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Abstract

Driving support systems are of paramount importance in the modern
era due to their ability to reduce human errors and improve overall road
safety that can save lives by reducing and preventing accidents. They
also address the rising issue of distracted driving, optimize traffic flow,
meeting consumer preferences for enhanced vehicle features, and align
with regulatory efforts to make driving safer and more efficient.

Detecting driver distraction promptly is imperative for enhancing
road safety. While various methodologies and technologies have been
explored to address this issue, we present an innovative, cost-efficient,
non-intrusive, and lightweight Safe Driving Support System (SDSS) that
utilizes dual dashboard cameras. In addition to conventional driver’s
gaze tracking, our system considers other broader aspects, including
monitoring the road environment and pedestrian safety. Our study com-
prises two primary modules: distracted driver detection and pedestrian
safety.

Driver’s distraction detection: This module evaluates distraction by
analyzing the driver’s gaze direction and the position of pedestrians on
the road. It consists of two parts with parallel procedures. The first
is to estimate the direction of the driver’s gaze, and the second is to
detect the pedestrian and determine their position. In the first part, the
system receives the video captured through the driver monitoring cam-
era and then defines the gaze region the driver is looking at. Through
extensive experimentation, we investigated how different camera po-
sitions affect gaze estimation. Moreover, we explored strategies that
use appearance-based solutions, including a combination of gaze and
head features, domain adaptation solutions to enhance gaze mapping’s
robustness to various drivers and environments and several camera po-
sitions. From these strategies, OpenFace with SVM classifier (using
gaze angle, head position R, head rotation R, and eye position WO-Z
features) using camera position 2, outperformed others, achieving an
85.6% accuracy rate for the Strictly Correct Estimation Rate (SCER)
and a 98.7% accuracy rate for the Loosely Correct Estimation Rate
(LCER). Notably, we also employed unsupervised domain adaptation
through a conditional Generative Adversarial Network (GAN) to ensure
accurate gaze mapping across diverse drivers and environments. The
domain adaptation approach used showed an average Strictly Correct
Estimation Rate (SCER) accuracy of 81.38% and 93.53%, along with
a Loosely Correct Estimation Rate (LCER) accuracy of 96.69% and
98.9% for the two different strategies, respectively. These results demon-
strate the effectiveness of our method in adapting to different domains.
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Additionally, we achieved an average SCER accuracy of 85.00% and
94.84%, along with LCER accuracy of 98.80% and 99.23% for the two
strategies, respectively. This showcases the adaptability of our approach
to handle various environments and even different camera positions for
the same driver, indicating potential self-calibration capabilities. Sim-
ultaneously, the second procedure receives video from the front-view
camera to identify pedestrian activity. By combining the data from all
road users, we can evaluate the driver’s distraction level.

Pedestrian Safety: This module assesses the risk level of pedestri-
ans based on road lane lines and pedestrian’s relative positions using
the video feed from the front-view camera. To determine pedestrian’s
safety, we divided the road into sections based on the level of risk to
the pedestrians, including high-risk, risky, and safe regions based on the
lane lines. Our pedestrian safety module relies on two procedures: lane
line detection and pedestrian distance and position detection. We have
experimented with pedestrian distance and position detection proced-
ures using methods such as the optic flow method and Deep learning
methods. This integration enables the system to provide real-time feed-
back on potential hazards in the driver’s vicinity. Moreover, recognizing
the paramount importance of pedestrian safety, we have introduced a
dedicated Pedestrian Safety part. This module demonstrated promising
results, with an average lane line recognition accuracy of 95.79% and a
pedestrian distance and position detection accuracy of 86.45%.

Together, these modules offer an early detection and mitigation
solution for the leading causes of accidents: driver distraction and
pedestrian risk. In summary, our Safe Driving Support System provides
a comprehensive and cost-effective approach to enhance road safety by
addressing driver distraction and pedestrian safety. The results from
our experiments demonstrate the system’s effectiveness in detecting
and mitigating potential hazards on the road, contributing to a safer
transportation environment and the prevention of accidents.
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Chapter 1

Introduction and Related
works

1.1 Introduction and objectives

The World Health Organization reports that traffic accidents are one
of the top eight causes of death, resulting in over 1.3 million fatalities
worldwide each year. Hence, it is crucial to monitor the driving process,
evaluate driver distraction levels, and offer warnings or support to the
driver [1]. Safe driving support systems are of paramount importance in
the modern era due to their ability to save lives by preventing accidents,
reducing human errors, and improving overall road safety. They also
address the rising issue of distracted driving, optimize traffic flow, meet
consumer preferences for enhanced vehicle features, and align with
regulatory efforts to make driving safer and more efficient. As the
prevalence of serious accidents attributed to driver distraction continues
to escalate, the development of a robust Safe Driving Support System
(SDSS) is imperative for enhancing road safety.

In the pursuit of safer roadways and reduced traffic accidents, this
thesis endeavors to develop an innovative, cost-efficient, and non-intrusive
SDSS harnessing the capabilities of dual dashboard cameras. Our
research comprises two parts, focusing on driver distraction detection
and pedestrian safety, both integral components of our proposed safe
driving support system. In the modern world, road safety remains a
crucial concern, with driver distraction and pedestrian-related incidents
being significant contributors to traffic accidents. To address these
challenges, our thesis seeks to contribute a novel approach that leverages
advanced technology and computer vision, providing a comprehensive
solution for enhancing road safety.
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1.2 Related works

A plethora of studies have been conducted to identify and prevent driver
distractions, which could lead to potential accidents. These studies are
categorized based on the method used to determine the safe driving
process, with three primary types of data employed to detect distrac-
ted drivers. Generally, three primary types of data are used to detect
distracted drivers. The first method involves physiological data, such
as electrocardiograms and electroencephalograms, which monitor the
driver’s heart rate and brain activity, respectively. Detecting distrac-
tions through EEG-based Brain-Computer Interfaces (BCIs) has been
proposed as a promising solution. This type of research introduces an
automatic framework that incorporates BCIs and a realistic driving
simulator for detecting distractions [2][3][4][5]. The second type involves
vehicle control data, including pedal positions and steering wheel move-
ments, which provide insight into the driver’s behavior and response
time. The primary objective of this type of research is to evaluate the
effectiveness of leading supervised learning classification algorithms in
detecting driving states. This is a critical issue for comprehending the
driver’s mood or driving habits through the use of sensor data from
the CAN (Control Area Network) bus [6] [7]. Lastly, the third type
uses visual data, such as eye and body movements, as well as images or
videos of the driver’s facial expressions [8], to assess the driver’s level
of distraction. While all three types have been explored, the majority
of research has focused on visual data, which provides a comprehensive
overview of the driver’s behavior while on the road.

Our study also concentrates on identifying distracted drivers using
visual data. Although driving activities are largely dependent on the
driver, all road users must be considered when determining safe driving
conditions. Therefore, we considered road environment, pedestrians, and
other road users as variables to determine driver’s distraction. Within
two primary modules—driver’s distraction detection and pedestrian
safety—we highlight various related works about driver gaze mapping,
pedestrian detection, and pedestrian distance and relative position meas-
urement in this section.

Driver’s gaze mapping: A lot of studies have focused on the
issue of the driver’s gaze estimation task. These related studies can
be classified into hardware-based and appearance-based methods. The
hardware-based studies often use additional equipment to determine the
driver’s visual attention. Several approaches based on using wearable
devices [9][10] monitored the driver’s visual attention. Mizuno et al.
conducted a system of visual attention detection using a gaze tracker
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and a vehicle-mounted device [11]. Also, Wang et al. conducted the
driver’s gaze tracking system using a dual camera [12]. Although these
approaches are effective and robust, they are intrusive, costly, and
unsuitable for real application. Also, this type of system is difficult to
use and fatigues the driver. Appearance-based gaze mapping aims to
predict the driver’s gaze direction from their visual appearance. These
types of studies can be classified into methods considering both eye and
head orientation and methods that consider only head orientation and
eye gaze. The following studies conduct driver visual attention-based
eye gaze [13][14]. Xiao and Feng [13] used a pupil-based gaze mapping
estimator using the Haar classifier. To identify facial features, such as
both eyes, the corners of the lips, and the bounding box of the face,
Smith et al. [14] conducted color and intensity. They estimated the
head orientation and gaze direction using these features. However, if
the driver is talking or wearing glasses, this approach sometimes fails to
detect facial features [14]. Eye direction estimation can be made using
the above methods while considering eye gaze. However, it is not always
possible to detect eye direction inside a vehicle environment since the
driver’s eye blink, a considerable head rotation, and sunshine reflections
on eyeglasses can all obscure the eye region. On the other hand, many
researchers estimated gaze direction by using head orientation [15][16][17].
This method determines the direction the driver is looking at using only
the head orientation, such as the left and right borders and the center
of the head, without using detailed facial features [15]. Considering only
the head position when estimating the driver’s gaze direction has many
advantages, such as less dependence on training data and no need for
extensive training. It is also an advantage that it is possible to detect
gaze direction when the method cannot determine detailed face features.
Although this method has many advantages, it has lower accuracy in
head orientation estimation.

Therefore, the gaze estimate task requires simultaneous consideration
of both head position and eye gaze for inference. Some studies used eye
gaze and head orientation to determine the gaze direction. To identify
the pupils, nose bottom, and pupil glints, Kaminski et al. analyzed
the intensity, shape, and size features. They estimated continuous
head orientation and gaze direction based on these features and an
anthropomorphic model [18]. Also, Naqvi et al. [19] used three deep
CNNs that use the images of the left eye, right eye, and full face, and
combine the outputs by these three CNNs for gaze estimation. This
study demonstrated excellent performance but required complicated
initialization. Although the above studies used a combination of head
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position and eye gaze features, it is still less possible to draw inferences
using either feature alone. The use of this state-of-the-art of gaze
estimation method on real vehicles is restricted by the fact that they
are intrusive and expensive.

