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Abstract
Copolymers of [2-(acryloyloxy)ethyl]trimethylammonium chloride (AETAC) and acrylamide (AAm) (AETAC-co-AAm)
are polyelectrolytes used as flocculants in wastewater purification. Diffusion-ordered two-dimensional NMR spectroscopy
(DOSY) experiments for AETAC-co-AAm samples with Mw ranging from 1.9 to 3.9 million and a polyacrylamide sample
with Mw of 1.3 million were carried out in pure D2O and in D2O containing 0.1 or 1 M NaCl using an inverse-geometry
diffusion probe system. Projections of the DOSY contour plots onto the diffusion coefficient (D) dimension gave
distributions of D for the AETAC and AAm units in the samples. The D values at the maximum point of the distribution (Dp)
agreed fairly well with those determined by dynamic light scattering.

Introduction

Copolymers of [2-(acryloyloxy)ethyl]trimethylammonium
chloride (AETAC) and acrylamide (AAm) (AETAC-co-
AAm) (Fig. 1) are important in various industries. For
example, they are used as flocculants in paper manu-
facturing [1, 2], for the enrichment and recovery of minerals
from mining [3], and in wastewater treatment [4–6].
Because it comprises polyelectrolytes, AETAC-co-AAm
provides better flocculation than nonionic polyacrylamide
(PAAm) [7–10]. In recent years, more than two kinds of
acrylamide-based polymer flocculants have been used
because sludge dewatering has become difficult owing to
increasing organic matter content in wastewater [11–13].

The properties of AETAC-co-AAm in aqueous media
have been studied by light scattering and viscometry [4].
The relationships between the weight average molecular
weight (Mw), root mean square radius of gyration (Rg in nm)

and intrinsic viscosity ([η] in dL/g) were determined for
AETAC-co-AAm with 30% AETAC: Rg= 0.033 Mw

0.54,
[η]= 1.05 × 10−4 Mw

0.73 (1 M NaCl 25 °C,
4.5 × 105 ≤Mw ≤ 2.7 × 106). The effect of ionic strength on
[η] was also investigated for NaCl concentrations (Cs)
between 10−2 and 1 mol/L, with a semirigid configuration
of the copolymer chains at low Cs values being suggested
owing to the absence of a linear relationship between [η]
and Cs

−1/2 [4]. The interaction between AETAC-co-AAm
and an anionic perfluorinated surfactant was studied by
NMR spectroscopy to elucidate the mechanism of floccu-
lation [6]. Full spectral assignment of 1H and 13C reso-
nances was achieved with 1D and 2D experiments. The 1H
NMR spectra of AETAC-co-AAm with 14% and 23%
AETAC in D2O (1% w/v) showed a higher multiplicity than
the corresponding spectra of AETAC-co-AAm with 42%
and 54% AETAC, and a stiff rod-like structure of the
copolymer chains at higher AETAC compositions was
suggested. This interpretation was consistent with the 13C
NMR spectra of AETAC-co-AAm, in which the number of
resonances with higher AETAC compositions was smaller
than that with lower AETAC compositions [6].

The aim of the present study was to contribute to the
characterization of AETAC-co-AAm in aqueous media by
applying diffusion-ordered two-dimensional NMR spectro-
scopy (DOSY). DOSY is an NMR method [14–17] that
reports diffusion coefficients (D) for individual resonances
in NMR spectra. DOSY and the related pulsed field gradient
(PFG) NMR diffusometry have been used to determine the
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Mw and molecular weight distribution of synthetic polymers
[15, 18–34] and to characterize mixtures of polymers
[35–37] and block copolymers [33, 38–43]. A useful
tutorial on DOSY experiments for polymers was recently
published [44]. Nevertheless, high-molecular-weight
AETAC-co-AAm in aqueous media is challenging to
characterize using DOSY experiments because their D
values are as small as 10−11.5 m2/s or less and their 1H
resonances suffer from line broadening owing to restricted
segmental mobility of the polyelectrolyte chains.

