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ABSTRACT

Background: Although many observational studies have demonstrated significant relationships between obesity and
cardiometabolic traits, the causality of these relationships in East Asians remains to be elucidated.

Methods: We conducted individual-level Mendelian randomization (MR) analyses targeting 14,083 participants in the Japan
Multi-Institutional Collaborative Cohort Study and two-sample MR analyses using summary statistics based on genome-wide
association study data from 173,430 Japanese. Using 83 body mass index (BMI)-related loci, genetic risk scores (GRS) for BMI
were calculated, and the effects of BMI on cardiometabolic traits were examined for individual-level MR analyses using the
two-stage least squares estimator method. The β-coefficients and standard errors for the per-allele association of each single-
nucleotide polymorphism as well as all outcomes, or odds ratios with 95% confidence intervals were calculated in the two-
sample MR analyses.

Results: In individual-level MR analyses, the GRS of BMI was not significantly associated with any cardiometabolic traits. In
two-sample MR analyses, higher BMI was associated with increased risks of higher blood pressure, triglycerides, and uric acid,
as well as lower high-density-lipoprotein cholesterol and eGFR. The associations of BMI with type 2 diabetes in two-sample
MR analyses were inconsistent using different methods, including the directions.

Conclusion: The results of this study suggest that, even among the Japanese, an East Asian population with low levels of
obesity, higher BMI could be causally associated with the development of a variety of cardiometabolic traits. Causality in those
associations should be clarified in future studies with larger populations, especially those of BMI with type 2 diabetes.
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INTRODUCTION

Cardiovascular diseases (CVDs), both ischemic heart disease and
stroke, are leading causes of death worldwide. Ischemic heart
disease was responsible for 16% of the world’s total deaths in
2019, showing the largest increase from 2000 (more than 2
million) to 2019 (8.9 million deaths), while stroke was
responsible for approximately 11% of total deaths globally.1

Observational studies have shown that obesity and higher BMI
is the most prominent risk factor for CVDs,2 being associated with
the development of atherosclerosis3 via obesity-related dyslipide-
mia,4 type 2 diabetes,4–6 hypertension,4,7 and kidney dysfunction8

through various mechanisms,9–11 including inflammation.12,13 The
level of inflammation in obese people tends to be higher than that
in the non-obese.14–16 Atherosclerosis is also a state of chronic
systemic inflammation. Obesity accelerates inflammation because
adipose tissue produces proinflammatory adipokines (eg, TNF-
alpha, IL-6, monocyte chemoattractant protein-1, resistin, and
leptin),14,15,17 which are directly involved in atherosclerosis.16 In
line with the rapid increase of obesity worldwide in the past
decades,18 cardiometabolic diseases due to obesity are an ongoing
major public health burden. Against the background of the novel
coronavirus disease 2019 pandemic, CVDs due to obesity could
become a more critical issue because of decreased physical
activity and the adoption of increasingly sedentary lifestyles.

Although many observational studies have demonstrated the
significant relationships between obesity or higher BMI and
cardiometabolic diseases and their risk factors,4–6 the causal
relationships have not been fully elucidated because the
mechanisms involved are complex.19 Not only behavioral factors
(eg, diet, sleep patterns, and sedentary lifestyle) and biological
factors (eg, hormonal, nutritional, and metabolic factors), but
also genetic factors (eg, fat mass and obesity-associated gene
[FTO]),20 environmental factors (eg, socioeconomic status,
culture, body norms,21,22 walkability of the neighborhood,23 and
urbanity24) and psychological factors (eg, mental stress) are
related to the pathogenesis of both obesity and cardiometabolic
diseases. It is also difficult to take into account unconscious bias,
reverse causation, and interactions between individual (including
genetic) and environmental factors in both conditions.

Mendelian randomization (MR) is a novel epidemiological
approach that uses genetic variants as instrumental variables
(IVs). MR makes a causal inference in observational data without
the influence of confounders, through the random assortment of
genetic variants during meiosis.25 Although recent studies have
revealed the causal relationships between obesity and cardiome-
tabolic diseases in Europeans by MR,26,27 limited evidence is
currently available in East Asians, including Japanese. Con-
sidering the differences in genetic and environmental back-
grounds, and in the prevalence of obesity (defined as BMI ≥30
kg/m2) between Japan (3.7%) and the United States (38.2%),18,28

it is important to clarify the causal relationships between BMI and
cardiometabolic diseases in each of these populations. Because
the largest Japanese genome-wide association study (GWAS)
performed to date reported significant genetic correlations
between BMI and some cardiometabolic traits, such as ischemic
stroke, myocardial infarction, and type 2 diabetes,29 we thought
that MR studies for these conditions may clarify the associated
directions of causality among the Japanese. Accordingly, to
investigate whether obesity defined by genetically determined
BMI can affect the risk of CVD and related cardiometabolic traits

in Japanese, we conducted the MR study in the Japanese
population.