Moreover, one of the problems of this research field is the insufficient
training dataset. Although there are several open-source datasets, most
are designed for specific environments. This means that real driving
environment training data is rare. Camera calibration is also important
in this field, and other estimations are made depending on the camera
setting. Therefore, no matter how well gaze estimation is done, the
performance may decrease depending on the camera settings. To ad-
dress these challenges, techniques for domain adaptation are employed
to mitigate the negative effects of domain shifting, allowing the model
to be applicable across different domains and environments using small
dataset. Wang et al. utilize an appearance discriminator and head
pose classifier to achieve domain adaptation by adversarial learning [20].
Meanwhile, Cheng et al. proposed to enhance cross-domain performance
without target domain data by eliminating gaze-irrelevant features [21].
More recently, Bao et al. have proposed a rotation-enhanced unsu-
pervised domain adaptation technique for the problem of the lack of
access to target domain labels in real-world situations [22]. While the
aforementioned methodologies have demonstrated notable advancements
in enhancing gaze-related tasks, it is imperative to distinguish between
gaze mapping and gaze estimation. Gaze estimation primarily involves
determining the direction in which a person’s gaze is focused, typic-
ally relying on technologies like eye-tracking to pinpoint the location
of the eyes and infer the point of focus. Essentially, gaze estimation
answers the question of ’where’ the eyes are directed. On the other
hand, gaze mapping extends beyond mere estimation, aiming to provide
a comprehensive and spatial representation of the entire gaze behavior.
Gaze mapping encompasses not only the predefined regions but also
the dynamic patterns, head and body movements, and interactions of
the gaze within a given environment. It seeks to create a detailed map
or model that reflects how the individual’s gaze traverses and engages
with different elements in their surroundings. In the context of driver
behavior, gaze mapping becomes particularly crucial for understanding
not just the instantaneous points of focus but also the broader context
of how the driver visually navigates through complex outdoor environ-
ments. This includes considerations for factors such as scanning the
road, monitoring mirrors, and responding to dynamic stimuli. Despite
significant progress in gaze estimation, achieving accurate and robust
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gaze mapping, especially in the challenging conditions presented by
outdoor driving environments and without additional devices, remains a
formidable task in the field of research and development.

In this thesis, we present several strategies that use appearance-
based (a combination of gaze and head features) and domain adaptation
solutions to improve gaze mapping’s robustness to different drivers and
new environments.

Pedestrian detection: using dashboard cameras is a critical topic
in computer vision with various applications in advanced driver assistance
systems, surveillance, safety systems, and advanced robotics. It is an
essential component in both of our modules. The primary function of
pedestrian detection is to locate pedestrians, determine their distance,
and assess the risk level. Numerous researchers have studied pedestrian
detection using dashboard cameras in recent years. Unlike general
pedestrian detection, this study aims to detect pedestrians in a dynamic
background from a moving camera. Based on the method used, the
existing studies can be classified into different categories.

Holistic detection: is designed to detect pedestrians in images by
scanning the entire frame. This approach can accurately detect humans
in a static image without requiring any motion information. Various
research works employ different features to detect pedestrians, such as
the use of global features like edge template in [23] and local features like
the histogram of oriented gradients descriptors in [24]. However, this
approach has some drawbacks, as it can be easily affected by background
clutter and occlusions. Nonetheless, many research works focus on
modifying or extending this approach for pedestrian detection, with
[25] being the most notable example, which employed optical flow and
Histogram of oriented gradients.

Part-based detection: Pedestrian detection can be done using part-
based approaches that utilize collections of pedestrian parts. The first
step in this method is to derive part hypotheses by learning local fea-
tures such as edgelet [26] and orientation features [27]. Then, these
part hypotheses are combined to form the best assembly of pedestrian
hypotheses. Although effective, part detection is a challenging process
that requires careful consideration.

Motion-based detection: In research on pedestrian detection using
onboard cameras, motion-based detection is ineffective under conditions
such as fixed camerasand stationary lighting [28].

Optic flow methods: including the Lucas-Kanade method is a classical
optical flow-based approach, which can be quite fast and computationally
efficient, especially when implemented in a simple form. It operates
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at the pixel level and estimates the motion of objects based on the
gradient information in the image. While it can work well for simple
tracking tasks, it may not be as accurate or robust as deep learning-based
methods. It might struggle with complex scenes, occlusions, and changes
in lighting conditions. The Lucas-Kanade method may be suitable for
real-time applications where speed is critical, and we can make certain
assumptions about the scene’s simplicity and the motion of objects.
However, it may not be the best choice for high-precision pedestrian
detection in challenging environments.

Deep learning methods: Deep learning methods have revolutionized
pedestrian detection since Girshick et al [29]. proposed Region-based
CNN (R-CNN) in 2014. The techniques based on deep learning can
be broadly classified into two categories. The first one is a two-stage
processing method, including RCNN 2014 [29] Mask RCNN 2017 [30]
Fast RCNN [31] and Faster RCNN [32]. This method generates regional
suggestion boxes for potential objects, followed by predictions on these
boxes. The second one is a one-stage processing method, including
YOLO (You Only Look Once) [33], YOLOv2 [34], YOLOv3 [35], SSD
[36], RetinaNet [37], DIOU [38], YOLOv4 [39] and YOLOv5. This
method directly returns the object area on the feature map and gives
the final prediction result. In other words, this method is real-time
object detection framework that divides the input image into a grid
and predicts bounding boxes and class probabilities for each grid cell
simultaneously.

Among these methods, YOLO models, especially YOLOv3 and
YOLOv4, have been used for pedestrian detection. These models are
designed for real-time object detection and can process frames or images
very quickly, making them suitable for real-time pedestrian detection.
YOLOv4 and similar deep learning-based models tend to offer superior
accuracy and robustness in pedestrian detection tasks, especially in
complex scenarios with occlusions, different lighting conditions, and
varying poses. They are commonly used in applications where detection
accuracy is crucial, such as autonomous vehicles and surveillance systems.

Pedestrian detection technology has made great progress from the
original traditional machine learning to the deep neural network. How-
ever, the performance of recognition is still insufficient in conditions
such as pedestrians at long distances and noisy background environ-
ments. As part of the thesis, we have tested several methods from the
above-mentioned approaches that are the most efficient and suitable for
our system and compared their effectiveness in determining safety by
detecting pedestrians.
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1.3 Thesis structure

The thesis is organized as follows. As mentioned before, this thesis
consists of two main parts, driver’s distraction detection and pedes-
trian safety. In the subsequent sections, we will present our proposed
safe driving support system, highlighting its innovative features, cost-
effectiveness, and non-intrusive design. Additionally, we will detail
the methodology for our two core studies, which form the basis of our
research. Chapter 2 outlines the structure of these modules and the
implemented strategies, while Chapter 3 delves into our experiments and
findings.Our overarching objective is to offer groundbreaking solutions
that mitigate driver distraction and improve pedestrian safety, thus
fostering safer roads for all.
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Chapter 2

Proposed System Structure

2.1 Overview of proposed system

Our system consists of two modules: driver’s distraction detection and
pedestrian safety. The overview is shown in Figure 2.1. The first module

Figure 2.1: Overview of the proposed system

analyzes the video stream from the driver monitoring camera and the
front-view camera, determining the level of the driver’s distraction.
To accomplish this, it receives the video captured through the driver
monitoring camera and then defines the gaze region the driver is looking
at. We explored several strategies for this task. The following sections
will detail each of these strategies. Simultaneously, the module receives

9
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video from the front-view camera to identify pedestrian activity. By
combining the data from all road users, we can evaluate the driver’s
distraction level.

The second module analyzes the video feed from the front-view
camera, determining the pedestrian’s safety. To determine pedestrian
safety, we divided the road into sections based on the level of risk for
pedestrians, including High-Risk, Risky, and Safe regions, as shown in
Figure 2.1. We then assessed the level of risk based on where pedestrians
were located on the road.

As a result, by combining driver’s distraction evaluation and pedes-
trian safety processing, the modules offer support for safe driving. The
following sections will detail each of these modules and the tools used.

2.2 Driver’s distraction detection module

In this section, we describe the challenges of the driver’s distraction
detection module. This module consists of two parts with parallel pro-
cedures: gaze mapping and pedestrian detection. The module analyzes
the video stream from the driver monitoring camera and the front-view
camera to determine the level of the driver’s distraction. The first
procedure, gaze mapping, is to estimate the direction of the driver’s
gaze, and the second procedure, pedestrian detection, is to detect the
pedestrian and determine his position. This first procedure consisted
of two steps: the facial feature extraction step and the gaze region
classification step, as shown in Figure 2.2. The facial feature extraction
step involves extracting relevant facial features from images that have
gone through the video stream. Finally, the gaze region classification
step predicts one of the predefined gaze regions using these features.
In other words, to accomplish this task, the gaze mapping procedure
receives the video captured through the driver monitoring camera and
then defines the gaze region the driver is looking at. We explored several
strategies for this task.

The driver distraction module consists of two procedures, with de-
tecting pedestrians being the second one. Our system not only monitors
driving situations but also keeps a close watch on the road conditions
outside through a front-view camera. The second procedure receives
video from the front-view camera to identify the relative position of the
pedestrian. By combining the data from all road users, we can evaluate
the driver’s distraction level, shown in Figure 2.2. We considered three
levels of distraction of the driver.

• Safe State: If the driver’s gaze region is THE SAME as the one
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Figure 2.2: Structure of the driver’s distraction detection module

the pedestrian is detected in, it is considered a ”Safe” state.

• Risky State: If the driver’s gaze region is NOT THE SAME as the
one the pedestrian is detected in, BUT it is a neighboring gaze
region, it is considered a ”Risky” state.

• Distracted state: If the driver’s gaze region is THE SAME as the
one the pedestrian is detected in, and NOT a neighbor region
EITHER, it is considered a ”Distracted” state.

Figure 2.3: Flowchart of evaluation of the distraction level of the driver

Therefore, we can evaluate the driver’s distraction level based on
the driver’s gaze direction and the pedestrian’s positions, which are the
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outputs of the two procedures above. Our algorithm, as illustrated in
Figure 2.3, identifies the levels of distraction.

In this section, we present the structure of the two procedures,
driver’s gaze mapping and pedestrian detection. Using these procedures,
we can assess the level of distraction for the driver. As we mentioned,
we implemented different strategies of gaze mapping. In the following
sections, we provide more detailed experimentation and comparison of
the results for each strategy of gaze mapping and pedestrian detection
module.

2.2.1 Gaze mapping

In this section, we present the structure of the driver’s gaze mapping.
The gaze mapping procedure receives the video captured through the
driver monitoring camera and then defines the gaze region the driver
is looking at. We investigated different methods, such as using the
MobileNet model, OpenFace with SVM classifier, and the domain adapt-
ation method for gaze mapping. Using gaze mapping, we can assess the
level of distraction for the driver, as demonstrated in Figure 2.3. This
procedure comprises of two steps: the facial feature extraction step and
the gaze region classification step, as shown in Figure 2.2. The facial
feature extraction step involves extracting relevant facial features from
images that have gone through the video stream. Finally, the gaze region
classification step predicts one of the predefined gaze regions using these
features.

