in person-

alized therapy [12].

The J-MICC study included multiple lifestyle factors, enabling us to evaluate multiple

parameters simultaneously. In particular, we assessed nutritional intake and physical activity

in a single model. In addition, both MVPA and sitting time data were available as indicators of

physical activity. Although we obtained similar results from the candidate approach, the inter-

action involving calcium was confounded with saturated fatty acid intake since these are both

Fig 2. Subgroup analysis of the interaction between GRS and various lifestyle factors. Red and blue lines indicate regression

lines for each subgroup, i.e., for the lower half (GRS = 0), and upper half (GRS = 1) of GRS. The shading around each regression

line shows the 95% confidence interval. One unit of standardized daily intake of n-3 polyunsaturated fatty acids, vitamin B1, age,

and sitting time corresponds to 0.4 g, 0.07 mg, 8.9 years of age, and 3.5 h, respectively. Mean values for n-3 polyunsaturated fatty

acids, vitamin B1, age, and sitting time are 2.2 g/day, 0.66 mg/day, 54.7 years, and 4.2 h, respectively. Associations between BMI

and each factor differed among groups according to the genetic risk. GRS, genetic risk score.

https://doi.org/10.1371/journal.pone.0279169.g002
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highly correlated with milk consumption (S1 Fig). Most previous studies have focused on

either nutrition or physical activity, making those studies unable to assess marginal effects that

consider confounding effects on each other [4]. Our comprehensive analysis of both nutri-

tional factors and physical activity resulted in the detection of gene–lifestyle interactions,

despite somewhat contradictory evidence for such an interaction to date.

A subgroup analysis suggested that stratification according to age, sex, and BMI is nec-

essary for assessing the gene–lifestyle interaction precisely. We constructed four subgroups

according to BMI and sex to evaluate interaction effects. Our use of ancestry-specific GRS

might explain our ability to detect an interaction in subgroup 4, despite the small sample

size, although the interaction effect may have been particularly strong. In subgroup 2, the

negative association between n-3 polyunsaturated fatty acid intake and GRS was only

observed for the high GRS subgroup, similar to the main analysis. Hence, we speculate that

a reverse causation exists, i.e., that females with a normal weight that tend to have low

weight (low GRS) can intake more saturated fatty acids than those with a high weight (high

GRS) because the former group does not have to restrict diet. Consequently, the negative

association was observed only in females with normal weight. In this context, differences

in the effects of gene–lifestyle interactions depending on factors such as sex and BMI may

explain the lack of evidence for interaction effects in the literature.

Our focus on sex and BMI as stratifying factors is based on the previously established differ-

ence in BMI between males and females as well as biological characteristics, such as endocrino-

logical (hormonal) characteristics [39]. Furthermore, BMI was selected as a stratifying factor

because self-reporting bias is known to be more prevalent in obese subjects [40–43], and the

effect of the genetic variants (GRS) is greater for subjects with relatively high BMI [4, 9]. This

does not contradict our results indicating that gene–lifestyle interactions are found in both

obese subgroups, despite the smaller sample size.

Age was considered as a covariate in the LMM and not a stratifying factor, in part owing to

the limited number of participants. Performing the interaction analysis for the subgroups

allowed us to identify an interaction between GRS and age in subgroup 3 (males with obesity).

Interaction between GRS and age may be explained by the difference in BMI affecting loci and

its effect sizes caused by the difference in obesogenic factors with respect to age [44–46]. This

raises the hypothesis that genetic variation causes differences in the behavioral response to the

obesogenic environment, leading to a difference in BMI [44]. Indeed, the association between

GRS and BMI was stronger for relatively younger participants (40–50 years old) within sub-

group 3 (Fig 2). Accordingly, studies of GRS or gene–environment interactions should con-

sider the effects of age, sex, and BMI, which may also apply to GWAS of obesity. The female

subgroup or the young male subgroup are candidate populations for further analyses of inter-

actions based on our results.