METHODS

Study data for individual-level MR
For individual-level MR analyses in this study, we targeted
participants in the Japan Multi-Institutional Collaborative Cohort
(J-MICC) Study. This is one of the largest genome cohort studies
performed in Japan, which recruited 92,560 participants nationwide
from 14 study areas of Japan between 2004 and 2014. In this study,
informed consent was obtained from the participants, followed by a
self-administered questionnaire survey on lifestyle and medical
history, along with blood sampling and anthropometric measure-
ments. Blood samples were collected using a 7mL vacuum tube for
serum and a 7mL EDTA-2Na-containing vacuum tube for plasma
and buffy coat. Collected baseline data and blood samples were
anonymized in each of the participating institutions and then sent to
the central executive office at Nagoya University. Among all
participants, 14,551 eligible participants who were selected for
GWAS from 13 study areas throughout Japan were genotyped. The
genotyping was conducted at the RIKEN Institute (Yokohama,
Japan) using an Illumina OmniExpressExome Array (Illumina, San
Diego, CA, USA) for 964,193 single-nucleotide polymorphisms
(SNPs). We excluded 26 participants for whom information on
their sex was inconsistent between the questionnaire and the
genotype results. We detected 388 close relationship pairs (pi-hat
>0.1875) that were detected using the identity-by-descent method
of PLINK 1.9 software (https://www.cog-genomics.org/plink2)
and excluded one sample of each pair. Principal component
analysis30 with a 1000 Genomes reference panel (phase 3) (http://
www.internationalgenome.org/category/phase-3/) detected 34
subjects whose estimated ancestries were outside of the Japanese
population, so their samples were excluded. All of the remaining
14,103 samples met the sample-wise genotype call rate criterion
(≥0.99). SNPs with a genotype call rate <0.98 and/or a Hardy–
Weinberg equilibrium exact test P value <1 × 10−6, a low minor
allele frequency (MAF) <0.01, or departure from the allele
frequency computed from the 1000 Genomes Phase 3 EAS (East
Asian) samples were excluded. Quality control filtering resulted in
14,103 individuals with 570,162 SNPs. From among these
individuals, we excluded 20 participants who withdrew from the
study, leaving 14,083 individuals for the final analyses (Figure 1).
Genotype imputation was conducted using SHAPEIT ver. 2
(https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.
html#home) and Minimac3 (http://genome.sph.umich.edu/wiki/
Minimac3) software based on the 1000 Genomes Project
cosmopolitan reference panel (phase 3).

The blood biochemistry data, such as serum triglycerides (TG),
total cholesterol (TC), high-density-lipoprotein (HDL) cholester-
ol, low-density-lipoprotein (LDL) cholesterol, glycated hemoglo-
bin (HbA1c), uric acid (UA), and creatinine levels, were collected
from health check-ups conducted in each of the participating areas.
LDL was estimated using the following formula by Friedwald
et al31: [TC (mg/dL) − HDL (mg/dL)] − TG (mg/dL) × 0.2, if
serum TG level was less than 400mg/dL; otherwise, it was treated
as missing. The estimated glomerular filtration rate (eGFR) was
calculated using the following formula, which was specifically
derived for the Japanese population: eGFR (mL/min/1.73m2) =
194 × serum creatinine−1.094 × age−0.287 (if female, × 0.739).32

Blood pressure of each participant was measured using a standard
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mercury sphygmomanometer or an automated measurement
monitor by trained medical staff, with each participant in a seated
position. Coronary artery disease (CAD) and ischemic stroke (IS)
were detected using self-reported medical histories. Type 2
diabetes was detected if participants had a self-reported diagnosis
of diabetes, took blood glucose-lowering medications, and/or had
HbA1c of 6.5% or higher at baseline.

The protocol of the J-MICC Study was approved by the ethics
review committees of Nagoya University Graduate School of
Medicine (Approval No. 939-14), Aichi Cancer Center, and all
participating institutions. All research procedures were conducted
in accordance with the Ethical Guidelines for Human Genome
and Genetic Sequencing Research in Japan and the Declaration of
Helsinki.

Instruments for BMI as exposure and outcome
phenotypes
We adopted the lead SNPs in 85 loci that were discovered to be
strongly associated with BMI in a recent Japanese GWAS.29 As
only 75 were available in the J-MICC GWAS among these 85
loci,29 we also used proxy SNPs for 8 out of 10 unavailable SNPs

(2 SNPs [rs4308481 and rs180950758] are still unavailable), and
provided for the individual-level MR analyses. The proxy variants
were searched for using the LDlink (https://ldlink.nci.nih.gov/
?tab=home), which is based on the 1000 Genomes JPT (Japanese
in Tokyo) reference panel. Based on the 1000 Genomes JPT
reference panel, the linkage disequilibrium (LD) between the
proxy SNPs and the original variants were perfect other than one
SNP—rs79823890 for rs75766425 (D A = 0.95, r2 = 0.86). Using
the BMI-related SNPs, we calculated a weighted genetic risk score
(GRS) for BMI in the Japanese, where each allele dosage was
weighted by the per-allele change in 1 unit increase of BMI.
The weighted GRS was used as an IV for individual-level MR
analyses. Detailed information of the summary statistics for the
SNPs adopted as IVs is presented in eTable 1. We performed the
MR analysis assuming that IVs is associated with the exposure of
interest, without sharing no unmeasured cause with outcome, and
affect outcome only through its potential effect on the exposure of
interest.33 We checked the 85 SNPs adopted as IVs whether they
also have strong association with other cardiometabolic traits in
GWAS Catalog (https://www.ebi.ac.uk/gwas/). The number of
total SNPs (number of SNPs for Asians or East Asians) fulfilled

Inconsistent sex information between
questionnaire and an estimate from genotype

N=26
N=14,525

Close relationship pairs (pi-hat > 0.1875)
N=388

N=14,137

Estimated ancestries were not Japanese
N=34

N=14,103 GWAS in Biobank Japanc

 (Kanai, et al. 2018)
Withdrewed their consent (N = 158,284)

N=20 (Ishigaki, et al. 2019) SBP 
(N=136,597)