In the following sub-sections, we provide a more detailed structure
and comparison of the results for each method of gaze mapping.

2.2.1.1 Gaze mapping using MobileNet model

The first method for gaze mapping used the MobileNet deep learning
method. Recently, many good deep-learning methods have been used
for gaze mapping, and these studies have shown high accuracy. However,
despite the high accuracy of the test data, it is very sensitive to the
slight movement of the camera in the driving environment. Also, most
of these methods are still expensive and difficult to use in real-time
environments.

Therefore, we aimed to develop a method that is comparable to
deep neural methods, and more robust with the slight movement of the
camera. So, we experimented with the deep learning method and our
proposed methods on the gaze mapping module to compare the training
data and the real-time environments. In this study, we wanted to
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Figure 2.4: Gaze mapping using MobileNet model

demonstrate that our proposed methods are comparable to the accuracy
of the deep neural method and more robust with the slight movement of
the camera in the real driving scenario. Of the deep learning methods,
the MobileNet model was appropriate for our study, because MobileNet
needs very little computation power to run. This makes it a perfect
fit for mobile devices, light systems, and computers to run without
GPUs. Also, MobileNet significantly has a lower number of parameters
in the deep neural network. This results in more lightweight deep neural
networks. Being lightweight enables high execution speed, that is best
suited for our system. We used a pre-trained MobilenetV2 [40] model
without the last dense layer for the gaze mapping module. We then
added a dense layer with 15 predefined gaze regions as shown in Figure
2.4. On the DGM dataset, we trained the model using several different
strategies, namely the four different fine-tuning and transfer learning
strategies.

2.2.1.2 Gaze mapping using OpenFace with SVM classifier

Our next proposed method involves utilizing the OpenFace methodology
in conjunction with an SVM classifier for gaze mapping. Appearance-
based methods use facial features to detect the driver’s gaze direction.
These types of studies can be classified into methods considering both eye
and head orientation and methods that consider only head orientation
and eye gaze. Recent gaze mapping studies indicated that consideration
of both head position and eye gaze can benefit performance. Pushing
this idea further, we propose an appearance-based method that, uses a
combination of head position and face features. Determining face and
head features from images is one of the challenges of gaze mapping. We
chose the OpenFace 2.0 toolkit [41] for the feature extraction task because
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of its robustness and performance. The Open Face outperforms all of
the baselines in both of the experiments of head position and eye gaze
estimation. Specifically, the performance of gaze estimation and head
pose estimation was 3.2 and 9.1 measured in the mean absolute degree
error. It demonstrates state-of-the-art performance [41]. The Open
Face provides face detection and extracts 68 facial features including eye
gaze and head position features. Therefore, we used OpenFace, which
provides gaze angles and head position features, for the gaze mapping
task. The gaze angle, head position, rotation, and eye position features
are recognized by analyzing the driver’s face from the driver monitoring
camera using the OpenFace toolkit. Also, in the gaze estimation task,
we selected the SVM classifier as the classifier to classify 15 predefined
regions. Our proposed system is a real-time system, so the performance
speed must be high.

Figure 2.5: Gaze mapping using OpenFace with SVM classifier

In terms of performance speed, the SVM classifier is much faster
than other classifiers, which might be more appropriate for our task with
the OpenFace toolkit, Figure 2.5. We chose the SVM classifier based on
the following:

• Performance speed: Our proposed system is a real-time system,
so the performance speed must be high. In terms of performance
speed, the SVM classifier was much faster than other classifiers
[42].

• The accuracy of classifying gaze mapping: The accuracy
of classifying gaze mapping was sufficiently high in mean overall
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accuracy. This is shown in [42] and other studies [43] [44]. In
these studies, the SVM classifier exhibited superior results to the
neural network method and random forest in terms of overall
accuracy and robustness. Therefore, we used the SVM algorithm
to implement the classification of gaze mapping. In addition, SVM
is better at classifying the extraction data of the OpenFace, as can
be seen from the study of Rill Garcia et al. [44].

• Amount of our data: The OpenFace toolkit was used to extract
gaze direction and head direction features from the DGM dataset.
Then, we trained the SVM classifier on this dataset. Our dataset
is relatively small, with few samples, making it more suitable for
SVM classifiers.

We tuned the hyper-parameters to train the SVM classifier using
GridSearchCV [45] from the Scikit Learn library. GridSearchCV helps
to combine an estimator with a grid search preamble to tune hyper-
parameters such as kernel, C, and gamma. To determine the value of
parameters C and gamma for searching for the best value, we set C from
0.1 to 100 and gamma from 0.0001 to 10. According to GridSearchCV,
the most appropriate parameters for the dataset extracted from the
OpenFace toolkit were defined as C=10, gamma: 0.1, kernel: ’rbf’.

The DGM dataset which is more detailed in Section 3, was used to
extract facial features using the OpenFace toolkit. We conducted the
training of the SVM classifier using several different strategies using the
features extracted by OpenFace. The features we used are as follows:

• Gaze angle: gaze angle x, gaze angle y,

• Head position T: Head Pose Tx,Head Pose Ty,Head Pose Tz,

• Head position R:Head Pose Rx,Head Pose Ry,Head Pose Rz,

• Head rotation T: p Tx, p Ty,

• Head rotation R: p Rx, p Ry, p Rz,

• Eye Position: gaze 0 x, gaze 0 y, gaze 0 z, and

• A combination of the features in binary, triple, and quadruple to
determine how they affect the estimation of gaze mapping.

Therefore, we trained the SVM classifier on the dataset consisting
of facial features and corresponding gaze region labels. During the
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execution of the gaze mapping, as shown in Figure 2.5, the facial features
extracted by OpenFace are fed into the pre-trained SVM classifier, and
then the pre-trained SVM classifier predicts one of the pre-defined 15
gaze regions corresponding to these features.

2.2.1.3 Gaze mapping using domain adaptation

Previous studies and proposed methods have shown a common challenge
where performance tends to decline when dealing with different drivers
and environments. This can be attributed to several factors such as
domain disparities, insufficient data for the target driver, environmental
influences, and different camera positions. Although deep learning and
convolutional neural networks perform well on learned data, the results
are not satisfactory for different car environments, camera positions, and
domains. To overcome these challenges, domain adaptation techniques
are utilized to minimize the negative effects of domain shifting, enabling
the model to be applicable across different domains and environments.
The proposed method has three steps, pre-processing, facial feature
extraction, and gaze region classification as shown in Figure 2.6. During
training, we tried two pre-processing strategies for the input feature
extraction step. The first strategy involved using an image of the driver’s
full appearance and the environment. This allowed us to skip the face
detection and face bounding box & crop step and directly train the
feature extraction from the input images, as shown by line A, in Figure
2.6. In the second strategy, we specifically detected the driver’s face
and used it as input for the feature extraction step, as shown by line
B, in Figure 2.6. The facial feature extraction step involves extracting
relevant facial features from images of pre-processing step. Finally, the
gaze region classification step predicts one of the predefined gaze regions
using these features.

At first, we will provide a detailed description of gaze mapping
using domain adaptation, including the principles of the base model,
the algorithmic steps, and the mathematical aspects. This method’s
main theoretical underpinning is that the model is designed to address
challenges related to domain shift, leveraging adversarial training and
transfer learning principles for unsupervised domain adaptation in gaze
mapping (DGM dataset to Columbia Cave-DB). To provide a detailed
explanation, we begin by selecting the components of the proposed
model structure. First, we choose a discriminative base model, as we
assume that when adapting a model from a source domain to a target
domain, the discriminative aspects of the model are more important
than the generative aspects. Then, the choice between shared and
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Figure 2.6: Structure of the proposed gaze mapping using domain-
adaptation method

unshared weights depends on the nature of the adaptation problem. If
the domains are expected to have similar characteristics, shared weights
might be more appropriate. In our case, the target and source domains
are quite different depending on the participating drivers’ environment
and facial appearance. Hence, separate sets of model parameters are
used for the source and target domains. This is because unshared weights
allow the model to adapt more flexibly to domain-specific characteristics,
which is important when there is a significant domain shift. Therefore,
we chose an unsupervised domain adaptation method with unshared
weights. Moreover, adversarial loss is another important component of
our proposed model. It is a crucial component of unsupervised domain
adaptation, particularly in methods that leverage domain adversarial
training. We used separate sets of model parameters for the source and
target domains, and therefore, we chose the GAN loss as the adversarial
loss for our case. By combining unshared weight and GAN loss, we
assumed that the model could adapt to the specific features present
in each domain while minimizing the domain shift through adversarial
training.

Next, we will describe the training process of the feature extraction
and classification steps, as illustrated in Figure 2.7. The training aims to
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Algorithm 1: Training procedure

Data: Source domain images with labels, Target domain images
Result: Feature extractor network G, Classifier network C
Initialize and pre-training:
G← ResNet18 network with modified final layers (13 neurons +
softmax);
D ← MLP discriminator with input dimension G output
dimension, hidden dimension 128, and output dimension 1;
C ← MLP classifier with input dimension G output dimension,
hidden dimension 64, and output dimension 13;
for each epoch do

for each image x in source domain do
Compute features f ← G(x);
Encode domain label y ← Y (x);
Calculate loss based on f and ground truth labels;
Back-propagate to update G parameters θ;

Feature Extraction and Adversarial Training:
Freeze pre-trained feature extractor parameters θ;
for each epoch do

for each image x in source and target domains do
Compute features f ← G(x);
Encode domain label y ← Y (x);
Train discriminator D to minimize loss;
Train generator G to minimize loss;

Joint Fine-tuning and Classifier Training:
Un-Freeze feature extractor parameters θ;
for fine-tune epochs do

Sample a batch from source and target domains;
Extract features: fs ← G(batchs), ft ← G(batcht);
Compute classification loss: Lcls ← C(fs).loss(batchs);
Compute domain adaptation loss: Ladapt ← MMD(fs, ft);
Combined loss: L← Lcls + λ ∗ Ladapt;
Back-propagate to update both G and C parameters;

Output:
Fine-tuned feature extractor G with domain adaptation;
Classifier C trained on source domain and fine-tuned by target
domain;
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Figure 2.7: An overview of domain adaptation

achieve unsupervised domain adaptation for gaze mapping, specifically
from the DGM dataset to Columbia Cave-DB. When images are from
different distributions, a feature extractor maps them to different clusters
in the feature space. To bring these clusters closer together, a conditional
generative adversarial network (CGAN) [46] is used. In detail, we utilized
the ResNet18 model [47] as the backbone model. To modify the network,
we replaced its final layer with a new fully connected layer consisting
of 13 neurons. Additionally, a softmax layer was included on top of
it. The model uses a feature extractor as a generator G(x), where x
represents the input image, and an external multi-layer perceptron acts
as a discriminator D(x), which determines whether the extracted feature
is from the source or target domain. This classification is represented
through one-hot encoding, Y(x).

