Windows WSL2におけるTensorflowベースの ディープラーニング用サーバの構築

常三島技術部門		
計測制御システムグループ	北島	孝弘 (KITAJIMA Takahiro)
大学院社会産業理工学研究部		
理工学域 電気電子系	安野	卓 (YASUNO Takashi)
	鈴木	浩司 (SUZUKI Hiroshi)

Keywords: Deep-learning, Tensorflow, Windows, WSL2, Python

1. はじめに

ディープラーニングのフレームワークであ るTensorflowのGPU版は,ver.2.10でWindows 用のリリースを終了した。それ以降のGPU版 TensorflowをWindowsで利用するためには, Windows上でLinuxの仮想環境を構築できる WSL2 (Windows Subsystem for Linux 2)の利 用が推奨されている。WSL2はWindows11で標 準の機能として提供されている。本稿では, LinuxおよびTensorflowで構成されるディープ ラーニングサーバをWindows上で構築する手 法について紹介する。

2. WSL2のインストール

WSL を使用すると, Windows と Linux を同 時に利用できることに加え, OS 間でファイル のやりとりもできる。Windows11 であれば, コマンドプロンプトを管理者権限で起動して, 下記のコマンドを入力すると WSL が有効化さ れ, Linux (Ubuntu) がインストールされる。 インストール後, 画面の指示に従い再起動す る。なお, GPU のドライバは最新版を事前に インストールしておく。

wsl --install

このとき、インストールされる Linux のバー ジョンは最新版 LTS となる。下記コマンドを 実行すると、利用可能な Linux ディストリビ ューションの一覧が表示される。

wsllistonline
ディストリビューションを指定してインスト
ールする場合は、下記コマンドを実行する。
wslinstall -d "ディストリビューション名"
インストールが完了すると, Linux のユーザ名

とパスワードを設定するように表示されるの で,任意のものを入力する。なお,インストー ルされたディストリビューションは,コマン ドプロンプト上で下記コマンドにより確認で きる。

wsllistverbose				
wslの終了,起動は下記コマンドで実行できる。				
wslshutdown	(終了)			
wsl	(起動)			
インストール後は,	下記コマンドを実行して			
Linux のアップデートが可能である。				
sudo apt update				
sudo ant ungrado				

3. CUDA Toolkitのインストール

あらかじめインストールしたいTensorflow のバージョンに対応するCUDA Toolkit, cuDNN, PythonのバージョンをTensorflowの webページ^[1]で確認しておく。そして, Nvidia のwebページ^[2]よりインストールしたいCUDA Toolkitのバージョンを選択する。このとき, Target Platformの選択は下記のように指定する (ここでは ver. 11.2.2を選択)。

Linux
x86_64
WSL-Ubuntu
2.0
deb(local)

そして、ページ下部の「Base Installer」欄に表 示されるインストールコマンドを1行ずつ Linuxのターミナルで実行する。

4. cuDNNのインストール

Nvidiaのwebページ^[3]より,インストールしたいバージョンのcuDNN Runtime Libraryを CPUアーキテクチャとUbuntuのバージョンで 絞込み,ダウンロード,Ubuntuのホームディレクトリへ保存する。このとき,Nvidiaへのログ インが必要になるので,アカウントを持っていない場合は作成する。ダウンロードしたファイルのディレクトリへ移動し,下記コマンドを実行してインストールする(ここでは,ver.8.1を選択)。

sudo dpkg -i "cuDNNファイル名.deb"

5.環境変数の設定

下記の内容を「~/.bashrc」に追記する。

export PATH="/usr/local/cuda/bin:\$PATH" export LD_LIBRARY_PATH="/usr/local/cuda /lib64:\$LD LIBRARY PATH"

そして,下記コマンドを実行して変更を反映 させる。

source ~/.bashrc

6. Pythonのインストール

Ubuntuをインストールすると、Pythonも同時 にインストールされているが、ユーザのプロ グラミング環境として、Pythonを別途インスト ールする。インストールは、Python Japanホー ムページ^[4]のPython環境構築ガイド(Ubuntu) の手順に沿って行う。

7. Pythonの仮想環境を構築

Pythonをインストールすると、複数のPython 実行環境を構築するための仮想環境モジュー ルvenvも利用可能になっている。仮想環境を 利用すると、異なるバージョンのPythonやライ ブラリの組み合わせでそれぞれ実行環境を構 築することができる。機械学習の実行環境の 作成においては、ライブラリ間のバージョン の相性で正常に動作しないことが多いので、 実行環境を簡単に作成したり、削除したりで きる仮想環境は便利である。仮想環境の構築 は、以下のコマンドをホームディレクトリに 移動してから実行する。"py309"には任意の 名前を指定する。

 mkdir venv

 cd venv

 python3.9 -m venv py309

 仮想環境へ出入りするには、以下のコマンドを実行する。

 仮想環境に入る時

 source ~/venv/py309/bin/activate

 仮想環境から出る時

 deactivate

8. Tensorflowのインストール

作成した仮想環境に入って,以下のコマンドを実行する。以下の例は,Tensorflowのバージョンが2.11.0の場合である。

pip install tensorflow==2.11.0

9. Visual Studio Codeとの連携

Visual Studio Code の 拡 張 機 能 「 Remote Development」をインストールすると, WSL2上 のPython実行環境と接続できるようになる。イ ンストール後, Visual Studio Codeを閉じ, WSL2 のUbuntuターミナルで以下のコマンドを実行 すると, Visual Studio Codeの起動と同時に仮想 環境に接続できる。

cd venv/py309	
code.	

10. おわりに

本稿は執筆時点での情報をまとめたもので ある。今後の更新により構築手順やコマンドは 変更される可能性があるため,最新情報はイン ターネット等での確認をお勧めする。

参考文献

- https://www.tensorflow.org/install/source?hl=j a#gpu
- [2] https://developer.nvidia.com/cuda-toolkit-archi ve
- [3] https://developer.nvidia.com/rdp/cudnn-archiv e
- [4] https://www.python.jp/