Coronary artery disease
BMI related SNPs for Japanese BMI related SNPs for Japanese (Case: N=29,319, DBP 

 (83 SNPs were available in the J-MICC Study)  (85 SNPs) Control: N=183,134) (N=136,615)

Ischemic stroke TG 
(Case: N=17,671, (N=105,597)

Replication in Japanese Control: N=192,383)
population based cohortb Total cholesterol

(N = 15,146) Type 2 diabetes  (N=128,305)
(Case: N=40,250, 

Control: N=170,615) HDL cholesterol
(N=70,657)

LDL cholesterol
(N=72,866)

Uric acid
(N=109,029)

eGFR 
(N=143,658)

HbA1c 
(N=42,790)

Final analytic participants
2-sample MR analysesN=14,083

Individual-level MR analyses

Baseline study participants of the J-MICC
N=92,560

Genotyped for GWAS
N=14,551

Total recruited to Biobank Japan
(N=approximately 200,000)

GWAS in Biobank Japana

 (Akiyama, et al. 2017)
GWAS in Biobank Japan
and Japanese population

based cohortd

Figure 1. Study sample flow chart. BBJ, BioBank Japan Project; DBP, diastolic blood pressure; eGFR, estimated glomerular
filtration rate; HbA1c, hemoglobin-A1c; HDL cholesterol, high-density-lipoprotein cholesterol; J-MICC Study, Japan
Multi-institutional Collaborative Cohort Study; LDL cholesterol, low-density-lipoprotein cholesterol, SBP, systolic blood
pressure; SD, standard deviation; TG, triglyceride. aDetailed information is available in the previous report by Akiyama
et al. bParticipants from the Japan Public Health Center-based Prospective Study (JPHC) and the Tohoku Medical
Megabank (TMM) Project were included in the replication. cDetailed information is available in the previous report by
Kanai et al. dEach case was from the BioBank Japan Project (BBJ), and each control was from among the rest of the
participants of the BBJ and those of four Japanese cohorts (Tohoku Medical Megabank [TMM], Iwate Tohoku Medical
Megabank [IMM], JPHC, and J-MICC Study). Detailed information is available in the previous report by Ishigaki et al.
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the GWAS significance (P < 5 × 10−8) in the association was 10
(7) SNPs for type 2 diabetes (rs633715, rs6947395, rs10795945,
rs80234489, rs11642015, rs6567160, rs1379871 for Asians/East
Asians), 3 (2) SNPs for SBP (rs7903146, rs11642015), 2 (1) SNPs
for DBP (rs4409766), 3 (1) SNPs for TG (rs75766425), 2 (0)
SNPs for HDL cholesterol and 1 (1) SNPs for HbA1c
(rs35261542). In sensitivity analyses, we excluded those 12 SNPs
for Asians in the MR analyses to exclude the pleiotropy effects.

Study data for two-sample MR
We leveraged the summary statistics of the recently published
GWAS meta-analysis of Japanese BMI,29 which is based on the
GWAS data of BioBank Japan (BBJ) (N = 158,284), and those of
the Japan Public Health Center-based Prospective Study (JPHC
study) (N = 7,379) and Tohoku Medical Megabank (TMM)
(N = 7,767). BBJ is the largest hospital-based case-control study
to have been performed in Japan, which enrolled approximately
200,000 participants with 47 disease outcomes throughout the
country. The JPHC study and TMM are the two major population-
based genome cohorts in Japan. For the second sample, the
GWAS summary statistics of cardiovascular diseases and various
cardiometabolic traits phenotypes in the Japanese were referenced
from the data repository of Jenger (http://jenger.riken.jp/), which
is the database for BBJ GWAS (quantitative traits from Kanai
et al34 and binary disease traits from Ishigaki et al35). For the
GWAS summary statistics of cardiovascular diseases and type 2
diabetes, each case was from BBJ, and each control was from
among the rest of the participants of BBJ and participants of four
Japanese cohorts; including TMM, Iwate Tohoku Medical
Megabank, JPHC, and J-MICC Study35 (Figure 1).

Statistical analysis for individual-level MR analyses
Descriptive statistics were generated for BMI-related variables and
covariates, including measured BMI, systolic blood pressure
(SBP), diastolic blood pressure (DBP), TG, TC, HDL cholesterol,
LDL cholesterol, UA, eGFR, and HbA1c, as well as proportion of
type 2 diabetes, and CVDs (CAD and IS). All quantitative traits
with a skewed distribution were natural-logarithmically trans-
formed to approximate univariate normality (ie, TG and LDL). The
associations of BMI with those traits were examined by individual-
level MR analysis. A weighted GRS for BMI was obtained from the
following calculations: at first, the number of alternative alleles
coded as (0,1,2), second, regression coefficients (β) of BMI on the
number of alternative alleles with adjustments for age and sex were
calculated for all the SNPs, and then the sum of the number of
alternative alleles weighted by β was calculated. Then, the ivreg2
command of Stata (Stata Corp, College Station, TX, USA) was
used with the weighted GRS as an IV. In the first stage regression,
we regressed BMI on weighted GRS, and in the second stage, we
regressed quantitative cardiometabolic traits on estimated BMI with
adjustments for age and sex. For these analyses, the two-stage least
squares estimator method was used. In the case of binary outcomes
(CAD, IS and type 2 diabetes), we examined two-stage regressions
by Burgess et al.36 Briefly, we regress BMI on SNPs (IVs) and then
conduct the logistic regression analysis of each cardiometabolic
trait on the genetically predicted BMI obtained.