Our study had several limitations. First, as pointed out in a previous methodological

review, BMI, an outcome in both the GWAS and our study, does not precisely reflect body

composition, such as body fat or lean body mass [5]. Thus, variance in lean body mass, even

for the same BMI, may limit our ability to detect associations with obesity. Second, causal

inferences were difficult owing to our cross-sectional study design, and the outcome was

not the degree of change in BMI. As mentioned above, saturated fatty acids were considered

to be observing the reverse causation. Another example was seen for the association

between BMI and physical activity among the subgroups; participants in subgroups 1 and 4

were slightly older (S3 Table), and this might have resulted in observing the association

between physical activity and BMI only in these subgroups, i.e., individuals who have diffi-

culty in locomotion tend to have a low BMI owing to loss of lean body mass in subgroup 4.

In addition, because our study focused on the general population, mainly recruited in
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conjunction with specific health checkups [47], participants with a higher BMI had a higher

chance of requiring past health guidance (specific health guidance) [47] regarding diet or

physical activity. Third, the results are biased due to the self-reporting nature of the study,

as nutritional intake, physical activity, and BMI data for about 20% of the participants were

self-reported.

Conclusions

We detected interactions between GRS and nutritional intake and physical activity. Although

further study is required to apply these gene–lifestyle interactions in practice, these results pro-

vide a basis for the development of optimal prevention or treatment interventions for obesity

according to genetic factors, which is expected to substantially improve effectiveness. Further

studies of gene–lifestyle interactions stratified by age, sex, and BMI using the degree of change

in BMI as an outcome are needed.
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ear-mixed model. The dependent variable of the model was BMI, with a recruited site-specific
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12. Ferguson LR, De Caterina R, Görman U, Allayee H, Kohlmeier M, Prasad C, et al. Guide and position of

the International Society of nutrigenetics/nutrigenomics on personalised nutrition: Part 1 –Fields of pre-

cision nutrition. J Nutrigenet Nutrigenomics 2016; 9:12–27. https://doi.org/10.1159/000445350 PMID:

27169401

13. Hamajima N, J-MICC Study Group. The Japan Multi-Institutional Collaborative Cohort Study (J-MICC

Study) to detect gene-environment interactions for cancer. Asian Pac J Cancer Prev 2007; 8:317–323.

PMID: 17696755

14. Takeuchi K, Naito M, Kawai S, Tsukamoto M, Kadomatsu Y, Kubo Y, et al. Study profile of the Japan

Multi-institutional Collaborative Cohort (J-MICC) Study. J Epidemiol 2021; 31:660–668. https://doi.org/

10.2188/jea.JE20200147 PMID: 32963210

15. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to

the challenge of larger and richer datasets. GigaScience 2015; 4:7. https://doi.org/10.1186/s13742-

015-0047-8 PMID: 25722852

16. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-

genome association and population-based linkage analyses. Am J Hum Genet 2007; 81:559–575.

https://doi.org/10.1086/519795 PMID: 17701901

17. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM et al. A

global reference for human genetic variation. Nature 2015; 526:68–74. https://doi.org/10.1038/

nature15393 PMID: 26432245

18. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analy-

sis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38:904–909. https://

doi.org/10.1038/ng1847 PMID: 16862161

19. Yamaguchi-Kabata Y, Nakazono K, Takahashi A, Saito S, Hosono N, Kubo M, et al. Japanese popula-

tion structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects

on population-based association studies. Am J Hum Genet 2008; 83:445–456. https://doi.org/10.1016/

j.ajhg.2008.08.019 PMID: 18817904

20. Hishida A, Nakatochi M, Akiyama M, Kamatani Y, Nishiyama T, Ito H, et al. Genome-wide association

study of renal function traits: results from the Japan multi-institutional collaborative cohort study. Am J

Nephrol 2018; 47:304–316. https://doi.org/10.1159/000488946 PMID: 29779033

21. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population

genetic studies. Nat Methods 2013; 10:5–6. https://doi.org/10.1038/nmeth.2307 PMID: 23269371

22. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputa-

tion service and methods. Nat Genet 2016; 48:1284–1287. https://doi.org/10.1038/ng.3656 PMID:

27571263

23. Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, et al. Genome-wide association

study identifies 112 new loci for body mass index in the Japanese population. Nat Genet 2017;

