
Journal of the Neurological Sciences 440 (2022) 120344

Available online 19 July 2022
0022-510X/© 2022 Elsevier B.V. All rights reserved.

Identification and validation of a gray matter volume network in 
Alzheimer's disease 

Munkhzaya Chuluunbat a,1, Daiki Matsuda b,1, Koji Fujita a,*, Maki Otomo c, Yoichi Otomi c, 
Kohsuke Kudo d, Masafumi Harada c, Yushin Izumi a 

a Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan 
b Tokushima University Faculty of Medicine, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan 
c Department of Radiology and Radiation Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, 
Japan 
d Department of Diagnostic Imaging, Hokkaido University Faculty of Medicine, N15 W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan   

A R T I C L E  I N F O   

Keywords: 
Alzheimer's disease 
Hippocampus 
Multivariate analysis 
Principal component analysis 
Scaled subprofile model 
Voxel-based morphometry 

A B S T R A C T   

Objective: This study aims to identify and validate a gray matter volume network in patients with Alzheimer's 
disease (AD). 
Methods: To identify a disease-related network, a principal component analysis-based algorithm, Scaled Sub-
profile Model, was applied to gray matter volume data derived from structural T1-weighted magnetic resonance 
imaging of the training sample that consisted of nine patients with AD (women, four; dementia, seven; mild 
cognitive impairment, two; age, 66.7 ± 8.8 [mean ± SD] years) with positive 18F-flutemetamol amyloid positron 
emission tomography and eight age-matched healthy controls obtained on-site. The network expression scores 
were calculated by topographic profile rating in the validation sample obtained via the Open Access Series of 
Imaging Studies and comprised 12 patients with AD dementia (women, four; age, 70.0 ± 3.7 years) and 12 age- 
matched healthy controls. 
Results: A significant network from the training sample, for which subject expression differed between the groups 
(permutation test, P = 0.006; sensitivity and specificity, 100%; area under the curve, 1), was identified. This 
network was represented by the principal components 1, 2, and 3 and showed a relative decrease in the inferior 
parietal lobule including angular gyrus, inferior temporal gyrus, premotor cortex, amygdala, hippocampus, and 
precuneus. It significantly differed between the groups with a sensitivity, specificity, and area under the curve of 
83%, 91%, and 0.85, respectively, in the validation sample (P = 0.003). 
Conclusions: An AD-related gray matter volume network that captured relevant regions was identified in amyloid 
positron emission tomography-positive patients and validated in an independent sample.   

1. Introduction 

Alzheimer's disease (AD) is the main cause of dementia and is rapidly 
becoming one of the most expensive, lethal, and burdening diseases 
worldwide [1]. The importance of accurate AD diagnosis is being 
increasingly recognized because it allows for the implementation of 
disease-modifying therapies in clinical settings. A research framework 
for AD diagnosis proposes to categorize individuals based on biomarker 
evidence of pathology using the so-called amyloid, tau, and neuro-
degeneration (ATN) classification system [2]. Four of the seven ATN 

biomarkers are imaging-based: amyloid positron emission tomography 
(PET), tau PET, atrophy on structural magnetic resonance imaging 
(MRI), and hypometabolism on 18F-fluorodeoxyglucose PET. Of these, 
structural MRI has been a first line test for AD, demonstrating changes in 
the gray matter of the brain. Structural MRI findings in AD include both 
generalized and focal atrophy [3]. The most characteristic focal findings 
on MRI are hippocampal or medial temporal lobe atrophy. Of all the MRI 
AD markers, hippocampal atrophy assessed by high-resolution T1- 
weighted MRI is the best established and validated [3]. However, hip-
pocampal atrophy can lack the sensitivity for early-onset AD variants 
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with hippocampal sparing and focal parietal and other neocortical 
involvement. Moreover, medial temporal lobe or hippocampal atrophy 
lacks the specificity to exclude other dementias such as hippocampal 
sclerosis [4], argyrophilic grain disease [5], and primary age-related 
tauopathy [6]. These findings suggest that atrophy in other regions, 
such as the parietal lobe, should also be considered. However, differ-
ences in the shape and neuroanatomical configuration of individual 
brains may cause overlooking of structural alteration by visual inspec-
tion [7]. Moreover, visual inspection is inappropriate for the quantita-
tive evaluation of regional brain volume changes [8]. 

