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Chapter 1

Introduction

The time evolution of dynamical systems changes with system parameters, often generating
equilibrium points and periodic solutions. These states have stability, which can be categorized
as stable or unstable. By discussing the stability of states within a system, it can be determined
which stable state a given initial state will converge to. When system parameters change, certain
equilibrium states may alter their stability, a phenomenon known as bifurcation. Identifying
parameters where bifurcation occurs is crucial for understanding the global behavior of a system.
By computing the set of parameters where bifurcation phenomena occur, it is possible to avoid
or induce specific responses.

Since the 19th century, analytical and numerical solutions for dynamical systems have
been discussed. However, the visualization of specific system responses became more active
only after the development of computer science. When nonlinear dynamical systems exhibit
strong nonlinearity, their solutions cannot be analytically determined. Therefore, numerical
computation is often the primary approach for almost all dynamical systems. Despite active
research in recent years, some areas still lack well-established numerical methods. This includes
hidden dynamical systems and slow–fast dynamical systems.

Hidden dynamical systems appear to have equilibrium states typical of regular dynamical
systems. However, there can be attractors not observable unless initial values are set in locations
far from or within an extremely small range of these attractors, calledd hidden attractors.
Although typical methods of dynamical systems apply to hidden attractor computations, the
difficulty lies in discovering their basins of attraction. Such attractors can occur in systems like
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2 Chapter 1. Introduction

Chua’s circuit or certain Lorentz equations and may also be found in discrete dynamical systems
like types of Hénon maps.

Slow–fast dynamical systems include subsystems with extremely different time constants,
defined as very small, introducing singular perturbations. These perturbations can lead to
oscillatory states corresponding to Hard oscillations, rendering standard numerical methods for
regular dynamical systems useless. Furthermore, these systems can display periodic solution
responses, known as canards, which are unusual for regular dynamical systems and stem from
the singular perturbations, making the application of traditional numerical methods challenging.
Historically, the van der Pol oscillator and FitzHugh-Nagumo equations correspond to slow–fast
systems. Despite being well-known, specific bifurcation structures in related systems are rarely
demonstrated due to numerical difficulties.

This thesis aims to examine effective numerical solutions targeting hidden dynamics and
slow–fast dynamics, revealing specific system responses and bifurcation structures. Chapter 2
revisits the mathematical definition of regular dynamical systems and explains basic numerical
and bifurcation computation methods, covering both continuous-time autonomous and discrete-
time autonomous systems. Chapter 3 discusses efficient implementation methods in Python
and C++ for the bifurcation computation methods shown in Chapter 2, introducing new im-
plementation approaches for bifurcation computation programs using automatic differentiation
and Python-specific notation. Chapter 4 uses the numerical methods from Chapters 2 and 3
to discuss the bifurcation structure and hidden dynamics of the generalized Hénon map. This
chapter explains hidden dynamics using only the classical computational methods of dynamical
systems and visualizes the system’s bifurcation structure and hidden attractors. In Chapter 5, the
discussion moves to the multivibrator, an electronic circuit with multiple modes, where mode
switching is explained through bifurcation. However, the numerical methods shown in Chapters
2 and 3 are challenging to apply to slow–fast systems. This chapter also explains numerical
methods for calculating canards and their occurrence parameters, demonstrating specific bi-
furcation structures and the presence of canards. Finally, Chapter 6 summarizes our research,
outstanding issues, and future works.



Chapter 2

Mathematical preliminaries

In this chapter, we discuss the mathematical preliminaries for the dynamical systems used in this
study, covering both continuous-time autonomous systems and discrete-time autonomous sys-
tems. Additionally, we derive the bifurcation conditions necessary for calculating the bifurcation
points of these systems.

2.1 Discrete dynamical systems

Consider the 𝑛-dimensional discrete autonomous dynamical system:

𝒙𝑘+1 = 𝑇 (𝒙𝑘 , 𝜆), 𝑇 : 𝑹𝑛 × 𝑹 → 𝑹𝑛, 𝒙𝑘 ∈ 𝑹𝑛, 𝜆 ∈ 𝑹, (2.1)

where, 𝑘 ∈ 𝒁, 𝒙𝑘 is the state and 𝜆 is a parameter. The map 𝑇 is assumed to be of class 𝐶∞.
Assume that the initial value 𝒙0 is given at 𝑘 = 0. The dynamics are obtained as

𝒙1 = 𝑇 (𝒙0, 𝜆)

𝒙2 = 𝑇 (𝑇 (𝒙0, 𝜆), 𝜆) = 𝑇2(𝒙0, 𝜆)

𝒙3 = 𝑇 (𝑇 (𝑇 (𝒙0, 𝜆), 𝜆), 𝜆) = 𝑇3(𝒙0, 𝜆)
...,

(2.2)
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4 Chapter 2. Mathematical preliminaries

and we denote the composite map as 𝑇 ℓ =

ℓ︷            ︸︸            ︷
𝑇 ◦ 𝑇 ◦ · · · ◦ 𝑇 for a positive integer ℓ. The state 𝒙0

satisfies the condition

𝑇 ℓ (𝒙0, 𝜆) = 𝒙0 (2.3)

is called a periodic point. In particular, 𝒙0 is a fixed point for ℓ = 1.

The variation of the parameter 𝜆 often leads to bifurcation phenomena in dynamical systems.
Bifurcation phenomena are classified into two types: global bifurcation and local bifurcation.
In this study, we only discuss with local bifurcations.

A dynamical system’s local bifurcation refers to a situation where a small change in the
parameters of the system causes a sudden qualitative or topological change in its behavior.
Local bifurcations occur when a periodic point 𝒙0 satisfies the following condition:

𝜒(𝒙0, 𝜆) = det
(
𝜕𝑇 ℓ

𝜕𝒙
(𝒙0, 𝜆) − 𝜇𝐼𝑛

)
= 0, (2.4)

where, 𝜇 is a characteristic constant, 𝐼𝑛 is 𝑛 × 𝑛 identity matrix. Therefore, by combining
equations (2.3) and (2.4), we obtain the conditions for bifurcation. There are several types
of local bifurcations, and in this study, we deal with period-doubling bifurcations, tangent
bifurcations, and Neimark-Sacker bifurcations.

Due to their algebraic complexity, these equations are difficult to solve analytically. In this
study, we use Newton’s method to solve these objective functions. The Newton method has
the advantage of quadratic convergence properties. However, it requires the preparation of the
Jacobian matrix of the objective function. The following subsections describe each bifurcation
condition and the method for obtaining their respective Jacobian matrices.
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2.1.1 Period-doubling bifurcation

Period-doubling bifurcation occur when 𝜇 = −1. Therefore, the bifurcation condition is:


𝑇 ℓ (𝒙0, 𝜆) − 𝒙0 = 0

𝜒(𝒙0, 𝜆) = det
(
𝜕𝑇 ℓ

𝜕𝒙
(𝒙0, 𝜆) + 𝐼𝑛

)
= 0

. (2.5)

The jacobian matrix for Newton’s method is:

©­­­«
𝜕𝑇 ℓ

𝜕𝒙0
(𝒙0, 𝜆)

𝜕𝑇 ℓ

𝜕𝜆
(𝒙0, 𝜆)

𝜕𝜒

𝜕𝒙0
(𝒙0, 𝜆)

𝜕𝜒

𝜕𝜆
(𝒙0, 𝜆)

ª®®®¬ . (2.6)

Here, preparing the Jacobian matrix requires differentiation with respect to the state and pa-
rameters of 𝑇 ℓ. There are two methods to obtain these: solving variational equations and using
composite mapping. Both methods will be introduced here, but the former is simpler for typical
discrete-time dynamical systems. Note that the method using composite mapping can be applied
to hybrid dynamical systems, although its implementation is more challenging.

First, we discuss the method using variational equations. If 𝒙0 is the initial value and the
solution that returns to 𝒙0 after ℓ time steps is denoted by 𝝋, then we have:

𝒙𝑘 = 𝝋(𝑘, 𝒙0, 𝜆),

𝒙𝑘+ℓ = 𝝋(𝑘 + ℓ, 𝒙0, 𝜆) = 𝒙𝑘 ,

𝝋(0, 𝒙0, 𝜆) = 𝒙0.

(2.7)

From 𝝋(𝑘 + 1, 𝒙0, 𝜆) = 𝑇 (𝝋(𝑘, 𝒙0, 𝜆), 𝜆), we derive:

𝜕𝝋

𝜕𝒙0
(𝑘 + 1, 𝒙0, 𝜆) =

𝜕𝑇

𝜕𝒙
(𝝋(𝑘, 𝒙0, 𝜆), 𝜆)

𝜕𝝋

𝜕𝒙0
(𝑘, 𝒙0, 𝜆),

𝜕𝝋

𝜕𝒙0
(0, 𝒙0, 𝜆) = 𝐼𝑛.

(2.8)

Here, 𝐼 is the identity matrix in 𝑹𝑛 × 𝑹𝑛. Similarly, the variational equation with respect to the
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parameter is:

𝜕𝝋

𝜕𝜆
(𝑘 + 1, 𝒙0, 𝜆) =

𝜕𝑇

𝜕𝒙
(𝝋(𝑘, 𝒙0, 𝜆), 𝜆)

𝜕𝝋

𝜕𝜆
(𝑘, 𝒙0, 𝜆) +

𝜕𝑇

𝜕𝜆
(𝝋(𝑘, 𝒙0, 𝜆), 𝜆),

𝜕𝝋

𝜕𝜆
(0, 𝒙0, 𝜆) = 0.

(2.9)

Differentiating Eq. (2.8) with respect to 𝒙0:

𝜕2𝝋

𝜕𝒙2
0
(𝑘 + 1, 𝒙0, 𝜆) =

𝜕2𝑇

𝜕𝒙2 (𝝋(𝑘, 𝒙0, 𝜆), 𝜆)
𝜕𝝋

𝜕𝒙0
(𝑘, 𝒙0, 𝜆)2

+ 𝜕𝑇
𝜕𝒙

(𝝋(𝑘, 𝒙0, 𝜆), 𝜆)
𝜕2𝝋

𝜕𝒙2
0
(𝑘, 𝒙0, 𝜆),

𝜕2𝝋

𝜕𝒙2
0
(0, 𝒙0, 𝜆) = 𝑶.

(2.10)

Here, 𝑶 is the zero matrix in 𝑹𝑛 × 𝑹𝑛 × 𝑹𝑛. Similarly, differentiating Eq. (2.9) with respect to
𝒙0:

𝜕2𝝋

𝜕𝜆𝜕𝒙0
(𝑘 + 1, 𝒙0, 𝜆) =

𝜕2𝑇

𝜕𝒙2 (𝝋(𝑘, 𝒙0, 𝜆), 𝜆)
𝜕𝝋

𝜕𝒙0
(𝑘, 𝒙0, 𝜆)

𝜕𝝋

𝜕𝜆
(𝑘, 𝒙0, 𝜆)

+ 𝜕𝑇
𝜕𝒙

(𝝋(𝑘, 𝒙0, 𝜆), 𝜆)
𝜕2𝝋

𝜕𝜆𝜕𝒙0
(𝑘, 𝒙0, 𝜆)

+ 𝜕2𝑇

𝜕𝜆𝜕𝒙
(𝝋(𝑘, 𝒙0, 𝜆), 𝜆)

𝜕𝝋

𝜕𝒙0
(𝑘, 𝒙0, 𝜆),

𝜕2𝝋

𝜕𝜆𝜕𝒙0
(0, 𝒙0, 𝜆) = 𝑂.

(2.11)

Here, 𝑂 is the zero matrix in 𝑹𝑛 × 𝑹𝑛. Since 𝝋(𝑘, 𝒙0, 𝜆) = 𝒙𝑘 = 𝑇 𝑘 (𝒙0, 𝜆),

𝜕𝝋

𝜕𝒙0
(𝑘, 𝒙0, 𝜆) =

𝜕𝑇 𝑘

𝜕𝒙0
, (2.12)

and the solutions for the other three variational equations are similar. Thus, by iteratively solving
Eq. (2.1) and Eqs. from (2.8) to (2.11) ℓ times, we find the solution to the variational equations,
which is then used in the Jacobian matrix for the Newton method.
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Next, derivatives of the composite map 𝑇 ℓ𝜆 are derived as:

𝜕𝑇 ℓ𝜆
𝜕𝒙

=
𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙ℓ−1

𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙ℓ−2

· · · 𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙1

𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙0

, (2.13)

𝜕𝑇 ℓ𝜆
𝜕𝜆

=
𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙ℓ−1

𝜕𝑇 ℓ−1
𝜆

𝜕𝜆
+ 𝜕𝑇𝜆
𝜕𝜆

����
𝒙=𝒙ℓ−1

,

𝜕𝑇
𝑗
𝜆

𝜕𝜆
=
𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙 𝑗−1

𝜕𝑇
𝑗−1
𝜆

𝜕𝜆
+ 𝜕𝑇𝜆
𝜕𝜆

����
𝒙=𝒙 𝑗−1

,

𝜕𝑇1
𝜆

𝜕𝜆
=
𝜕𝑇𝜆
𝜕𝜆

����
𝒙=𝒙0

,

(2.14)

𝜕2𝑇 ℓ𝜆
𝜕𝒙2 =

𝜕2𝑇𝜆
𝜕𝒙2

����
𝒙=𝒙ℓ−1

ℓ−2∏
𝑘=0

𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙ℓ−2−𝑘

ℓ−2∏
𝑘=0

𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙ℓ−2−𝑘

+ · · · +
𝑗+1∏
𝑘=0

𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙ℓ−1−𝑘

𝜕2𝑇𝜆
𝜕𝒙2

����
𝒙=𝒙 𝑗

𝑗−1∏
𝑘=0

𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙 𝑗−1−𝑘

𝑗−1∏
𝑘=0

𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙 𝑗−1−𝑘

+ · · · +
ℓ−2∏
𝑘=0

𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙ℓ−1−𝑘

𝜕2𝑇𝜆
𝜕𝒙2

����
𝒙=𝒙0

,

(2.15)

𝜕𝑇ℓ
𝜆

𝜕𝒙𝜕𝜆
=
𝜕2𝑇𝜆
𝜕𝒙2

����
𝒙=𝒙ℓ−1

ℓ−2∏
𝑘=0

𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙ℓ−2−𝑘

𝜕𝑇ℓ−1
𝜆

𝜕𝜆
+ 𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙ℓ−1

𝜕𝑇ℓ−1
𝜆

𝜕𝒙𝜕𝜆
+ 𝜕𝑇𝜆
𝜕𝒙𝜕𝜆

����
𝒙=𝒙ℓ−1

ℓ−2∏
𝑘=0

𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙ℓ−2−𝑘

,

𝜕𝑇
𝑗
𝜆

𝜕𝒙𝜕𝜆
=
𝜕2𝑇𝜆
𝜕𝒙2

����
𝒙=𝒙 𝑗−1

𝑗−2∏
𝑘=0

𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙 𝑗−2−𝑘

𝜕𝑇
𝑗−1
𝜆

𝜕𝜆
+ 𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙 𝑗−1

𝜕𝑇
𝑗−1
𝜆

𝜕𝒙𝜕𝜆
+ 𝜕𝑇𝜆
𝜕𝒙𝜕𝜆

����
𝒙=𝒙 𝑗−1

𝑗−2∏
𝑘=0

𝜕𝑇𝜆
𝜕𝒙

����
𝒙=𝒙 𝑗−2−𝑘

,

𝜕𝑇1
𝜆

𝜕𝒙𝜕𝜆
=
𝜕2𝑇𝜆
𝜕𝒙𝜕𝜆

����
𝒙=𝒙0

,

(2.16)

where, 𝑗 = ℓ − 1, ℓ − 2, . . . , 3, 2, 𝒙𝑘 = 𝑇 𝑘𝜆 (𝒙0), 𝑇𝜆 (𝒙0) = 𝑇 (𝒙0, 𝜆). Refer the Ref.[1] to compute

tensor product in second variational equations. Since the derivative of the composite map is

constructed based on the concept of Ref.[2], bifurcation analysis can be performed for switching

systems by appropriately defining the map piecewise.

Next, we determine the differentiation of the determinant 𝜒. If we define the determinant of
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a matrix 𝐴 as follows,

|𝐴| =

������������
𝑎11 𝑎12 · · · 𝑎1𝑘 · · · 𝑎1𝑛

𝑎21 𝑎22 · · · 𝑎2𝑘 · · · 𝑎2𝑛
...

...
...

...

𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑘 · · · 𝑎𝑛𝑛

������������
, (2.17)

the value of the determinant can be expressed as,

|𝐴| =
∑
𝜎∈𝑆𝑛

sgn(𝜎)𝑎𝜎(1)1𝑎𝜎(2)2 · · · 𝑎𝜎(𝑛)𝑛. (2.18)

Here, 𝑆𝑛 is the set of all permutations of 𝑛 elements, 𝜎 is a permutation, and sgn(𝜎) is the sign

function that returns 1 or −1 for even or odd permutations, respectively.

The differentiation of |𝐴| with respect to 𝑥𝑖 using the multilinearity of the determinant is,

𝜕 |𝐴|
𝜕𝑥𝑖

=
𝑛∑
𝑘=1

������������
𝑎11 · · · 𝑎1𝑘−1

𝜕𝑎1𝑘
𝜕𝑥𝑖

𝑎1𝑘+1 · · · 𝑎1𝑛

𝑎21 · · · 𝑎2𝑘−1
𝜕𝑎2𝑘
𝜕𝑥𝑖

𝑎2𝑘+1 · · · 𝑎2𝑛
...

...
...

...

𝑎𝑛1 · · · 𝑎𝑛𝑘−1
𝜕𝑎𝑛𝑘
𝜕𝑥𝑖

𝑎𝑛𝑘+1 · · · 𝑎𝑛𝑛

������������
. (2.19)

Prior to numerical calculation, one should calculate 𝜕2𝑇ℓ

𝜕𝒙2 (𝒙0, 𝜆) and 𝜕2𝑇ℓ

𝜕𝒙𝜕𝜆 (𝒙0, 𝜆), and then

compute the sum of the determinants of matrices obtained by replacing each column element of
𝜕𝑇ℓ

𝜕𝒙 (𝒙0, 𝜆) − 𝜇𝐼 with their respective derivatives.
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2.1.2 Tangent bifurcation

Tangent bifurcation occur when 𝜇 = 1. Therefore, the bifurcation condition is:


𝑇 ℓ (𝒙0, 𝜆) − 𝒙0 = 0

𝜒(𝒙0, 𝜆) = det
(
𝜕𝑇 ℓ

𝜕𝒙
(𝒙0, 𝜆) − 𝐼𝑛

)
= 0

. (2.20)

The method for obtaining the Jacobian matrix for the Newton method is same to that used for

period-doubling bifurcations. However, we note that since 𝜇 = 1, the sign of the identity matrix

in the characteristic equation has changed.

2.1.3 Neimark-Sacker bifurcation

Neimark-Sacker bifurcation (NS bifurcation) occurs when 𝜇 = 𝑒 𝑗𝜃 . As a result, the objective

function for the Newton method includes complex numbers, and therefore the same objective

function as used for period-doubling and tangent bifurcations cannot be applied. Here, two

conditions for NS bifurcation are introduced.

First, we introduce a method that separates the real and imaginary parts of the bifurcation

condition to increase the number of objective functions[3]. The NS bifurcation conditions, when

separating the real and imaginary parts of the second equation in formula (2.4), are as follows:


𝑇 ℓ (𝒙0, 𝜆) − 𝒙0 = 0

Re(𝜒(𝒙0, 𝜆, 𝜃)) = 0

Im(𝜒(𝒙0, 𝜆, 𝜃)) = 0

(2.21)

To solve these, find solutions for (𝒙0, 𝜆, 𝜃). The Jacobian matrix required for the Newton method
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is:

©­­­­­­­«

𝜕𝑇 ℓ

𝜕𝒙
(𝒙0, 𝜆)

𝜕𝑇 ℓ

𝜕𝜆
(𝒙0, 𝜆)

𝜕𝑇 ℓ

𝜕𝜃
(𝒙0, 𝜆)

Re
(
𝜕𝜒

𝜕𝒙
(𝒙0, 𝜆, 𝜃)

)
Re

(
𝜕𝜒

𝜕𝜆
(𝒙0, 𝜆, 𝜃)

)
Re

(
𝜕𝜒

𝜕𝜃
(𝒙0, 𝜆, 𝜃)

)
Im

(
𝜕𝜒

𝜕𝒙
(𝒙0, 𝜆, 𝜃)

)
Im

(
𝜕𝜒

𝜕𝜆
(𝒙0, 𝜆, 𝜃)

)
Im

(
𝜕𝜒

𝜕𝜃
(𝒙0, 𝜆, 𝜃)

)
ª®®®®®®®¬
. (2.22)

𝜕𝑇 ℓ/𝜕𝜃 is 0 since 𝑇 does not depend on 𝜃. Also,

𝜕

𝜕𝜃

(
𝜕𝑇 ℓ

𝜕𝒙
(𝒙0, 𝜆) − 𝑒 𝑗𝜃 𝐼𝑛

)
= (sin 𝜃 − 𝑗 cos 𝜃)𝐼𝑛. (2.23)

Note that the second and third rows of the Jacobian matrix involve swapping the operations

of differentiation and extracting real and imaginary parts, Re and Im. This is trivial because a

complex function 𝑓 (𝑧) ∈ 𝑪, 𝑧 = 𝑥 + 𝑗 𝑦 can be expressed as the sum of real functions 𝑢, 𝑣 ∈ 𝑹,

where 𝑓 (𝑧) = 𝑢(𝑥) + 𝑗𝑣(𝑦).

Next, we show the bifurcation condition using the bialternate product. The real-imaginary

part separation algorithm can be challenging to implement in programming languages that do not

handle complex numbers, especially in deriving the Jacobian matrix. Moreover, the increase in

the number of objective functions for the Newton method also raises implementation complexity.

By using the bialternate product, the number of objective functions remains the same as in the

case of period-doubling or tangent bifurcations, and there is no need to handle the implicit

variable 𝜃.

Assume 𝐴, 𝐵 ∈ 𝑹𝑛×𝑛. The bialternate product[4] denoted (𝐴 ⊙ 𝐵) is defined as:

(𝐴 ⊙ 𝐵)(𝑝,𝑞),(𝑟,𝑠) =
1
2


������𝑎𝑝𝑟 𝑎𝑝𝑠

𝑏𝑞𝑟 𝑏𝑞𝑠

������ +
������𝑏𝑝𝑟 𝑏𝑝𝑠

𝑎𝑞𝑟 𝑎𝑞𝑠

������
 (2.24)

whose rows are labeled by the multi-index (𝑝, 𝑞) (𝑝 = 2, 3, . . . , 𝑛; 𝑞 = 1, 2, . . . , 𝑝 − 1), and

columns are labeld by the multi-index (𝑟, 𝑠) (𝑟 = 2, 3, . . . , 𝑛; 𝑠 = 1, 2, . . . , 𝑟 − 1). The size of

bialternate product is 𝑚 × 𝑚, where 𝑚 = 𝑛(𝑛 − 1)/2. For example, if 𝑛 = 3, then we get 𝑚 = 3
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and

(𝐴 ⊙ 𝐵) =
©­­­­«
(𝐴 ⊙ 𝐵)(2,1),(2,1) (𝐴 ⊙ 𝐵)(2,1),(3,1) (𝐴 ⊙ 𝐵)(2,1),(3,2)
(𝐴 ⊙ 𝐵)(3,1),(2,1) (𝐴 ⊙ 𝐵)(3,1),(3,1) (𝐴 ⊙ 𝐵)(3,1),(3,2)
(𝐴 ⊙ 𝐵)(3,2),(2,1) (𝐴 ⊙ 𝐵)(3,2),(3,1) (𝐴 ⊙ 𝐵)(3,2),(3,2) .

ª®®®®¬
Bialternate product holds the following properties:

1. 𝐴 ⊙ 𝐴 has eigenvalues 𝜆𝑖𝜆 𝑗 .

2. 2𝐴 ⊙ 𝐼𝑛 has eigenvalues 𝜆𝑖 + 𝜆 𝑗 .

Therefore, we have Neimark-Sacker bifurcation condition as:


𝑇 ℓ (𝒙0, 𝜆) − 𝒙0 = 0

𝜒(𝒙, 𝜆) = det
(
𝜕𝝋

𝜕𝒙0
⊙ 𝜕𝝋

𝜕𝒙0
− 𝐼𝑚

)
= 0,

(2.25)

where 𝐼𝑚 is identity matrix of 𝑅𝑚×𝑚. This has the type of bialternate product

(𝑨 ⊙ 𝑨)(𝑝,𝑞),(𝑟,𝑠) =

������𝑎𝑝𝑟 𝑎𝑝𝑠

𝑎𝑞𝑟 𝑎𝑞𝑠

������ . (2.26)

Derivatives of each elements are drived by:

𝜕

𝜕𝑥𝑖
(𝑨 ⊙ 𝑨)(𝑝,𝑞),(𝑟,𝑠) =

�������
𝜕𝑎𝑝𝑟

𝜕𝑥𝑖
𝑎𝑝𝑠

𝜕𝑎𝑞𝑟

𝜕𝑥𝑖
𝑎𝑞𝑠

������� +
�������
𝑎𝑝𝑟

𝜕𝑎𝑝𝑠

𝜕𝑥𝑖

𝑎𝑞𝑟
𝜕𝑎𝑞𝑠

𝜕𝑥𝑖

������� (2.27)

2.2 Continuous dynamical systems

Consider the initial value problem of an continuous autonomous dynamical system:

𝑑𝒙

𝑑𝑡
= 𝒇 (𝒙, 𝜆), with 𝒙(0) = 𝒙0, (2.28)
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where, 𝒙 ∈ 𝑹𝑛 represents the state variables, and 𝜆 ∈ 𝑹 denotes the parameters. The function

𝒇 : 𝑹𝑛 → 𝑹𝑛 is assumed to be of class 𝐶∞.

2.2.1 Equilibrium point and its bifurcations

An equilibrium point is a point 𝒙∗ that satisfies:

𝒇 (𝑡, 𝒙∗, 𝜆) = 0. (2.29)

Bifurcation of equilibrium points occurs when the real part of the eigenvalue 𝜇 is zero. These

are respectively referred to as Tangent Bifurcation when Im(𝜇) = 0, and Hopf Bifurcation when

Im(𝜇) ≠ 0. Therefore, the bifurcation condition for equilibrium points is:


𝒇 (𝑡, 𝒙∗, 𝜆) = 0

Re(𝜒(𝜇)) = Re
(
det

(
𝜕 𝒇

𝜕𝒙

����
𝒙=𝒙∗

− 𝜇𝐼𝑛
))

= 0
. (2.30)

This needs to be solved for (𝒙∗, 𝜆). The Jacobian matrix required for the Newton method is:

©­­«
𝜕 𝒇

𝜕𝒙

𝜕 𝒇

𝜕𝜆

Re
(
𝜕𝜒

𝜕𝒙

)
Re

(
𝜕𝜒

𝜕𝜆

)ª®®¬ . (2.31)

In languages that cannot handle complex numbers, it is easier to use bifurcation conditions

using the bialternate product, similar to NS bifurcation in discrete dynamical systems. For Hopf

bifurcation, since the real parts of conjugate complex numbers satisfy 𝜇𝑖+𝜇 𝑗 = 0, the bifurcation

condition is:

det
(
2
𝜕 𝒇

𝜕𝒙

����
𝒙=𝒙∗

·O𝐼𝑛
)
= 0. (2.32)

The eigenvalue sum property of 2𝐴 ·O𝐼𝑛 is particularly useful and has a special name, ”Biproduct”.



2.2. Continuous dynamical systems 13

The elements of 2𝐴 ·O𝐼𝑛 are:

(2𝐴 ·O𝐼𝑛)(𝑝,𝑞),(𝑟,𝑠) =

������𝑎𝑝𝑟 𝑎𝑝𝑠

𝛿𝑞𝑟 𝛿𝑞𝑠

������ +
������𝛿𝑝𝑟 𝛿𝑝𝑠

𝑎𝑞𝑟 𝑎𝑞𝑠

������ , (2.33)

where 𝛿𝑖 𝑗 is the Kronecker delta. Expanding this, we get:

(2𝐴 ·O𝐼𝑛)(𝑝,𝑞),(𝑟,𝑠) =



−𝑎𝑝𝑠 if 𝑟 = 𝑞,

𝑎𝑝𝑟 if 𝑟 ≠ 𝑝 and 𝑠 = 𝑞,

𝑎𝑝𝑝 + 𝑎𝑞𝑞 if 𝑟 = 𝑝 and 𝑠 = 𝑞,

𝑎𝑞𝑠 if 𝑟 = 𝑝 and 𝑠 ≠ 𝑞,

−𝑎𝑞𝑟 if 𝑠 = 𝑝,

0 otherwise.

(2.34)

The derivatives can be found by directly differentiating these elements.

2.2.2 Fixed point

When a solution function 𝝋(𝑡, 𝒙0, 𝜆) satisfies 𝝋(𝜏, 𝒙0, 𝜆) = 𝒙0 with a period 𝜏, it is called a

periodic solution. Poincaré section is used for stability analysis of periodic solutions:

Π = {𝒙 ∈ 𝑹𝑛 | 𝑞(𝒙) = 0}. (2.35)

If a periodic solution exists in the system, defined as

𝑇 : Π → Π

𝒙0 ↦→ 𝑇 (𝒙0) = 𝝋(𝜏, 𝒙0, 𝜆),
(2.36)

then the stability of the periodic solution can be reduced to the stability of fixed points of the

discrete dynamical system 𝒙𝑘+1 = 𝑇 (𝒙𝑘 ) on the Poincaré section Π.



14 Chapter 2. Mathematical preliminaries

The fixed-point conditions are given by:


𝝋(𝜏, 𝒙0, 𝜆) − 𝒙0 = 0

𝑞(𝝋(𝜏, 𝒙0, 𝜆)) = 0
(2.37)

For periodic solutions in autonomous systems, the period 𝜏 changes with the parameters, so the

second equation is necessary. It represents the condition that when the initial value 𝒙0 departs

from Π, the solution reaches the Poincaré section again. When using Eq. (2.37) as the objective

function for Newton’s method for (𝒙0, 𝜏).

2.2.3 Bifurcations of a fixed point

A bifurcation occurs when the characteristic constants of the Poincaré map obtained from Eq.

(2.37) satisfy |𝜇𝑖 | = 1, where 𝜇𝑖, 𝑖 = 1, . . . , 𝑛 is the characteristic constants of the Poincaré map.

The bifurcation condition is given by[5]:

𝜒(𝒙, 𝜆) = det
(
𝜕𝝋

𝜕𝒙0
− 𝜇𝐼𝑛

)
= 0. (2.38)

the bifurcation point is obtained by solving Eq.(2.37) and (2.38) for (𝒙0, 𝜏, 𝜆) simultaneously.

The Jacobian matrix for bifurcation calculation is given by:

©­­­­­­«

𝜕𝝋

𝜕𝒙0
− 𝐼𝑛 𝒇 (𝝋) 𝜕𝝋

𝜕𝜆
𝜕𝑞

𝜕𝒙

𝜕𝝋

𝜕𝒙0

𝜕𝑞

𝜕𝒙
𝒇 (𝝋) 𝜕𝑞

𝜕𝒙

𝜕𝝋

𝜕𝜆
𝜕𝜒

𝜕𝒙0

𝜕𝜒

𝜕𝜏

𝜕𝜒

𝜕𝜆

ª®®®®®®¬
, (2.39)

we describe 𝝋(𝜏, 𝒙0, 𝜆) as just 𝝋 for simplicity.

The initial value and parameter derivatives of 𝝋 appearing in Eq. (2.39) are solutions of
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variational equations[6]. The solution function 𝝋 satisfies:

𝒙(𝑡) = 𝝋(𝑡, 𝒙0, 𝜆),

𝒙(𝑡 + 𝜏) = 𝝋(𝑡 + 𝜏, 𝒙0, 𝜆) = 𝒙(𝑡),

𝒙(0) = 𝒙0.