One of the most commonly used pulse sequences for
DOSY experiments is the bipolar pulse pair stimulated echo
sequence with a longitudinal eddy current delay (bpp-ste-
led) (Fig. 2) [45]. The observed echo intensity f(G) at a
given PFG strength G (in G/cm) is given by the
Stejskal–Tanner expression:

f ðGÞ ¼ f ðG1Þ exp � 2τ1
T2

� τ2
T1

� �
exp �ðγδGÞ2D Δ� δ

3

� �� �
;

ð1Þ

where G1 represents the first (the smallest) value of the
gradient ramp steps; τ1, τ2, δ, and Δ are delays, which are
shown in Fig. 2; γ is the magnetogyric ratio of the observed
nuclide; and T1 and T2 are the longitudinal and transverse
relaxation times, respectively. Modern NMR spectrometers
are generally equipped with a PFG system (probe and
amplifier) generating a maximum G of several tens to 60 G/
cm and a maximum δ of several milliseconds. To obtain 5%
echo attenuation f(G)/f(G1), which is required for reliable

DOSY experiments, a delay, Δ, of approximately 460 ms
(Eq. 1) is required to determine a D of 10−11 m2/s under the
following experimental parameters: a maximum G of 60 G/
cm and a δ of 5 ms. A larger Δ is necessary as D decreases
and as Mw of the solute polymer increases because the
relationship between D and Mw roughly obeys D ∝ Mw

−0.6.
Applying a large Δ for DOSY experiments of AETAC-co-
AAm severely reduces the f(G) intensity because T2 of the
copolymer resonances is expected to be less than several
tens of milliseconds (see Eq. 1 and Supplemental Material)
owing to low segmental mobility, as described above. In our
previous studies [37, 46], DOSY experiments of AETAC-
co-AAm with Mw ranging from 5.1 × 106 to 1.5 × 107 were
carried out using a diffusion probe system with a maximum
G of 1200 G/cm. The D values determined by DOSY
agreed with those determined by dynamic light scattering
(DLS). However, the DOSY experiments gave broad
distributions of D owing to the low signal-to-noise ratio
(S/N) and poor resolution of the spectra. Recently, an
inverse-geometry diffusion probe system (with a maximum
G of 1800 G/cm) optimized to perform 1H NMR diffuso-
metry was devised. In contrast to conventional (normal
geometry) diffusion probes, which are useful for NMR
diffusometry of low γ nuclei, the inverse-geometry diffu-
sion probe is optimized for 1H DOSY experiments of high
molecular weight polymers. For example, Lopez and
coworkers reported 1H NMR diffusometry experiments for
polystyrene sulfonates with Mw up to 3.4 × 105 in D2O
using this inverse-geometry diffusion probe [47]. The Mw

values of AETAC-co-AAm investigated in our present
study are larger than those of polystyrene sulfonates by one
order of magnitude. This inverse-geometry diffusion probe
enabled us to obtain 1H DOSY spectra with greater
resolution than those obtained in our previous studies.

Experimental procedure

Materials

AETAC was purchased from MT Aquapolymer Inc.
(Tokyo). AAm and 2,2ʹ-azobis(2-amidinopropane) dihy-
drochloride (V-50) were purchased from Sigma‒Aldrich.

Preparation of polyacrylamide and AETAC-AAm
copolymers

Radical polymerization was performed in water at 40 °C for
15 h with V-50 as the initiator. Polyacrylamide (sample A)
and AETAC-co-AAm (samples B, C, D) with different
monomer compositions and molecular weights were syn-
thesized by changing the concentration of V-50 from 0.01
to 1.06 mol% in the monomer mixture. The reactions were

Fig. 1 The chemical structure of AETAC-co-AAm

Fig. 2 The bpp-ste-led pulse sequence [45]. The encoding gradients of
a stimulated echo (ste) sequence were applied as symmetrical bipolar
pulse pairs (bpp) of the total duration, δ. The longitudinal eddy-current
delay (led) sequence was extended with a delay period, Te
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stopped by cooling, and the polymers were isolated by
repeated precipitation in acetone. Polyacrylamide and
AETAC-co-AAm powders were obtained by vacuum dry-
ing at room temperature.