During each epoch, the discriminator is optimized first, to minimize
the difference between D(G(x)) and Y(x) for all x in both domains. The
generator is then optimized to confuse the discriminator, to minimize
the difference between D(G(x)) and Y’, where Y’ represents the one-hot
encoding for the source domain and x is from the target domain. This
process maps images from the target domain to a cluster that is closer to
the cluster in the source domain’s feature space. The feature extractor
parameters are frozen, and the classifier is trained on the source domain.
Since the feature extractor is generalized, training on the source domain
can enhance performance on the target domain. Furthermore, we will
explain the proposed model in terms of process. One important aspect
of our method is the adversarial training procedure. We will provide a
step-by-step algorithm that gives a mathematical overview of the key
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components and processes involved in unsupervised domain adaptation
for gaze mapping, as described in Algorithm 1.

2.2.2 Pedestrian detection

The driver’s distraction detection module incorporates pedestrian de-
tection as its second procedure. In addition to monitoring driving
conditions, the module employs front-view cameras to observe the road
ahead. If it detects a moving object, such as a pedestrian, it pinpoints
the exact predefined windshield region where the object is situated, as
shown in Figure 2.2. This is crucial since distracted drivers may fail to
notice pedestrians or other moving objects on the road. We implemented
and tested two approaches within this procedure.

Figure 2.8: Scene of the implementation of Lucas-Kanade dense method

First, we chose the Lucas-Kanade dense optical flow method for this
task because of its speed and efficiency, particularly in its fundamental
form. The Lucas-Kanade dense optical flow method is a technique
used in computer vision to estimate motion in a sequence of images.
It’s primarily used for tracking motion, but it can also be applied to
detect moving objects like pedestrians. We implemented the Lucas-
Kanade dense optical flow algorithm to compute the dense optical flow
between consecutive frames. This algorithm estimates the motion vector
for each pixel in the image. The implementation is shown in Figure
2.8. However, even though the Lucas-Kanade method shows decent
performance for pedestrian detection tasks, it may have limitations in
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accurately detecting pedestrians, especially in challenging scenarios like
occlusions, varying lighting conditions, or complex backgrounds. There-
fore, a complete pedestrian detection system often integrates multiple
methods and techniques to achieve robust and accurate results. More
advanced approaches like deep learning-based object detection networks
have shown superior performance in pedestrian detection tasks and are
widely used in modern computer vision applications. Therefore, we also
implemented and tested the YOLOv4 model, which is one of the best
deep learning-based models. Furthermore, we examined the YOLOv4
model as it is a dependable choice for achieving high accuracy. It is
frequently employed in applications where detection precision is crucial,
such as autonomous vehicles and surveillance systems. The comparative
performance of these methods is detailed in Section 3.3.

2.3 Pedestrian safety module

The concept of pedestrian risk regions is illustrated in Figure 2.1. Our
definition is based on the research conducted by Gerónimo et al [48].
They identified three regions that are important for pedestrian safety.
The high-risk region, indicated by red color, is the area where there is a
high probability of collisions with pedestrians. The risky region, shown
in yellow, is the area where pedestrians are likely to cross the road, but
there is no imminent danger. The safe region, depicted in green, is where
pedestrians are not at risk of being hit, but they must be detected in
advance as they are in the path of the vehicle. The distance of these
safety regions is determined by the vehicle manufacturer’s tests, which
show that the stopping distance of a vehicle is about 5 meters at 30
km/h and increases up to 25 meters at 100 km/h [48]. In other words,
the pedestrian’s relative position to the vehicle determines the risk level.

Figure 2.9: Structure of pedestrian safety module



22 CHAPTER 2. PROPOSED SYSTEM STRUCTURE

Figure 2.10: Flowchart of evaluation of the risk level of the pedestrian

According to the above concept, the lane line is a crucial key to
determining the pedestrian’s risk level, because all risk regions are
determined by lane lines. Our pedestrian safety module relies on two
procedures: lane line detection and pedestrian distance and position
detection, as shown in Figure 2.9. In this module, the lane detection
procedure is crucial. After thorough research, we selected Cao et al.’s[49]
study since it has demonstrated high performance and reliability.

Their recognition accuracy of 98.42% surpasses deep learning meth-
ods, and their performance speed of 22.2 ms/frame is faster than tradi-
tional methods, indicating their advanced capabilities, shown in Table
2.1. Additionally, they utilized a vanishing point algorithm to detect road
boundaries, which produced favorable results in detecting unstructured
roads.

The lane line procedure analyzes the video feed from the front-view
camera to identify the lane lines and highlight them in red up to a
distance of 25 meters. To achieve this, we convert the distorted image
and apply the superposition threshold algorithm to detect edges, then
obtain an aerial view of the lane by extracting a region of interest and
applying the inverse perspective transformation. Then, we fit the curves
of the lane lines using the random sample consensus algorithm and
a third-order B-spline curve model. Finally, we evaluate the fit and
calculate the curvature radius of the curve. As a result, we determine
the lane line of the road and extract the set of points of the section
defined in red.

Simultaneously, as the front-view camera captures the video stream,
the pedestrian distance and position detection procedure analyzes it
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Table 2.1: The comparison of statistics in algorithms performance

Methods Algorithm Average Detec-
tion Accuracy
(%)

Average Pro-
cessing Time
(ms)/ Frame

Traditional
Spatial Ray
Features

94.40 45.0

Improved
Hough Trans-
form

95.70 65.4

Deep Learning
FastDraw Res-
net

95.00 65.3

ConvLSTM 97.25 42.0

Cao et.al’s Algorithm 98.42 22.2

to detect pedestrians and their distance from the vehicle. However,
estimating object distance using a single camera can be limited as it
lacks depth information, resulting in lower accuracy compared to stereo
or depth-sensing cameras. Nevertheless, there are alternative methods to
estimate distances using a single camera. In the challenge of estimating
pedestrian distance using a front-view camera, we utilized the scale
estimation method. This method involves using a known reference
object with a known size within the scene to estimate distances to other
objects in the same scene. We also used YOLOv4 to create bounding
boxes for pedestrians, extract their coordinates, and determine their
position. The pedestrian distance was also determined using the scale
estimation method. By analyzing the pedestrian’s distance and position
in relation to lane lines, we can determine their risk level. This evaluation
is based on the two procedures outlined above and is illustrated in Figure
2.10. Our algorithm identifies three distinct levels of pedestrian risk.
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Chapter 3

Datasets and Experiments

In this section, we present the evaluation of the procedures, gaze mapping
and pedestrian detection and safety, separately and their combination.
In other words, we show the evaluation of the state of the driver’s
distraction based on two inputs. As we explained in Section 2, we
implemented different strategies for each method of the gaze mapping
module in the SDSS system. Moreover, the performance of pedestrian
detection methods will be evaluated on real-world driving recordings.
The following sections provide a more detailed comparison of the results
for each method of the gaze mapping module.

To conduct our experiments, we utilized two different datasets, The
Driver Gaze Mapping (DGM) and Cave-DB [54]. In this section, we
present our experiments and results on our proposed strategies using
these datasets. Additionally, we conduct experiments on the DGM
dataset, which includes different camera positions. It explores the
possibility of adapting to different camera positions in the same domain
for self-calibration tasks. Furthermore, we provided an analysis of the
results obtained from the proposed methods and strategies. This includes
a discussion of the implications of these results, a comparison with
existing methods, and the limitations of our study. The following sections
detail each dataset’s characteristics and dataset-related information, as
well as our experiments and results.

3.1 Evaluation metrics

Our research involved measuring the accuracy of gaze mapping through
two methods: Strictly correct estimation rate (SCER) and Loosely
correct estimation rate (LCER). SCER and LCER are the two metrics
used to evaluate gaze mapping accuracy. SCER measures the ratio of

25
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Figure 3.1: The gaze regions of similar studies A. [50] B. [51] C. [52] D.
[53]

strictly correct frames to the total number of frames, where the estimated
gaze region perfectly matches the ground truth gaze region. On the
other hand, LCER measures the ratio of loosely correct frames to the
total number of frames, where the estimated gaze region is within the
ground truth gaze region and its neighboring regions. SCER and LCER
are mostly used in our field research. In our study, the accuracy of gaze
mapping also measured based on the Strictly correct estimation rate
(SCER) and the Loosely correct estimation rate (LCER ).

SCER =
NumberOfStrictlyCorrectedFrames

TotalNumberOfFrames
(3.1)

SCER measures the ratio of the number of frames where the estimated
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gaze region is strictly correct (equivalent to the ground truth gaze region)
to the total number of frames.

Strictly Correct Frame: A frame is considered strictly correct if the
estimated gaze region is precisely equal to the ground truth gaze region.

LCER =
NumberOfFramesWithEstimatedRegionIn(GT ∪N)

TotalNumberOfFrames
(3.2)

LCER measures the ratio of the number of frames where the estim-
ated gaze region is loosely correct (within the ground truth gaze region
and neighboring regions) to the total number of frames.

Loosely Correct Frame: A frame is considered loosely correct if the
estimated gaze region is placed within the ground truth gaze region or
in one of the neighboring regions. The numerator now represents the
count of frames where the estimated gaze region is in the union of the
ground truth gaze region GT ∪ N and the set of neighboring regions
(N).

3.2 Datasets

In this section, we will provide the datasets used in our study and details
about those datasets. As part of the study, we created a dataset with
15 gaze regions for gaze mapping. For absolute clarity, let’s refer to this
dataset as DGM. The feature of the dataset is that it is prepared by
capturing images of the driver from different camera positions. This
allows us to determine which camera positions are more effective in
mapping the driver’s gaze within the scope of the study. We also created
a new dataset adapted to our research environment using an open dataset
Cave-DB. We used this dataset to compare our results with those of
other researchers. We also used this dataset to experiment with one of
our proposed methods, the domain adaptation method. The following
subsections describe the datasets and their details.

