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ABSTRACT Transfer-learning has rapidly become one of the most sophisticated and effective techniques
in dealing with medical datasets. The most common transfer-learning method uses of a state-of-the-art
model and its corresponding parameters as the starting point for new tasks. Recent studies have found that
transfer-learning between medical and natural images has minimal advantages, attributed to their different
characteristics, even with sufficient data and iterations. This study employs a meta-learning technique,
building upon the traditional transfer learning approach, to explore the potential of natural tasks as a starting
point for analyzing medical images. In addition, this study investigates the performance of transferring the
searched augmentation from natural to medical images. Several studies proposing search algorithms for data
augmentation argue that the augmentation techniques can be effectively transferred across different datasets.
The results revealed that the transferability between natural and medical images leads to reduced performance
owing to the characteristic difference between medical and natural searched augmentation.

INDEX TERMS Data augmentation, medical image dataset, meta-learning, natural images dataset,

transfer-learning.

I. INTRODUCTION

Transfer learning is the process of solving new problems
using previously acquired knowledge. Deep neural networks
commonly employ pre-trained models, which have already
learned complex tasks, as a foundation for transfer learning
to learn new tasks. The pre-trained model is expected to
perform better than models trained from scratch or random
initialization. Choosing a proper initialization approach for
deep learning is important to prevent exploding or vanishing
gradient.

Transfer learning has been applied across various domains,
particularly in the medical domain [1], [2], [3], [4]. Most
studies have trained state-of-the-art networks [5], [6], [7]
that have successfully demonstrated superior performance on
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the most challenging natural-image datasets: ImageNet [8],
containing 1000 categories. These same models have been
applied to medical datasets [9], [10], [11] with promising
results with medical datasets.

Notwithstanding the popularity of transfer learning [12],
researchers do not agree on the significance of its supremacy.
Several researchers have demonstrated that the performance
difference between random initialization and pre-trained
models is not substantial [13], [14]. With more itera-
tions, random initialization can achieve performance that
is comparable to that of pre-trained models [13], [15].
In practical applications of transfer learning, fewer training
iterations are typically required, making it a cost-effective
approach for solving new problems. Given that numerous
training iterations can result in network memorization [16],
particularly when dealing with small datasets, and since
medical datasets are typically small, it is important to exercise
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caution when training deep neural networks on medical
data. Flennerhag et al. suggest that in the transfer learning
paradigm, the final weights of the model are often in close
proximity to the initial parameters, whereas starting from
scratch involves a broader search space for the optimal
weights [17].

The benefit of transfer learning from the medical-domain
perspective has empirically proved to be minimal [14].
Experimental results of Raghu et al. demonstrate that transfer
learning from an ImageNet pre-trained model to medical
images offers few benefits. This is because natural images
such as ImageNet focus on object-shape recognition [18],
[19], whereas medical images predominantly focus on local
texture recognition [14]. Medical images are similar to the
fine-grained challenge images because medical images com-
prise the same objects from the same body area. For example,
EyePACS retina images comprise human eyes, chest X-rays
show the human skeleton, and dermoscopic datasets capture
the human skin. The difference is the small anomaly in
textures that indicate the characteristics of some diseases.
Consequently, recent studies by Kornblith et al. demonstrate
that pre-trained ImageNet models do not perform well
in fine-grained classification problems [15]. Furthermore,
another reason to uphold the limitation of transfer learning
is that deep network architectures that are generally used
for heavy datasets such as ImageNet are over-parameterized
to learn medical imaging datasets, which generally have far
fewer categories than ImageNet [9], [11], [20]. Therefore
such insights can inform the development of improved
transfer learning methods that can be applied across diverse
domains.

Meta-learning is the process of learning the training
process of several tasks to allow the model to quickly learn a
new task [21]. This is similar to how humans never learn from
scratch because our previous knowledge helps us to learn new
things faster and better. Transfer meta-learning may become
a method of transfer learning to achieve high performance
with few iterations. In this study, we evaluate the performance
of transfer meta-learning in various medical image datasets.
To the best of our knowledge only a few used meta-learning
for medical image datasets [22], [23].

Another challenge with medical imaging datasets is
imbalanced samples. There are generally far more healthy
samples than sick samples, especially for rare diseases. One
way to tackle this problem is by using data augmentation
to enable machine learning to learn a wider variation in
the data distribution. Most augmentation techniques involve
manual feature engineering [24], [25], [26]. A recent study
proposed a method to automatically find optimal augmenta-
tion techniques that are transferable between datasets [27].
As a result of using various equipment and instruments to
gather medical data, several methods are used differently for
analysis, although there may be hidden correlations between
them. Similar to the relationship between natural images
that enables the transferability of augmentation techniques,
we investigate the underlying connections between medical
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images that facilitate the transfer of these techniques. Despite
variations in device acquisition, our findings suggest that
augmentation techniques applied to dermoscopic images and
X-ray scans can be successfully transferred.