(2.40)

From equations (2.28) and (2.40),

𝑑𝝋

𝑑𝑡
(𝑡, 𝒙0, 𝜆) = 𝒇 (𝑡, 𝝋(𝑡, 𝒙0, 𝜆), 𝜆). (2.41)

Differentiating Eq. (2.41) with respect to 𝒙0 yields,

𝜕

𝜕𝒙0

𝑑𝝋

𝑑𝑡
(𝑡, 𝒙0, 𝜆) =

𝜕

𝜕𝒙0
𝒇 (𝑡, 𝝋(𝑡, 𝒙0, 𝜆), 𝜆). (2.42)

Assuming Eq. (2.28) is sufficiently smooth, the order of differentiation can be swapped. Applying

the derivative of a composite function,

𝑑

𝑑𝑡

𝜕𝝋

𝜕𝒙0
=
𝜕 𝒇

𝜕𝒙
(𝑡, 𝝋(𝑡, 𝒙0, 𝜆), 𝜆)

𝜕𝝋

𝜕𝒙0
. (2.43)

Similarly, differentiating Eq. (2.41) with respect to 𝜆 and rearranging (using the differentiation

of composite and multivariable functions),

𝑑

𝑑𝑡

𝜕𝝋

𝜕𝜆
=
𝜕 𝒇

𝜕𝒙
(𝑡, 𝝋(𝑡, 𝒙0, 𝜆), 𝜆)

𝜕𝝋

𝜕𝜆
+ 𝜕 𝒇
𝜕𝜆

(𝑡, 𝝋(𝑡, 𝒙0, 𝜆), 𝜆). (2.44)

This provides the first variational equations for the initial value and parameter. Next, differenti-

ating Eq. (2.43) with respect to 𝒙0,

𝑑

𝑑𝑡

𝜕2𝝋

𝜕𝒙2
0
=
𝜕2 𝒇

𝜕𝒙2 (𝑡, 𝝋(𝑡, 𝒙0, 𝜆), 𝜆)
𝜕𝝋

𝜕𝒙0

2
+ 𝜕 𝒇
𝜕𝒙

(𝑡, 𝝋(𝑡, 𝒙0, 𝜆), 𝜆)
𝜕2𝝋

𝜕𝒙2
0
. (2.45)
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Also, differentiating Eq. (2.44) with respect to 𝒙0,

𝑑

𝑑𝑡

𝜕2𝝋

𝜕𝜆𝜕𝒙0
=
𝜕2 𝒇

𝜕𝒙2 (𝑡, 𝝋(𝑡, 𝒙0, 𝜆), 𝜆)
𝜕𝝋

𝜕𝒙0

𝜕𝝋

𝜕𝜆

+ 𝜕 𝒇
𝜕𝒙

(𝑡, 𝝋(𝑡, 𝒙0, 𝜆), 𝜆)
𝜕2𝝋

𝜕𝜆𝜕𝒙0
+ 𝜕2 𝒇

𝜕𝜆𝜕𝒙
(𝑡, 𝝋(𝑡, 𝒙0, 𝜆), 𝜆)

𝜕𝝋

𝜕𝒙0

. (2.46)

The differentiation of Eq. (2.43) with respect to 𝜆 is complex and not recommended. These

variational equations, together with Eq. (2.28), can be numerically integrated simultaneously

from time 0 to 𝜏 to obtain derivatives with respect to the initial value and parameter.

The second variational equation for period 𝜏 can be derived from Eq. (2.41) as:

𝑑

𝑑𝜏

𝜕𝝋

𝜕𝒙0
=
𝜕 𝒇

𝜕𝒙
(𝜏, 𝝋(𝜏, 𝒙0, 𝜆), 𝜆)

𝜕𝝋

𝜕𝒙0
. (2.47)

In other words, the variational equation for 𝜏 does not need to be integrated numerically; it can

be easily obtained from the matrix product of previously calculated 𝜕 𝒇 /𝜕𝒙 and 𝜕𝝋/𝜕𝒙0.

Period-doubling bifurcation

Period doubling bifurcation occurs when 𝜇 = −1. We get the period doubling bifurcation

condition as:


𝝋(𝜏, 𝒙0, 𝜆) − 𝒙0 = 0

𝑞(𝝋(𝜏, 𝒙0, 𝜆)) = 0

𝜒(𝒙, 𝜆) = det
(
𝜕𝝋

𝜕𝒙0
+ 𝐼𝑛

)
= 0.

(2.48)

Tangent bifurcation

Tangent bifurcation occurs when 𝜇 = 1. However, due to the condition that the fixed point 𝒙0

exists on the Poincaré section, one of the characteristic constants is always equal to 1. In other

words, the condition 𝜇 = 1 in Eq. (2.38) is always satisfied, making it inappropriate as a tangent

bifurcation condition. Therefore, the derivative of Eq.(2.38) respect to 𝜇 is used as the tangent
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bifurcation condition:


𝝋(𝜏, 𝒙0, 𝜆) − 𝒙0 = 0

𝑞(𝝋(𝜏, 𝒙0, 𝜆)) = 0
𝑑𝜒

𝑑𝜇
(𝒙, 𝜆) = 0.

(2.49)

The third equation of Eq. (2.49) is derived as:

𝑑𝜒

𝑑𝜇
=

������������
−1 𝑎12 . . . 𝑎1𝑛

0 𝑎22 . . . 𝑎2𝑛
...

...
. . .

...

0 𝑎𝑛2 . . . 𝑎𝑛𝑛

������������︸                   ︷︷                   ︸
1O

+

������������
𝑎11 0 . . . 𝑎1𝑛

𝑎21 −1 . . . 𝑎2𝑛
...

...
. . .

...

𝑎𝑛1 0 . . . 𝑎𝑛𝑛

������������︸                   ︷︷                   ︸
2O

+ · · · +

������������
𝑎11 𝑎12 . . . 0

𝑎21 𝑎22 . . . 0
...

...
. . .

...

𝑎𝑛1 𝑎𝑛2 . . . −1

������������︸                   ︷︷                   ︸
nO

= 0 (2.50)

where, 𝐴 = {𝑎𝑖 𝑗 } = 𝜕𝜑/𝜕𝒙0. Newton’s method require the derivative of Eq.(2.50):

𝜕

𝜕𝑥𝑖

𝜕𝜒

𝜕𝜇
=
𝜕 1O
𝜕𝑥𝑖

+ 𝜕
2O

𝜕𝑥𝑖
+ · · · + 𝜕

nO
𝜕𝑥𝑖

. (2.51)

For example, the first term of Eq.(2.51) is given by:

𝜕 1O
𝜕𝑥𝑖

=

��������������

0
𝜕𝑎12
𝜕𝑥𝑖

. . .
𝜕𝑎1𝑛
𝜕𝑥𝑖

0
𝜕𝑎22
𝜕𝑥𝑖

. . .
𝜕𝑎2𝑛
𝜕𝑥𝑖

...
...

. . .
...

0
𝜕𝑎𝑛2
𝜕𝑥𝑖

. . .
𝜕𝑎𝑛𝑛
𝜕𝑥𝑖

��������������
+

��������������

−1 0 . . .
𝜕𝑎1𝑛
𝜕𝑥𝑖

0 0 . . .
𝜕𝑎2𝑛
𝜕𝑥𝑖

...
...
. . .

...

0 0 . . .
𝜕𝑎𝑛𝑛
𝜕𝑥𝑖

��������������
+ · · · +

��������������

−1
𝜕𝑎12
𝜕𝑥𝑖

. . . 0

0
𝜕𝑎22
𝜕𝑥𝑖

. . . 0
...

...
. . .

...

0
𝜕𝑎𝑛2
𝜕𝑥𝑖

. . . 0

��������������
(2.52)
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Neimark-Sacker bifurcation

The NS bifurcation condition for continuous systems can be expressed using the Bialternate

product, as same as discrete dynamical systems:


𝝋(𝜏, 𝒙0, 𝜆) − 𝒙0 = 0

𝑞(𝝋(𝜏, 𝒙0, 𝜆)) = 0

𝜒(𝒙, 𝜆) = det
(
𝜕𝝋

𝜕𝒙0
⊙ 𝜕𝝋

𝜕𝒙0
− 𝑰𝑚

)
= 0

(2.53)

We note that the real-imaginary part separation algorithm is also applicable for continuous

systems, however, since it would duplicate the description for discrete systems, it is not described

here.



Chapter 3

Computation of bifurcations:

Implementation techniques

In this chapter, we provide techniques for implementing a bifurcation computation program

using the bifurcation analysis methods discussed in Chapter 2. This includes interface design,

automatic derivation of expressions using symbolic computation libraries, methods for setting

objective functions, and discusses specific implementation techniques in Python and C++.

3.1 Introduction

Bifurcation computation software[7][8] has primarily used old implementations in C, FOR-

TRAN or MATLAB. These programs are difficult to modify or understand. We will use the

following computing environment:

• Shell: Unix shell (zsh, bash, etc.)

• Language: Python

This chapter is based on author’s bibliography[5][6][12], Copyright©2022, 2023 IEICE. Part of the materials
and figures of this chapter are reused from author’s bibliography[5][6][12] under the permission of the IEICE.

19
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• Library: numpy, scipy, sympy

The Python language is an interpreted language, which makes it easy to write programs. Ad-

ditionally, a lot of libraries written in C and FORTRAN are available, making Python an

excellent language for general-purpose numerical computations. In this chapter, we will ex-

plain techniques using Python, including the implementation of the Newton method, symbolic

differentiation, and the representation of variational equations. By properly preparing function

objects corresponding to Newton’s method, it is possible to easily switch between multiple

objective functions. Additionally, the use of symbolic differentiation eliminates the need for

manual calculation of the system’s derivatives. By automatically determining the derivatives,

users hardly need to prepare for bifurcation calculations. Furthermore, using the numpy library

allows for “very simple” descriptions of complex variational equations.

In some parts of this chapter, techniques for C++ will also be provided. The environment

for using C++ is:

• Shell: Unix shell (zsh, bash, etc.)

• Language: C++

• Library: Eigen-3.4-rc1, nlohmann-3.10.1

Bifurcation calculations require numerical integrations, so C++ may be used for performance

considerations. eigen is a linear algebra library that can be used by including only the header

file. Similarly, nlohmann is a library for handling json in C++, and it can also be used by

including only the header file.

Please refer to the author’s GitHub page for detailed implementations on the bifurcation

calculation program:
https://github.com/aw02m

In addition to the Python-based bifurcation calculation program nonautonomous_bif_python,

bifurcation calculation programs written in C++ such as autonomous_bif and discrete_bif

are also available. The implementation details can be checked on these repositories.
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3.2 Newton’s method

The Newton method is an algorithm for iteratively solving algebraic equations. The only

requirement for the target equation is the differentiability in the root-finding region, and the

convergence of this method is very fast, with a quadratic convergence rate. However, compared

to other rich root-finding algorithms, the convergence region of the Newton method is quite

narrow. Nevertheless, when the calculation succeeds, the results can be more reliable than those

obtained using functions like hybrid method of scipy.root.

Consider the following nonlinear algebraic equation:

𝑭(𝒖) = 0, 𝒖 ∈ 𝑹𝑛, 𝑭 : 𝑹𝑛 → 𝑹𝑛. (3.1)

Let 𝒖𝑘 be the 𝑘th approximation of 𝒖. The Taylor expansion around 𝒖𝑘 is,

𝑭(𝒖) = 𝑭(𝒖𝑘 ) +
𝜕𝑭

𝜕𝒖

����
𝒖=𝒖𝑘

(𝒖 − 𝒖𝑘 ) + · · · (3.2)

Ignoring the nonlinear terms and using 𝑭(𝒖) = 0,

𝑭(𝒖𝑘 ) +
𝜕𝑭

𝜕𝒖

����
𝒖=𝒖𝑘

(𝒖 − 𝒖𝑘 ) = 0. (3.3)

Replacing the solution 𝒖 with the 𝑘 + 1th approximation, we can rearrange it into the following

form:

𝜕𝑭

𝜕𝒖

����
𝒖=𝒖𝑘

(𝒖𝑘+1 − 𝒖𝑘 ) = −𝑭(𝒖𝑘 ). (3.4)

This is in the form of the linear equation 𝐴𝒖 = 𝒃. By solving for (𝒖𝑘+1−𝒖𝑘 ) using methods such

as Gaussian elimination, we can find the difference between the 𝑘 + 1th and 𝑘th approximate

solutions.

Since Newton’s method is a simple iterative method, we have designed a custom function,
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newton(func, x0, args=()), based on the input and output of thescipy.optimize.root()

function. Certainly, scipy.optimize.root() is also available. However, it is important to

note that highly convergent methods may converge to false solutions. Therefore, cautions are

needed to select initial values and to verify the obtained solutions.

Listing 3.1 shows the implementation of the newton() function. func represents a multi-

valued function that returns the objective function F and its Jacobian matrix J, x0 is the initial

value given to Newton’s method, and args is the argument passed to func. NewtonResult is

a class that stores the results of the calculation. It has the following three attributes: x is the

solution obtained by Newton’s method, success is a flag that indicates whether the calculation

was successful, eigvals is the eigenvalues of the Jacobian matrix at the solution.

Listing 3.1: An example of a Newton’s method
1 def newton(func, x0, args=(), tol=1e-8, max_iter=16):

2 result = NewtonResult()

3 for i in range(max_iter):
4 F, J, eigvals = func(x0, *args)

5 result.eigvals = eigvals

6 dx = np.linalg.solve(J, -F)

7 x = dx + x0

8 if all(elem < tol for elem in abs(dx)):
9 result.x = x

10 result.success = True

11 break
12 else: # For the next step

13 pass
14 x0 = x

15 else:
16 result.x = x0

17 return result

3.3 Symbolic derivation of system derivatives

The most common cause of errors when using a bifurcation calculation package is mistakes in

calculating or filling in the Jacobian or Hessian of the system before performing the calculations.

Python provides the sympy package as a symbolic algebra system, which automates the pre-
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derivation of these terms simply by providing the software with differential equations. While

symbolic differentiation[9] can also be used in torch and other packages, in the case of bifurcation

calculations, the algebraic structures like Jacobians do not change during the calculation, so it

is more efficient to write them out as a script. Listing 3.2 shows the derivation of derivative

functions using sympy. Thus, preparing for the proposed system involves only describing the

differential equations to be solved in sympy format[9]. Formula explession of the system is

printed as Python style just by print(). Additionally, sympy expression objects can be output

in the C language format by using the ccode() function.

Listing 3.2: Automatic algebraic derivation with sympy
1 import sympy as sp

2 def func(x, p, t):

3 return sp.Matrix([f_1, f_2, ..., f_n])

4 sym_x = sp.MatrixSymbol("x", xdim, 1)

5 sym_p = sp.MatrixSymbol("p", pdim, 1)

6 sym_t = sp.Symbol("t")

7 f = func(sym_x, sym_p, sym_t)

8 dfdx = sp.derive_by_array([f[i] for i in range(xdim)],
9 [sym_x[i] for i in range(xdim)]).transpose()

10 dfdl = [sp.diff(f, sym_p[i]) for i in range(pdim)]
11 d2fdx2 = [sp.diff(dfdx, sym_x[i]) for i in range(xdim)]
12 d2fdxdl = [sp.diff(dfdx, sym_p[i]) for i in range(pdim)]

3.4 Computation of variational equations

In the chapter 2, we mentioned that solving bifurcation problems in discrete and continu-

ous systems requires finding the solutions to variational equations for the Newton method.

While the description of the first variational equations for initial values or parameters is rel-

atively simple due to their lower order, the description of the second variational equations is

complex because they involve tensors. Therefore, we use the matrix multiplication function

numpy.matmul() implemented in Python’s numpy package to succinctly describe variational

equations. numpy.matmul() is frequently used and is provided as the @ operator. By using

the @ operator, there is no need for any for loops or if-else branching to describe variational
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equations.

In this section, we will discuss the variational equations of continuous-time systems. In

continuous-time systems, numerical integration algorithms are needed not only to determine the

time evolution of the system but also to solve the variational equations. In this section, we will

use the Runge-Kutta method, which is implemented in scipy, one of the Python packages.

The integration method scipy.integrate.solve_ivp has the interface of:

solve_ivp(func, t_span, x0, method=’RK45’, ...) -> OdeSolution

OdeSolution is the returned class of the system solution and have the trajectory data. To

solve the variational equation, func should return a list of right-hand term of the system and

variational equations.

First, prepare a list with right-hand term of the system as

f = [f_1, f_2, ..., f_n]

This gives the integrator the system trajectories flow. Next, we need to solve variational equations

simultaneously. The right-hand term of Eq. (2.43) is described as

dfdx @ dphidx

and add to the list f as

f.extend((dfdx @ dphidx).T.flatten())

Since solve_ivp interface requires a list of vector field of the system, the solution of the

variational equation should be flattened. Similarly, we add other variational equations by

f.extend(dfdx @ dphidl + dfdl)
f.extend((dfdx @ d2phidx2

+ (d2fdx2 @ dphidx).T @ dphidx).transpose(0,2,1).flatten())
f.extend((dfdx @ d2phidxdl + ((d2fdx2 @ dphidx).T @ dphidl).T

+ (d2fdxdl @ dphidx)).T.flatten())

As same as the first variational equation for initial value, second variational equations require to

be flatten. Now, we have a list of flow of the system and variational equations. Let func the func-

tion that returns the list f, and we have solutions by solving func as solve_ivp(func, ...).
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3.5 Domain specific technique

3.5.1 JSON interfaces

In a bifurcation calculation program, the input varies depending on the system being solved and

the type of bifurcation. Therefore, it is desirable to save inputs and outputs as separate files.