Voxel-based morphometry (VBM) is a computational approach that 
can evaluate the local concentrations of brain tissue through voxel-wise 
analysis of brain images [7]. VBM can be used as a biomarker that 
predicts clinical disease progression and plays an important role in un-
derstanding AD pathology [9]. The VBM approach is unbiased to any 
structures and provides an even-handed and comprehensive assessment 
of anatomical differences throughout the brain [7]. That said, typical 
VBM methods with univariate analysis assess differences between pa-
tients and controls in isolated brain regions and can provide only local 
information but not an interregional covarying relationship of gray 
matter volumes among different brain regions. 

In contrast, multivariate analysis can capture network-level changes 
in the brain. Scaled Subprofile Modelling/principal component analysis 
(SSM/PCA) is a multivariate method that allows the identification of 
disease-specific cerebral functional or structural networks [10]. A pre-
vious study [11] used SSM/PCA to analyze structural MRI data in AD 
patients, but the generalizability of the findings remains unaddressed. 
Therefore, the current study aimed to identify and validate a reliable, 
reproducible AD-related volume network. 

2. Methods 

2.1. Participants 

Data from Tokushima University Hospital (TU) and the Open Series 
of Imaging Studies, Longitudinal MRI Data in Nondemented and 
Demented Older Adults (OASIS2) [12] were used for training and vali-
dation, respectively. The TU training sample comprised nine patients 
with AD (four females; age, 66.7 ± 8.8 [mean ± standard deviation] 
years, range 52–78; Mini Mental State Examination [MMSE], 17.1 ±

4.8, range 8–23; Japanese version of the Montreal Cognitive Assessment 
[MoCA-J], 13.7 ± 4.9, range 7–19), including three patients with early- 
onset AD (Table 1), and eight age- and sex-matched healthy controls 
(HCs; six females; age, 67.9 ± 9.2 years, range 55–82; MMSE, 28.6 ±
1.4, range 26–30; MoCA-J, 26.3 ± 2.8, range 23–30). The nine patients 
with AD showed positive amyloid PET scans, and of these, seven were 
diagnosed with probable AD dementia and two with mild cognitive 
impairment (MCI) due to AD as per the National Institute on Aging-
–Alzheimer's Association criteria [13,14]. The OASIS2 validation sample 
comprised 12 patients with AD dementia (four females; age, 70 ± 3.7 
years, range 61–73; MMSE, 21.4 ± 4.4, range 16–30; Clinical Dementia 
Rating, 1) and 12 age-matched HCs (nine females; age, 69.0 ± 5.9 years, 
range 60–79; MMSE, 29.3 ± 0.9, range 27–30; Clinical Dementia Rating, 
0). In OASIS2, the AD diagnosis was based on clinical information that 
the subject had experienced gradual onset and progression of decline in 
memory and other cognitive and functional domains [12]. The MMSE 
scores of patients with AD were lower in the TU training sample than in 
the OASIS2 validation sample (difference, 4.3; P = 0.047, t-test). This 
study was approved by the Ethics Committee of Tokushima University 
Hospital. Informed consent was obtained from all the participants of 
Tokushima University Hospital. 