3.2.1 DGM dataset

Through our research, we aimed to determine the minimum number of
gaze regions necessary for safe driving, as well as which specific regions
should be targeted based on previous studies. After reviewing multiple
studies on gaze mapping, we discovered that most studies, including
ours, had similar divisions for gaze regions, despite different approaches.
Our analysis of several studies revealed that gaze regions ranged from 9
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Figure 3.2: Camera positions: (1) bottom of the rear mirror and, (2)
top-front of windshield

to 18, with 15 being the most commonly used as shown in Figure 3.1.
These gaze regions are considered relevant for safe driving in literature
[11]-[17], [50][52][55][56][57][58][59][60][61]. We selected the gaze regions
based on the gaze regions of related studies. However, we collected 16
gaze regions, one of which was not considered important in most of the
previous studies, so we withdrew it and created this dataset with 15
gaze regions. Therefore, region 10 is numbered without including it.
We also considered the corresponding neighboring regions of each gaze
region as shown in Table 3.1.

The DGM dataset was used for the gaze mapping task. This dataset
features 15 distinct gaze regions and data collected from two different
camera positions, as described in Figure 3.2. The dataset comprises the
driver’s gaze and information about the driving environment.

The 15 predefined gaze regions, illustrated in Figures 3.3 and 3.4,
include the gaze region on the windshield, left and right-side mirrors,
and left and right-side windows (regions 1-9). The dataset was built
using images of drivers who gazed at predefined 15 regions in the vehicle.
We captured the data as the vehicle went to different locations, such as



3.2. DATASETS 29

Figure 3.3: Our predefined 15 gaze regions using camera position 1

Figure 3.4: Our predefined 15 gaze regions using camera position 2

university campus roads and parking lots, in the morning, afternoon,
and night to get images at different times of the day using a simple
COOAU-D30-1080P dual dash camera. As the drivers gazed at the 15
predefined regions, they acted naturally, with no restrictions on changes
in the head pose or other movements.

The dataset includes 12,425 images with 15 labels using camera
position 1. Also, we collected 14,200 images with the same labels using
camera position 2, as described in Figure 3.4.

3.2.2 Open dataset Cave-DB

To ensure fairness in our comparison, we created a new dataset using
the open dataset Columbia gaze dataset CAVE-DB. This was done as
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Table 3.1: Gaze regions and neighbor regions of each region

№ Gaze regions Neighbors

1 1 windshield 2, 4, 5, 11, 14, 16

2 2 windshield 1, 3, 4, 5, 6, 14, 16

3 3 windshield 2, 5, 6, 16

4 4 windshield 1, 2, 5, 7, 8, 11, 12

5 5 windshield 1, 2, 3, 4, 7, 8, 9, 6

6 6 Rearview mirror 3, 5, 9

7 7 windshield 4, 5, 8, 13, 15

8 8 windshield 4, 5, 7, 9, 6, 13, 15

9 9 windshield 5, 8, 6, 15

10 11 Dashboard 1, 4, 12, 14

11 12 Music/radio 4, 7, 11, 13

12 13 Left side mirror 7, 8, 15

13 14 Right side mirror 1, 2, 11, 16

14 15 Left side window 7, 8, 9, 13

15 16 Right side window 1, 2, 3, 14

previous studies [52][55][50] which also evaluated their methods using
SCER and LCER through CAVE-DB. Also, it enabled us to apply
unsupervised classification to different domain shifts. The CAVE-DB
contains a large gaze database of 56 individuals with 5880 images that
vary in head poses and gaze directions. There are 105 gaze directions as
5 head poses with 21 gaze directions per head pose.

From the database, we chose 13 gaze direction images considering
the environment of the DGM dataset. The examples of images with
gaze regions are shown in Figure 3.5.

3.3 Gaze mapping evaluation

The most important part of the driver’s distraction detection module is
the gaze mapping procedure. This is because the performance of the
entire driver’s distraction detection module depends on the accuracy of
the gaze mapping procedure. In this section, we have provided a detailed
analysis of experimental results obtained from the proposed methods
and strategies. This includes a discussion of the implications of these
results, a comparison with existing methods, and the limitations of our
study. As explained in Section 2, we implemented different strategies for
gaze mapping in the driver’s distraction module. The following sections
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Figure 3.5: Sample images selected from CAVE-DB

provide a more detailed experiment and comparison of the results for
each strategy of the gaze mapping module and the implementation of
the methods used in other modules and their comparison.

3.3.1 Gaze mapping using MobileNet model

First, we fine-tuned the pre-trained MobileNet trained on the ImageNet
dataset [62] with our DGM dataset. Table 3.2 shows the results of
the MobileNet models using different strategies. We evaluated the
performance of each model using 180 drivers’ face images for each gaze
region. The MobileNet model was trained using four different fine-
tuning and transfer learning strategies using the DGM dataset. The first
strategy is to train only the last classifier layer of the MobileNet model,
while the second strategy is to train the last 30 layers of the model
including the classifier layer. We trained the last 50 and 70 layers of the
model including the classifier layer for the third and fourth strategies,
respectively. We noted that by increasing the number of trainable layers
from 30 to 50, the accuracy of the training was improved. However,
setting trainable layers to 70, the accuracy was lower as shown in Table
3.2. In addition, we also tested the model with 80 trainable layers, but
the result was lower than others. Therefore, we do not show the result
of the model with 80 trainable layers in our results. The model with 50
trainable layers achieved the best result at 97.45% accuracy.

3.3.2 Gaze mapping using OpenFace with SVM

Secondly, we used the OpenFace toolkit to extract gaze and head features,
then classified the driving gaze direction into 15 pre-defined gaze regions
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Table 3.2: The MobileNet models using different strategies results

Strategies Accuracy Precisions Recall F1 score

Only classification layer 92.64% 92.97% 92.64% 92.60%

Last 30 layers 93.56% 94.16% 93.56% 93.56%

Last 50 layers 97.45% 97.46% 97.45% 97.45%

Last 70 layers 96.86% 96.91% 96.89% 96.90%

using the SVM classifier. We evaluated the performance of each strategy
using the same data used in the evaluation of the MobileNet model. We
tested combining the features one by one and with the other features in
binary, triple, and quadruple to determine how they affect the recognition
of gaze mapping using different camera positions. The average accuracy
of 15 gaze regions for each camera position is shown in Table 3.3-3.6.
The experiment using camera position1 showed that the gaze angle, head
rotation R, eye position, and head position-R features were effective.
Other features, such as Eye Position with Z and Head Rotation T, were
somewhat effective but less effective than other features. The head
rotation R feature achieved the highest accuracy of 73.20%.

Table 3.3: The SVM Classifier Using Single Features results

№ Strategies
Accuracy /%/

Camera position 1 Camera position 2

1 Gaze angle 54.12% 75.75%

2 Head position R 70.31% 77.12%

3 Head position T 31.18% 32.06%

4 Eye position 56.85% 69.35%

5 Eye position WO-Z 60.17% 70.85%

6 Head rotation R 73.20% 86.80%

7 Head rotation T 49.06% 52.20%

Note:
Eye position WO-Z = Eye position without Z-axis values

The test results also showed that the head rotation R feature was
the most effective, and the test results using camera position 2 were
better than camera position 1. Furthermore, Table 3.3 shows that the
effectiveness of all features has increased using camera position 2.

After that, we conducted an experiment to determine the effectiveness
of these features when combined with other features for gaze mapping.
In this experiment, less effective features from the previous experiment
were excluded.
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Table 3.4: The SVM Classifier Using Dual Features results

№ Strategies
Accuracy /%/

Camera position 1 Camera position 2

1 Gaze angle + Head
position R

73.87% 78.31%

2 Gaze angle + Head
rotation R

74.12% 87.20%

3 Gaze angle + Eye po-
sition

56.31% 73.46%

4 Gaze angle + Eye po-
sition WO-Z

55.18% 74.96%

5 Head position R +
Head rotation R

77.25% 86.04%

6 Head position R +
Head rotation T

50.19% 54.14%

7 Head position R +
Eye position

75.72% 83.28%

8 Head position R +
Eye position WO-Z

75.79% 83.69%

9 Head rotation T +
Eye position

45.16% 51.74%

Note:
Eye position WO-Z = Eye position without Z-axis values

Table 3.4 shows the results of the 9 combinations with the highest
results. Of these, all combinations of the Head Rotation R feature
were effective, and the combination of gaze angle and head rotation R
achieved an accuracy of 87.20% using camera position 2 for the best
results.

Through our experiments, we found that utilizing head rotation, head
position, gaze angle, and eye position WO-Z features to gaze mapping
is highly effective. While relying solely on head position to estimate
the driver’s gaze direction provides advantages such as detecting gaze
mapping even when detailed facial features cannot be determined, our
observations indicate that combining head (rotation and position) and
gaze (gaze angle and eye position) features is a more effective approach.

Furthermore, we experimented with combining the features triple and
quadruple to determine how they affect the recognition of gaze mapping.
The head rotation features alone and in combination with other features
were all better than the current best results. Of these, the gaze angle
and the Head position R, and a combination of the Head Rotation R
feature, achieved an accuracy of 92.80% for one of the best results, in
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Table 3.5: The SVM Classifier Using Triple Features results

№ Strategies
Accuracy /%/

Camera position 1 Camera position 2

1 Gaze angle + Head posi-
tion R + Eye position

83.74% 90.27%

2 Gaze angle + Head po-
sition R + Eye position
WO-Za

87.57% 91.21%

3 Gaze angle + Head po-
sition R + Head rota-
tion R

86.80% 92.80%

4 Gaze angle + Head po-
sition R + Head rota-
tion T

53.37% 55.02%

Note:
Eye position WO-Z = Eye position without Z-axis values

Table 3.6: The SVM Classifier Using Quadruple Features results

№ Strategies
Accuracy /%/

Camera position 1 Camera position 2

1 Gaze angle + Head po-
sition R + Head rota-
tion R + Eye position

85.12% 91.63%

2 Gaze angle + Head po-
sition R + Head rota-
tion R + Eye position
WO-Z

87.42% 92.85%

Note:
Eye position WO-Z = Eye position without Z-axis values

Table 3.5. Also, a quadruple combination of features gaze angle, head
position R, head rotation R, and Eye position WO-Z is the best accuracy
which is 92.85%, shown in Table 3.6.

Experimental results show that Camera Position 2 (top-up wind-
shield) is more effective than Position 1 (bottom of rear mirror) for
gaze estimation tasks. This is because the driver’s eye gaze and head
position are more clearly visible from camera position 2. For the eye
position feature, it was experimentally determined that the value of the
Z-axis was not considered to be more effective. Therefore, we conducted
separate experiments without the inclusion of Z-axis values and denoted
eye position WO-Z.