Additionally, the format for storing the results of bifurcation calculations should be determined

in advance.

In this study, we use json as the interface for the bifurcation calculation program. json is

a data format capable of handling not only single values but also lists, and its ease of accessing

elements through keys is attractive. Furthermore, json is used in various fields, ensuring active

library maintenance and making it ideal for designing interfaces with scalability in mind.

List 3.3 shows an example of json input. The elements shown here are the bare minimum

required, and it is possible to extend them as needed. It is also possible to save the results of

bifurcation calculations as multidimensional lists. In this case, since the data format is the same,

the json file of bifurcation calculation results can be reused as input data.

Listing 3.3: JSON I/O interfaces
1 {"x0": [ <FIXED POINT COORDINATE > ],

2 "params": [ <PARAMETER > ],

3 "period": <PERIOD TIME>,

4 "inc_param": <INDEX NUMBER OF INCREMENTAL PARAMETER >,

5 "var_param": <INDEX NUMBER OF VARIABLE PARAMETER >,

6 "delta_inc": <INCREMENTAL PARAMETER STEP>,

7 "tol": <TOLERANCE OF NEWTON’S␣METHOD >}

3.5.2 Derivative of determinant

In the section 2.1.1, we show that the derivatives of determinant is mandatory to prepare

Jacobian matrix for Newton’s method. We obtain the derivative of matrix 𝐴 and compute the

sum of determinants obtained by replacing each element in the columns with its corresponding

derivative. Listing 3.4 provides an example of a function that calculates the derivative of a
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determinant. Python gives the simple description by using list slices.

Listing 3.4: An example implementation of determinant differentiation
1 def det_derivative(A, dA):

2 ret = 0+0j

3 for i in range(n):
4 temp = A.copy()

5 temp[:, i] = dA[:, i]

6 ret += np.linalg.det(temp)

7 return ret

3.5.3 Bialternate product and its derivatives

As shown in Sec. 2.1.3, the Bialternate product can be used for the conditions of Hopf bifurcations

and Neimark-Sacker bifurcations. The Biproduct, used for Hopf bifurcation conditions, can be

easily implemented not only in Python but also in C language by using conditional branching.

However, the implementation of the Bialternate product is a little bit complex as it require

multi-index. Here, we introduce a method to calculate the derivative of the Bialternate product

using itertools, one of Python’s libraries. Listing 3.5 shows an example of implementation

of bialternate product. result is a matrix of bialternate product and dresult is its derivative.

3.5.4 Tangent bifurcation condition in continuous autonomous systems

In Sec. 2.2.3, we discussed bifurcation problems in autonomous systems. The period-doubling

and Neimark-Sacker bifurcations in autonomous systems can be solved in the same way as the

usual bifurcation conditions in discrete dynamical systems. However, for tangent bifurcations,

a unique approach specific to autonomous systems is required due to the duplication of the

characteristic constant at 𝜇 = 1. In this section, we introduce an efficient implementation

method for calculating the tangent bifurcation conditions in autonomous systems.

Listing 3.6 shows an example of computing 𝜒 of the tangent bifurcation condition. The

slicing operations in Eq. (2.50) to (2.52) can be expressed simply. The provided listing
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Listing 3.5: An exapmle of implementation of bialternate product
1 from itertools import product

2 def bialt_square(A, dA):

3 n = A.shape[0]

4 bialt_dim = sum(range(n))
5 result = np.zeros((bialt_dim , bialt_dim))

6 dresult = np.zeros((bialt_dim , bialt_dim))

7 temp = np.zeros((2, 2))

8 result_idx = ((i, j) for i in range(bialt_dim)
9 for j in range(bialt_dim))

10 mul_idx = [(i, j) for i in range(1, n)

11 for j in range(i)]
12 for row, col in product(mul_idx, mul_idx):

13 for i, j in product([0, 1], [0, 1]):

14 temp[i, j] = A[row[i], col[j]]

15 dtemp[i, j] = dA[row[i], col[j]]

16 result[result_idx] = np.linalg.det(temp)

17 dresult[next(result_idx)] = det_derivative(temp, dtemp)

18 return result, dresult

demonstrates the calculation of matrix 𝜕𝝌/𝜕𝒙0. The calculations for matrix 𝜕𝝌/𝜕𝜏 and 𝜕𝝌/𝜕𝜆.

can also be implemented by modifying the 7th line, e.g. dtemp = d2phidxdtau.copy(),

dtemp = d2phidxdl.copy().

Listing 3.6: An exapmle of computations of a tangent bifurcation condition.
1 chara_poly = dphidx0 - np.eye(n)

2 dchidmudx = np.zeros(n)

3 for i in range(n):
4 for j in range(n):
5 temp = chara_poly.copy()

6 temp[:, j] = -np.eye(n)[j]

7 dtemp = d2phidx2[i].copy()

8 dtemp[:, j] = np.zeros(n)

9 dchidmudx[i] += det_derivative(temp, dtemp)

3.5.5 Solving the state on Poincaré sections

As previously mentioned, in the Python language, numerical integration can be performed

using the solve_ivp function. However, when using C/C++ for performance considerations,



28 Chapter 3. Computation of Bifurcations

there isn’t a rich numerical integration library like solve_ivp available. In order to solve

bifurcation conditions using the Newton method, it is necessary to determine whether the

solution crosses the Poincaré section during numerical integration and to accurately find the

coordinates on the Poincaré section. For this purpose, the Newton method can similarly be used.

For determining whether the solution has crossed the Poincaré section, it is beneficial to refer to

the find_active_events() function included in the implementation of solve_ivp.

The given mathematical context relates to the determination of the precise time at which

a state 𝒙 near the Poincaré section crosses the section after a time ℎ. The condition for this

crossing is given by the equation 𝑞(𝝋(ℎ, 𝒙)) = 0, where 𝝋(ℎ, 𝒙) is the state of the system at time

ℎ starting from 𝒙, and 𝑞(·) is a function defining the Poincaré section.

To find the accurate time ℎ when the trajectory intersects the Poincaré section, the Newton

method can be used, which iteratively refines the estimate of ℎ. The Newton update rule in this

context is expressed as:

ℎ𝑘+1 = ℎ𝑘 −
𝑞(𝝋(ℎ, 𝒙))
𝜕𝑞

𝜕𝒙
𝒇 (ℎ, 𝒙)

. (3.5)

Here, ℎ𝑘 is the current estimate of the time, and ℎ𝑘+1 is the updated estimate. The term
𝜕𝑞

𝜕𝒙
𝒇 (ℎ, 𝒙) in the denominator is the derivative of 𝑞 with respect to the state 𝒙, evaluated along

the flow of the system given by 𝒇 (ℎ, 𝒙).

It’s noted that the denominator becomes zero only at equilibrium points where 𝒇 (𝑡, 𝒙) = 0.

However, since event detection (i.e., detecting when the trajectory crosses the Poincaré section)

is typically applied to periodic orbits rather than equilibrium points, division by zero is not a

concern in this case.

While the bisection method could also be used to solve for ℎ, it converges linearly and thus

is less efficient compared to the quadratic convergence rate of the Newton method. Therefore,

the Newton method is preferred for performance reasons in this context.
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3.6 An illustrated examples

3.6.1 Discrete system: two-coupled neuron dynamics

In recent years, neuron dynamical systems have been actively studied, and there are not only

continuous-time models but also discrete-time models. In neural networks for learning, discrete

neuron dynamical systems are useful in terms of computational cost. The periodic points in

these systems are involved in the learning performance of the network, and bifurcation may

occur for these points when the parameters are dynamically updated in the learning process[10].

The convergence point of the neural network changes topologically at the bifurcation point in

the parameter space. When crossing this bifurcation point, the network generates discontinuous

output changes, which does not guarantee learning efficiency or makes it unstable. However,

in reality, abundant bifurcation phenomena have been observed in many neuronal dynamical

systems, especially the Neimark-Sacker bifurcation, which generates quasi-periodic solutions

that may lead to poor learning convergence[11].

In the case of learning, performance improvement by changing the activation function

has been done, and various models have been proposed instead of the conventional sigmoid

function[12]. In neuron dynamical systems, rich bifurcation phenomena have been observed

in the previous research. However, when the activation function is made richer or the scale of

the network increases, the complexity of the bifurcation structure is expected to increase due to

nonlinearity. In this chapter, we will investigate the bifurcation structure of the system using the

Swish function, which is one of the well-considered activation function.

Consider a two-coupled neuron dynamical system[13]:


𝑥𝑘+1 = 𝑓 (𝑤11𝑥𝑘 + 𝑤12𝑦𝑘 )

𝑦𝑘+1 = 𝑓 (𝑤21𝑥𝑘 + 𝑤22𝑦𝑘 )
, (3.6)

where𝑤𝑖 𝑗 are coupling coefficients. We use Swish function 𝑓 (𝑧) = 𝑧/(1+𝑒−𝜉𝑧) for the activation

function[14]. Since this system has an exponential in the denominator, the derivatives required
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for the Newton’s method are complicated, but the bifurcation set can be calculated by using

symbolic differentiation without hand calculation of derivatives.

By superimposing bifurcation curves computed by proposed algorithm and brute-force

computation, we obtain Fig. 3.1a, where, 𝑤21 = 5, 𝑤22 = −5, 𝜉 = 1.5. 𝐼2 and 𝐺2 show period-

doubling and tangent bifurcations of the 2-periodic point, respectively. NS shows Neimark-

Sacker bifurcation of the fixed point. There are chaotic regions at the top and bottom of the

bifurcation diagram, and it is confirmed by the bifurcation set that the chaos is caused by period-

doubling cascade. The boundary between the tangent bifurcation𝐺2 and 1 and 2 periodic points

is misaligned because the brute-force algorithm tracks other fixed points, but the proposed

method tracks the tangent bifurcation set exactly. In the 3-period region, the Neimark-Sacker

bifurcation NS3 is connected to the period-doubling bifurcation 𝐼3, and chaos due to torus

collapse occurs in this region. Figure 3.1b shows the bifurcation diagram at 𝑤12 = −2, 𝑤21 = 5.

A 1-period region appears on the left side of the Neimark-Sacker bifurcation curve, where the

Arnold tongue is predicted to exist. In fact, periodic and fixed points due to period locking

coexist in the region. The 4-period Arnold tongue is tangent to the Neimark-Sacker bifurcation

set. Normally, the Arnold tongue is surrounded by tangent bifurcation and period-doubling

bifurcation, but in this system, there are three bifurcations set as in the 3-period region of Fig.

3.1a.

Since the entire program is written in Python, the computation speed of this method is

inferior to that of conventional programs written in C/C++ or Fortran. In fact, the calculation

of the 𝐼2 bifurcation point at 𝑤11 = 2 and 𝑤12 = −1.92351 in Fig. 3.1a can be done in about

1 ms using a C++ program with the Eigen library, while the proposed Python method requires

about 10 ms. By using .subs() method without saving algebraic structures as script, it takes

about 800 ms. It is clear that the number of iterations required for convergence of the Newton

method does not change. The CPU used for the calculation is AMD Ryzen5 1600. However,

the shortcomings in the speed of the computation can be solved by using a GPU for matrix

computation or by creating a mechanism to call the derivative preprocessor in Python from C++

or other programs.



3.6. An illustrated examples 31

(a) 𝑤21 = 5, 𝑤22 = −5, 𝜉 = 1.5. (b) 𝑤12 = −2, 𝑤21 = 5, 𝜉 = 1.5.

Figure 3.1: Bifurcation diagram of Eq.(3.6).

3.6.2 Continuous system: extended BVP oscillator

We discuss the extended BVP oscillator[15] as an example



𝑑𝑥

𝑑𝑡
= −𝑧 + 𝐴𝑥 + tanh 𝐵𝑥

𝑑𝑦

𝑑𝑡
= 𝑧 − 𝑦

𝑘
𝑑𝑧

𝑑𝑡
= 𝑥 − 𝑦

(3.7)

where, 𝐴, 𝐵, 𝑘 are real parameters. This system has all three types of bifurcations discussed in

the previous section.

Figure 3.2 shows the bifurcation diagram of the extended BVP oscillator, where, 𝐻 is Hopf

bifrcation of equilibria, 𝑃𝐷 is period doubling bifurcation, 𝐺 is tangent bifurcation, and 𝑁𝑆 is

Neimark-Sacker bifurcation. Arnold tongue is touched to 𝑁𝑆. In this figure we show 5-period

tongue. The 5-period region is surrounded by 𝐺 and 𝑃𝐷. Bialternate product condition are

used for Hopf bifurcation computation. Biproduct in Sec. 2.2.1 satisfies 𝜆𝑖 + 𝜆 𝑗 = 0 when Hopf

bifurcation occurs, since Hopf bifurcation is based on two pure imaginary eigenvalues. See also

Chapter 10 of the reference[16].
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Figure 3.2: Bifurcation diagram of the extended BVP oscillator.
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3.7 Conclusion

In this chapter, we discussed the design and development of bifurcation computation programs

using Python and C++. We adopted json for the program interface, making it easy to repurpose

data for other programs such as real-time numerical integration and graph plotting. Additionally,

by utilizing sympy for symbolic differentiation, program users need only code the differential

equations themselves, as their Jacobian matrices and other derivatives are automatically derived

by sympy. This approach avoids the most significant source of failure in bifurcation computation:

human error in manual calculations.

Moreover, we have established better objective functions for the relatively complex bifur-

cation phenomena in high-dimensional autonomous systems. In the bifurcation computation

of periodic solutions of autonomous systems, preparing objective functions for tangent and

Neimark-Sacker bifurcations is unique.

Finally, using the proposed method and programs available on the author’s GitHub, we

applied bifurcation computations to both discrete and continuous dynamical systems. While

Python-based bifurcation computation programs are slower compared to those in C++, they can

compute at speeds within practical ranges for all but the most extreme high-dimensional systems.





Chapter 4

Generalized Hénon map with hidden

dynamics

In this chapter, we discuss systems within discrete-time dynamical systems that have hidden

dynamics. Hidden dynamics refer to one of the system’s attractors, which, compared to normal

attractors, have narrow attraction regions or are located far from the attractor. The behavior of

hidden attractors often differs from that of major attractors, with their small attraction regions

and unique responses, rendering the system’s response singular. Here, we utilize only the

classical numerical methods for dynamical systems to visualize the hidden attractors and their

surrounding bifurcation structures.

4.1 Introduction

Consider the 𝑛-dimensional discrete dynamical system Eq. (2.1). The iteration of a discrete

dynamical system could be related to chaos theory, which has been a focal topic of intensive

research since the discoveries of the Lorenz attractor and Li-Yorke chaos [17] [18] [19].

This chapter is based on author’s bibliography[4], Copyright©2021 Wiley. All the materials and figures of this
chapter are reused from author’s bibliography[4], under the permission of the Wiley.
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For a point 𝒙0 ∈ 𝑹𝑛, if there is a positive integer ℓ such that

𝒇 ℓ (𝒙0, 𝜆) = 𝒙0, (4.1)

where 𝒇 ℓ =

ℓ︷            ︸︸            ︷
𝒇 ◦ 𝒇 ◦ · · · ◦ 𝒇 , then 𝒙0 is called a periodic point with period ℓ. In particular, for

ℓ = 1, 𝒙0 is a fixed point.

A compact region 𝑉 ⊂ 𝑹𝑛 is called a trapping region provided that 𝒇 (𝑉) is contained in the

interior of 𝑉 . A set Λ is called an attracting set if there is a trapping region 𝑉 such that

Λ =
⋂
𝑘≥0

𝒇 𝑘 (𝑉).

A set Λ is called an attractor provided that it is an attracting set which is nontrivial if the

𝒇 restricted to Λ has complex dynamics (for example, 𝒇 has sensitive dependence on initial

conditions or positive Lyapunov exponents on Λ).

For dynamical system (2.1), bifurcation analysis means the study of the qualitative change of

the dynamics with the variation of some parameters. For a fixed point 𝒙0 with a fixed parameter

𝜆0, i.e., 𝒇 (𝒙0, 𝜆0) = 𝒙0, there are several types of bifurcations, such as saddle-node bifurcation,

period-doubling bifurcation (or flip bifurcation), Andronov-Hopf bifurcation, and so on. For

more information, please refer to [20].

For discrete dynamical systems, two well-known systems with chaotic dynamics are the

Logistic map and the Hénon map, which are polynomial functions brought forward by May [21]

and Hénon [22], respectively. Polynomial maps are important models in discrete dynamical

systems because of their simple expressions with complicated dynamical behaviors.