2.2. Image acquisition 

TU data were obtained in a multicenter study from January 2018 to 
March 2019. 3D T1-weighted structural MRI was scanned using the Rf- 
Spoiled Steady state Gradient echo sequence with 3 Tesla TRILLIUM 
OVAL (Fujifilm, Tokyo, Japan). The parameters were repetition time 
9.2 ms, echo time 4.3 ms, inversion time 1 s, flip angle 8◦, acquisition 
matrix 256 × 256, voxel size 0.938 × 0.938 × 0.7 mm3, and slice 
thickness 1.4 mm. Amyloid PET was obtained as a 30-min scan 90 min 
after injection of 185.0 ± 2.0 MBq 18F-flutemetamol (Vizamyl, GE 
Healthcare, Chicago, IL, USA) [16]. A nuclear medicine specialist (YO) 
trained to interpret 18F-flutemetamol amyloid PET evaluated the im-
ages. OASIS2 MRI data scanned with 1.5 Tesla Vision (Siemens, Munich, 
Germany) [12] were obtained via https://www.oasis-brains.org. 

2.3. Preprocessing 

VBM techniques [7] were used in Statistical Parametric Mapping 
version 12 (SPM12; The Wellcome Centre for Human Neuroimaging, 
UCL Queen Square Institute of Neurology, London, UK; https://www.fil. 
ion.ucl.ac.uk/spm/software/spm12/) run with MATLAB R2019a (The 
MathWorks, Inc., Natick, MA, USA). First, 3D T1-weighted MRI was 
separated into gray and white matter images based on voxel intensities, 
and only gray matter images were used for normalization of the original 
images. Second, Diffeomorphic Anatomical Registration Through 
Exponentiated Lie Algebra (DARTEL) was used to improve the align-
ment accuracy between subjects [17]. Third, the images were spatially 
normalized to the Montreal Neurological Institute (MNI) space. Fourth, 
the normalized segments of each subject's gray matter image were 
modulated for gray matter volume analysis. Finally, all the images were 
smoothed with a Gaussian kernel of 8 × 8 × 8 mm3 full width at the half 
maximum. 

2.4. Network analysis 

The SSM [10,18] was performed using the Generalized Covariance 
Analysis platform, version 1.2 (Columbia University Medical Center, 
NY, USA; www.nitrc.org/projects/gcva-pca), run in MATLAB and SPM. 
The preprocessed gray matter images of both the patients with AD and 
the HCs of the TU training sample were used for network identification. 
A gray matter mask was made applying the Masking toolbox 
(http://www0.cs.ucl.ac.uk/staff/g.ridgway/masking/) [19] to MRI 
data obtained via The Center for Biomedical Research Excellence (http 
://fcon_1000.projects.nitrc.org/indi/retro/cobre.html). The mean 

Table 1 
Profiles of patients with Alzheimer's disease in the training sample.  

Age 
(years) 

Sex Diagnosis MMSE MOCA- 
J 

Cortical motor sensory 
features* 

58 M AD 
dementia 

20 15 ND 

67 M 
AD 
dementia 11 7 

Ideomotor apraxia of 
right hand 

77 F 
MCI due to 
AD 

19 14 ND 

62 M AD 
dementia 

8 6 ND 

78 F MCI due to 
AD 

21 17 ND 

75 F 
AD 
dementia 18 10 

Ideomotor apraxia of 
bilateral hands 

52 F 
AD 
dementia 

17 19 
Ideomotor apraxia of 
bilateral hands 

66 M AD 
dementia 

23 18 ND 

65 M 
AD 
dementia 17 17 ND 

AD Alzheimer's disease, F female, M male, MCI mild cognitive impairment, 
MMSE Mini Mental State Examination, MOCA-J Japanese version of the Mon-
treal Cognitive Assessment, ND not documented. *Limb apraxia, alien limb 
phenomenon, or cortical sensory loss or dyscalculia, which are included in 
diagnostic criteria for corticobasal syndrome [15]. 
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effects were subtracted from both the rows and columns of the subject ×
voxel data matrix. PCA produced a set of principal components (PCs) 
along with the fraction of the variance by each PC. This operation also 
generated subject scores reflecting the degree to which a subject 
expressed the associated topography in each PC. A subset of top five PCs 
corresponding to an approximate cumulative variance of 50% [18] was 
examined to obtain a relevant topography. A set of PCs that yielded the 
lowest value in Akaike's information criterion was selected [20]. The 
selected PCs were then combined into a single PC vector. The optimal 
coefficients for the linear combination of the selected PCs were deter-
mined by logistic regression of the corresponding subject scores using 
JMP 14 (SAS Institute Inc., Cary, NC). A produced covariance pattern 
was transformed to a z-score map standardized by the standard devia-
tion. The subject scores were computed using the topographic profile 
rating and differences in the subject scores between the groups were 
evaluated using permutation tests (RStudio, Boston, MA) in the training 