To ensure the association between exposure and outcomes, we
examined phenotypical associations between BMI and cardiome-
tabolic traits using measured data from the J-MICC study. To assess
the possibility of the violation of MR assumption by IV-confounder
associations, we tested the associations of weighted GRS for BMI

with smoking (Brinkman Index), drinking (alcohol consumption:
grams of alcohol/day) and daily physical activities (metabolic
equivalents of task [METs]/day) as potential confounders.

Statistical analysis for two-sample MR analyses
We obtained the β-coefficients and standard errors for the per-
allele association of each SNP as well as all outcomes from the
above-mentioned data sources. Data are presented as the mean,
standard deviation (SD), n (%), or odds ratio (OR) with 95%
confidence interval (CI). The associations of BMI with CVDs and
cardiometabolic traits were examined based on the summary
statistics of Jenger using the two-sample MR approach. Two
methods of two-sample MR—the Inverse-Variance Weighted
(IVW) method and the MR–Egger method—were conducted as
sensitivity analyses to test whether the results of IVs were robust.
First, we calculated Wald ratios for each IV by dividing the per-
allele log-odds ratio or beta of that variant in the outcome data
(cardiometabolic traits from Jenger [http://jenger.riken.jp/]) by
the log-odds ratio or beta of the same variant in the exposure data
(BMI from Japanese GWAS meta-analysis29).

MR–Egger regression was conducted to assess the horizontal
pleiotropy of the IVs, where the regression line is not constrained
to pass through the origin, but the slope represents pleiotropy-
corrected causal estimates. If the regression intercept (α)
significantly differed from zero (P < 0.05), we considered that
there was horizontal pleiotropy or that the InSIDE (Instrument
Strength Independent of Direct Effect) assumption was violated.37

Heterogeneity between IVs in the IVW method was estimated
using Cochran’s Q statistic. The β-coefficients and their 95% CIs
for the two-sample MR analyses (IVW and MR–Egger) were
calculated using Mendelian Randomization package of R (version
3.6.3; R Foundation for Statistical Computing, Vienna, Austria).

To assess the robustness of IVW-MR results, we conducted
additional sensitivity analyses using the weighted median MR
and Mendelian Randomization Pleiotropy RESidual Sum and
Outlier (MR-PRESSO).38 The MR-PRESSO approach was used
to rule out the possibility of false-positives for the outcome
cardiometabolic phenotypes that had significant associations with
BMI in the IVW-MR analyses. Briefly, we calculated the outlier-
corrected exposure β values after excluding outliers based on
the outlier test until the MR-PRESSO global test indicated no
significant influence of outliers (Global-P ≥ 1.0 × 10−6).38,39 The
MR-PRESSO analyses were conducted using MR-PRESSO
package of R (https://github.com/rondolab/MR-PRESSO).

The Multivariable Mendelian Randomization (MVMR) was
conducted to evaluate horizontal pleiotropy of IVs for BMI (eg,
existence of other cardiometabolic pathways) in the associations
with CHD and IS. MVMR was conducted using MVMR package
of R (https://github.com/WSpiller/MVMR). A two-tailed P
value <0.05 was considered nominally significant. For adjust-
ments of multiple comparisons, we conducted the Bonferroni’s
adjustments by the number of phenotypes in each analysis. For
example, statistical significance threshold after the Bonferroni’s
adjustment was set at a two-tailed P value of <0.05/12 = 0.00417
for individual MR and two-sample MR.

RESULTS

Characteristics of the participants for individual-level
MR analyses
Table 1 shows the characteristics of the participants in the
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J-MICC Study. The final analyzed sample that was genotyped
included 14,083 participants (57.2% female; mean age: 54.7
years; and mean BMI: 23.0 kg/m2). Participants with CVDs
constituted 4.9% of the total (403 CAD and 248 IS) (Table 1).

Individual-level MR analyses
The 83 loci associated with BMI in the Japanese population are
shown in eTable 1. When we used the IVs, a higher weighted
GRS of BMI was significantly associated with higher BMI
(β = 1.817; 95% CI, 1.572–2.06; P < 0.001). The weighted GRS
of BMI was not significantly associated with any cardiometabolic
traits after the Bonferroni’s adjustment (significance level:
P < 0.05/12 = 0.00417) (Table 2). The phenotypic associations
assessed using measured data from the J-MICC study showed that
BMI was significantly associated with all cardiometabolic traits
other than eGFR (eTable 2). The weighted GRS for BMI was not
associated with potential confounders of smoking (Brinkman
Index), drinking (alcohol consumption: grams of alcohol/day)
and daily physical activities (METS/day) (eTable 3).

Two-sample MR analyses of associations of BMI with
CVDs in Japanese
The IVW-MR analyses based on 85 SNPs as IVs for BMI
demonstrated that weighted GRS of BMI was not significantly
associated with risks of CAD and IS (β = 0.221; 95% CI, 0.045–
0.386; P = 0.009 and β = 0.137; 95% CI, 0.009–0.245; P =
0.020, respectively) (significance level: P < 0.05/12 = 0.00417).
The corresponding ORs were 1.247 (95% CI, 1.058–1.471) and
1.147 (95% CI, 1.021–1.287) (Figure 2). The MR–Egger analyses

demonstrated the same direction of effects of the weighted GRS of
BMI on those diseases, but those associations were not significant
for CAD and IS (β = 0.354; 95% CI, −0.068 to 0.923; P = 0.143
with α = −0.004; 95% CI, −0.018 to 0.010; P = 0.557, and β =
0.140; 95% CI, −0.158 to 0.533; P = 0.409 with α = 0.000; 95%
CI, −0.010 to 0.010; P = 0.985, respectively). The corresponding
ORs were 1.425 (95% CI, 0.888–2.286) and 1.150 (95% CI,
0.825–1.603) (Figure 3).