Moreover, we chose the best strategy of each method and evaluated
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Table 3.7: Evaluation results of the best strategies for each method

G/R MobileNet 1 OpenFace+SVM 1 OpenFace+SVM 2

1 3/3 2/3 2/3

2 3/3 2/3 2/3

3 3/3 3/3 3/3

4 2/3 3/3 3/3

5 2/3 3/3 3/3

6 3/3 3/3 3/3

7 2/3 3/3 3/3

8 2/3 3/3 3/3

9 3/3 1/3 2/3

11 0/3 3/3 3/3

12 0/3 3/3 3/3

13 3/3 3/3 3/3

14 3/3 3/3 3/3

15 3/3 1/3 2/3

16 3/3 2/3 2/3

Overall: 77.7% 84.4% 88.8%

Note:
G/R = Gaze regions
MobileNet 1 = strategy of the gaze mapping using the MobileNet
model with last 50 trainable layers
Openface + SVM 1: = strategy of the Openface with SVM classifier
using gaze angle, head position R, and head roation R (camera position
2)
Openface + SVM 2: = strategy of the Openface with SVM classifier
using gaze angle, head position R, head roation R and eye position
WO-Z features (camera position 2)

the performance of each strategy using a real driving video. During the
video, the driver primarily focuses on gaze region 2 and subsequently
looks at each gaze region three times. This includes looking at gaze
region 1, returning to gaze region 2, and then returning to gaze region 1
again before repeating this pattern for all gaze regions. Table 3.7 shows
the results of these evaluations. The strategy of the gaze mapping using
the MobileNet model (with the last 50 trainable layers) in Table 3.7
predicted all of the gaze regions except 11 and 12 with a high percentage.
Two strategies of gaze mapping using the OpenFace with SVM classifier
predicted all gaze regions. The MobileNet model performed better than
the OpenFace with SVM classifier when using test data (180 drivers’
face images for each gaze region). However, when using the real driving
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video, the average accuracy of both strategies using the OpenFace with
SVM classifier was higher than the strategy using MobileNet. Among
these compared strategies, the Openface with SVM classifier using gaze
angle, head position R, head rotation R and eye position WO-Z features
had the highest performance accuracy of 88.8%. Also, for gaze mapping
method using the MobilNet model, we noticed in this evaluation that
slight camera movements greatly affect the results. Therefore, we chose
the OpenFace with SVM classifier to compare with similar existing
studies.

3.3.3 Gaze mapping using domain adaptation method

In this section, we have provided a detailed analysis of experimental
results obtained from the gaze mapping using the domain adaptation
method. This includes a discussion of the implications of these results,
a comparison with existing methods, and the limitations of our study.
In this, we prepared the source and target datasets in the following
ways: on different drivers in the same environment, on the same driver in
different environments, and on different drivers in different environments,
as shown in Figure 3.6. As a result, domain adversarial training was
performed on the above differently trained datasets. As a result, we
determined how different drivers, different environments, and different
environments and different drivers affect the results of gaze estimation
methods using domain adaptation. Also, during domain adaptation,
we determined which of the driver’s full appearance with environment
images and face images were effective for adaptive training.

To conduct our experiments, we utilized two different datasets, DGM
and Cave-DB. In the training process, we utilized the DGM dataset
as the source domain. We trained on this datasets and subsequently
adapted and tested it to the Cave-DB dataset as the target domain. As
a result of the training described in Section 2, our proposed method
shown in Figure 2.6 is prepared for testing on the target domain. In
the pre-processing step, there are two modes available - full appearance
image (Strategy A) and face image (Strategy B), mentioned in Section 2.
So, in this section, we will present and analyze the experimental results
of strategies of gaze mapping using the domain adaptation method.
Additionally, we conduct experiments on the DGM dataset, which
includes different camera positions. It explores the possibility of adapting
to different camera positions in the same domain for self-calibration
tasks. Furthermore, we provided an analysis of the results obtained from
the proposed model. This includes a discussion of the implications of
these results, a comparison with existing methods, and the limitations
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Figure 3.6: Prepared datasets and domain adaptation versions

of our study.

Implementation details: We experimented with gaze mapping
using the domain adaptation method and trained the model with specific
parameters in both the source and target domains. For the feature
extractor, the learning rates were set to 0.001 in the source domain and
0.0005 in the target domain. The classifier’s learning rate was set to
0.001 in both domains. We set the adversarial loss weight and domain
classifier weight to 0.1. The training was done with a batch size of 64 and
30 epochs. We initialized the feature extractor with a pre-trained model
and used the Adam optimizer. We provided a step-by-step algorithm
adversarial training in the following section. For more details on the
training process, please refer to Algorithm 1.

Strategy A experiment: As shown in Figure 3.6, we organized
domain adaptation training in 3 different versions using the driver’s full
appearance with environment images (Strategy A). First, we trained
the DGM dataset using camera position 1 as the source domain, and
camera position 2 as the target domain, using sets of datasets as shown
in Table 3.8.

In this experiment, we explored the possibility of learning from
each other between datasets with the same driver or facial features but
different camera positions. Based on the results, the average accuracy
was 85%. In the experiment, it is evident from Figure 3.7 that there is
significant confusion between gaze regions 6 and 9, as well as between
gaze regions 7 and 8. Furthermore, it can be observed that there is
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Table 3.8: Amount of datasets used in domain adaptation versions

Domain adaptations Source Target Test

DGM-1 to DGM-2 12285 images 3900 images 1300 images

with 13 labels with 13 labels with 13 labels

DGM-1 to DGM-1 12285 images 3900 images 1300 images

with 13 labels with 13 labels with 13 labels)

DGM-1 to Cave-DB
12285 images

with 13 labels

3900 images

with 13 labels

1300 images

with 13 labels

Note:
DGM-1 = DGM dataset using camera position 1
DGM-2 = DGM dataset using camera position 2
DGM-1 to DGM-1 = across same environment, different drivers

some confusion in regions with low head movement. Also, a small of
confusion was formed between gaze regions 1 and 2, and gaze regions
8 and 11, which are regions that can be moved by the movement of
the eyeball. This suggests a risk of confusion between gaze regions
that require minimal head movement and require small changes in gaze
direction. Although the confusion was between the aforementioned gaze
regions, the feasibility of self-calibration was demonstrated using the
domain adaptation method across different camera positions within the
same domain.

Secondly, we trained the DGM dataset using camera position 1 as
the source domain, and a different driver with the same environment
as the target domain, using sets of datasets as shown in Table 3.8. In
this experiment, we aimed to determine the adaptive performance of
different domains in the same environment. According to the results of
the experiment, the performance of each gaze region demonstrated that
the minimum accuracy was 76% or more, and the average accuracy was
88.76%. This indicates that serious confusion has not occurred in each
region. Also, it can be seen from Figure 3.8 that the resulting confusion
is usually observed with the neighboring gaze region.

Finally, we conducted an experiment where we used the DGM dataset
as the source domain and the Cave-DB dataset as the target domain,
using sets of datasets as shown in Table 3.8. The purpose of this
experiment was to demonstrate how our proposed model can adapt to
different domains and environments. The results showed that the target
domain was classified with reasonable accuracy, except for gaze region
5 which was mis-classified as neighboring gaze region 4. Apart from
this, the results were reasonable, with an average accuracy of 81.38%,
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Figure 3.7: Confusion matrix of strategy A on the same driver, different
environment

Figure 3.8: Confusion matrix of strategy A on different drivers, same
environment
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Figure 3.9: Confusion matrix of strategy A on different drivers, different
environments

as shown in Figure 3.9.

Strategy B experiment : In this experiment, we trained the DGM
dataset as the source domain and the Cave-DB dataset as the target
domain by strategy B of pre-processing which uses a face image. The
average SCER accuracy was 93.53% and the LCER rate was 98.9%, as
shown in Figure 3.10.

Based on the results, Strategy B proves to be more effective than
Strategy A. The average SCER accuracy rate of Strategy B is 12.15%
higher compared to Strategy A which uses the driver’s full appearance
image. Moreover, the experiment’s findings indicated that there is more
confusion when transitioning between gaze regions that require only
slight head and eye movements, such as gaze regions 1 and 2. However,
there seems to be less confusion when transitioning between gaze regions
that require more significant head and eye movements. For example,
the gaze regions of side mirrors can be mentioned.

Then, we tested on the DGM dataset, where camera position 1 was
the source domain and camera position 2 was the target domain. The
accuracy of strategy B of pre-processing which uses a face image was
reasonable. On average, the accuracy of the SCER was 94.85%, as
illustrated in Figure 3.11. This indicates that Strategy B is also more
efficient than Strategy A, with an average SCER accuracy rate that is
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Figure 3.10: Confusion matrix of strategy B on different drivers, and
different environments

Table 3.9: Performance results on domain adaptation versions

Training versions
Full-appearance image Face image

SCER LCER SCER LCER

DGM-1 to DGM-2 85.00% 98.80% 94.85% 99.23%

DGM-1 to DGM-1 88.76% 96.23% - -

DGM-1 to Cave-DB 81.38% 96.69% 93.53% 98.90%

Note:
DGM-1 = DGM dataset using camera position 1
DGM-2 = DGM dataset using camera position 2
DGM-1 to DGM-1 = across same environment, different drivers

9.8% higher. As a result, strategy B proved to be more effective on the
above two tasks.

During the above three domain adaptation experiments, shown in
Table 3.9, various findings were observed. Firstly, it was discovered
that accurate gaze mapping on different drivers can be performed using
domain adaptation. Secondly, the position of different cameras in the
same domain can self-calibrate. Additionally, the experimental results
show that the proposed method can reduce gaze mapping errors. The
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Figure 3.11: Confusion matrix of strategy B on the same driver, different
environment

Figure 3.12: Confusion matrix of the strategy using gaze angle, head
position R and head rotation R features
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Figure 3.13: Confusion matrix of the strategy using gaze angle, head
position R, head rotation R and Eye position WO-Z features

findings also demonstrate that the proposed method can reduce the
gaze mapping error of the pre-trained adapted model, and even perform
better on different drivers (cross-subject) and environments (different
camera positions). In addition, when analyzing the results of the three
confusion matrices, it was seen that the model is very stable only
in domain transition without environmental change. These results
underscore the effectiveness of our method in adapting to different
domains. On the other hand, it was observed that it is comparably weak
for the same domain and different environments (using different camera
positions). In other words, we noticed that our domain adaptation
model for gaze mapping, while robust for different domains, is affected
by significant camera changes. This highlights the adaptability of our
approach to diverse environments and even different camera positions
for the same driver, indicating potential self-calibration capabilities. We
also discovered that strategy B was more effective than strategy A in
both of the given tasks. This indicates that strategy B is more successful
in domain adaptive learning. In other words, we observed that the
feature extraction step produces cleaner output as the environment’s
influence decreases.
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3.3.4 Cave-DB and comparison with the existing studies

In this section, we compare all of our above-mentioned proposed strategies
using the Cave-DB dataset compare them with other similar studies and
present the results. On the other hand, we assessed the best-performing
strategies for our proposed methods with other existing approaches. In
this comparison, we evaluated 13 gaze regions that are commonly used
in other existing studies that evaluated them on Cave-DB. Also, since
we presented the experimental result of the domain adaptation method
on CAVE-DB in the previous section, we will use the above results in
this section.