In particular, the Hénon map or a generalized Hénon map is an important model of two-

dimensional polynomial diffeomorphic maps defined on 𝑹2. The parameter region for the

existence of chaotic dynamics for the real quadratic Hénon map was studied by Devaney and

Nitecki [23]. An interesting result is that the polynomial diffeomorphic map with a constant

Jacobian from the real or complex plane to itself is either conjugate to a composition of general-
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ized Hénon maps or dynamically trivial, as shown by Friedland and Milnor [24]. The real cubic

Hénon map was considered by Dullin and Meiss [25]. Some comprehensive characterizations

between the dynamical behavior and the parameters for the real Hénon map were obtained

respectively by Benedicks, Carleson, Viana, and Young et al. [26] [27] [28].

Techniques from complex dynamics were used by Bedford and Smillie [29] [30] to show the

existence of chaotic dynamics and a quadratic tangency between stable and unstable manifolds of

fixed points for the real Hénon map under certain conditions. The existence of chaotic dynamics

and an orbit of tangency for the Hénon-like families of diffeomorphisms on the real plane were

obtained by Cao et al. [31] using real analytic methods. The parameter regions for the existence

of chaotic dynamics of some generalized Hénon maps were investigated by Zhang [32].

On the other hand, a continuous dynamical system is defined by an ordinary differential

equation, as 𝑑𝒙/𝑑𝑡 = Φ(𝒙) with 𝒙 ∈ 𝑹𝑛 and Φ : Ω ⊂ 𝑹𝑛 → 𝑹𝑛. An equilibrium is a real

solution to Φ(𝒙) = 0. Generally, there are two types of continuous chaotic systems according

to their different types of equilibria, namely systems with self-excited attractors and systems

with hidden attractors. For a system with an attractor, if the basin of attraction intersects with

arbitrarily small neighborhoods of an equilibrium, then the attractor is classified as self-excited,

and the corresponding system is called a self-excited system. Otherwise, the system is said to

have a hidden attractor [33]. For example, the chaotic Lorenz system [18] and the chaotic Chen

system [34] with the classical parameters are self-excited, while the Chua circuit with a chaotic

attractor could be hidden for some particular parameter values [35]. In the studies of continuous

dynamical systems, there are many results on various systems with hidden attractors [36] [37]

[38] [39].

Intuitively, discrete dynamical systems with hidden attractors can be similarly defined and

studied. However, the study of discrete systems with hidden attractors received much less

attention. Jafari et al. [40] demonstrated the existence of some hidden attractors in one-

dimensional maps by extending the analysis on the Logistic map. Jiang et al. [41] studied a

class of two-dimensional quadratic maps with hidden attractors. Zhang and Chen [42] studied

a class of generalized Hénon maps and showed the coexistence of an attracting fixed point and
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a hidden attractor, and the existence of Smale horseshoe for a subshift of finite type and also

Li-Yorke chaos.

It is noted that, in [42], only part of the parameter region was analyzed, leaving many

interesting problems for further studies. In this article, we carry out more detailed analysis of

the generalized Hénon map. We study its bifurcations in different parameter regions: tangent,

period-doubling, and Neimark-Sacker bifurcations, via careful numerical simulations, unveiling

some new dynamical phenomena such as the coexistence of two attractors, namely an attracting

fixed point and a hidden attractor, where the hidden attractor is either a periodic orbit or a strange

attractor depending on the parameter values.

4.2 Bifurcation analysis of generalized Hénon maps

Consider the generalized Hénon map[42]:


𝑥𝑘+1 = 𝑑𝑦𝑘

𝑦𝑘+1 = 𝑃(𝑦𝑘 ) + 𝑐𝑥𝑘 ,
(4.2)

where 𝑃(𝑥) = 𝑎𝑥𝑚 (𝑥2 − 𝑏2), 𝑚 ∈ 𝑵. By checking the dynamic behavior roughly in advance, 𝑎

seems to be an essential parameter for bifurcations. Let us fix 𝑏 = 1.0 and 𝑐 = 0.005.

The bifurcation calculation is performed with 𝑎 as the variable parameter and 𝑑 as the

incremental parameter. Also, following Theorems 4.1 and 4.4 in Ref.[42], the range of the

bifurcation calculation is ensured to be 𝑎 > 0, 0 < 𝑑 ≤ 1.

The expressions of the stability of a fixed point used in this chapter are summarized in

Table.4.1. The ℓ-periodic stable fixed point is denoted by 0𝐷
ℓ.
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Table 4.1: Classification of the stability of fixed points in 2-dimensional discrete systems.

Stability Symbol Multiplier
Completely stable 0𝐷 |𝜇1 | < 1, |𝜇2 | < 1
Directly unstable 1𝐷 0 < 𝜇1 < 1 < 𝜇2
Inversely unstable 1𝐼 𝜇1 < −1 < 𝜇2 < 0

Completely unstable 2𝐷 |𝜇1 | > 1, |𝜇2 | > 1

The Jacobian matrices required for the Newton method are

𝜕 𝒇

𝜕𝒙
= ©­«

0 𝑑

𝑐 𝑎𝑚𝑦𝑚−1(𝑦2 − 𝑏2) + 2𝑎𝑦𝑚+1
ª®¬ , 𝜕

2 𝒇

𝜕𝒙𝜕𝑥
= ©­«

0 0

0 0
ª®¬ ,

𝜕2 𝒇

𝜕𝒙𝜕𝑦
= ©­«

0 0

0 𝑎(𝑚2 − 𝑚)𝑦𝑚−2(𝑦2 − 𝑏2) + 2𝑎(2𝑚 + 1)𝑦𝑚
ª®¬ ,

𝜕 𝒇

𝜕𝑎
= ©­«

0

𝑦𝑚 (𝑦2 − 𝑏2)
ª®¬ , 𝜕2 𝒇

𝜕𝒙𝜕𝑑
= ©­«

0 0

0 𝑚𝑦𝑚−1(𝑦2 − 𝑏2) + 2𝑦𝑚+1
ª®¬ .

(4.3)

Figure 4.1 shows two stable fixed points of the map with𝑚 = 2, 𝑎 = 3.16, 𝑑 = 0.5. One stable

fixed point at the origin (a) and one stable fixed point in the third quadrant (b) are generated.

These fixed points are bistable, but bifurcation phenomena occur only for (b).
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Figure 4.1: Two stable fixed points when 𝑚 = 2, 𝑎 = 3.16, 𝑑 = 0.5.
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Figure 4.2 shows the bifurcation diagram when 𝑚 = 2, where white lines are bifurcation

sets calculated by Newton’s method. This bifurcation diagram includes the classification of

periods by colors, which is obtained by the exhaustive searching method. Although the this

method cannot find multiple attractors simultaneously, bifurcation sets and consequent analyses

give supplementary information on topological consistency about saddle periodic points and

multistability. The colors in the bifurcation diagrams are assigned according to the number

of period i.e., 1:blue, 2:red, 3:magenta, 4:green, 6:yellow, 8:slate blue, 16:purple, chaos or

explosion:black.

By increasing 𝑎 in the bifurcation diagram, the stable fixed point (b) : 0𝐷 is generated by

the tangent bifurcation 𝐺, and the process of chaos generation by period-doubling cascade is

confirmed.
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Figure 4.2: The local bifurcation diagram when 𝑚 = 2.

Figure 4.3 shows two stable fixed points when 𝑚 = 3, 𝑎 = 4.5, 𝑑 = 0.5. In this case, unlike

𝑚 = 2, a stable origin (a) and a stable 2-period point (b) are generated.
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Figure 4.3: Two stable fixed points when 𝑚 = 3.

Figure 4.4 shows the bifurcation diagram when 𝑚 = 3. The bifurcation structure is very

similar to that of 𝑚 = 2. The 2-period fixed point (b) : 0𝐷
2 generated by the tangent bifurcation

𝐺2. When 𝑎 increases, another 2-period fixed point is generated by the tangential bifurcation𝐺2

again, and then the two 2-period fixed points 2 × 0𝐷
2 simultaneously undergo period-doubling

bifurcation and change to chaotic attractors. This means that a chaotic attractor is composed of

two attractors that are merged together. This is called as “double period-doubling”[42].

Figure 4.5 shows the chaotic hidden attractor when 𝑚 = 3, 𝑎 = 5.0, 𝑑 = 0.5.

For the case of 𝑚 = 4, Fig.4.7 shows exactly the same bifurcation structure as 𝑚 = 2. It

also has a stable origin and a stable fixed point in the third quadrant, with the process of chaos

generation by period-doubling bifurcation.

4.3 Bifurcation analysis with 𝑃(𝑥𝑘)

Consider the generalized Hénon map[42] with 𝑃(𝑥𝑘 ):


𝑥𝑘+1 = 𝑑𝑦𝑘

𝑦𝑘+1 = 𝑃(𝑥𝑘 ) + 𝑐𝑥𝑘 .
(4.4)



42 Chapter 4. Generalized Hénon map with hidden dynamics

3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
0 −→

0.0

0.2

0.4

0.6

0.8

1.0
3
−→

0 �

0 �
2+

0 �

2×
0 �

2+
0 �

�2 �2 �2

�4

�8

�6

chaos

Figure 4.4: The local bifurcation diagram when 𝑚 = 3.
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Figure 4.5: The chaotic hidden attractor
when 𝑚 = 3, 𝑎 = 5.0, 𝑑 = 0.5.
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Figure 4.6: Two stable fixed points at𝑚 =
4.
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Figure 4.7: The local bifurcation diagram when 𝑚 = 4.

Although this system is effectively a one-dimensional difference equation by substituting the

first equation into the second equation, a richer bifurcation phenomenon is observed than those

from Eq.(4.2). In addition, when 𝑚 = 3, a hidden attractor can be found in the rectangular

chaotic attractor region.

Figure 4.8 shows the three stable fixed points when 𝑚 = 2. The fixed point in (a) is the

stable origin, while (c) shows a 1-periodic fixed point. Fixed points in (b) is 2-periodic. These

fixed points exist simultaneously, especially (b) and (c) generate chaos through period-doubling

cascade.

Now, the parameter 𝑑 is treated as a variable in the bifurcation computation. Then, Jacobian
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Figure 4.8: Three stable periodic fixed points when 𝑚 = 2, 𝑎 = 4.5, 𝑏 = 1.02, 𝑐 = 1.04, 𝑑 = 0.4699.

matrices required for Newton’s method are

𝜕 𝒇

𝜕𝒙
= ©­«

0 𝑑

𝑎𝑚𝑥𝑚−1(𝑥2 − 𝑏2) + 2𝑎𝑥𝑚+1 + 𝑐 0
ª®¬ ,

𝜕2 𝒇

𝜕𝒙𝜕𝑥
= ©­«

0 0

𝑎𝑚(𝑚 − 1)𝑥𝑚−2(𝑥2 − 𝑏2) + 4𝑎𝑚𝑥𝑚 + 2𝑎𝑥𝑚 0
ª®¬ ,

𝜕2 𝒇

𝜕𝒙𝜕𝑦
= ©­«

0 0

0 0
ª®¬ , 𝜕 𝒇𝜕𝑑 = ©­«

𝑦

0
ª®¬ , 𝜕2 𝒇

𝜕𝒙𝜕𝑑
= ©­«

0 1

0 0
ª®¬ .

(4.5)

Figure 4.9 shows the bifurcation diagram of Eq.(4.4) when 𝑚 = 2.

In the lower-left area of the figure, there is only one stable 0𝐷 at the origin, but changing

the parameter will generate fixed points (b) and (c) through tangent bifurcation G. These

fixed points lead to chaos through cascade of period-doubling bifurcation I. Let the set be

represented as NS + I. On this bifurcation set, 2-periodic fixed point 0𝐷
2 (b) generates period-

doubling bifurcation, and 1-periodic fixed point 0𝐷 (c) generates Neimark-Sacker bifurcation,

and changes to 4-periodic fixed points 0𝐷
4 simultaneously. It should be noted that although

there are multiple attractors that cause bifurcation, all these have bifurcation sets at the same

positions. This also appears in the case of 𝑚 = 3 to be discussed later.
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During𝐺 and NS+I, (b) and (c) are merged. Like the red area at the top left of the bifurcation

map, there is a part where the bifurcation set cannot be confirmed on the color boundary. This

is because the exhaustive searching algorithm tracks another attractor, and there is actually no

bifurcation set.

1 2 3 4 5
0 −→

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3
−→

�
NS +

�

chaos

0�

0� + 1� + 0�
2

0�
4

�4 �8

0�

Figure 4.9: The local bifurcation diagram where 𝑚 = 2, 𝑏 = 1.02, 𝑐 = 1.04.

Figures 4.10 and 4.11 show examples of a 4-periodic attractor and a chaotic attractor. From

Fig. 4.8, a period-doubling bifurcation occurs in (b), and a Neimark-Sacker bifurcation occurs

in (c), with 4-periodic fixed points appearing simultaneously.

Figure 4.12 shows the bifurcation diagrams when 𝑚 = 3. The bifurcation diagrams are

similar to those for 𝑚 = 2, where the 1-periodic fixed point goes through the process of 4-

periodization via the Neimark-Sacker bifurcation and chaos generation via the period-doubling

cascade. In addition, it is found that there is a hidden attractor in the region of chaotic attractor

for 𝑚 = 3.

Figure 4.13 shows the basic periodic attractor for 𝑚 = 3. Unlike the 𝑚 = 2 case, it exhibits
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Figure 4.10: 4-periodic attractor when
𝑚 = 2, 𝑎 = 4.6, 𝑑 = 0.4699.
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Figure 4.11: Chaotic attractor when 𝑚 =
2, 𝑎 = 4.81, 𝑑 = 0.4699.
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Figure 4.12: The local bifurcation diagram when 𝑚 = 3, 𝑏 = 1.02, 𝑐 = 1.04.
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a prominent symmetry structure and a 2-periodic attractor (d):0𝐷2, which is not on the 𝑥-axis

and 𝑦-axis. The other attractors are the same as that for 𝑚 = 2: (a) : 0𝐷 is the stable origin,

(b) : 0𝐷
2 is a 2-periodic fixed point on the two axes, and (c) : 0𝐷 is a 1-periodic fixed point at

which the Neimark-Sacker bifurcation occurs. Each attractor causes bifurcation at the same time

as described above, and turns into a chaotic attractor as shown in Fig. 4.14.

Note that the red attractor in the chaotic region is a hidden attractor, which can be observed

by giving a large initial value, because there is no attraction region near the hidden attractor.

However, the hidden attractor often appears clearly when crossing the window of chaos in

the parameter plane. The window of chaos is bounded by the set of tangent and period-

doubling bifurcations at the fixed point, and it is especially noticeable when crossing the tangent

bifurcation.

More interestingly, although the chaotic attractor originates from only one fixed point (c)

and (d), several more periodic attractors appear in the chaotic window. It seems that any one of

the several stable fixed points in this chaotic region is closely related to the hidden attractor.
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Figure 4.13: Three stable periodic fixed
point when 𝑚 = 3, 𝑎 = −5.7463, 𝑑 =
0.443346.
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Figure 4.14: Hidden attractors in chaos
region when 𝑚 = 3, 𝑐 = 1.04, 𝑑 =
0.443336.

Figures 4.15 and 4.16 show the bifurcation diagram when 𝑚 = 4, and the phase portrait. In
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this case, the feature of multiple attractors at the same time with 𝑚 = 2, 3 is not observed, but

only one fixed point changes to a 4-period fixed point via the Neimark-Sacker bifurcation, and

then the transition to chaos through the period-doubling cascade is confirmed.
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Figure 4.15: The local bifurcation diagram when 𝑚 = 4, 𝑎 = −4.4537, 𝑏 = 1.02.

In particular, the argument 𝜃 of the characteristic constant on the Neimark-Sacker bifurcation

set is always 𝜃 = ±𝜋/2, regardless of the number of 𝑚. In other words, in Eq.(4.4), for any 𝑚,

the fixed point (c) becomes 4-periodic fixed points via the Neimark-Sacker bifurcation, and then

chaos is expected via the period-doubling cascade.

4.4 Conclusion

In this chapter, we calculate and analyze local bifurcations of the generalized Hénon map and

its hidden attractor. In all the cases of 𝑚 = 2, 3, 4, the mechanism of chaos generation through

period-doubling cascade is confirmed. We found that the chaotic hidden attractor has the same
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Figure 4.16: Phase portrait of the fixed point (c) when 𝑚 = 4, 𝑎 = −4.4537, 𝑏 = 1.02, 𝑑 = 2.0.

process of chaos development as an ordinary strange attractor, although the attraction region

is small. We also analyze the generalized Hénon map with 𝑃(𝑥𝑘 ). As a result, in all cases of

𝑚 = 2, 3, 4, the mechanisms of generating chaos through the cascade of 4-periodization of fixed

points and period-doubling bifurcation by 𝑁𝑆 + 𝐼 are clarified. Double period-doubling[42]

is also confirmed for every 𝑚, and we also found that multiple attractors exist separately and

bifurcate simultaneously via parameter changes. In particular, in the process of the dynamic

change caused by the parameter change, two separate attractors coexist in the chaotic window,

one is a chaotic attractor due to self-excited oscillation, and the other is a stable hidden attractor

covered by the former one.