NMR measurements

The polyacrylamide and AETAC-co-AAm powders were
dissolved in D2O (99.9 atom% D), 0.1 M NaCl in D2O or 1
M NaCl in D2O containing 0.05% trimethylsilylpropanoic
acid to prepare samples of 0.2 wt% polymer or copolymer.
The powders of sample A (or C) and sample D were mixed,
and then the solvent was added. These sample solutions
were transferred to a sample tube with a 5-mm outer dia-
meter, and the liquid height was adjusted to 30 mm. DOSY
measurements were performed using a Bruker AVANCE
NEO 400 spectrometer equipped with the Diff BBI probe
and the Diff-5-3 program implemented in TopSpin
4.1.0 software. For the measurements of the polymer sam-
ples in D2O containing 1M NaCl at 30 °C, data were
acquired using the bpp-ste-led sequence [45] (PULPROG:
diffSteBp) with a gradient pulse length (δ) of 3.2 ms (gra-
dient pulse shape: smsq), a diffusion delay (Δ) of 10 ms, an
eddy current delay (Te) of 5 ms, and a gradient recovery
delay (tg) of 0.5 μs. The parameters for the measurements
under other conditions are given in the figure legends. All
experiments were recorded using 128 scans for each gra-
dient strength in 128 linear G lamp steps. The acquisition
time was 0.84 s with a relaxation delay of 4.16 s using 8192
data points for the F2 dimension covering 4850 Hz. The
transmitter frequency offset was adjusted to the frequency
of the N(CH3)3

+ resonance. An exponential window with a
broadening factor of 3 Hz was applied prior to Fourier
transform along the F2 dimension. Careful phase adjustment
and baseline correction were performed. The CONTIN
method [48, 49] implemented in the TopSpin 4.1.4 software
was adopted for inversion of the Laplace transform along
the F1 dimension.

SEC-MALS measurements

Size exclusion chromatography coupled with multiangle
light scattering (SEC–MALS) measurements were per-
formed in 1M NaCl at 25 °C to determine the Mw, Mw/Mn,
and root mean square radius of gyration (Rg) of the poly-
acrylamide and AETAC-co-AAm samples. The powders of
these samples were dissolved in 1M NaCl to give 0.2 wt%
solutions. An MALS detector (WYATT DAWN HELEOS-
II) and two SEC columns (Shodex OHpak SB-806 M HQ
with a maximum porosity of 2 million and OHpak SB-807
HQ with a maximum porosity of 50 million) were used for
the analysis. Aqueous NaCl (1 M) was used as the eluent,
and the flow rate was 0.6 mL/min. A Wyatt Optilab T-rEx

differential refractometer was calibrated using a series of
1 M NaCl solutions of known concentrations [50].

Dynamic light scattering measurements

DLS measurements of the polymer samples were carried out
for 0.2 wt% solutions in 1M NaCl at 30 °C using a Malvern
Panalytical Zetasizer Nano ZSP system and a 10-mm
polystyrene cell. The powders of polyacrylamide and
AETAC-co-AAm were dissolved in 1M NaCl to prepare
samples of 0.2 wt% polymer or copolymer. The powders of
sample A and sample D were mixed, and then the solvent
was added. Inversion of the Laplace transform was con-
ducted using the CONTIN method implemented in Zatasi-
zer software (version 8.02).

Intrinsic viscosity measurements

The [η] of the polymers was measured in 1M NaCl at 25 °C
using a Cannon–Fenske viscometer (size 75). The intrinsic
viscosity values were extrapolated from the linear plots of
the reduced specific viscosity as a function of concentration
[50].