As we mentioned in Section 3, we considered the SCER and LCER
metrics. The SCER metric is the percentage of frames that are strictly
correct, meaning the estimated gaze region matches the ground truth
gaze region. The LCER metric is the percentage of frames that are
loosely correct, meaning the estimated gaze region is within the ground
truth gaze region and its neighboring regions. For gaze mapping using
Openface with SVM classifier, during the experiment on the Cave-DB
dataset, it was discovered that the combination of gaze angle, head
position R, and head rotation R features (best of triple features) led to
an accuracy rate of 80.4%, shown in Figure 3.12. However, when Eye
position WO-Z features were added (best of quadruple features), the
accuracy rate increased to the average Strictly Correct Estimation Rate
(SCER) accuracy of 85.6%, in Figure 3.13.

Moreover, based on the analysis of the CAVE-DB dataset, it has
been observed that the use of Openface with SVM classifier, along with
the combination of gaze angle, head position R, head rotation R and
Eye position WO-Z features (the best of quadruple features) results in
better performance than the best of triple features for gaze mapping.

Finally, our strategies were compared with other existing studies
on the Cave-DB dataset. The summary results are shown in Tables
3.10 and 3.11. As can be observed from this evaluation, our results are
slightly better than those of the previous study. Our first strategy which
is a combination of gaze angle, head position R, and head rotation R
features showed a SCER rate of 80.4% and an LCER rate of 98.3%.
Also, our second strategy which is a combination of Gaze angle, head
position R, head rotation R, and eye position WO-Z features showed
the best result of SCER rate of 85.6% and LCER rate of 98.7%. Also,
our other strategies using the domain adaptation method, achieved an
average Strictly Correct Estimation Rate (SCER) accuracy of 81.38%
and 93.53%, and a Loosely Correct Estimation Rate (LCER) accuracy
of 96.69% and 98.9% for the two strategies, respectively. Strategy A
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Table 3.10: Comparison of our methods with existing studies on Cave-
DB by SCER

G/R Choi et.al Naqvi et.al Lee et.al Our 1 Our 2 Our 3 Our 4

1 55% 87% 52% 77% 78% 54% 100%

2 52% 73% 64% 83% 85% 83% 98%

3 51% 80% 64% 74% 70% 100% 98%

4 53% 79% 21% 91% 91% 97% 100%

5 47% 67% 48% 58% 63% 0 46%

6 51% 72% 33% 60% 86% 61% 100%

7 52% 69% 3% 94% 95% 85% 100%

8 45% 67% 29% 72% 83% 98% 83%

9 53% 79% 35% 78% 81% 100% 100%

13 53% 86% 85% 99% 99% 100% 100%

14 53% 81% 4% 85% 85% 100% 100%

15 70% 88% 88% 97% 99% 100% 95%

16 50% 77% 46% 78% 99% 80% 96%

Avg: 53.1% 77.7% 44.0% 80.4% 85.6% 81.3% 93.53%

Note:
G/R = Gaze regions
Our 1 = The strategy using gaze angle, head position R
and head rotation R features
Our 2 = The strategy using gaze angle, head position R,
head rotation R and Eye position WO-Z features
Our 3 = The strategy A using domain adaptation method
Our 4 = The strategy B using domain adaptation method

using domain adaptation method demonstrated 0% recognition in gaze
region 5 according to the SCER metrics, resulting in a decrease in the
overall average accuracy. The recognition accuracy of other regions
is reasonable. The confusion matrix indicates that gaze region 5 is
often confused with its neighboring region 4, which is the closest gaze
region, Figure 3.14 illustrates the point clearly. It is worth mentioning
that Strategy B not only predicts high performance in all gaze regions
but also improves the performance of Strategy A in region 5, which
experiences high confusion. Additionally, Strategy B is more effective
than Strategy A in terms of accuracy. On average, the SCER accuracy
rate of Strategy B is 12.15% higher than that of Strategy A, which uses
the driver’s full appearance image. In other words, all of our strategies
outperformed other existing methods, but among them, Strategy B of
the domain adaptation method showed the best performance.

In addition to these studies, another state-of-the-art study is Vora
et al. [63]. But they used 6 gaze regions: Forward, Right, Left, Center
Stack, Rear view mirror, and speedometer. It is difficult to compare the
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Table 3.11: Comparison of our methods with existing studies on Cave-
DB by LCER

G/R Choi et.al Naqvi et.al Lee et.al Our 1 Our 2 Our 3 Our 4

1 83% 97% 98% 97% 99% 89% 100%

2 98% 97% 100% 99% 99% 99% 99%

3 76% 94% 92% 99% 99% 100% 98%

4 85% 97% 93% 99% 99% 97% 100%

5 100% 97% 93% 99% 99% 98% 99%

6 83% 95% 86% 99% 99% 92% 100%

7 83% 96% 72% 97% 98% 89% 100%

8 98% 98% 81% 98% 97% 97% 95%

9 83% 92% 76% 99% 99% 100% 100%

13 96% 97% 100% 99% 99% 100% 100%

14 72% 93% 54% 98% 98% 100% 100%

15 93% 99% 100% 98% 99% 100% 97%

16 96% 95% 61% 98% 99% 97% 99%

Avg: 88.7% 96.3% 85.1% 98.3% 98.7% 96.7% 98.9%

Note:
G/R = Gaze regions
Our 1 = The strategy using gaze angle, head position R
and head rotation R features
Our 2 = The strategy using gaze angle, head position R,
head rotation R and Eye position WO-Z features
Our 3 = The strategy A using domain adaptation method
Our 4 = The strategy B using domain adaptation method

results of studies with 13 gaze regions. Because there are fewer gaze
regions and less chance of confusion. In their study, SqueezeNet, the
best method on Face Embedded FoV, has 89.3% accuracy. However,
our results of strategies of our proposed methods obtained matching
results for more gaze regions, which can be considered as decent results
comparable to state-of-the-art studies. Based on the experimental
results, our proposed methods demonstrate comparable performance
to the current state-of-the-art studies, and in some cases, the result
of strategy using gaze angle, head position R, head rotation R and
Eye position WO-Z features even outperforms the result of existing
studies. Our study also indicates that the problem of different domains
or different driver performance degradation can be effectively addressed
by utilizing domain adaptation methods, which have shown reasonable
results. This highlights the adaptability of our approach to diverse
environments.
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3.4 Pedestrian detection evaluation

We implemented and tested both of the Lucas-Kanade method and
YOLOv4 model for the same task of our research, shown in Figure
3.14. The evaluation results of these two methods on real video of road
environment are shown in Table 3.12. It can be seen from the results that
both methods performed reasonably well in the evaluation. However, a
few things were noticed during the experiment.

The Lucas-Kanade method may be suitable for real-time applications
where speed is critical and you make certain assumptions about the
scene’s simplicity and the motion of objects. In evaluation, it was not
the best choice for high-precision pedestrian detection in challenging
environments. However, in the case of Gaze Region 8, when entering the
region, it was wrongly recognized as Gaze Region 5 by the neighboring
region, but after entering the center of the region, it was correctly
recognized as Gaze Region 8. However, it has been observed that
there is a problem with occlusions, varying lighting conditions, complex
backgrounds, multi-object detection, and multi-recognition.

In other words, the Lucas-Kanade method detects moving objects
such as pedestrians; there were cases where it was lost due to a noisy
background during tracking, and it was not detected due to the effect
of light. This means that although the pedestrian is recognized, it
cannot be detected in some frames, and the tracking process is lost.
On the other hand, YOLOv4, in addition to high-accuracy detection,
required lower resources in terms of performance compared to similar
deep learning-based methods, which was the reason for our choice.

Table 3.12: Evaluation results of the Lukas-Kanade dense and YOLOv4
for pedestrian detection task

G/R
Procedures

Method 1 Method 2

Detect Pred.State Detect Pred.State

2 yes 2 yes 2

5 yes 5 yes 5

8 yes 5/8 yes 8

G/R = Gaze regions
Method 1 = Pedestrian detection using Lucas-
Kanade method
Method 2 = Pedestrian detection using YOLOv4
model
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Figure 3.14: Scene of comparative evaluation of the Lucas-Kanade and
YOLOv4

3.5 Evaluation of driver’s distraction detection
module

In this section, we evaluated the combination of the gaze mapping
method and the pedestrian detection method. We evaluated the state of
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the distraction of the driver based on the combination of two procedures,
such as gaze mapping and pedestrian detection, on the evaluation video.
In the video, the pedestrian starts his movement from gaze region 8,
then passes through gaze region 5 and 2 to reach gaze region 1, shown
in Figure 3.15. At this moment, the driver is gazing at the pedestrian.

Figure 3.15: Evaluation scene of the combination of gaze mapping using
Openface with SVM and YOLOv4

In Table 3.13, the gaze mapping method using domain adaptation
determined the direction of a driver’s gaze, gaze regions 8 and 5 were
correct, but Gaze Region 2 and 1 were incorrectly predicted as Gaze
Region 5 and 2. However, in the case of Gaze Region 2, when entering
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Table 3.13: Comparative results of the combination of gaze mapping
and pedestrian detection

G/R
Procedures

Ped.Det GM 1 GM 2
Detect Pred.d Detect Pred.d Detect Pred.d

8 yes 8 Yes 8 yes 8

5 yes 5 Yes 5 yes 5

2 yes 2 Yes 2 Yes/No 5/2

1 yes 2 No 2 No 2

G/R = Gaze regions
Ped.Det = Pedestrian detection using YOLOv4 model
GM 1 = Gaze mapping using Openface with SVM using the
combination of Gaze angle, head position R, head rotation R, and
eye position WO-Z features
GM 2 = Gaze mapping using Domain adaptation (Strategy B)

the region, it was wrongly recognized as Gaze Region 5 by neighboring
region, but after entering the center, it was correctly recognized as Gaze
Region 2. On the other hand, when the gaze mapping method using
the OpenFace with SVM classifier determined the direction of a driver’s
gaze, gaze regions 8, 5 and 2 were correctly predicted, but gaze region 1
was incorrectly predicted as gaze region 2 by neighboring region. We
observed that the incorrectly predicted gaze regions were a neighboring
of the target gaze region in both methods.