Two-sample MR analyses of associations of BMI with
risk factors for CVDs in Japanese
The IVW-MR analyses based on the same 85 SNPs for BMI
demonstrated that higher BMI was significantly associated with
higher SBP, DBP, TG, and UA (β = 0.213; 95% CI, 0.030–0.155,
β = 0.189; 95% CI 0.139–0.239, β = 0.182; 95% CI, 0.033–
0.118, and β = 0.177; 95% CI, 0.113–0.239, respectively, all with
P < 0.001 [significance level: P < 0.05/12 = 0.00417]). Higher
BMI was also associated with lower levels of HDL cholesterol
(β = −0.191; 95% CI, −0.275 to −0.107, P < 0.001) and lower
levels of eGFR (β = −0.098; 95% CI, −0.146 to −0.036, P =
0.001) (Figure 4). The MR–Egger analyses demonstrated no
associations at most, while the directions of effects were well
retained (Figure 5). No regression intercept (α) significantly
differed from zero (significance level: P < 0.05/12 = 0.00417)
(Figure 5). Meanwhile, both methods of the MR analyses revealed
that BMI was not associated with type 2 diabetes, TC, LDL
cholesterol, or HbA1c. The forest plot for the overall summary of
the MR analyses is provided in Figure 6.

Table 1. Characteristics of study participants who were geno-
typed in the J-MICC Study

Variables
Men Women

N = 6,336 N = 7,747
N data N data

Age, years, mean (SD) 6,336 55.3 (9.3) 7,747 54.3 (9.4)
Body mass index, kg/m2, mean (SD) 6,335 23.8 (3.2) 7,733 22.5 (3.4)

Cardiometabolic binary traits, N (%)
Coronary artery diseasea 5,987 239 (4.0) 7,301 164 (2.3)
Ischemic strokea 5,836 145 (2.4) 7,283 103 (1.4)
Type 2 diabetesb 6,336 769 (12.1) 7,747 416 (5.4)

Cardiometabolic quantitative traits, mean (SD)
SBP, mmHg 5,063 131.9 (19.2) 6,190 125.3 (20.4)
DBP, mmHg 5,063 81.6 (11.8) 6,189 75.5 (11.9)

TG, mg/dL 5,327
149.6
(113.8)

6,318 109.3 (73.5)

Total cholesterol, mg/dL 4,883 205.6 (32.9) 5,808 215.9 (35.5)
HDL cholesterol, mg/dL 5,328 57.2 (15.0) 6,319 67.4 (15.9)
LDL cholesterol, mg/dL 4,882 122.3 (32.7) 5,807 127.4 (32.6)
Uric acid, mg/dL 4,898 6.0 (1.3) 5,895 4.4 (1.0)
eGFR, mL/min/1.73m2 5,233 76.0 (15.1) 6,247 79.1 (16.1)
HbA1c, % (NGSP) 3,975 5.6 (0.9) 4,659 5.5 (0.7)

DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate;
HbA1c, hemoglobin-A1c; HDL cholesterol, high-density-lipoprotein choles-
terol; J-MICC Study, Japan Multi-institutional Collaborative Cohort Study;
LDL cholesterol, low-density-lipoprotein cholesterol, SBP, systolic blood
pressure; SD, standard deviation; TG, triglyceride.
aCoronary artery disease and ischemic stroke were detected from self-
reported medical history.
bType 2 diabetes was detected if participants had a self-reported diagnosis of
diabetes, took blood glucose-lowering medications, and/or had HbA1c of
6.5% or higher at baseline.

Table 2. Associations of the predicted BMIa and cardiometabolic
traits by individual-level MR in the J-MICC Study

Trait β 95% CI P

BMI, kg/m2b 1.817 (1.572–2.063) <0.001
Coronary artery diseasec,d 0.009 (−0.249 to 0.268) 0.632
Ischemic strokec,d 0.092 (−0.226 to 0.410) 0.394
Type 2 diabetesc,d −0.090 (−0.249 to 0.070) 0.241
SBP, mmHgb 1.076 (0.200–1.951) 0.016
DBP, mmHgb 0.667 (0.123–1.211) 0.016
TG, mg/dLb 0.034 (0.009–0.058) 0.008
Total cholesterol, mg/dLb 0.700 (−1.072 to 2.472) 0.439
HDL cholesterol, mg/dLb −0.621 (−1.323 to 0.081) 0.083
LDL cholesterol, mg/dLb 0.004 (−0.010 to 0.018) 0.577
Uric acid, mg/dLb 0.080 (0.021–0.139) 0.007
eGFR, mL/min/1.73m2b −0.166 (−0.899 to 0.566) 0.656
HbA1c, % (NGSP)b −0.040 (−0.081 to −0.002) 0.060