sample. A receiver operating characteristic (ROC) curve was used to 
identify sensitivity, specificity, and the area under the curve (AUC). 

The voxels had a threshold of Z = 1.64 and were then examined and 
used for determining the related brain regions involved in the covari-
ance network. The reliability of the voxel weights that significantly 
differed from zero was estimated using a bootstrapping algorithm. The 
PCA procedure was repeated for 1000 iterations by resampling the 
original sets of gray matter images with replacements, and a voxel map 
of the inverse coefficient of variation (ICV) was produced. The signifi-
cance level for voxel weight reliability was set at an ICV threshold of Z =
1.64 corresponding to P < 0.05 [21]. 

The covariance pattern derived from the training sample was pro-
spectively applied to the preprocessed gray matter scans of the OASIS2 
validation sample to test the pattern expression. 

3. Results 

Via the spatial covariance analysis of the gray matter images ob-
tained from the combined group of nine patients with AD and eight HCs, 
we identified a significant pattern with differing subject expression be-
tween the two groups (P = 0.006, permutation test). This pattern was 
represented by a linear combination of PCs 1, 2, and 3 (coefficients, 
0.73, 0.33, and 0.59, respectively), which accounted for 14.9% of the 
overall subject × voxel variance. ROC curve analysis exhibited 
discrimination with a sensitivity of 100% (95% confidence interval [CI], 
70.0–100), specificity of 100% (95%CI, 67.6–100), and AUC of 1 (P <
0.001) in the training data (Fig. 1). The network, termed AD-related gray 
matter network, was characterized by a relative reduction in the inferior 
parietal lobule including angular gyrus, inferior temporal gyrus, pre-
motor cortex, amygdala, hippocampus, and precuneus (Fig. 2 and 
Table 2). In patients with AD, the subject scores of the network did not 
correlate with the MMSE scores (r = − 0.157 [95%CI, − 0.744–0.566], P 
= 0.687, Pearson correlation coefficient); In contrast, higher network 
expression tended to be associated with lower MoCA-J scores (r =
− 0.641 [95%CI, − 0.915–0.04], P = 0.063, Pearson correlation 
coefficient). 

Fig. 1. Differentiation of Alzheimer's disease (AD) and healthy control (HC) 
using the expression of the AD-related gray matter network in the training data. 
a The expression scores were significantly higher in AD than HC. Error bars 
mean ± SD. b The receiver operating characteristic curve of discriminability 
from the covariance pattern expression. 

Fig. 2. Alzheimer's disease-related gray matter volume network obtained in the training sample. Negative weights represent relative decrease in patients with 
Alzheimer's disease compared with healthy controls. 
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In the OASIS2 validation sample, the subject scores of the AD-related 
covariance pattern were also significantly higher in patients with AD 
than the HCs (P = 0.003, t-test). ROC curve analysis showed an AUC of 
0.861 (95%CI, 0.684–1, P = 0.003). A cut-off value with the highest 
likelihood ratio discriminated AD from HC with a sensitivity of 83.3% 
(95%CI, 55.2–97.0) and specificity of 91.7% (95%CI, 64.6–99.6) 
(Fig. 3). The subject scores of the network significantly correlated with 
the MMSE scores of the patients with AD (r = − 0.605 [95%CI, 
− 0.875− − 0.048], P = 0.037, Pearson correlation coefficient) (Fig. 4). 