The contributions of this paper are:
o We show that transfer meta-learning is a better method of

transfer learning that enables machine-learning models
to learn medical images faster.

« However, our findings also reveal that despite its faster
convergence rate, transfer learning is outperformed by
training from scratch when longer training phases and
larger datasets are employed.

o Our study contradicts the assumption of augmentation
transferability between datasets, as previously stated
in [27] and [28] especially between natural and medical
datasets.

o We explored the characteristics of the searched aug-
mentation in medical images and compared it to that of
natural images.

« We found the scheme where strong augmentation even
hurts the accuracy especially in fine-grained details such
as medical image datasets as supported by [29]

The remainder of this paper is organized as follows:
Section II presents several adaptations of transfer learning
in medical datasets, several studies that highlight transfer-
learning drawbacks, some versions of the meta-learning
technique, and a few studies that explore augmentation
techniques. Section III explains the meta-learning definition
and automated augmentation. Section I'V presents the dataset
used in the experiment. Then, Section V describes the
configuration of the experiment. Section VI presents and
analyses the experimental results. Finally, the last section
concludes the paper.

Il. RELATED WORK

Several studies have explored the application of weight trans-
ferability on various medical datasets by using a pre-trained
model from the ImageNet dataset. The pre-trained models
of AlexNet [30] and VGG-net [31] were used to categorize
retina images to identify their diabetic retinopathy levels [32].
Using a similar technique, several pre-trained state-of-the-
art networks, such as AlexNet, VGG-net, Inception [7],
ResNet [5], and DenseNet [33], were applied to classify
X-ray images to recognize their pathology types [10],
[20], [34]. Ding et al. used a pre-trained Inception v3
architecture to recognize Alzheimer’s disease from positron
emission tomography images [35]. Recently, a pre-trained
Inception model was used to predict embryo quality based
on morphological assessments [36]. Furthermore, DenseNet,
ResNet, Inception v3, and Inception v4 were trained with
dermoscopy images to categorize skin lesions [11].

Several researchers investigated the benefit of transfer
learning through pre-trained models [13], [14], [15], [37].
Some believe that pre-trained models can drive the optimal
solutions away because of the diversity between learned
tasks [17], [38]. The effects of transfer learning in medical
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FIGURE 1. Meta-learning flowchart.

imaging are elaborated further in [14]. Meta-learning assists
in overcoming such diversity. Meta-learning is the process
of learning the training process so that the model can
adapt quickly to new tasks [39], [40]. A meta-learner is
generally trained to observe how the model updates the
parameters when learning different tasks [41], [42]. Three
main approaches have been focused on recently. The first is
a meta-learner that is trained by comparing new samples to
previously learned samples [43], [44]. The second uses the
gradient of the model as the RNN [45] input to generate the
optimal updates of the parameters during training [40], [46].
The third approach builds a meta-learner to find the optimal
starting point and allow the model to learn new tasks faster
through limited gradient updates [47], [48]. Meta-learning
is frequently used for few-shot learning problems, where
the data samples from one class category are limited [44].
Likewise, the medical domain has the same characteristics
where the samples for rare diseases are limited [49].

Only a limited number of studies have investigated the use
of augmentation techniques in general. Most studies focus
on deep-learning architectures to improve machine-learning
performance [5], [7], [31]. For the most widely used and com-
mon dataset such as ImageNet, the augmentation-technique
base has not been changed since 2012 [30]. Autoaugment [27]
is the process of automatically searching for the optimal
augmentation policy based on the reward score produced by
a reinforcement-learning agent [50]. However, the drawback
of autoaugment is that the running time is thousands of GPU
hours to obtain the most optimal augmentation policy from
a single dataset. The scenario is improved by embedding
Bayesian optimization [51] as a heuristic approach to obtain
the optimal augmentation policy [28].

lll. METHODOLOGY

In this section, we describe the general concepts of
meta-learning and heuristic augmentation search. We focus
on fast autoaugment as an example of a heuristic augmenta-
tion search.

A. META-LEARNING

Meta-learning aims to learn the learning process across
numerous tasks. Meta-learning increases the flexibility of
the learning process and reduces inductive bias. Inductive
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FIGURE 2. The illustration of meta-learning.