Chapter 5

Transient responses to relaxation

oscillations in multivibrators

In this chapter, we will discuss the Multivibrator, which is one of the slow-fast dynamical

systems. Due to the singular perturbation nature of slow-fast systems, classical numerical

methods, including numerical integration, are not applicable. These systems may exhibit a

phenomenon known as a canard explosion, where there is a sudden change in the amplitude of

periodic solutions. However, determining the parameters that lead to this canard explosion is

challenging. In this study, we use numerical methods based on asymptotic expansion to calculate

the canard explosion parameter. The slow-fast characteristics caused by the time constants of

the operational amplifiers in multivibrators have been confirmed to lead to canard explosion

phenomena.

This chapter is based on author’s bibliography[7]. All the materials and figures of this chapter are reused from
author’s bibliography[7], under the permission of the CC-BY 4.0.
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5.1 Introduction

A multivibrator[43] is a type of electronic circuit typically implemented using opamps. These

circuits are often used as timers or switches. Multivibrators, as the name suggests, can generate

multiple types of oscillations. The oscillation states of the system vary depending on the circuit

configuration and are classified into three types:

1. Astable: This variety of multivibrator continuously produces oscillations and is commonly

used as an oscillator circuit.

2. Monostable: This system produces oscillations once and then stops.

3. Bistable: Bistable multivibrators have two stable states, and the oscillation state that is

active is based on the initial conditions or external inputs.

These multivibrators are often modeled as hybrid systems. A hybrid system possesses

characteristics of both continuous-time and discrete-time dynamical systems. In multivibrators

that are assumed to contain an ideal opamp, the state not only undergoes continuous changes but

also experiences discrete changes due to switching. When such circuits are modeled as a hybrid

system, one can neglect the transient responses of the oscillation states, making it relatively easy

to derive return maps.

The Astable mode of the multivibrator is often used as a square wave oscillator. In related

research on dynamical systems, electronic fireflies[44] and their synchronization phenomena[45]

have been analyzed using square wave oscillators. In these studies, the square wave oscillators

are examined as hybrid systems using ideal operational amplifiers, and precise return maps have

been obtained. However, the opamps and operational amplifiers (opamps) used in the realization

of these circuits do not possess ideal characteristics. Thus, the system must be modeled as a

continuous system when we consider actual circuit systems. Even sophisticated opamps and

opamps produce outputs with slight delays[43]. The transient responses of the opamps within

multivibrators should not be overlooked. Monostable and bistable multivibrators are designed

such that their equilibrium state is also an equilibrium point of the system (rather than an
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oscillation state being an equilibrium point), making the analysis of state changes relatively

straightforward. However, since astable systems continuously produce oscillations, the delay in

the opamp induces different oscillating states. It is particularly apparent in astable multivibrators

that transitions from non-oscillating to oscillating states occur when the circuit parameters

change. At these transitions, despite the actual device having continuous characteristics, the

amplitude of the circuit output is observed to change “discontinuously” from zero. One might

intuitively assume that this amplitude explosion is continuous[46]. However, the transient

response of the stable state to such parameter changes has not been investigated previously.

The square waves that are produced by multivibrators are often referred to as relaxation

oscillations[47]. Relaxation oscillations involve a rapid state change within a certain cycle,

followed by a period in which that state is maintained. Thus, “relaxation” implies that both slow

and fast changes are involved in a transition between states. Such oscillations can be explained by

considering a slow–fast dynamical system[46]. These are systems composed of two continuous-

time dynamical systems that operate on different timescales; these systems permit both slow-

and fast-state characteristics to be investigated.

A notable phenomenon observed in slow–fast dynamics is the canard[48]. Canards occur

only in a very limited range of parameters immediately prior to an amplitude explosion[46], [49].

A canard is a solution that changes its amplitude drastically in response to a small parameter

change; this kind of amplitude explosion is referred to as a canard explosion. We also note that

the term “Canard” is derived from the French word for “duck”, and it refers to the characteristic

“duck-like headed shape” of the trajectory with large amplitudes. When it can be shown that the

dynamics of a multivibrator contains a canard, it is possible to demonstrate the continuity of the

amplitude change that occurs during the relaxation oscillation.

This chapter models a multivibrator as a slow–fast dynamical system and numerically in-

vestigates the canard explosion that occurs due to parameters changing during the relaxation

oscillation. It is found that the transition to the relaxation oscillation of the multivibrator is

continuous. We provide an explanation for this observation based on the bifurcation theory

of dynamical systems[4], [50]. Additionally, based on the results obtained via the numerical
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experiments presented here, we conduct circuit experiments. Economical opamps are used to

observe canards easily, demonstrating the possibility of observing this complex phenomenon

without the use of expensive equipment. In the experiments, both canards and canard explosions

are observed.

5.2 Slow–Fast dynamical systems

A slow–fast dynamical system[46] can be represented by a system of ordinary differential

equations of the form:

𝑑𝒙

𝑑𝑡
= 𝒇 (𝒙, 𝒚, 𝜆, 𝜖), 𝜖

𝑑𝒚

𝑑𝑡
= 𝒈(𝒙, 𝒚, 𝜆, 𝜖), (5.1)

where 𝒙 ∈ R𝑚, 𝒚 ∈ R𝑛, 𝒇 : R𝑚 ×R𝑛 ×R→ R𝑚, 𝒈 : R𝑚 ×R𝑛 ×R→ R𝑛, 𝜆 ∈ R, and 0 < 𝜖 ≪ 1.

Dividing both sides of the second equation in (5.1) by 𝜖 , 𝑑𝒚/𝑑𝑡 becomes larger than 𝑑𝒙/𝑑𝑡.

Therefore, in this work, 𝒙 is referred to as the slow variable and 𝒚 is called the fast variable. By

setting 𝜏 = 𝑡/𝜖 , we can also obtain the equivalent form of (5.1):

𝑑𝒙

𝑑𝜏
= 𝜖 𝒇 (𝒙, 𝒚, 𝜆, 𝜖), 𝑑𝒚

𝑑𝜏
= 𝒈(𝒙, 𝒚, 𝜆, 𝜖). (5.2)

In this work, we refer to the dynamics produced by Eqs.(5.1) and (5.2) as the slow-timescale and

the fast-timescale dynamics, respectively

Let us consider the case of the singular limit 𝜖 → 0. In this limit, (5.1) becomes a

differential-algebraic equation, which is given by,

𝑑𝒙

𝑑𝑡
= 𝒇 (𝒙, 𝒚, 𝜆, 𝜖), 0 = 𝒈(𝒙, 𝒚, 𝜆, 𝜖), (5.3)

and (5.2) becomes a layer equation,

𝑑𝒙

𝑑𝜏
= 0,

𝑑𝒚

𝑑𝜏
= 𝒈(𝒙, 𝒚, 𝜆, 𝜖). (5.4)
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We refer to (5.3) and (5.4) as the reduced problem. The set defined by the second equation in

(5.3),

𝐶0 = {(𝒙, 𝒚) ∈ R𝑚×𝑛 : 𝒈(𝒙, 𝒚, 0) = 0}, (5.5)

is referred to as the critical manifold. The flow described in (5.3) can be considered to be

determined by 𝑑𝒙/𝑑𝑡 subject to the condition that it is bounded on 𝐶0.

Fig. 5.1 shows an schematic illustration example of a typical flow within slow–fast dynamical

systems for𝑚 = 𝑛 = 1. The figure is the case of van der Pol equation which is a most classical[48]

slow–fast dynamical system. We consider 𝑓 to be cubic function which is a type of 𝑦3 and 𝑔 to

be a linear function. The points 𝑝− and 𝑝+ in 𝐶0,𝑠 = {𝑝 ∈ 𝐶0 : 𝜕𝑔/𝜕𝑦(𝑝, 0) is not invertible}

represent points where the uniqueness of the flow is lost; these are called fold points and satisfy

the following expressions:

𝜕𝑔

𝜕𝑦
= 0,

𝜕2𝑔

𝜕𝑦
≠ 0,

𝜕𝑔

𝜕𝑥
≠ 0.

In the singular limit 𝜖 → 0,𝐶0 can be divided into subsets according to𝐶0 = 𝐶+
0,𝑎 ∪𝐶0,𝑟 ∪𝐶−

0,𝑎 ∪

𝐶0,𝑠. Of these subsets, 𝐶0,𝑎 = 𝐶+
0,𝑎 ∪ 𝐶−

0,𝑎 represents the attractive part of the critical manifold

and 𝐶0,𝑟 represents the repelling part of 𝐶0. If an equilibrium point lies on 𝐶0,𝑎, the equilibrium

point is completely stable. When the equilibrium point is situated on 𝐶0,𝑟 , the equilibrium point

is completely unstable and there exists a stable periodic solution. It can be seen that the periodic

solution evolves along 𝐶±
0,𝑎 and jumps to 𝐶∓

0,𝑎 when the orbit reaches a folding point. This

behavior is called a relaxation oscillation. The dynamics of this transition can be considered

to be a hybrid system based on (5.3) and (5.4), with the reaching of the folding point being

considered as the event.

One of the notable phenomena in slow–fast dynamical systems is the canard solution[48].

The canard solution occurs when the equilibrium point on 𝐶0,𝑟 transitions to a relaxation

oscillation via a Hopf bifurcation. In such a system, the canard is observed only within a very
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Figure 5.1: Schematic illustration which represents a critical manifold and folding points. This illustration
is based on the type of van der Pol equation.

small region in the parameter space, and a amplitude of a stable periodic solution increases

explosively as a result of a small change in the parameters. This behavior is referred to as a

canard explosion. Fig. 5.2 shows a schematic one-parameter bifurcation diagram around a Hopf

bifurcation. This figure is drawn based on the illustration used in Fig. 8.3 of Ref. [46]. In

this figure, the parameter A denotes the amplitude of the attractor, A = max 𝑦 − min 𝑦, where

max 𝑦,min 𝑦 are the maximal and minimal value of the limit cycle. As depicted in Fig. 5.2,

canard explosions can be classified into two types: (a) those associated with a supercritical Hopf

bifurcation and (b) those associated with a subcritical Hopf bifurcation. Solid lines and dotted

lines represent stable and unstable limit cycles/equilibria, respectively. In the case of Fig. 5.2(b),

the tangent bifurcation is observed at the parameter where stable and unstable periodic solutions

adhere together. This indicates that the system is bistable when the parameter is between the

tangent bifurcation and the Hopf bifurcation.

The van der Pol oscillator represents a typical slow–fast dynamical system[48]. In the original

van der Pol equation[51], a vacuum tube amplifier is used, resulting in a critical manifold of
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Figure 5.2: Schematics of one-parameter bifurcation diagrams. Canard explosions, i.e., the explosive
amplitude changes, are shown around the Hopf bifurcation parameter 𝜆𝐻 . (a) Represents the case of a
supercritical Hopf bifurcation and (b) shows the case of a subcritical Hopf bifurcation. This figure is
drawn based on a Fig. 8.3 from Ref. [46].

sigmoid shape. However, we consider a model using a cubic function for simplicity:

𝑑𝑥

𝑑𝑡
= 𝑞 − 𝑦

𝜖
𝑑𝑦

𝑑𝑡
= 𝑥 − 𝑦3

3
+ 𝑦.

(5.6)

Fig. 5.3 shows an example of limit cycles and canard solutions in a van der Pol equation

for 𝜖 ≠ 0 (see (5.6)). Fig. 5.3(a1–a4) show the phase portraits of the system for 𝜖 = 1

and 𝑞 = 1.05, 0.987, 0.9863, and 0.5, respectively. This system does not exhibit slow–fast

characteristics. The amplitude of the trajectory changes continuously as the parameter changes.

Fig. 5.3(b1–b4) are the phase portraits of the system for 𝜖 = 0.1 and 𝑞 = 1.05, 0.987, 0.9863,

and 0.5, respectively. It is noted that slow–fast characteristics can be observed in this system for

𝜖 = 0.1. In all the figures, regardless of the initial state, the trajectories converge to the orbits

shown in the figures for those parameters. We note that the change in the value of 𝑞 used to

obtain Figs.5.3(b2) and (b3) is very small, and this small change in 𝑞 leads to large changes in the

behavior of the system. This rapid amplitude change represents a canard explosion. We classify
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the small-amplitude cycle immediately before the observed canard explosion (Figs.5.3(b2))

as a “canard without head” and the large-amplitude cycle immediately after the explosion

(Figs.5.3(b3)) as a “canard with head.” It can be observed that even a small change in the

parameters describing the system can lead to a rapid increase in the amplitude. In the case of

van der Pol oscillator, Analytical methods for calculating the Canard explosion parameter are

provided[52].
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Figure 5.3: Stable equilibrium points and limit cycles in a van der Pol oscillator. (a1–a4) depict the case
of 𝜖 = 1, and (b1–b4) show the case of 𝜖 = 0.1. The trajectories obtained for the various parameters and
an example of a canard are shown. We refer to (b2) as a canard without head and (b3) as a canard with
head.

Fig. 5.4 shows the amplitude changes that are induced by parameter variations in a van der

Pol oscillator. In Fig. 5.4, the grey lines 𝑞± indicate the value of 𝑞 at which the equilibrium

points coincide with the fold points 𝑝±. From the figure, it can be seen that when the equilibrium

point is on 𝐶0,𝑟 , a Hopf bifurcation occurs and periodic solutions emerge. Conversely, when

the equilibrium point is on 𝐶0,𝑎, the amplitude is zero, indicating that no periodic solutions

occur. In systems that correspond to the behavior shown in Fig. 5.4(a), the amplitude of the

stable limit cycle changes smoothly. However, in the slow–fast dynamical system characterized
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by Fig. 5.4(b), the amplitude increases abruptly. Typically, as the value of 𝜖 decreases, the

amplitude explosion becomes increasingly steep; this makes the rise in amplitude appear to be

discontinuous.
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(2) Slow–fast behavior, 𝜖 = 0.1.

Figure 5.4: Amplitude changes in a van der Pol oscillator. The system without slow–fast dynamics,
shown in subfigure (a), exhibits a smooth amplitude change, whereas in the case of the system that
exhibits slow–fast dynamics (subfigure (b)), the amplitude increases abruptly. The grey line indicates the
parameter values at which the equilibrium points coincide with the fold points 𝑝±.

Another typical system in which canards can be observed is the FitzHugh–Nagumo model[53].

The FitzHugh–Nagumo model describes the electrical activity of neurons, and the rapid changes

resembling spike responses can be attributed to the slow–fast dynamics of the system. In the cou-

pled FitzHugh–Nagumo model, canards are observed, and the canard explosion is analytically

determined[54]. Canards can also be observed in discrete-time spiking neuron dynamics[55] and

self-replicating systems[56]. We also note the existence of an interesting canard phenomenon

in aircraft trajectories reported in Ref.[57].

5.3 Multivibrator

In this section, we obtain a circuit of a multivibrator as a slow–fast dynamical system. First,

we construct a multivibrator as a hybrid system using an ideal operational amplifier and explain

how square wave oscillations are generated. Next, we demonstrate that by using the dynamic

characteristics of the operational amplifier, the system is constituted as a slow-fast dynamical

system. Thereafter, we describe the relationship between the modes of the multivibrator and its
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equilibrium points, providing the prerequisite knowledge necessary for subsequent numerical

calculations. We consider the circuit shown in Fig. 5.5.

Figure 5.5: Circuit diagram of the multivibrator considered here.

Fig. 5.6 shows the output characteristics of a single-supply opamp. The output of an ideal

opamp takes the form of a step function with an increase at 𝑣𝑑 = 0, where 𝑣𝑑 is the input voltage

difference, given by

𝑣𝑑 = 𝑣𝑝 − 𝑣𝑛 = 𝑣𝑝 − 𝑣𝐶 . (5.7)

By using 𝑣𝑑 , the output of the opamp is expressed as 𝑣𝑜 = 𝑎(𝑣𝑑). In the case of an ideal opamp,

𝑎(𝑣𝑑) becomes a step function. The actual output characteristics of an opamp take the shape of

a sigmoid curve, but first, we consider the dynamics when using an ideal opamp.