BMI, body mass index; DBP, diastolic blood pressure; GRS, genetic risk
score; eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin-A1c;
HDL cholesterol, high-density-lipoprotein cholesterol; J-MICC Study, Japan
Multi-institutional Collaborative Cohort Study; LDL cholesterol, low-
density-lipoprotein cholesterol, MR, Mendelian randomization; SBP,
systolic blood pressure; TG, triglyceride.
aPredicted BMI was calculated using the BMI-related SNPs in Japanese,
where each allele dosage was weighted by the per-allele change in 1 unit
increase in BMI.
bThe effects of BMI on quantitative cardiometabolic traits were examined by
the two-stage least squares estimator method with adjustments for age and
sex.
cThe effects of BMI on incident CVDs and type 2 diabetes were examined by
two-stage regressions with adjustments for age and sex.
dCoronary artery disease and ischemic stroke were detected by self-reported
medical history.
Results in bold indicate significant associations with cardiometabolic traits
(P < 0.05/12 = 0.00417).
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Sensitivity analyses
We conducted sensitivity analyses using the weighted median
MR and MR-PRESSO to assess the robustness of the IVW-MR
results and to rule out the possibility of false-positives. The both
results from the weighted median MR and MR-PRESSO were
similar to those observed in IVW-MR other than type 2 diabetes
and HbA1c. In contrast to the results from IVW-MR, BMI was
positively associated with type 2 diabetes in the weighted median
MR and MR-PRESSO (Figure 6 and eTable 4). The results from
MR-PRESSO showed that number of the possible outliers in IVs

was relatively large in type 2 diabetes (N = 37) and HbA1c
(N = 12) (eTable 4). In the MVMR analyses, DBP was signi-
ficantly associated with CAD (eTable 5). When we excluded
SNPs which had strong associations with both BMI and other
cardiometabolic traits in GWAS of Asians, the results from IVW-
MR and Egger-MR did not largely change. However, associations
of BMI with type 2 diabetes and HbA1c in Egger-MR were
stronger than those calculated by original 85 SNPs; higher BMI
was nominally significantly inversely associated with type 2
diabetes and HbA1c (β = −1.911; 95% CI, −3.482 to −0.340,
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Figure 2. Scatter plot of the two-sample Mendelian randomization analysis showing the estimated causal associations of BMI
with cardiometabolic binary traits: (A) coronary artery disease; (B) ischemic stroke; (C) type 2 diabetes using the IVW
method. BMI, body mass index; IVW method, Inverse-Variance Weighted method. aStatistical significance threshold
after the Bonferroni’s adjustment was set at a two-tailed P value of <0.05/12 = 0.00417.

(β = 0.140, p = 0.409)
(α = 0.000, p = 0.985)

(β = 0.354, p = 0.143)
(α = -0.004, p = 0.557)

AA) Coronary artery disease

a

a

(β = -0.532, p = 0.437)
(α = 0.013, p = 0.518)a

a

a

a

B) Ischemic stroke

SN
P 

ef
fe

ct
 o

n 
ou

tc
om

e

SNP effect on exposure

SN
P 

ef
fe

ct
 o

n 
ou

tc
om

e

SNP effect on exposure SNP effect on exposure

SN
P 

ef
fe

ct
 o

n 
ou

tc
om

e

C) Type 2 diabetes

Figure 3. Scatter plot of the two-sample Mendelian randomization analysis showing the estimated causal associations of BMI
with cardiometabolic binary traits: (A) coronary artery disease; (B) ischemic stroke; (C) type 2 diabetes using the
MR–Egger method. BMI, body mass index; MR, Mendelian randomization. aStatistical significance threshold after the
Bonferroni’s adjustment was set at a two-tailed P value of <0.05/12 = 0.00417.
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P = 0.017 and β = −0.794; 95% CI, −1.289 to −0.299, P =
0.002, respectively). Then, the regression intercept (α) of type 2
diabetes, HbA1c, and SBP were significantly differed from zero
(α = 0.050, P = 0.020; α = 0.017, P = 0.011; and α = 0.006,
P = 0.021, respectively).

DISCUSSION

The present study revealed that the GRS of BMI was not
significantly associated with any cardiometabolic traits by an
individual-level MR approach among a population of 14,083
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Figure 4. Scatter plot of the two-sample Mendelian randomization analysis showing the estimated causal associations of BMI
with cardiometabolic quantitative traits: (A) systolic blood pressure; (B) diastolic blood pressure; (C) triglyceride; (D)
uric acid; (E) estimated glomerular filtration rate; (F) high-density-lipoprotein cholesterol; (G) low-density-lipoprotein
cholesterol; (H) total cholesterol; (I) hemoglobin A1c using the IVW method. BMI, body mass index; IVW method,
Inverse-Variance Weighted method. aStatistical significance threshold after the Bonferroni’s adjustment was set at a
two-tailed P value of <0.05/12 = 0.00417.
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Japanese. Using a two-sample MR with IVW approach among
173,430 Japanese, we showed that higher BMI was associated
with higher risks of a variety of cardiometabolic traits (higher
SBP, DBP, TG, and UA, and lower HDL cholesterol and eGFR).
In this population, the association of BMI with type 2 diabetes

was inconsistent among the MR analysis method, including the
directions. BMI was not significantly associated with type 2
diabetes in the individual-level MR approach and in two-sample
MR with IVW and Egger methods. Whereas BMI was positively
associated with type 2 diabetes in two-sample MR with the
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Figure 5. Scatter plot of the two-sample Mendelian randomization analysis showing the estimated causal associations of BMI
with cardiometabolic quantitative traits: (A) systolic blood pressure; (B) diastolic blood pressure; (C) triglyceride; (D)
uric acid; (E) estimated glomerular filtration rate; (F) high-density-lipoprotein cholesterol; (G) low-density-lipoprotein
cholesterol; (H) total cholesterol; (I) hemoglobin A1c using the MR–Egger method. BMI, body mass index; MR,
Mendelian randomization. aStatistical significance threshold after the Bonferroni’s adjustment was set at a two-tailed P
value of <0.05/12 = 0.00417.
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weighted median MR and MR-PRESSO, the direction of the
association was opposite to those of the two-sample MR with
IVW and Egger-MR. To the best of our knowledge, the present
study is the first to investigate the association of BMI with
cardiometabolic traits using the MR approach with a large
Japanese sample. Our results add evidence suggesting that, even
among the Japanese, an Asian population with a low level of
obesity, higher BMI could be causally associated with the
development of a variety of known CVD risk factors, in line with
the results of European studies.40