Algorithm 1 Meta Learning: FOMAML
Input: Classifier f, Distribution over tasks p(r),
Parameter 0
Parameter: 7 steps
Output: Best Initialization Value 6
1 Op = initialize 9;
2 fori < Otondo

3 m; = sample task batch from p(r);
4 while not done do

5 | Evaluate AgLy,(f(6))

6 end

7| O =N iy 2 L)

8 end

bias is the behavior of learning certain tasks if the bias
matches the learning problem. The most common way to
transfer knowledge in a deep, parameterized model is to
use pre-trained parameters as the starting point; therefore,
we focus on meta-learning algorithms that focus on the
starting point such that the learning process can rapidly adapt
to a new task.

To the best of our knowledge, there are two ways of
performing meta-learning based on parameter initialization.
First, during training, we identify the model parameters
that are sensitive to certain tasks. The sensitivity of the
parameters can be quantitatively measured by the loss
changes corresponding to parameter changes. Based on this,
we modify the parameters such that for all possible tasks,
the changes are insignificant with respect to the parameters
and therefore lead to faster convergence rates. There are
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Algorithm 2 Meta Learning: Reptile

Algorithm 3 Meta Learning: Leap

Input: Distribution over tasks p(sr), Parameter 6
Parameter: n steps
Output: Best Initialization Value 6
1 69 = initialize 0;
2 fori < Otondo
3 T = sample task batch from p(r);
4 while rnot done do
5 Ok : k steps of optimization algorithm;
6 end
7 0 =6y + €(6r — 6p);
8 end

two major studies on this approach; FOMAML [48] and
Reptile [47]. Second, we employ a technique to navigate
across the loss surface to determine the optimal initial
point near local minima. The concept of navigating through
the loss surface has a different assumption from the first
approach. The first approach considers the changes in the
parameters as a method of knowing the complexity of the
training, while the second approach considers it to be a
way of achieving local minima to ensure a more accurate
measurement. The evaluation of the complexity of the
training process is the main difference between the two
approaches. Flennerhag et al., under the second paradigm,
proposed the latest and best method so far.

We denote a model f which maps input x to output y. The
learning task w = (fz, pr, g7) is to learn how to draw a
relation between x and y under the distribution p (x, y). The
learning process is done by using a gradient rule update g .
Consider the initial network parameter is 6y, as the training
progresses, the parameters will change by 6,11 = g,(6;) until
the error converges.

In general, meta-learning has inner and outer parameter
updates. As can be seen in Fig. 2, the dotted line is
the inner update while the bold line is the outer update.
The inner update is an update to learn the given task while the
outer update is an update to learn the training process. The
main difference between FOMAML and Reptile is in how
they perform the outer parameter update. The loss function
in FOMAML is mathematically written as

min > > Lu(fy). M

Ti~p().j J
As can be seen in the equation 1, FOMAML attempts to
minimize the overall gradient update using the best initial

parameter possible. In contrast, the outer parameter update
for Reptile is given as follows:

0 = 6 + €O — 6o). )

where € is a parameter to maintain the distance of the update
while the term 6 — 6 is the substitution of gradient update.
Reptile does not need the outer loss function while FOMAML
needs it.
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Input: Distribution over tasks p(sr), Parameter 6
Parameter: n steps
Output: Best Initialization Value 6

1 6y = initialize 0;

2 fori < Otondo

3 T = sample task batch from p(rr);
4 | ¢V :initialize task baseline
5 while not done do
6 update baseline WH based on equation 5;
7 following baseline 6. <« i
8 increment AF (_90, W) with gradient pull
(eq. 6)
9 end
10 | 6=06y+ AF@H, V)
11 end

Leap [17] is a method that focuses on loss function
navigation. The concept of Leap is to calculate the length of
parameter updates during training. The length of parameter
updates at iteration ¢ are calculated using the length of
gradient updates denoted by y which is calculated as

1
Length(y) = /0 V 8y (1), y(t))dt. 3)

Leap calculates the cumulative chordal distance using the
following formulation
K-1
d(6o, M) =D Ilyit1 — vill5, wherep € 1,2, (4)
0

where M is a task manifold. Flennerhag et al. used the
following loss function

Il’élnf(@o) = Ean(n)[d(GO; My |
0

s.t. 01 = gn(6)),
0o € O = Ny (Oolfr (Ok) < fr (W), ©)

where W; is the actual gradient path and 6; is the final
parameter after gradient pull. For the outer update, the update
value is incrementally added to the inner training process. The
value of the update is defined as follows:

AF (6o, V)
k—1
= —PEn~p(n)[Z Ji6d)
i=0

< (ARDFO) + 80l — vl 21 (6)
where j; is the Jacobian of 6; with respect to the initialization,

Afi = f(Wit1) — f(0), and AG; = Wit — 6.