According to Kirchhoff’s law, the relationship between the input voltage, 𝑣𝑝 and 𝑣𝑜, can be
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sigmoidal step

Figure 5.6: Output characteristics of an opamp.

described as follows:

𝑣𝑝 = 𝛽𝑣𝑜 + 𝛾𝐸, (5.8)

where, we replace coefficients of (5.8) as:

𝛽 =
1
𝑅𝐹

1
𝑅𝐸

+ 1
𝑅𝐹

+ 1
𝑅𝐺

, 𝛾 =
1
𝑅𝐸

1
𝑅𝐸

+ 1
𝑅𝐹

+ 1
𝑅𝐺

.

Then, we have the ideal opamp output as:

𝑣𝑜 = 𝑎(𝑣𝑑) = 𝑎(𝛽𝑣𝑜 + 𝛾𝐸 − 𝑣𝐶). (5.9)

For the RC circuit at the bottom of the opamp, we have:

𝑅𝐶
𝑑𝑣𝐶
𝑑𝑡

= 𝑣𝑜 −
(
1 + 𝑅

𝑅𝐶

)
𝑣𝐶 . (5.10)

From (5.7) to (5.10) and the output characteristic with step function 𝑣𝑜 = 𝑎(𝑣𝑑), we can obtain
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the system as the following differential algebraic equation:

𝑅𝐶
𝑑𝑣𝐶
𝑑𝑡

= 𝑣𝑜 −
(
1 + 𝑅

𝑅𝐶

)
𝑣𝐶

𝑣𝑜 = 𝑎(𝛽𝑣𝑜 + 𝛾𝐸 − 𝑣𝐶).
, (5.11)

Fig. 5.7 shows the dynamics of the multivibrator system with opamp. For sake of simplicity,

we consider the case of 𝑅𝐶 → ∞. In this limit, the slope of 𝑓 (𝑥, 𝑦) is equal to 1. Here, we

consider the case where 𝑣𝑑 = 0, that is, the point at which 𝑎(𝑣𝑑) is discontinuous. In the case

of 𝑣𝑜 = 𝑣𝑝 − 𝑣𝐶 = 𝐸 , we have 𝑣𝐶 = (𝛽 + 𝛾)𝐸 . Similarly, in the case of 𝑣𝑜 = 0, we have

𝑣𝐶 = 𝛾𝐸 . When the system is considered as a hybrid system, these values represent the points

where the system triggers an event. The dynamics will be explained using points a, b, c, and

d in the figure. Suppose the initial value is given at point a. In this case, the state 𝑣𝐶 changes

according to the differential equation (5.11). Next, when 𝑣𝐶 reaches b, 𝑎(𝑣𝑑) becomes 0 and

makes a discontinuous jump to c. This corresponds to an event trigger. Subsequently, following

the differential equation, 𝑣𝐶 decreases and reaches d. When the system reaches d, 𝑎(𝑣𝑑) = 𝐸

and it returns to point a. This results in the relaxation oscillation of the multivibrator. Fig. 5.8

shows the time-domain response in Fig. 5.7. In the figure, points a, b, c, and d corresponding to

Fig. 5.7 are marked. It can be observed that the mode transitions in a way that switches for both

𝑣𝐶 and 𝑣𝑜.

In practice, opamps have an output characterized by a steep increase (but not infinitely steep)

around 𝑣𝑑 = 0; this output has a form similar to that of a sigmoid function. The static output

characteristic of the opamp can be described as 𝑣𝑜 = 𝑎(𝑣𝑑). Considering the dynamic output

characteristic as a first-order lag system[58], we obtain:

𝜏0
𝑑𝑣𝑜
𝑑𝑡

+ 𝑣𝑜 = 𝑎(𝑣𝑑), (5.12)

where 𝜏0 is a time constant and a parameter that causes the circuit to behave as a slow–fast

dynamical system. In this work, we approximate the output characteristic of the opamp using
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Figure 5.7: Dynamics as 𝜖 → 0. The critical manifold takes the form of a sharp “Z-shape”.

a ab

dcfa
st

slow

Figure 5.8: An example of the time-domain response as 𝜖 → 0.
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the hyperbolic tangent function according to:

𝑎(𝑣𝑑) =
𝐸

2
(tanh𝛼𝑣𝑑 + 1), (5.13)

where 𝛼 represents the gain. Note that an ideal opamp is characterized by 𝜏0 = 0 in (5.12) and

𝛼 = ∞ in (5.13).

From (5.8), (5.10), (5.12) and (5.13), we obtain the following system of second-order

differential equations:

𝑑𝑥

𝑑𝑡
= 𝑦 −

(
1 + 𝑅

𝑅𝐶

)
𝑥

𝜖
𝑑𝑦

𝑑𝑡
=
𝐸

2
(
tanh𝛼(𝛽𝑦 + 𝛾𝐸 − 𝑥) + 1

)
− 𝑦

, (5.14)

where 𝑣𝑐 and 𝑣𝑜 are replaced with 𝑥 and 𝑦, respectively; these substitutions are performed to

obtain a notation consistent with (5.1). Additionally, we re-scaled the time constant by 𝑅𝐶𝑡 =: 𝑡

and we set 𝜖 = 𝜏0/𝑅𝐶 to match the form to (5.1). The parameter 𝜖 includes the parameters 𝑅

and 𝐶, thus for example, changing 𝑅 in equation (5.14) will also change 𝜖 . In this study, we will

fix these values of 𝑅 and𝐶. Note that the changing 𝑅𝐶 can adjust the slow–fast dynamics easily.

Moreover, by adjusting the value of 𝑅𝐶 , the slope of the linear equation on the right-hand side

of the first equation of (5.14) can be varied, allowing the position of the equilibrium points to

be easily manipulated. Unless otherwise noted, in this work, we set 𝑅 = 100[kΩ], 𝐶 = 10[𝜇F],

𝑅𝐸 = 1[kΩ], 𝑅𝐹 = 1.5[kΩ], 𝑅𝐺 = 67[Ω], and 𝐸 = 5[V].

Fig. 5.9 shows a classification of the locations in which the equilibrium points can be

generated. In the case of an equilibrium point being generated at 𝐶0,𝑎, as shown in ¬ and ­

in Fig. 5.9, the equilibrium point is completely stable. On the other hand, when an equilibrium

point is generated on 𝐶0,𝑟 , as shown in ® in Fig. 5.9, it may become an unstable equilibrium

point via a Hopf bifurcation; the classification of this equilibrium point depends on the value

of 𝜖 . This corresponds to the cause in which relaxation oscillations are observed. In other

words, the characteristics of the multivibrator can be adjusted by changing the position of the
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equilibrium point.

In our proposed model, by varying the value of 𝑅𝐶 , the slope of 𝑓 (𝑥, 𝑦) is changed. This

results in the multivibrator depicted in Fig. 5.5 exhibiting two modes: one mode remains at a

stable equilibrium point, whereas the other mode exhibits rectangular oscillations.

Figure 5.9: Classification of the positions of the equilibrium and singular points, 𝑝±.

It is interesting to consider when the equilibrium point is near one of the two singular points,

𝑝±; we show an example illustrating this situation in Fig. 5.10. As indicated by one of the

dashed lines in the figure, is it possible for the trajectory to exhibit small amplitudes? The

relaxation oscillation of the multivibrator starts drawing suddenly large amplitudes as shown

by the solid line. During the process of the equilibrium point moving from 𝐶−
0,𝑎 to 𝐶0,𝑟 , a

square-wave oscillation suddenly emerges. This implies that despite the continuous variation

in the parameters defining the system, the amplitude changes discontinuously. This “transient

response due to parameter variation” can be explained by considering the canard explosion in

slow–fast dynamical systems.
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slope changes

Figure 5.10: An schematic illustration of the situation when the equilibrium point is near one of the two
singular points.

5.4 Numerical analysis

In slow–fast dynamical systems, due to the disparity in the timescales, ordinary numerical

integration methods often suffer from a loss of accuracy or even generate fake chaotic trajectories

(trajectories that do not actually exist)[59]. Analytical methods using singular perturbation

theory[60] are available, but in this study, a classical numerical method of the dynamical

systems e.g. a shooting method and a numerical continuation method are used, and we discuss

the existence of canard explosions from the perspective of bifurcation theory. It is thus necessary

to use appropriate numerical integration methods and utilize methods such as multi-precision

arithmetic in order to ensure sufficient accuracy. Here, we use the Runge–Kutta–Fehlberg

method to perform the necessary numerical integration.

In this section, we compute numerically the canard explosion points[61] and canard solutions.

On the faster timescale, we consider the following planar system[49]:

𝑑𝑥

𝑑𝜏
= 𝜖 𝑓 (𝑥, 𝑦, 𝜆, 𝜖)

𝑑𝑦

𝑑𝜏
= 𝑔(𝑥, 𝑦, 𝜆, 𝜖)

(5.15)

where 𝑓 and 𝑔 are 𝐶∞-class function, 𝜆 ∈ R is a parameter, and 0 < 𝜖 ≪ 1. We assume that 𝐶0

is locally parabolic and the minimum is coincident with the origin, (0, 0). We call the origin a
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fold point, and this point satisfies:

𝑔(0, 0, 𝜆, 0) = 0,
𝜕𝑔

𝜕𝑦
(0, 0, 𝜆, 0) = 0,

𝜕2𝑔

𝜕𝑦2 (0, 0, 𝜆, 0) ≠ 0,
𝜕𝑔

𝜕𝑥
(0, 0, 𝜆, 0) ≠ 0,

(5.16)

for 𝜆 ≠ 0. We can obtain the slow flow on 𝐶0 by differentiating 𝑥 = 𝜑(𝑦) with respect to 𝑡 = 𝜏𝜖 :

𝑑𝑦

𝑑𝑡
=
𝑓 (𝜑(𝑥), 𝑦, 𝜆, 0)
𝑑𝜑/𝑑𝑡 (𝑦) , (5.17)

where the function 𝑥 = 𝜑(𝑦) for 𝜑 : 𝑈 → R, 𝑈 is sufficiently small neighborhood of 𝑦 = 0.

The slow flow is singular at the origin for 𝜆 ≠ 0 since 𝑑𝜑/𝑑𝑡 (0) = 0 and 𝑓 (0, 0, 𝜆, 0) ≠ 0. We

assume a non-degenerate canard point, which is an equilibrium point located on the origin, for

𝜆 = 0. A canard point satisfies the following additional conditions:

𝑓 (0, 0, 0, 0) = 0,
𝜕 𝑓

𝜕𝑥
(0, 0, 0, 0) ≠ 0,

𝜕 𝑓

𝜕𝜆
(0, 0, 0, 0) ≠ 0. (5.18)

This gives us a well-defined slow flow on 𝐶0 for 𝜆 ≠ 0. Near a non-degenerate canard point, we

have a normal form[62]:

𝑑𝑥

𝑑𝜏
= 𝜖 (𝑦ℎ4(𝑥, 𝑦, 𝜆, 𝜖) − 𝜆ℎ5(𝑥, 𝑦, 𝜆, 𝜖) + 𝑥ℎ6(𝑥, 𝑦, 𝜆, 𝜖)),

𝑑𝑦

𝑑𝜏
= −𝑥ℎ1(𝑥, 𝑦, 𝜆, 𝜖) + 𝑦2ℎ2(𝑥, 𝑦, 𝜆, 𝜖) + 𝜖ℎ3(𝑥, 𝑦, 𝜆, 𝜖),

(5.19)

where

ℎ3(𝑥, 𝑦, 𝜆, 𝜖) = 𝑂 (𝑥, 𝑦, 𝜆, 𝜖),

ℎ 𝑗 (𝑥, 𝑦, 𝜆, 𝜖) = 1 +𝑂 (𝑥, 𝑦, 𝜆, 𝜖), 𝑗 = 1, 2, 4, 5, 6.
(5.20)



68 Chapter 5. Multivibrators with slow–fast dynamics

We obtain the Hopf bifurcation parameter 𝜆𝐻 and the canard explosion parameter 𝜆𝑐 as[49]:

𝜆𝐻 = −𝐾𝐻𝜖 +𝑂 (𝜖3/2), (5.21)

𝜆𝑐 = − (𝐾𝐻 + 𝐾𝑐) 𝜖 +𝑂 (𝜖3/2), (5.22)

where 𝐾𝐻 and 𝐾𝑐 is are real numbers defined by ℎ1–ℎ6. Refer to the reference[49] for a detailed

definition of 𝐾𝐻 and 𝐾𝑐. It can be seen that the equilibrium is stable for 𝜆 < 𝜆𝐻 and unstable

for 𝜆 > 𝜆𝐻 . The type of Hopf bifurcations can be identified by considering the sign of 𝐾𝑐;

supercritical bifurcations exist for 𝐾𝑐 < 0, and 𝐾𝑐 > 0 indicates a subcritical bifurcation. We

see that another expression relating 𝜆𝐻 and 𝜆𝑐 can be obtained:

𝜆𝑐 = 𝜆𝐻 − 𝐾𝑐𝜖 +𝑂 (𝜖3/2). (5.23)

We can obtain the Hopf bifurcation parameter, 𝜆𝐻 , via conventional numerical methods. Thus,

given 𝐾𝑐, the canard explosion parameter 𝜆𝑐 can be obtained.

When the system is written in a form with strong nonlinearity, it is difficult to apply the

method of transformation to the normal form described here. Therefore, to avoid equation

transformations, Kuehn developed a method to numerically calculate 𝜆𝑐 using the first Lyapunov

coefficient[61]. The first Lyapunov coefficient, 𝑙1, is equal to 𝐾𝑐 scaled by a constant, meaning

we can obtain 𝜆𝑐 by computing 𝑙1 numerically. However, there are several definitions of the

first Lyapunov method[4], [63]. This is due to the background in traditional dynamical systems

theory, where the sign of the first Lyapunov coefficient is important, and the actual value of the

coefficient does not need to be considered. Therefore, the scaling factor 𝜌 will change depending

on the type of first Lyapunov coefficient used. In this work, we use Kuznetsov’s convention and

notate it 𝑙𝐾𝑢1 [4].

We assume that the equilibrium point (𝒙∗, 𝒚∗) of (5.2) is under Hopf bifurcation and is

translated to coincide with the origin with the coordinate change 𝒛 = (𝒙 − 𝒙∗, 𝒚 − 𝒚∗)⊤, and we
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thus obtain:

𝑑𝒛

𝑑𝑡
= 𝑀 𝒛 + 𝑭(𝒛) (5.24)

with 𝑭(𝒛) = 𝑂 (| |𝒛 | |2) and 𝑀 ∈ R(𝑚+𝑛)×(𝑚+𝑛) . This form (5.24) is the linearization around the

equilibrium point of (5.2), 𝑀 is the Jacobian matrix around the equilibrium point. Taking a

Taylor series expansion of the nonlinear term 𝐹, we have,

𝑑𝒛

𝑑𝑡
= 𝑀 𝒛 + 1

2
𝐵(𝒛, 𝒛) + 1

6
𝐶 (𝒛, 𝒛, 𝒛), (5.25)

where the multilinear functions 𝐵 and 𝐶 are defined as,

𝐵𝑖 (𝒖, 𝒗) =
𝑛∑

𝑗 ,𝑘=1

𝜕2𝐹𝑖 (𝝃)
𝜕𝜉 𝑗𝜕𝜉𝑘

������
𝝃=0

𝑢 𝑗𝑣𝑘 , (5.26)

𝐶𝑖 (𝒖, 𝒗, 𝒘) =
𝑛∑

𝑗 ,𝑘,𝑙=1

𝜕3𝐹𝑖 (𝝃)
𝜕𝜉 𝑗𝜕𝜉𝑘𝜕𝜉𝑙

������
𝝃=0

𝑢 𝑗𝑣𝑘𝑤𝑙 (5.27)

where 𝐵(𝒖, 𝒗) and 𝐶 (𝒖, 𝒗, 𝒘) are symmetric multilinear vector functions of 𝒖, 𝒗, 𝒘 ∈ R(𝑚+𝑛) ,

𝐹𝑖 denotes the 𝑖-th element of the function 𝑭. In the case of a planar system, we thus obtain a

simple form of 𝑙𝐾𝑢1 :

𝑙𝐾𝑢1 =
1

2𝜔2
0
ℜ(𝑖𝑔20𝑔11 + 𝜔0𝑔21), (5.28)

where 𝜔0 is given by the eigenvalues of the matrix 𝑀 , 𝜆1,2 = ±𝑖𝜔0, 𝑔20 = 𝒑̄⊤𝐵(𝒒, 𝒒), 𝑔11 =

𝒑̄⊤𝐵(𝒒, 𝒒̄), and 𝑔21 = 𝒑̄⊤𝐶 (𝒒, 𝒒, 𝒒̄). ℜ takes the real part of complex number. 𝒑, 𝒒 ∈ C(𝑚+𝑛)

are eigenvectors of 𝜆1 and the transpose 𝑀⊤, respectively. These are chosen such that they

satisfy 𝒑̄⊤𝒒 = 1. Note that 𝑀 has the pure imaginary eigenvalues 0 + 𝑖𝜔0 since we consider the

equilibrium point which undergoes Hopf bifurcation.
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The first Lyapunov coefficient, 𝑙𝐾𝑢1 , has the following property[46], [61]:

𝑙𝐾𝑢1 = 𝜌̄𝐾𝑐 +𝑂 (
√
𝜖), (5.29)

where 𝜌̄ is the positive scaling factor. We then obtain an expression for 𝜆𝑐,

𝜆𝑐 = 𝜆𝐻 − 𝜌𝑙𝐾𝑢1 𝜖 +𝑂 (𝜖3/2), (5.30)

where 𝜌 = 1/𝜌̄. In (5.30), we can obtain the scaling factor 𝜌 by calculating 𝜆𝐻 and 𝜆𝑐. 𝜆𝐻 can

be obtain by numerical bifurcation analysis which we show later at (5.31). Also, we can obtain

approximated values of 𝜆𝑐 with numerical continuation method. We show the specific scaling

factor 𝜌 in the numerical analysis later. In this study, we treat 𝑅𝐶 as the role of 𝜆.