Results and discussion

Table 1 summarizes the average AETAC composition,
Mw, Mw/Mn, Rg, and [η] of samples A to D. It should be
noted that the [η] values increased with increasing Mw.
According to the work of Mabire et al., in a 1 M NaCl
solution, [η] is affected by the ionic strength of the solu-
tion as well as the composition and Mw of the polymer,

Table 1 Homopolymer of AAm and copolymers of AETAC and AAm
prepared by radical polymerization at 40 °Ca

Sample AETAC (mol%) Mw
c/106 Mw/Mn

c Rg
c (nm) [η]d

(dL/g)
Feeda Copolymerb

A 0 0 1.3 1.6 61 5.4

B 60 59.3 2.1 2.8 87 7.7

C 60 59.4 1.9 2.6 86 7.5

D 80 80.9 3.9 3.1 109 10.1

aV-50 was used as the initiator (0.01–1.06 mol% of monomer). The
monomer concentration in water was 4.6 mol/L
bDetermined by 1H NMR in 1M NaCl in D2O at 40 °C using the
following Eq.:

AETAC (mol%)= Intensity (N(CH3)3/9)/Intensity ((CH+CH2/3))
cWeight average molecular weight (Mw) and root mean square radius
of gyration (Rg) determined by SEC–MALS measurements in 1 M
NaCl at 25 °C
dDetermined in 1M NaCl at 25 °C

1H DOSY analysis of high molecular weight acrylamide-based copolymer. . . 593



and Rg is affected by Mw but not by the composition of
AETAC-co-AAm [4].

Figure 3b shows the 1D NMR spectrum extracted from
the DOSY data of sample B measured in D2O at 40 °C.
The spectrum was acquired at the first gradient step, G1.
The parameters for the DOSY experiment are shown in
Table 2 as Run 2. According to the assignments by
Proietti et al. [6], the broad resonances at 1.35–2.41 and
2.41–3.04 ppm can be assigned to the CH2 (1) and CH (2)
groups of the copolymer main chain, respectively. We
assigned the strong resonance at 3.24 ppm to the (CH3)3N
+ group (5) and the resonances at 3.77 and 4.59 ppm to the
CH2 groups of the AETAC side chain (3, 4). A compar-
ison of this spectrum with that of Fig. 3a in our previous
study [37, 46] (the parameters are shown in Table 2 as
Run 1) reveals that the intensities of resonances 1–4 were
higher than that of resonance 5. We mainly attribute this
increase to the reduction of the diffusion time (Δ) from
100 ms (Run 1) to 10 ms (Run 2), which was made pos-
sible by the use of the Diff BBI probe. The T2 values for
resonances 1–4 were smaller than that of resonance 5
(see Supplementary Material). Thus, using a large Δ leads
to severe loss of the echo intensity for small T2 resonances
(see Eq. 1).

Fig. 3 1D NMR spectra extracted from the DOSY data of sample B in D2O at 40 °C. The spectra were acquired at the first gradient step, G1. The
DOSY experiments were performed using the GR probe (previous study, Run 1) (a) and the Diff BBI probe (present study, Run 2) (b). See Table 2
for the parameters of these experiments

Table 2 Parameters for the DOSY experiments of AETAC-co-AAm
(sample B) used in our previous studies (Run 1) [37, 46] and in the
present study (Run 2)a