B. FAST AUTOAUGMENT

Proposed by Lim et al., fast autoaugment is a technique
that improves the previous version of autoaugment, which
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Algorithm 4 Fast AutoAugment
Input: Classifier f, Policies ®,, Dataset x
Parameter:7, 7, and k
Output: Augmentation Policies @2

1 (!, oo ) = split(x);

2 fori < Otondo

3 %;rain’ %\l;al :,Split(%i);

4 train f with s, ;

5 forj < Otor do

6 ©®; := observe ®all(”£al) through o of f ;
@;‘ := extract top-k(®);) ;

7 Opest := Opesr U ®}(;

8 end

9 end

required thousands of hours of GPU to find the optimal
augmentation policy from one dataset [27]. It uses the
lowest inference loss to obtain the optimal augmentation
strategy, allowing for a one-time training proces. Denote ©
as an augmentation policy that transforms an input image x
with probability p, an augmentation policy requires another
magnitude input § reflecting how strong the transformation is
done. As an example, a rotation policy requires the degree of
rotation for the image to be rotated.

O(x, p, §) = O(x, §) with probability p, otherwise x. (7)

Multiple augmentation policies can be concatenated,
resulting in a sequence of augmentation policies. The final
output of fast autoaugment is a set of augmentation policies
that maximize the final prediction score.

To find the optimal augmentation strategy for a dataset
x, we find augmentation strategies ©®* which maximize
accuracy from an evaluation function «:

a(f(®*(}fva1))) < a(f (eyar)) (8)

First, the dataset » is divided into 5 chunks for the
sake of generalization. Then, each chunk is partitioned into
{xfrain};]zl and {x!,}!_|. Afterward, we train the f’ model
with 5/, . without any augmentation policy in parallel. The
augmentation policies that can increase the accuracy score of
dataset %gal by trained models f7 are selected as the optimal
augmentation policies. As can be seen in Algorithm 4,
we only train the model n-times. For each trained model,
we search the best policy ¢-times. Meanwhile, autoaugment
needs to train the model (n x t)-times to obtain the same
number of trials thus requiring more GPU hours.

C. EFFICIENT-NET

The Efficient-Net architecture [52] is the baseline network
in our experiment. Efficient-Net is a recent state-of-the-
art network that achieves high accuracy in ImageNet
dataset and outperforms popular state-of-the-art networks
such as ResNet [5], Inception [53] and NasNet [54]. The
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FIGURE 3. Fundus photography images from EyePACS dataset.

Efficient-Net architecture balances all dimensions of a
machine learning architecture such as depth, width, and
resolution. To study high-resolution images, the network
should have deeper and wider layers. The insight comes from
previous studies that discovered a relationship between the
width of a network and its depth [55], [56].

Tan and Le proposed a compound scaling mechanism
that uses a compound coefficient ¥ to evenly scale the
depth, width, and input resolution of the network, which is
represented by a constant coefficient ¢, w, and Y respectively.
All the constant coefficients can be determined by a small grid
search from the simplest model, such that

1<¢-0? T2r2. )

Note that the floating-point operation per second (FLOPs)
of a convolutional network is proportional to ¢, w* and Y2.
Therefore, if we increase the network depth twice then the
number of FLOPs will also increase twice. However, if the
width or resolution is increased twice, the number of FLOPs
will increase four times.

FLOPs (fy) = (¢ - 0* - Y7 ~ 27, (10)

Considering that our computational resources are based on
a binary machine, Tan and Le restrict that ¢ - 0? - T2 & 2.
Consequently, if Efficient-Net is scaled by @, the number of
FLOPs is approximately increased by 2.

IV. DATASET

In this section, we introduce two types of datasets: medical
and natural image datasets. Each type has its own character-
istics depending on its purpose.

A. MEDICAL IMAGE DATASETS
In our experiment, we used three different datasets from

medical imaging as the primary benchmark: EyePACS,
ChestX-ray8, and Skin ISIC2019 datasets.