The observed positive associations of obesity or higher BMI
with higher blood pressure and TG, and inverse associations with
HDL cholesterol and eGFR are biologically plausible. Obesity or
higher BMI-related inflammation, visceral fat accumulation,
oxidative stress,9 circulation of saturated fatty acids, insulin
resistance,10 and endothelial dysfunction11 contribute to these
conditions. Although those previously reported associations could
have been influenced by reverse/bidirectional causality, and/or
unadjusted confounders in observational studies, our results in
two-sample MR support the possibility that they are causal. The
reason for the no association in the present individual-level MR
may be for the relatively small sample size of the J-MICC study.
As most of the directions of the associations were similar between
individual-level MR and two-sample MR, further studies with
larger sample sizes may clarify those associations.

Meanwhile, the major difference in our findings, including
the direction of the associations, compared with findings from
Europeans, was that there was inconsistent association between
BMI and type 2 diabetes depending on the MR analysis method,
and no association of BMI with HbA1c in our population.

Previous MR studies using large European datasets revealed the
strong causal effects of overall and abdominal obesity on both
the development of type 2 diabetes and glycemic traits (fasting
glucose, fasting insulin, and HbA1c).40,41 Although the effect of
obesity on HbA1c was relatively small in one study,41 both results
supported the assertion that obesity causes type 2 diabetes among
Europeans through the deterioration of glycemic control and
insulin resistance. Among the Japanese, consistent relationships
were found between obesity or higher BMI and incident type 2
diabetes in epidemiological studies,4–6 but the relationships could
be complicated.29 In a recent large Japanese GWAS, Akiyama
et al compared effect sizes of BMI-associated variants on sus-
ceptibility to type 2 diabetes.29 Of the 193 variants, they detected
genome-wide significant levels (P < 5.0 × 10−8) of association for
type 2 diabetes, and found that only 5 of 20 variants had a positive
association, whereas 15 variants had a negative one.29 Those
variants negatively associated with type 2 diabetes were reported
to influence insulin processing and secretion without a detectable
change in fasting glucose levels among non-diabetic participants
who were mainly recruited in European countries.42 For example,
CDKAL1 and HHEX had only large negative effects on insuli-
nogenic index, but with very modest effects on fasting glucose
levels.42 In the study by Akiyama et al, they found a strong genetic
correlation between BMI and type 2 diabetes, as well as ischemic
cardiovascular diseases, in the data from BBJ GWAS and 33 other
GWAS of Asians using bivariate linkage disequilibrium (LD)
score regression.43 However, our results could not replicate the
correlation between higher BMI and susceptibility to type 2
diabetes among the Japanese. The SNPs which had associations
both with BMI and other cardiometabolic traits in GWAS of

IVW-β Egger-β W-Median MR-Presso
a aaa

Figure 6. Forest plots for the two-sample Mendelian randomization analysis showing the estimated causal associations of BMI
with cardiometabolic traits. BMI, body mass index; CAD, coronary artery disease; DBP, diastolic blood pressure;
eGFR, estimated glomerular filtration rate; Egger-β, Mendelian randomization-Egger; HbA1c, hemoglobin A1c; HDL,
high-density-lipoprotein cholesterol; IS, ischemic stroke; IVW-β, Inverse-Variance Weighted Mendelian randomization;
LDL, low-density-lipoprotein cholesterol; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and
Outlier; SBP, systolic blood pressure; T2D, type 2 diabetes; TC, total cholesterol; TG, triglyceride; UA, uric acid;
W-Median, weighted median Mendelian randomization. aStatistical significance threshold after the Bonferroni’s
adjustment was set at a two-tailed P value of <0.05/12 = 0.00417.
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Asians (12 out of total 85 SNPs), and the relatively large number
of outlier (37 out of total 85 SNPs) detected by MR-PRESSO
could have important role to understand the association. On the
other hand, the shared 12 SNPs may be considered as common
genetic factors between the two traits (eg, FTO), and their
exclusion may potentially lead to bias. The result after excluding
those SNPs showed significant inverse associations of BMI with
type 2 diabetes and HbA1c, but the horizontal pleiotropy of the
IVs was observed in both associations. Those causality may not be
reliable.