4. Discussion 

An AD-related network covariance pattern using two independent 
datasets acquired by different MRI scans and from different ethnic 
groups was identified and validated in the current study. The SSM/PCA 
applied to the training sample, in which the AD diagnosis required 
positive amyloid PET, identified the AD-related gray matter network. 
Expression scores of the pattern were significantly higher in AD patients 
than HC in both training and validation samples. Similarly, the ROC 
curve analyses demonstrated discrimination with reasonably high 
sensitivity and specificity in both the training and validation samples. 
These findings suggest that the SSM/PCA with VBM technique can 
reliably differentiate AD from healthy condition regardless of MRI ma-
chine or patient ethnicity. 

The AD-related gray matter network comprises the inferior parietal 
lobule including angular gyrus, inferior temporal gyrus, premotor cor-
tex, amygdala, hippocampus, and precuneus as the relatively decreased 
regions. Structural changes measured by VBM have been independently 
reported in these regions in patients with AD. First, decrease in gray 
matter volume in the inferior parietal lobule and angular gyrus, which is 
essential for processes relating to spatial cognition [22], was associated 
with conversion from MCI to AD dementia [23]. Second, volume 
reduction in the inferior temporal gyrus has been associated with AD 
and amnestic MCI [24]. Third, gray matter volume in the premotor 
cortex has been shown to be reduced in AD with corticobasal syndrome 
[25], although it is relatively preserved in AD with typical amnestic 
syndrome. Patients with AD in our training sample presented with 
amnestic syndrome but some also had ideomotor apraxia, which may be 
associated with frontal and parietal cortices including premotor cortex 
[26], and could have affected the relative reduction in the premotor 
cortex in the gray matter network. Fourth, the medial temporal lobe, 
including the amygdala and hippocampus, is especially vulnerable in 
patients with AD. Hence, the amygdalar and hippocampal volume loss 
has been reported in patients with AD [27,28]. A meta-analysis depicted 
that volume reduction in the left hippocampus and parahippocampal 
gyrus is a marker of conversion from amnestic MCI to AD dementia [29]. 
Fifth, early-onset AD was associated with lesser gray matter volume in 

Table 2 
Regions characterizing the Alzheimer's disease-related gray matter network.  

Brain regions Peak MNI coordinates (x, 
y, z; mm) 

Voxels Z 
max 

Decrease 
R Inferior parietal lobule 51 − 60 15 6642 4.41 
L Inferior temporal gyrus − 58.5 − 30 − 22.5 3838 3.58 
L Premotor cortex − 10 − 18 72 2220 4.02 
R Amygdala, hippocampus 22.5 − 4.5 − 24 2156 3.32 
L Amygdala, hippocampus − 21 − 9 − 22.5 1324 2.92 
L Inferior parietal lobule (angular 

gyrus) − 48 − 51 49.5 1177 3.11 
L Precuneus cortex − 1.5 − 63 25.5 981 2.44 
R Superior frontal gyrus 21 16.5 60 686 4.29 
L Superior parietal lobule − 18 − 72 54 584 3.13 
R Cingulate gyrus, posterior 

division 6 − 33 42 314 2.11 
L Superior frontal gyrus − 24 − 3 57 290 2.93 
L Lateral occipital cortex − 31.5 − 76.5 19.5 267 3.15 
R Lateral occipital cortex 33 − 78 19.5 255 2.47 
R Supramarginal gyrus 39 − 43.5 45 162 2.46 
L Superior frontal gyrus − 21 25.5 54 151 2.47 
R Middle frontal gyrus 34.5 34.5 39 150 2.5 
L Superior parietal lobule − 33 − 51 45 143 2.33 
L Lateral occipital cortex − 31.5 − 88.5 − 6 105 2.42  