1) EyePACS DATASET

Diabetic retinopathy is one of the diseases that can be
recognized from retina fundus photography. In this experi-
ment, we used a dataset published by EyePACS which is a
clinical institute for diabetic retinopathy (DR) screening in
California, USA [9]. All fundus photography images were
labeled into five classes: normal, mild DR, moderate DR,
severe DR, and proliferative DR according to International
Clinical Diabetic Retinopathy [57]. The final label tagged on
each image was approved by eight ophthalmologists as the
standard reference. Figure 3 displays a sample image from
each category. All 9963 images had a 587 x 587 resolution.
The distribution of the images per class is shown in Fig. 4.
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FIGURE 4. Number of images of EyePACS dataset per class.
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FIGURE 5. Data distribution of Chest X-ray dataset.

2) ChestX-ray8

ChestX-ray8 dataset is a multilabel dataset mined from
Picture Archiving and Communication Systems (PACS),
which is a warehouse for a tremendous number of X-ray
images [10]. The pathology labels listed in ChestX-ray8
include Atelectasis, Cardiomegaly, Effusion, Infiltration,
Mass, Nodule, Pneumonia, and Pneumothorax. If no label
appears, then the image is categorized as normal or healthy.
Original X-ray images with 3000 x 2000 dimensions were
resized into 1024 x 1024 dimensions without removing
substantial content.

3) SKIN ISIC2019

International Skin Image Collaboration (ISIC) published
25.331 dermoscopic images with an open license in 2019.
All images are categorized into eight classes: actinic
keratosis (AK), basal cell carcinoma (BCC), benign ker-
atosis (BKL), dermatofibroma (DF), melanoma (MEL),
melanocytic nevus (NV), squamous cell carcinoma (SCC),
and vascular lesion (VASC) [58], [59], [60]. Sample images
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FIGURE 6. 1S1C2019 skin lesion sample from each category.
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FIGURE 7. Imbalanced data distribution from 1SIC2019 skin dataset.
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FIGURE 8. Natural object images from CIFAR10 dataset.

are visualized in Fig. 6 while the data distribution is shown in
Fig. 7.

B. NATURAL IMAGE DATASET

The natural image dataset consists of natural images from
everyday objects such as airplanes, cars, animals, and
numbers. We used four different commonly used natural
image datasets in our experiment: CIFAR10 and ImageNet
datasets.

1) CIFAR10

CIFARI10 is a dataset of 10 categories: airplane, car, bird, cat,
deer, dog, frog, horse, ship, and truck [61]. A sample from
each category is displayed in Fig. 8. The total number of
images is 60.000. The dataset has resolution 32 x 32 pixels.

2) ImageNet
ImageNet is the largest publicly available natural image
dataset, used as the primary benchmark in the ImageNet
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FIGURE 9. ImageNet dataset sample.

Large Scale Visual Recognition Challenge (ILSVRC), the
largest annual computer vision competition since its inception
in 2010. The dataset consists of 1.4 million images from
1000 categories [62]. On average, ImageNet dataset has a
higher resolution compared with CIFAR10 dataset. In data
augmentation, the image is usually resized to 256 x
256 pixels. The sample images are displayed in Fig. 9.

V. EXPERIMENT
To study the feasibility of transfer learning beyond weight
reuse, we estimated the quality of meta-learning and
augmentation transferability from natural to medical and
medical to medical datasets. In addition to studying the
quality of transfer learning, we characterized the nature of
augmentation search using the heuristic approach. We used
varieties of Efficient-Net (E-Net) as backbones for our model.
To validate the transfer performance of meta-learning
from natural to medical datasets, the CIFAR10 dataset was
utilized for training. For the target task, we used EyePACS,
ChestX-ray8, and ISIC2019 datasets. We also added the
baseline of transfer learning that uses a pre-trained ImageNet
model, called vanilla transfer learning, as the starting
point. For a fair comparison of the algorithm performance,
we applied resize augmentation in all the considered datasets.
To validate the augmentation transferability between natu-
ral and medical images, we applied a searched-augmentation
policy from CIFAR10 and ImageNet to EyePACS,
ChestX-ray8, and ISIC2019 datasets. We also attempted to
accommodate the possibility of transferring the searched
augmentation between medical datasets. We used fast
autoaugment as the search algorithm to save GPU hours.
To further reduce GPU hours, we used a smaller E-Net variant
for augmentation search and used a larger variant for end-to-
end training.

A. EVALUATION METRICS

Owing to the imbalanced distribution of medical datasets,
several types of evaluation metrics are required to fully
measure the machine learning performance [63], [64]. In this
section, we show and describe the evaluation metrics that we
used.