The results of the present study could also be explained by the
different characteristics of diabetes in this ethnic group from those
in Europeans. The fact that we could not find a significant
relationship between BMI and type 2 diabetes among the Japanese
in individual-level MR and two-sample MR analyses by IVW-β
and Egger-MR. The onset of type 2 diabetes in the Japanese and
other East Asians is characterized primarily by less obesity and
earlier β-cell dysfunction than that in Europeans. Given the limited
β-cell capacity in East Asians, they are susceptible to even a small
decline of insulin sensitivity by a small weight gain. Meanwhile,
type 2 diabetes among Europeans is mainly caused by decreased
insulin sensitivity, which is more closely related to obesity. In
addition to that, the higher proportion of elderly (≥65 years)
among Japanese diabetics could be another reason for the different
association with higher BMI from those in Europeans. The
International Diabetes Federation reported that, in 2019, Japan
had the sixth largest number of diabetics aged 65 years or older
globally.44 In addition, a recent MR study by Noordam et al
reported that the association between BMI and type 2 diabetes was
attenuated with increasing age of receiving a diagnosis of type 2
diabetes.45 Although it is difficult to directly compare the age at
which diabetes was diagnosed, the mean age at baseline of the
current study participants from BBJ is higher than that of the UK
Biobank (63 years29 vs 57 years46). As Wang et al pointed out
the possible difference of overall and abdominal obesity in terms
of the mechanisms by which type 2 diabetes develops among
Chinese Han individuals,47 the distribution of adiposity could
have influenced the results. Differences in the first-choice diabetes
drugs could also contribute to the difference of the association
between BMI and diabetes in Japanese and those in Europeans.
For example, sulfonylurea, the first-choice drug for diabetes in the
United Kingdom,48 is associated with weight gain, but dipeptidyl
peptidase-4 inhibitors, which are widely used in Japan,49 are not.

In the two-sample MR analysis in this study, the results from
the IVW method showed more prominent associations than those
from the MR–Egger analysis. In previous reports, the IVW
method is recommended for two-sample MR analysis when
sample sizes are large.50 As sample sizes in the current study were
sufficiently large, we think that the results from the IVW method
may be reliable estimates for causal associations between BMI and
disease outcomes. As the precision of MR–Egger estimates is
considered to depend on the variability of the genetic associations
of IVs with risk factors,51 the weaker associations in MR–Egger
analyses suggest large variability in this Japanese sample.
Meanwhile, MR–Egger regression is a novel method of assessing
the horizontal pleiotropy of IVs. As no regression intercept (α)
significantly differed from zero (significance level: P < 0.05/12 =
0.00417) in the current study, we considered that there may not be
substantial horizontal pleiotropy in the results. Although no
association between weighted GRS for BMI and potential con-
founders (smoking, drinking or daily physical activities) suggests

that there is little possibility of the violation of MR assumption
by IV-confounder associations, MVMR analyses suggest that
BMI related SNPs could be associated with CAD through other
cardiometabolic pathways. The results of sensitivity analyses by
weighted median MR and MR-PRESSO support the possibility
that most of the cardiometabolic traits with significant associations
observed in the IVW-MR have causal relationships. However,
as possible bias in the association of BMI with type 2 diabetes
was suggested, the direct effects of BMI-associated SNPs on
cardiometabolic traits should be clarified in detail in further
investigations. Considering the rather clustered distribution of
SNP–exposure as well as SNP–outcome associations in the
present two-sample MR analyses, further investigations of these
associations in near future are warranted.

The findings of the current study should be interpreted with
caution. First, the difference in circumstances for BMI measure-
ment in the J-MICC Study and BBJ could have influenced the
results. Because most of the participants in the J-MICC Study
were recruited in the community, whereas those of BBJ were
measured in clinical settings, BMI levels could have been
influenced by the target disease and/or the medical treatment in
the latter situation. However, our results from individual-level
MR analyses and two-sample MR analyses were similar in the
direction, suggesting that higher BMI may be causally associated
with cardiometabolic traits other than diabetes and HbA1c in the
Japanese. As no association in the individual-level MR could be
related to the relatively small sample size, further studies with
larger sample sizes may declare the associations. Second, CVDs
were detected based on only self-reported medical history in
the J-MICC Study. The lack of associations between BMI and
CVDs in the individual-MR analysis of this study could have
been influenced by the difference of CVDs measurement. As
the result by multivariable MR showed that another risk factor
was associated with CHD, further studies should be performed
to confirm the causal associations. Third, we used only BMI
to detect tendency to be obese, but different distributions of
adiposity could have influenced the results. Fourth, we should be
careful about the “winner’s curse,”52 because we used the SNPs
discovered from GWAS meta-analysis mainly consisted of BBJ
study as IVs. As a result of false discovery associated with this
phenomenon, the magnitude and direction of bias should be
observed away from the null. Fifth, as there were considerably
large overlaps in samples analyzed for the individual MR and
two-sample MR in our study, the assumption of independence
between the gene-exposure and gene-outcome association could
be violated in the presence of confounding. However, based on
the simulations by Minelli et al,50 in which they assessed the
performance of MR analysis by mimicking a typical study data in
the United Kingdom Biobank, two-sample MR methods can be
safely used for such overlapped data from large biobanks. That
being said, the interpretation of results from MR-Egger analysis
requires caution because they are biased, reflecting the direction
and magnitude of the confounding.50 In another aspect, with
overlapped data, the MR estimates would not necessarily be
biased toward the null, given the upwardly biased betas from the
discovery GWAS (called as “winner’s curse”).53 Despite these
limitations, the J-MICC Study has a wealth of information on
genotypes related to BMI and a variety of cardiometabolic traits.
This allowed us to examine relationships between BMI and
cardiometabolic traits in individual-level MR analyses. The huge
sample size with plenty of information from BBJ, the JPHC
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study, and TMM enabled us to confirm the causal associations
using the two-sample MR method in the Japanese.

In summary, the present study is the first to comprehensively
examine the association between BMI and cardiometabolic
outcomes in the Japanese, which may provide potentially useful
information for disease prevention in the Japanese. Further
investigations with a larger or independent population are now
warranted.
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