Run 1 2

Spectrometer JEOL JNM-ECA Bruker Avance NEO

Probe 5 mm GR 5mm Diff BBI

Observed frequency (MHz) 500 400

Δ (ms) 100 10

δ (ms) 2.0 2.5

tg (μs) 238 0.5

Te (ms) 50 5

n 32 128

Number of G steps 32 64

Shape of the gradient pulse square smooth square

G1 (G/cm) 100 80

Gmax (G/cm) 1100 1720

S/N of the (CH3)N
+ resonanceb 263.7 861.5

S/N of the CH2 resonance
b 9.9 47.0

aDOSY experiments in D2O at 40 °C. tg denotes the gradient recovery
time (see Fig. 1 for the other abbreviations of the delay times (Δ, δ,
Te)); n is the number of gradient steps (linear G ramp); and G1 and
Gmax are the strengths of the minimum (the first) and maximum (the
n-th) gradients, respectively
bSignal-to-noise ratio for the 1D spectrum obtained at G1. An
exponential apodization function (LB= 3.0 Hz) was applied prior to
the Fourier transform along the F2 dimension. The noise region for the
S/N calculations was 6.5–10.0 ppm
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Figure 4 shows the DOSY contour plots with F1 (the D
dimension) and F2 (the chemical shift dimension) projec-
tions obtained from the CONTIN analysis of samples A and
D and a 1:1 mixture of A and D in D2O at 40 °C. The plots
for sample A (Fig. 4a) show the resonances due to the CH2

(6) and CH (7) groups of the polyacrylamide main chain
and the log–Gaussian distribution of D with the peak
maximum (Dp) at a log D of −11.52 m2/s. In contrast,
almost no resonances other than that due to the (CH3)3N

+

group (5) of the AETAC side chain were observed in the
plots for sample D (Fig. 4c). The log Dp was found at
−12.33 m2/s. The plots for the mixture of samples A and D
(Fig. 4b) showed resonances 6 and 7 of polyacrylamide and
resonance 5 of AETAC-co-AAm. The distributions of D for
samples A and D were well separated, with log Dp values at
−12.09 and −12.27 m2/s, respectively. Polyacrylamide
(sample A) is uncharged and has a flexible chain structure,
whereas AETAC-co-AAm (sample D) is a polyelectrolyte,

which we assume has a relatively expanded chain structure
in D2O owing to electrostatic repulsion between the charged
AETAC units. We consider that the expansion of AETAC-
co-AAm chains reduces the segmental mobility of the main
chain and makes T2 of resonances 1–4 very small. Even
with a small Δ of 12 ms, which was achieved by the use of
the Diff BBI probe, it seems difficult to observe resonances
1–4 from DOSY experiments in pure D2O.

It should be noted that the log Dp for sample A in Fig. 4b
(−12.09 m2/s) was significantly smaller than that in Fig. 4a
(−11.52 m2/s). We attribute the decrease in Dp when sample
A was mixed with sample D to the concentration of 0.2 wt%
in D2O far exceeding the overlap concentration (c*). The
individual polymer chains start to overlap as the con-
centration approaches c*, which is defined as the con-
centration at which a given dilute conformation’s pervaded
volume is equal to the solution concentration [51]. The need
to use sufficiently low-concentration samples to determine

Fig. 4 DOSY-CONTIN contour
plots with F1 (the D dimension)
and F2 (the chemical shift
dimension) projections of
sample A (a), sample D (c), and
a 1:1 mixture of samples A and
D (b). The DOSY experiments
were performed in D2O at 40 °C.
Sample concentration= 0.2 wt
%; Δ= 12 ms; δ= 5.4 ms;
number of linear G steps= 64
(a) or 128 (b, c); G64 = 700 G/
cm (a); and G128= 1400 and
1420 G/cm in (b) and (c),
respectively

Fig. 5 DOSY-CONTIN contour
plots with F1 and F2 projections
of sample A (a), sample D (c),
and a 1:1 mixture of samples A
and D (b). The DOSY
experiments were performed in
1M NaCl in D2O at 30 °C.
Sample concentration= 0.2 wt%;
Δ= 10ms; δ= 3.4ms; number
of linear G steps= 128; and
G128= 1100, 1400, and 1650G/
cm in (a–c), respectively

1H DOSY analysis of high molecular weight acrylamide-based copolymer. . . 595



the correct D by diffusometry has been noted in the litera-
ture [22, 32, 52, 53]. However, DOSY experiments for
AETAC-co-AAm samples at concentrations below 0.2 wt%
were impractical in terms of sensitivity of the spectrometer
in the present study.