1) AREA UNDER CURVE

To accurately assess the machine learning model’s ability
to differentiate between positive and negative classes, it is
important to compute a metric score that measures both
specificity and sensitivity in a balanced way. The area under
curve (AUC) score is a commonly used metric for this
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purpose. We define f as a machine learning model that
provides a probability f(x) to categorize whether an input x
belongs to a positive class. Then, for each positive sample
x*+ and negative sample x~, AUC score can be calculated as
follows:

1

AUC =
ntn—

nt n~
D2 FEH>fE ), an
P

where nt and n~ represent positive and negative samples,
respectively. AUC score measures how good the machine
learning is at producing the probability of all positive samples
to be always greater than the score of all negative samples.

2) BALANCED ACCURACY

Typically, medical datasets have highly imbalanced samples.
We cannot apply the common accuracy score where all
samples are treated equally; otherwise, the majority class will
dominate the overall accuracy score. Balance accuracy is one
of the ways to calculate accuracy fairly. Balance accuracy
can be computed through the weighted average accuracy
from each class. All classes have the same influence on the
overall balance accuracy score. However, the samples from
different classes will have different influences depending on
the number of class members. Denoting d as the number of
classes, where each class has n; members, balance accuracy
can be expressed as follows:

d n;
1 1 <.
Balance_ ACC = 7 E n—l Ej Xj. (12)

i

VI. RESULT

We present the results that describe the characteristics and
declines encountered in transfer learning in some aspects.
We performed two main experiments: transfer meta-learning
and augmentation transferability.

A. META-LEARNING

Meta-learning is a deep learning technique that has had
limited application in the field of medical image processing.
One popular meta-learning approach is finding the best
initial point to initiate the training process, closely related to
conventional transfer learning that uses pre-trained weights
from large models well-tuned on ImageNet. There are three
main meta-learning techniques based on weight initialization:
Leap, FOMAML, and Reptile.

To investigate the characteristics of the learning behavior,
we used the EyePACS and ISIC2019 datasets as baselines
and inspected the learning process from the perspectives of
training and validation. The results, shown in Fig. 10 and 11,
are consistent. Leap had an advantage in terms of convergence
rate, while Reptile and FOMAML had fairly poor conver-
gence rates compared to random initialization or normal
training. Although Leap had a faster convergence rate, the
final performance metrics were quite similar to those of
the other methods. This implies that meta-learning helps
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FIGURE 10. Meta-learning performance on 1SIC2019 skin dataset. Leap converges faster in the training phase and has superior accuracy in the
validation phase compared with the other meta-learning algorithms, including vanilla transfer-learning that uses the ImageNet pre-trained model.
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FIGURE 11. Meta-learning performance on retina EyePACS dataset. Leap has the best convergence rate compared with the other meta-learning
algorithms in the training phase and achieves high accuracy faster in the validation phase.

TABLE 1. Augmentation transferability from various dataset to 1S1C2019 skin dataset.

Augmentation AUCMean MEL NV BCC AK BKL DV VASC SCC
Chest-Xray 0.95 0.91 095 098 096 092 098 1 0.95
CIFAR10 0.94 0.89 093 097 094 089 097 1 0.95
ISIC 0.93 0.88 093 096 092 088 091 0.99 0.93
ImageNet 0.93 0.87 092 096 093 087 095 098 0.93
No Augmentation  0.86 0.81 088 0.9 087 0.78 0.82 098 0.85

in medical image classification under a limited number of
samples and iterations, but with large datasets, the advantage
of meta-learning becomes limited.

The results demonstrate the superiority of Leap against
the other methods, which aligns with our expectations and
is consistent with the findings of Raghu et al. [14]. It can be
understood from the results of [14] that transfer learning and
normal training are two different solutions with similar local
minima. Raghu et al. explored the changes of parameters
before and after learning to be insignificant, which is, in fact,
the base idea of FOMAML and Reptile techniques. This
is also the main reason FOMAML and Reptile have fairly
poor performance. On the contrary, in the case of Leap, the
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concept is to find the starting point with the shortest path
to local minima; this is an advantage that helps achieve fast
convergence rates in training.

Moreover, the study finds support for these conclusions in
the work of [65], which suggests that training from scratch
yields better performance compared to using pre-trained
models from transfer learning. This additional reference rein-
forces the superiority of Leap and emphasizes the importance
of starting from an optimal initialization point for achieving
improved performance in medical image processing. Overall,
the investigation of meta-learning techniques in this study
sheds light on their potential in medical image analysis,
highlighting the advantages of Leap and emphasizing the
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TABLE 2. Augmentation transferability from various datasets to ChestX-ray8 dataset.