49:1458–1467. https://doi.org/10.1038/ng.3951 PMID: 28892062

PLOS ONE Gene–lifestyle interactions on obesity

PLOS ONE | https://doi.org/10.1371/journal.pone.0279169 February 8, 2023 14 / 16

https://doi.org/10.1016/S2213-8587(17)30200-0
https://doi.org/10.1016/S2213-8587(17)30200-0
http://www.ncbi.nlm.nih.gov/pubmed/28919064
https://doi.org/10.1042/CS20160221
http://www.ncbi.nlm.nih.gov/pubmed/27503943
https://doi.org/10.1186/s13073-020-00742-5
http://www.ncbi.nlm.nih.gov/pubmed/32423490
https://doi.org/10.1056/NEJMoa1203039
http://www.ncbi.nlm.nih.gov/pubmed/22998338
https://doi.org/10.1038/jhg.2015.148
http://www.ncbi.nlm.nih.gov/pubmed/26657934
https://doi.org/10.1093/ije/dyw337
https://doi.org/10.1093/ije/dyw337
http://www.ncbi.nlm.nih.gov/pubmed/28073954
https://doi.org/10.1186/s12916-017-0862-0
http://www.ncbi.nlm.nih.gov/pubmed/28486942
https://doi.org/10.3390/ijms18040787
http://www.ncbi.nlm.nih.gov/pubmed/28387720
https://doi.org/10.1159/000445350
http://www.ncbi.nlm.nih.gov/pubmed/27169401
http://www.ncbi.nlm.nih.gov/pubmed/17696755
https://doi.org/10.2188/jea.JE20200147
https://doi.org/10.2188/jea.JE20200147
http://www.ncbi.nlm.nih.gov/pubmed/32963210
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s13742-015-0047-8
http://www.ncbi.nlm.nih.gov/pubmed/25722852
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
https://doi.org/10.1038/ng1847
https://doi.org/10.1038/ng1847
http://www.ncbi.nlm.nih.gov/pubmed/16862161
https://doi.org/10.1016/j.ajhg.2008.08.019
https://doi.org/10.1016/j.ajhg.2008.08.019
http://www.ncbi.nlm.nih.gov/pubmed/18817904
https://doi.org/10.1159/000488946
http://www.ncbi.nlm.nih.gov/pubmed/29779033
https://doi.org/10.1038/nmeth.2307
http://www.ncbi.nlm.nih.gov/pubmed/23269371
https://doi.org/10.1038/ng.3656
http://www.ncbi.nlm.nih.gov/pubmed/27571263
https://doi.org/10.1038/ng.3951
http://www.ncbi.nlm.nih.gov/pubmed/28892062
https://doi.org/10.1371/journal.pone.0279169


24. Tokudome S, Goto C, Imaeda N, Tokudome Y, Ikeda M, Maki S. Development of a data-based short

food frequency questionnaire for assessing nutrient intake by middle-aged Japanese. Asian Pac J Can-

cer Prev 2004; 5:40–43. PMID: 15075003

25. Tokudome Y, Goto C, Imaeda N, Hasegawa T, Kato R, Hirose K, et al. Relative validity of a short

food frequency questionnaire for assessing nutrient intake versus three-day weighed diet records in

middle-aged Japanese. J Epidemiol 2005; 15:135–145. https://doi.org/10.2188/jea.15.135 PMID:

16141632

26. Imaeda N, Goto C, Tokudome Y, Hirose K, Tajima K, Tokudome S. Reproducibility of a short food fre-

quency questionnaire for Japanese general population. J Epidemiol 2007; 17:100–107. https://doi.org/

10.2188/jea.17.100 PMID: 17545697

27. Uemura H, Katsuura-Kamano S, Iwasaki Y, Arisawa K, Hishida A, Okada R, et al. Independent relation-

ships of daily life activity and leisure-time exercise with metabolic syndrome and its traits in the general

Japanese population. Endocrine 2019; 64:552–563. https://doi.org/10.1007/s12020-019-01926-9

PMID: 31011988
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