3.6 Evaluation of pedestrian safety module

In this section, we will present the evaluation of the pedestrian safety
module based on its two main procedures: pedestrian distance and
position detection, and lane line detection. We tested the pedestrian
safety module using a combination of two procedures. For the evaluation,
we used three different road videos in different environments. The first
video was shot in a city center with clear lane lines but many other road
users, including pedestrians and vehicles. The second video had clear
lane lines and fewer pedestrians who were further away from the vehicle.
The final video had either blurred or no lane lines and fewer pedestrians,
as described in Figure 3.16. The evaluation results are displayed in
Table 3.14.

Based on the test results, both procedures appeared to perform
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Table 3.14: Comparative results of the combination of gaze mapping
and pedestrian detection

Videos Accurate Recog-
nition Rate (%)
of the lane line

Accurate Recognition
Rate (%) of pedestrian
distance & position

City center 96.07% 94.24%

Suburban 98.45% 80.97%

Rural 92.85% 84.15%

Average: 95.79% 86.45%

Figure 3.16: Evaluation scene of the pedestrian safety module
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reasonably. However, our video analysis revealed that the pedestrian
distance and position detection procedure faced issues with recognizing
small objects in noisy backgrounds. If it is not recognized as a pedestrian,
the whole procedure will not work properly. Because it creates a bound-
ing box by identifying it as a pedestrian and then estimates the distance
and location of the pedestrian. Specifically, when analyzing video from
the suburban area, pedestrians at a distance were not detected until
they were closer. We also observed that the model accurately recognized
pedestrians up to approximately 30 meters away from the camera, but its
performance declined for pedestrians further away. Fortunately, the road
range we are interested is within 25 meters. Based on our pedestrian
distance and position detection procedure, we can confidently say that it
meets our requirements as it performs exceptionally well up to a distance
of 30 meters.



Chapter 4

Conclusion and Future work

4.1 Conclusion

In this thesis, we introduced an innovative and cost-efficient Safe Driving
Support System designed to address the critical issues of driver distrac-
tion and pedestrian safety. Our system leverages the capabilities of dual
dashboard cameras to create a non-intrusive and lightweight solution
that can enhance road safety.

Within this proposal, we investigated the effects of combining the
features one by one and with the other features in binary, triple, and
quadruple to determine how they affect the estimation of gaze mapping
using different camera positions. According to experiment results, Cam-
era Position 2 is superior to Camera Position 1 for gaze estimation. The
driver distraction detection module in our system employs advanced gaze
mapping techniques and facial feature extraction. We compared three
strategies for gaze mapping, and the results showed that the strategy
using OpenFace with SVM classifier (using gaze angle, head position R
features, head rotation R features, and eye position WO-Z features)
outperformed all other methods, achieving an impressive 85.6% accuracy
for Strictly Correct Estimation Rate (SCER) and a 98.7% accuracy for
Loosely Correct Estimation Rate (LCER). These results indicate the
effectiveness of our approach in accurately identifying driver distraction.

Our other approach gaze mapping used the domain adaptation
method. The research also addressed common challenges encountered
in existing gaze mapping systems, such as performance deterioration
across different drivers and environments. To overcome these challenges,
domain adaptation techniques were employed to mitigate the negative
effects of domain shifting. The thesis discussed several related studies
that utilized adversarial learning, elimination of gaze-irrelevant features,

53



54 CHAPTER 4. CONCLUSION AND FUTURE WORK

and unsupervised domain adaptation techniques. The proposed method
consisted of three steps: pre-processing, facial feature extraction, and
gaze region classification. Two pre-processing strategies were explored:
using the driver’s full appearance image and focusing on the driver’s
face image. Experimental results demonstrated that gaze mapping using
the domain adaptation method achieved an average Strictly Correct
Estimation Rate (SCER) accuracy of 81.38% and 93.53%, and a Loosely
Correct Estimation Rate (LCER) accuracy of 96.69% and 98.9% for the
two strategies, respectively. These results underscore the effectiveness
of our method in adapting to different domains. Furthermore, we
attain an average SCER accuracy of 85.00% and 94.84%, and LCER
accuracy of 98.80% and 99.23% for the two strategies, respectively. This
highlights the adaptability of our approach to diverse environments and
even different camera positions for the same driver, indicating potential
self-calibration capabilities. The method achieved remarkable accuracy
rates in gaze region classification, reducing the gaze mapping error and
showcasing better performance across different drivers.

The thesis also introduced the Driver Gaze Mapping (DGM) data-
set, which was prepared specifically for the gaze mapping task. The
dataset included images from different camera positions and diverse
driving environments. Additionally, the open dataset Columbia Cave-
DB was utilized to evaluate the proposed method’s accuracy through
unsupervised classification and comparison with existing studies. The
experimental results demonstrated that the proposed method surpassed
previous approaches in terms of accuracy and performance.

Furthermore, our system integrates a pedestrian safety module that
analyzes road conditions, lane lines, and pedestrian positions. This mod-
ule demonstrated promising results, with an average lane line recognition
accuracy of 95.79% and a pedestrian distance and position detection
accuracy of 86.45%. While there were some challenges in recognizing
pedestrians at greater distances, our system performed exceptionally
well within the critical 25-meter range. By combining these two modules,
our SDSS aims to proactively detect and mitigate the root causes of
many accidents - driver distraction and pedestrian risk. The integration
of real-time video analysis and state-of-the-art technologies enhances
road safety by providing timely warnings and assistance to drivers.

In a nutshell, our research offers a comprehensive solution to address
the pressing issues of driver distraction and pedestrian safety. The results
from our experiments highlight the system’s effectiveness in detecting
and mitigating potential hazards on the road. We believe that the
deployment of such systems can play a crucial role in reducing accidents
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and saving lives on our roads, ultimately contributing to a safer and
more secure transportation environment.

4.2 Future work

Gaze mapping using face generalization method:
Researchers are currently conducting innovative studies in the field

of gaze mapping. One such study uses Face Generalization for gaze
estimation, which is very inspiring. The study removes personal facial
features from the training data and only uses gaze-related features.
This approach ensures that factors such as the personal appearance of
participants used in the training dataset, the number of participants,
and their gender do not affect the information.

Figure 4.1: Overview of gaze mapping using face generalization method

The primary objective of this study is to determine the direction of
eye gaze using generalized facial features. The use of face generalization
in gaze estimation tasks ensures that only gaze-relevant features are
preserved, while gaze-irrelevant features are eliminated. Figure 4.1
provides a detailed description of the face generalization task. The
Adversarial Neural Network method is used to preserve the gaze-relevant
feature and eliminate gaze-irrelevant features. This method aims to
reduce gaze-irrelevant features and maximize gaze-relevant features.

In other words, the extracted feature needs to contain more gaze
information and less general image information. Adversarial learning is
used during the process to eliminate gaze-irrelevant features and preserve
the gaze-relevant feature.

In this way, with zero-shot gaze mapping using gaze generalization
which is the task of driver face feature extraction where no visual training
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data is available for some of the target drivers, it will be possible to
determine the gaze direction without any configuration and additional
training. This will be a significant contribution to this field of research,
which lacks real-world datasets during driving.

Post-processing:

In our future work, we also plan to enhance the results of the gaze
mapping step by focusing on the Features of Neighboring Gaze Regions
(FNGR). Our observations revealed that certain gaze regions with high
probabilities were not necessarily neighbors, leading us to the need for
optimization. By considering the features of neighboring gaze regions,
we aim to improve the accuracy of the classifier’s predictions. This
optimization process involves identifying neighboring gaze regions in
feature space clusters, closely resembling the actual driver’s gaze regions.

Figure 4.2: Overview of Features of Neighboring Gaze Regions

FNGR has been observed that the feature extractor categorizes
images from distinct gaze regions into separate different feature space
clusters. The gaze regions depicted in these feature space clusters and
the distance between them are akin to the actual driver’s gaze regions,
we call these the features of neighboring gaze regions. To put it simply,
the gaze region where the driver looks in real life and the feature space
clusters have identical neighbors, and the relative distances between
these neighbors are maintained in the same way as demonstrated in
Figure 4.2. Therefore, we need to implement the enhancer module to
improve the results based on the features of neighboring gaze regions.
The Features of Neighboring Gaze Regions (FNGR) is a simple yet
crucial feature in gaze mapping, as it considers the neighboring regions
of real gaze regions, even within feature space clusters. In other words, it
is possible to determine the region of any gaze region by the position of
its neighboring regions. This means that even if it does not have a label,
it can be assigned a label by its immediate neighbors. Assuming that
G(i) is the i -th gaze region, N(G(i)) represents its neighboring regions.
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To describe G(i) based on its neighboring regions, we denote as a F(G(i))
= f(N(G(i))). For our task, we will use this feature as an optimizer. The
enhancer module of FNGR retains the previously predicted gaze region,
denoted as G(i-1). As mentioned above, in this optimazation process,
the gaze regions predicted by the gaze mapping step are taken and select
the first five regions with the highest probability. Consequently, it is
determined whether each selected gaze region is a neighboring to the gaze
region G(i-1). If the gaze region is not contiguous, it is removed from the
recommendation list. To determine the final gaze region, the enhancer
module analyzes the remaining gaze regions on the recommendation list
and selects the one with the highest probability.

In addition to this specific improvement, we have outlined several
other activities for our future work:

• Enhancing Pedestrian Recognition: We aim to improve the SDSS’s
ability to recognize pedestrians at greater distances, specifically
within a range of up to 30 meters. This is crucial for enhancing
the safety and situational awareness of the system.

• Predictive Algorithms: We plan to develop predictive algorithms
that go beyond driver distraction detection and also anticipate
potentially distracting situations by analyzing driver behavior and
context. This proactive approach will enable the SDSS to issue
warnings and provide assistance before distractions become critical.

• To ensure optimal performance, it is crucial to conduct extensive
real-world testing and validation of the SDSS under diverse driv-
ing conditions and environments. This comprehensive evaluation
would enable a thorough assessment of its performance in various
scenarios, and facilitate refinement of its algorithms accordingly.

• It is also essential to investigate ways to reduce the cost of imple-
menting the SDSS, making it more accessible for a broader range
of vehicles.
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