Augmentation Mean 0 1 2 3 4 5 6 7
Chest-Xray 0.64 0.68 077 077 053 062 056 048 0.69
CIFAR10 0.65 0.67 079 0.77 056 064 058 0.5 0.71
ISIC 0.63 0.68 073 0.75 054 062 056 0.5 0.65
ImageNet 0.62 0.66 0.77 074 054 061 055 045 0.61
No Augmentation  0.67 0.68 077 077 055 0.67 058 052 0.77
TABLE 3. Augmentation transferability from various datasets to EyePACS dataset.
Augmentation Mean Normal Mild DR Moderate DR  Severe DR  Proliferative DR
Chest-Xray 0.5 0.5 0.5 0.5 0.5 0.5
CIFAR10 0.5 0.5 0.5 0.5 0.5 0.5
ISIC 2019 0.73 0.71 0.53 0.7 0.83 0.88
ImageNet 0.5 0.5 0.5 0.5 0.5 0.5
No Augmentation 0.8 0.77 0.6 0.78 0.9 0.95
importance of initialization in achieving fast convergence )
’ 0.30 = [SIC 2019
rates and improved performance. s Chest-Xray
L Cifarl0

B. AUGMENTATION TRANSFERABILITY
Searched-augmentation transferability has become one of the
most investigated features [27], [28], [29], [66]. Cubuk et al.,
and Lim et al. performed transfer augmentation between
various datasets based on a variety of networks. The
transferability results of both studies are surprising [27], [28].
The difference between using the transfer augmentation from
any dataset compared to the actual-searched augmentation for
specific datasets is negligible. We found out that this may not
be the case for medical datasets. As shown in Table 1, 2, and 3,
the transferability between natural and medical datasets is not
as good as the authors found.

The poor performance of the ImageNet augmentation
when applied to medical datasets is consistent across all
datasets. This phenomenon occurs because the characteristics
of ImageNet are to describe an object, whereas the task of
the medical dataset entails closely examining and finding
spectral anomalies in the image. Looking further, the
heuristic augmentation search in medical datasets was not
as efficient as we had anticipated. In some cases, the
transfer augmentation from different datasets to a particular
dataset outperformed the searched augmentation based on
that particular dataset. For example, as presented in Table 1,
the performance of augmentation for ChestX-ray8 is better
than the performance of augmentation searched for the
ISIC dataset. The term “‘heuristic” in heuristic augmenta-
tion search related to the estimation of the augmentation
performance on the training phase by using the inference
loss. The estimation technique may work on object-shape-
oriented problems such as ImageNet to enrich datasets and
reduce bias against noise; however, this is not the case on
medical datasets, in which spectral anomaly is the primary
focus rather than data diversity. Table 2 presented a similar
phenomenon, wherein the searched augmentations for the
ChestX-ray dataset did not demonstrate superior performance
compared to other augmentation techniques. These findings
further support the notion that the efficacy of augmentation
search methods may vary across different datasets. The
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inability of fast autoaugment to accommodate the transfer
scenario seems direr on the EyePACS dataset. As can be
seen from Table 3, the searched augmentations based on
ChestX-ray8, CIFAR10, and ImageNet hinder the learning
process from converging, and hence, the value 0.5 in the
AUC metric. The shifted dataset caused by augmentation
can shift the training paradigm away from the original,
thereby affecting the training performance. Recent finding
by Wei et al, mention that auto augment have the possibility
to eliminate discriminative informations that makes the data
indistinguishable to the other classes [29]. The finding is align
with our experiment result on Table 3 with no augmentation
configuration have better performances than the one with the
augmentation approach.

The characteristic of searched augmentation with medical
image datasets is different from those of searched aug-
mentation with natural image datasets. As can be seen in
Figs. 12 and 13, the searched augmentation policies for
natural images are more diverse than those for medical
images. ISIC2019 searched augmentation concentrates on the
rotation to inform the network that orientation is not a concern
for the dermoscopic image in question, while ChestX-ray8
augmentation concentrates on translation to inform the
network that shape is not a concern such that the network
can focus more on spectral anomalies. To quantify the
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TABLE 4. The Gini ratio of all searched augmentations.

ISIC | Chest-Xray | CIFAR10 | ImageNet
Probability | 0.51 0.37 0.19 0.23
Magnitude | 0.49 0.38 0.16 0.19
TABLE 5. Comparison result of our works.
Dataset Method AUC Score
. . Our work 0.95
ISIC Skin Dataset |, (G4 et al. [67] 0.75
Our work 0.67
Chest X-ray Dataset Wang et al. [10] 0.69
Our work 0.8
EyePACS Dataset Gangwar et al. [68] 0.78

concentration of the searched augmentations, we calculated
the Gini ratio, as presented in Table. 4. The Gini ratio of
the searched-augmentation policy is higher in the case of
medical image datasets compared to natural image datasets.
This supports the conjecture that with medical image datasets,
data diversity is not important.