The Hopf bifurcation parameter, 𝜆𝐻 , is obtained by solving the following conditions to obtain

the parameters of an equilibrium point and 𝜆𝐻 , (𝑥∗, 𝑦∗, 𝜆𝐻), numerically:

𝑓 (𝑥∗, 𝑦∗, 𝜆𝐻 , 𝜖) = 0

𝑔(𝑥∗, 𝑦∗, 𝜆𝐻 , 𝜖) = 0

det(2𝐽 ⊙ 𝐼𝑚+𝑛) = 0,

(5.31)

where 𝐽 denotes the Jacobian matrix of ( 𝑓 , 𝑔)⊤ with respect to (𝑥, 𝑦)⊤, ⊙ denotes the bialternate

product[64], and 𝐼𝑚+𝑛 is the (𝑚 + 𝑛) × (𝑚 + 𝑛) identity matrix. Here, we use Newton’s method

to solve the Hopf bifurcation condition.

We show the actual procedure to obtain the canard explosion parameter 𝜆𝑐 below.

1. Obtain the Hopf bifurcation parameter 𝜆𝐻 . We use the shooting method with (5.31).

2. Calculate the first Lyapunov coefficient 𝑙1 at the Hopf bifurcation.

3. Compute the maximal canard parameter 𝜆𝑐 with the (5.30).

Note that the scaling factor 𝜌 is obtained in advance by numerically as we described before.

To obtain the scaling factor 𝜌, we use 𝜖 = 0.001. In this study, we use the approximated
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parameter 𝜆𝑐 = 104130.3954 at 𝜖 = 0.001 which is obtained from continuation of periodic

orbits using Runge-Kutta-Fehlberg method, the Hopf bifurcation parameter 𝜆𝐻 = 105543.3018

with𝜔0 = 0.157901 which is obtained from the shooting method with (5.31). The first Lyapunov

coefficient at the Hopf bifurcation is 𝑙𝐾𝑢1 = 0.87939173. Then we have 𝜌 = 203231491.0351 and

able to calculate the canard explosion set with (5.30). This scale 𝜌 changes with the parameter

selected as 𝜆. In this case, we have chosen the parameter 𝑅𝐶 , which takes on large values,

resulting in a large scale as well.

In slow–fast dynamical systems, it is difficult to compute𝜆𝑐; this calculation typically involves

numerical integration, and it is difficult due to the precision requirements of the integrator

because of the slow–fast characteristics[59]. Kuehn’s first Lyapunov coefficient method[61]

offers the advantage of involving only algebraic operations and permits the computation of 𝜆𝑐

without utilizing numerical integration.

Fig. 5.11 shows the (𝑅𝐶 , 1/𝜖) bifurcation diagram. The set represented by the curve labelled

𝐻 corresponds to the Hopf bifurcation, while 𝐶± represent the sets of canard explosion points

near the singular points, 𝑝±. The gray lines in the figure represent the parameter values at which

the equilibrium and singular points coincide. The locations of 𝑝± are obtained by solving the

following condition for (𝑥∗, 𝑦∗, 𝜆0) by Newton’s method:

𝑓 (𝑥∗, 𝑦∗, 𝜆0, 0) = 0

𝑔(𝑥∗, 𝑦∗, 𝜆0, 0) = 0
𝜕𝑔

𝜕𝑦
(𝑥∗, 𝑦∗, 𝜆0, 0) = 0,

(5.32)

where 𝜆0 is the parameter which the equilibrium point coincide to fold point. In this case,

it is 𝜆0 = 𝑅+
𝐶 , 𝑅

−
𝐶 . We obtain the equilibrium point (𝑥∗, 𝑦∗) which coincides to a fold point

and the parameter 𝜆0 at the same time by solving the objective function. We show the actual

values: 𝑅−
𝐶 = 106.0540876[kΩ] and its location is (𝑥∗, 𝑦∗) = (𝑥0, 𝑦0) = (0.7282, 0.3748),

𝑅+
𝐶 = 11.1570095[kΩ] and its location is (𝑥0, 𝑦0) = (4.2717, 0.4287), where (𝑥0, 𝑦0) shows a

fold point. In the parameter region within the Hopf bifurcation through 𝐶±, unstable equilibria
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and stable periodic solutions emerge. The stable periodic solutions are characterized by small

amplitudes immediately after the Hopf bifurcation, but the canard explosion at 𝐶± induces a

rapid increase in their amplitude. Further changes in the parameter values lead to relaxation

oscillations.

RC RC

Figure 5.11: (𝑅𝐶 , 1/𝜖) bifurcation diagram.

Fig. 5.12 shows the one-parameter bifurcation diagram of the amplitudes of periodic solu-

tions; this figure corresponds to 1/𝜖 = 300 in Fig. 5.11. The amplitude A is the difference of

the maximal and minimal values of limit cycles as same as Fig. 5.2. The gray lines in Fig. 5.12,

labelled 𝑅±
𝐶 , represent the parameter that a equilibrium point coincides to a fold point, and the

magenta lines 𝐶± represent the canard explosion parameter, as is the case in Fig. 5.11. The

amplitude can be seen to increase rapidly when the Hopf bifurcation occurs. It appears in

Fig. 5.12 that the precision of 𝐶+ is poor, but, as mentioned above, the precision improves as 𝜖

decreases. Indeed, small values of 𝜖 lead to sharp increases in the amplitude. The relaxation

oscillation observed in the multivibrator can then be attributed to canard explosions that are

present for sufficiently small values of 𝜖 .

The classification of canards as “canards with head” and “canards without head” can be

determined by whether the limit cycle contains points with zero curvature or not[65].
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RC RC

Figure 5.12: (𝑅𝐶 ,A) bifurcation diagram. 1/𝜖 = 300.

Consider the planar system given in (5.1). Trajectories can be obtained by eliminating time,

𝑡, from the equation,

𝑔(𝑥, 𝑦, 𝜖) 𝑑𝑥
𝑑𝑦

= 𝜖 𝑓 (𝑥, 𝑦, 𝜖). (5.33)

Differentiating this expression with respect to 𝑦 gives,

𝑑𝑥

𝑑𝑦

𝑑

𝑑𝑦
𝑔(𝑥, 𝑦, 𝜖) + 𝑑

2𝑥

𝑑𝑦2 𝑔(𝑥, 𝑦, 𝜖) = 𝜖
𝑑

𝑑𝑦
𝑓 (𝑥, 𝑦, 𝜖). (5.34)

The trajectories with zero curvature thus satisfy,

𝑓 (𝑥, 𝑦, 𝜖) 𝑑
𝑑𝑦
𝑔(𝑥, 𝑦, 𝜖) − 𝑔(𝑥, 𝑦, 𝜖) 𝑑

𝑑𝑦
𝑓 (𝑥, 𝑦, 𝜖) = 0. (5.35)

By plotting the set that satisfies (5.35) on the 𝑥-𝑦 plane, it is possible to determine whether the

limit cycle has points with zero curvature.

Fig. 5.13 shows periodic orbits near the canard explosion. Fig. 5.13(a) represents a “canard

without head”, and Fig. 5.13(c) shows a “canard with head”. The parameters for Figs. 5.13(a)

and (c) are 𝑅𝐶 = 104.131[kΩ] and 𝑅𝐶 = 104.130[kΩ], respectively, with 𝜖 = 0.001. It can be
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seen that the amplitude increases significantly even though the slope of 𝑓 (𝑥, 𝑦) = 0 changes only

very slightly. The curves labelled 𝐼𝜖 in Fig. 5.13 represent the set of solutions where the curvature

of the trajectory is 0. It can be seen that the headless canard does not intersect with 𝐼𝜖 , whereas

the headed canard does. Fig. 5.13(b) represents a case close to the canard explosion point.

Here, we observe a fake chaotic trajectory, which occurs due to the slow–fast dynamics. This is

because the accuracy of the numerical integration decreases. The multivibrator model proposed

in this study is a two-dimensional autonomous system, and such trajectories are not permissible.

These fake chaotic trajectories will be confirmed in the subsequent circuit experiments.
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(a) 𝑅𝐶 = 104.131[kΩ]
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(b) 𝑅𝐶 = 104.1304682881[kΩ]

0.30 0.35 0.40 0.45 0.50
−→

0

1

2

3

4

5

−→

( ) = 0

( ) = 0

(c) 𝑅𝐶 = 104.130[kΩ]

Figure 5.13: Examples of canards in a multivibrator: (a) a canard without head, (b) fake chaos near the
canard explosion point, (c) a canard with head. In (b), due to the strong slow–fast dynamics, the accuracy
of the numerical integration decreases, leading to the observation of fake chaos. The data shown in this
figure is obtained for 𝜖 = 0.001.

5.5 Circuit implementation

In the above numerical simulations, we observed that the multivibrator considered here under-

goes a transition from a stable state to a relaxation oscillation, and canards are observed during

this process. The region in the parameter space in which canards can be observed is small, but

canards have been observed[66] in multiple nonlinear electronic circuits[67]. To validate the

findings of the numerical work presented here, we implemented the multivibrator in a circuit
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and demonstrated the occurrence of canard explosions experimentally. Here, we aim to demon-

strate the occurrence of canards in the real circuit response of the multivibrator and capture the

topological changes due to the canard explosion, a characteristic of slow-fast dynamical systems.

Since our goal is not to precisely replicate the canards as shown in numerical calculations, we

do not verify errors in components such as resistance elements.

Due to the large value of 𝛼 in (5.13), the actual components of the opamp induce a sharp

Z-shape in the curve of 𝐶0, and the amplitude explosion after the Hopf bifurcation is very

pronounced. Furthermore, we note that the time-delay characteristic corresponding to 𝜖 is

determined by the slew rate of the opamp; this value is sufficiently small. In the numerical

calculations presented in the previous section, 𝑅𝐺 was set to be smaller than 𝑅𝐸 and 𝑅𝐹 to

reduce the severity of the Z-shape and to make the change in the slope of 𝐶0 near 𝑝± more

gradual. This makes it possible to observe canards over a relatively wide range of parameter

values.

Here, the circuit is implemented according to Fig. 5.5, using an Analog Devices OP177

opamp, which has a relatively low slew-rate; this means the system is more susceptible to

canards than it would be using high slew-rate opamps. This low-cost opamp has a gradual

output characteristic, which makes it suitable for confirming canards. We note that it would be

very challenging to observe canard explosions in systems containing high-performance opamps.

However, even in the case of idealized opamps, numerical simulations have predicted the

existence of canards within a very limited range of parameters.

Fig. 5.14 shows the circuit response of an experimentally realized multivibrator. It is

interesting to observe the variations in the response of the circuit for different values of 𝜖 .

However, since we cannot directly control the time constants of the opamp, we adjust 𝐶 to

modify the slow–fast characteristics of the system. The rows of the figure show the variation in

the observed trajectories for a fixed value of 𝐶 as a result of changes in 𝑅𝐶 . As 𝑅𝐶 changes, the

system transitions from being characterized by a canard without head via a canard explosion to

being characterized by a canard with head (relaxation oscillations). The columns in Fig. 5.14

show the variations in the trajectories that occur as a result of changes in the value of 𝐶 for a
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fixed value of 𝑅𝐶 . As 𝐶 increases, the movement along the slow-variable direction becomes

slower, resulting in more pronounced slow–fast characteristics, while the fast movement along

the fast-variable direction becomes more emphasized. Both the headless and headed canards

shown in the previous section are visible in (a2) and (b2) due to the slight parameter variations

induced by small external noise. The multivibrator is a planar system, thus, such trajectories are

not possible in the absence of external noise.

5.6 Conclusion

In this work, we constructed a multivibrator as a slow–fast dynamical system, which exhibited

responses typical of slow–fast systems. The proposed multivibrator allows for easy adjustment

of the slow–fast characteristics by modifying the circuit components. Furthermore, the position

of the equilibrium point of the system can be easily changed. The Hopf bifurcation set was

obtained via conventional numerical computations. The set of canard explosion points was

obtained using a method based on the first Lyapunov coefficient which only requires non-

complicated numerical computation. Both the numerical simulations and circuit experiments

undertaken here demonstrate the existence of canard explosions in the system. As future work,

the series of numerical methods presented in this study will be applied to other slow–fast

dynamical systems. This includes applications to higher-dimensional systems where the fast

dynamics involve two or more. In these higher-dimensional systems, analytical solutions are

challenging, underscoring the importance of numerical computations.
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Figure 5.14: Canards observed in an experimental circuit. We capture the data using an Agilent
DSO1024A oscilloscope. The sampling rate used to obtain the data presented here was 12.5 kHz. 8192
data points are plotted in each subfigure.





Chapter 6

Conclusions

In this thesis, we focused on numerical methods for singular dynamical systems, specifically

addressing Hidden Dynamics and Slow–Fast Dynamics.

In Chapters 2 and 3, we discussed bifurcation computation methods for dynamical systems

and explained specific implementation techniques using Python and C/C++. Most of the cur-

rently available bifurcation computation programs are implemented in C or MATLAB and are

quite outdated. Using modern languages like Python and C++, we proposed methods that are

computationally efficient and reduce human error. A future challenge for bifurcation compu-

tation programs is the development of programs that can handle hybrid systems, which require

dealing with complex composite functions. For such cases, Python remains a good choice,

except for extremely high-dimensional systems.

Chapter 4 discussed the generalized Hénon map, which exhibits hidden dynamics. Due

to the narrowness of their attractor regions, hidden attractors are challenging to compute and

visualize. However, using the methods from Chapters 1 and 2, we clarified the bifurcation

structure of the system and visualized bifurcations and hidden attractors at relevant parameters.

Future challenges include calculating and visualizing hidden attractors and related bifurcation

phenomena in continuous-time systems, which are even more challenging to compute.

In Chapter 5, we discussed the multivibrator, an example of a slow–fast dynamical system.

79
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The singular perturbation characteristics of slow–fast systems makes numerical integration dif-

ficult, rendering traditional bifurcation computation methods (presented in Chapters 2 and 3) in-

effective. The periodic solutions in multivibrators, although originating from Hopf bifurcations

and leading to simple periodic solutions, require asymptotic expansion methods for numerical

calculations of canard explosions. This allowed us to identify not only the Hopf bifurcation sets

but also the parameters for canard explosions, which were traditionally challenging to compute.

Such slow–fast characteristics are inherent in operational amplifiers, suggesting that oscillator

circuits involving op-amps inherently have the potential for canard explosions. Future challenges

include computing bifurcation phenomena of periodic solutions in higher-dimensional systems

or other slow–fast dynamical systems coupled with multivibrators. Although the multivibra-

tor in this study is two-dimensional and does not exhibit bifurcations of periodic solutions,

higher-dimensional systems can exhibit complex oscillations known as mixed mode oscillations

(MMOs). Calculating these requires numerical integration, which, as mentioned, is challenging.

Potential solutions include using implicit methods for numerical integration to solve variational

equations.
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tions in Mathematical Physics, vol. 67, pp. 137–146, 1979.
[24] S. Friedland and J. Milnor, “Dynamical properties of plane polynomial automorphisms,”

Ergodic Theory and Dynamical Systems, vol. 9, no. 1, pp. 67–99, 1989.
[25] H. R. Dullin and J. Meiss, “Generalized Hénon maps: The cubic diffeomorphisms of the
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