Figure 5 shows the DOSY contour plots with F1 and F2

projections of samples A and D and the mixture of samples A
and D in 1 M NaCl in D2O at 30 °C. In contrast with Fig. 4b, c,
resonances 1–5 of AETAC-co-AAm were observed in Fig. 5b,

c, and resonances 6 and 7 of polyacrylamide were observed in
Fig. 5a, b. It was reported that the intramolecular electrostatic
repulsion between charged segments by (CH3)3N

+ in AETAC-
co-AAm is screened by Cl− and that polymer chain expansion
is not appreciable in D2O solution with salt [9]. As a result, the
log Dp for sample D increased markedly to −11.78m2/s
(Fig. 5c). The distributions ofD for samples A and D in Fig. 5b
separated well, with log Dp values at −11.51 and −11.64m

2/s,
respectively. These values agreed reasonably well with those
determined by DLS-CONTIN analysis for sample A
(−11.26m2/s) and sample D (−11.58m2/s) in 1M NaCl in
D2O at 30 °C (Fig. 6). However, we note that the D determined
by DLS is a mutual-diffusion coefficient in contrast with the
self-diffusion coefficient determined by DOSY. Separations of
samples A and D along the diffusion axis determined by
DOSY (Fig. 5b) and DLS (Fig. 6) compare unfavorably with
the SEC separation, which showed a bimodal distribution of
molecular weight corresponding to samples A and D (Fig. 7).
We attribute the insufficient separation in the SEC curve for the
mixture of samples A and D to overloading of the sample
solution in the SEC-MALS instrument.

Figure 8b shows the DOSY contour plots with F1 and F2

projections of a 1:1 mixture of samples C and D in 0.1M
NaCl in D2O at 30 °C. The Mw of sample D (3.9 × 106) was
twice as large as that of sample C (1.9 × 106), and the AETAC
composition of sample D (80.9mol%) was larger than that of
sample C (59.4 mol%). However, the F1 (the diffusion
dimension) projection showed no sign of separation or
broadening arising from the two copolymers. Thus, it appears
difficult to separate the diffusion profiles of these samples by
DOSY analysis under the conditions of this study.

Our results demonstrate that the inverse-geometry diffu-
sion probe system is useful for the DOSY-CONTIN analysis
of polyelectrolytes with Mw over one million in D2O

Fig. 6 Distribution of D determined by DLS-CONTIN analysis of
sample A, sample D, and a 1:1 mixture of samples A and D in 1M
NaCl in D2O at 30 °C. Sample concentration= 0.2 wt%

Fig. 7 Molecular weight distributions of sample A, sample D, and a
1:1 mixture of samples A and D measured by SEC–MALS using 1M
NaCl in water as the eluent at 25 °C

Fig. 8 DOSY-CONTIN contour
plots with F1 and F2 projections
of sample C (a), sample D (c),
and a 1:1 mixture of samples C
and D (b). The DOSY
experiments were performed in
0.1M NaCl in D2O at 30 °C.
Sample concentration= 0.2 wt
%; Δ= 11 ms; δ= 3.8 ms;
number of linear G steps= 128;
and G128= 1250, 1550, and
1500 G/cm in (a–c), respectively
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containing 0.1 to 1M salts. This is particularly relevant to the
study of sludge solutions. For example, the electrical con-
ductivity of common sludge is approximately the same as that
of 0.1M NaCl aqueous solution (22 μS/m) [54]. Many studies
have been conducted to elucidate the mechanism of sludge
dehydration using polymer flocculants, although few have
focused on the structure of these polymers [55, 56]. We
expect that the application of the DOSY-CONTIN method
will provide information on the structure and mobility of
polymer flocculants in stimulated sludge solutions.
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