Increase 
L Cerebellum VI lobule − 31.5 − 49.5 − 31.5 6313 3.32 
L Paracingulate gyrus 12 52.5 0 1002 2.69 
L Frontal pole − 34.5 55.5 − 4.5 845 2.72 
L Occipital pole − 13.5 − 102 12 511 2.17 
R Paracingulate gyrus − 10.5 55.5 7.5 359 2.33 
R Precentral gyrus 60 7.5 21 353 2.25 
L Occipital pole 0 − 93 − 15 329 2.87 
L Cerebellum VIIIb lobule − 13.5 − 60 − 51 263 2.02 
L Heschl's gyrus − 48 − 25.5 6 245 2.33 
R Occipital pole 18 − 99 − 6 195 2.02 
R Paracingulate gyrus 9 42 22.5 154 2.03 
L Cingulate gyrus, anterior 

division − 6 39 18 105 2.07 

Brain region labels were determined following the Harvard–Oxford cortical 
structural atlas, Jülich histological (cyto- and myelo-architectonic) atlas, and 
cerebellar atlas in FSLeyes as part of the FMRIB Software Library (FSL) version 
6.0 (Analysis Group, FMRIB, Oxford, UK; https://fsl.fmrib.ox.ac.uk/fsl/fs 
lwiki/FSL). The clusters had a threshold of Z = 1.64 (P < 0.05). Furthermore, 
bootstrap estimation demonstrated the reliability of the voxel weights (|inverse 
coefficient of variation| > 1.64). Clusters with >100 voxels were reported. L left, 
MNI Montreal Neurological Institute, R right. 

Fig. 3. Differentiation of Alzheimer's disease (AD) and healthy control (HC) by 
expression of the AD-related gray matter network in the validation data. a The 
expression scores were significantly higher in AD than HC. Error bars mean ±
SD. b The receiver operating characteristic curve of discriminability from the 
covariance pattern expression. 

Fig. 4. Correlation of network expression and Mini Mental State Examination 
(MMSE) in patients with Alzheimer's disease in the validation sample (r =
− 0.605, P = 0.037, Pearson correlation coefficient). 
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the precuneus, which was independent from hippocampal atrophy, and 
a smaller precuneus has been associated with impaired visuospatial 
functioning [30]. We note the hippocampus and precuneus are clusters 
of the default mode network [31], where hypometabolim on 18F-fluo-
rodeoxyglucose PET has been observed in patients with AD [32,33]. 
Resting-state functional MRI studies have demonstrated that functional 
connectivity between the hippocampus and precuneus is reduced in 
patients with AD [34]. It is noteworthy that the network we have 
identified and validated in the present study has incorporated these 
relevant brain regions in a single pattern with high reproducibility. 

Compared with previous studies, the current study has several ad-
vantages. First, AD diagnosis was supported by the presence of amyloid β 
as revealed by amyloid PET in the training sample, which could reduce 
variance unrelated with AD. Second, contrary to a previous study whose 
training and validation samples employed MRI data obtained in the 
same country and with the same type of scanners [11], the training and 
validation samples of the current study were obtained from different 
ethnic profiles and using different scanner types and magnetic field 
strengths, thus broadening the generalizability of the findings. Third, we 
examined only top five PCs to reduce overfitting. In contrast, the pattern 
in the previous study included as many as 10 PCs, exhibiting a sensitivity 
of 84% and specificity of 90% in the training sample and only a sensi-
tivity of 69% and specificity of 71% in the validation sample, indicating 
that the model was overfitting. Fourth, we were able to derive and 
validate a significant network in patients with relatively mild impair-
ment compared with the previous study where the mean MMSE was 11.7 
(range 0–23) in the training sample and 18.5 (range 12–23) in the 
validation sample. Fifth, we found a significant, albeit modest, corre-
lation between network expression and cognitive function in the vali-
dation sample. 

This study has several limitations. First, the number of participants 
was small. Data should be expanded in the future to render these find-
ings more robust. Second, the images of patients with preclinical AD 
were not evaluated. Third, the differential diagnosis of other dementing 
disorders was outside the scope of the current study. 

In conclusion, the current study demonstrated a gray matter network 
covariance pattern that could reproducibly distinguish between patients 
with AD and healthy subjects. This multivariate analysis could be 
applied to the clinical field to improve AD diagnosis. 
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