The comparison results are shown in Table 5. The results
obtained on the ISIC Skin dataset demonstrate a significant
improvement in performance, with an AUC of 0.95 achieved
by this study, whereas Cassidy et al. [67] reported an AUC of
0.75. This substantial difference suggests that the proposed
technique outperforms the previous method by a considerable
margin, indicating its potential for enhanced analysis of
medical images in the dermatological domain. Moving on to
the chest X-net dataset, the comparison reveals a relatively
small discrepancy between the proposed approach and the
work of Wang et al. [10] While the AUC achieved by this
study stands at 0.67, Wang et al. reported a slightly higher
AUC of 0.69. Although the difference in performance is not as
substantial as in the ISIC Skin dataset, it is important to note
that the proposed approach still demonstrates competitive
performance in comparison to the prior work. Furthermore,
when considering the Eyepacs dataset, this study achieved
an AUC of 0.8, surpassing the AUC of 0.78 reported by
Gangwar and Ravi [68] Although the difference is relatively
modest, the proposed approach shows a slightly improved
performance, indicating its effectiveness in analyzing med-
ical images in the ophthalmological domain.
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VIi. CONCLUSION

In this study, we conducted experiments to investigate the
potential of meta-learning and data augmentation in medical
image classification. Specifically, we explored the impact
of choosing the starting point and data augmentation on
the performance of deep learning models trained on three
large medical image datasets. Our findings suggest that
meta-learning can improve the speed of convergence and
may be particularly useful in cases with limited amounts of
data. However, we also observed that further iterations of
meta-learning with normal training can render it unusable.
Our results are consistent with previous work on transfer
learning [14], which suggests that the weights of a network
do not deviate significantly from the initial point. This has an
impact on the performance of FOMAML and Reptile, while
Leap benefits from it.

Regarding data augmentation, we found that the trans-
ferability of searched augmentations from high-resolution
natural images did not always meet our expectations.
This contradicts previous studies [27], [28] that found
searched augmentations to be transferable across datasets.
Furthermore, we discovered that the searched augmentations
in medical images were more focused on details within the
images, rather than removing bias as is the case in natural
images.

VIil. DISCUSSION AND FUTURE WORKS
One of the primary challenges in working with medical
images is the imbalanced nature of medical datasets. Such
datasets often exhibit an uneven distribution of classes,
which can lead to a misunderstanding of model performance.
Although the accuracy may appear high, the model may not
be effectively learning since it tends to predict the majority
class. To mitigate this issue, it is essential to tune the loss
function, enabling the model to achieve high rewards for
detecting minority classes and preventing biased predictions.
Another challenge in handling medical images is their
high resolution, which demands significant computational
resources. Unlike natural images, random cropping is not a
viable option for medical images due to the critical nature
of the information contained within them. Instead, proper
augmentation techniques are necessary to generate additional
training samples. However, as our study revealed, excessively
strong augmentation can distort or diminish the semantic
information in medical images, thus posing a challenge in
finding the right balance between augmentation strength and
preserving essential details. Additionally, acquiring medical
image datasets can be challenging due to several consent
requirements that must be fulfilled before accessing the
data. The sensitive nature of medical information necessitates
strict adherence to ethical guidelines and patient privacy
regulations. These consent protocols and restrictions add
an additional layer of complexity to obtaining and utilizing
medical datasets, making data acquisition a non-trivial task.
Moving forward, there are promising avenues for future
research in medical image classification. One such area is the

79847



IEEE Access

S. I. Rufaida et al.: Looking Closer to the Transferability Between Natural and Medical Images

exploration of few-shot and zero-shot learning algorithms.
These approaches could help detect new unseen class
categories, which are essential for discovering novel insights
in the medical field. By effectively utilizing limited sample
sizes and leveraging meta-learning techniques, few-shot and
zero-shot learning algorithms hold potential for addressing
the challenges posed by limited positive cases in medical
image datasets.

In conclusion, the challenges associated with medical
image classification, including class imbalance, resolution
considerations, and data acquisition hurdles, require ded-
icated efforts to develop robust and reliable solutions.
Additionally, future research should focus on leveraging
few-shot and zero-shot learning algorithms to detect new
class categories and broaden the scope of medical image
analysis.
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