
Research on Medical Image Segmentation Based

on Deep Learning Methods

Zhou Yuxiang

A Thesis submitted to Tokushima University in partial

fulfillment of the requirements for the degree of Doctor

of Philosophy

March, 2024

Department of Information Science and Intelligent Systems

Graduate School of Advanced Technology and Science

Tokushima University, Japan



CONTENTS i

Contents

Abstract 1

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Tasks in Medical Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Method for Medical Image Segmentation . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Research Contents and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 MDSU-Net for 2D Medical Image Segmentation . . . . . . . . . . . . . . . . . . 11

1.3.2 DEU-Net for 3D Medical Image Segmentation . . . . . . . . . . . . . . . . . . . 11

1.4 Thesis Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Related Work 14

2.1 CNN for Medical Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Attention Mechanism for Medical Image Segmentation . . . . . . . . . . . . . . . . . . . 17

2.2.1 Attention Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Dual Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Convolutional Block Attention Module . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Transformer for Medical Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 24

3 MDSU-Net for 2D Medical Image Segmentation 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Depthwise Separable Convolution Module . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Dual Attention Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Attention Gate Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Comparison with State-of-the-arts . . . . . . . . . . . . . . . . . . . . . . . . . . 37



CONTENTS ii

3.4.2 Statistical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.4 Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 DEU-Net for 3D Medical Image Segmentation 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Transformer Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 CNN Encoder with CBAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Dual Feature Fusion Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.4 CNN Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.5 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Comparison with State-of-the-arts . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Conclusion and Future Work 68

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Acknowledgement 71

Bibliography 86



LIST OF TABLES iii

List of Tables

1.1 Commonly used datasets for medical image segmentation. . . . . . . . . . . . . . . . . . 7

3.1 Three different types of medical image segmentation datasets. . . . . . . . . . . . . . . . 36

3.2 Comparison results on the ATLAS dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Comparison results on the CHAOS dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Comparison results on the NERVE dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Results of different number of AGs on the ATLAS, CHAOS, and NERVE datasets. . . . . 40

3.6 Results of different number of dual attention on the ATLAS, CHAOS, and NERVE datasets. 41

3.7 Results of different number of DSC blocks on the ATLAS, CHAOS, and NERVE datasets. 42

3.8 Results of different λdice in loss function on CHAOS and NERVE datasets. . . . . . . . . . 43

3.9 Results of Dice, FLOPs, parameters, training time, and inference time in CHAOS. . . . . . 43

4.1 BraTS datasets for 3D medical image segmentation. . . . . . . . . . . . . . . . . . . . . . 56

4.2 Comparison results with SoTA methods on the BraTS 2020 dataset. . . . . . . . . . . . . 57

4.3 Comparison results with SoTA methods on the BraTS 2021 dataset. . . . . . . . . . . . . 57

4.4 Results of CBAM on the BraTS 2020 and BraTS 2021 datasets. . . . . . . . . . . . . . . 59

4.5 Results of Transformer with and without pre-trained on the BraTS 2020 and BraTS 2021

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Results of DFFM on the BraTS 2020 and BraTS 2021 datasets. . . . . . . . . . . . . . . . 62

4.7 Results of feature size in CNN on the BraTS 2020 and BraTS 2021 datasets. . . . . . . . . 63



LIST OF FIGURES iv

List of Figures

1.1 Semantic segmentation and instance segmentation. . . . . . . . . . . . . . . . . . . . . . 5

1.2 The main U-Net-based models for medical image segmentation according to the 2015-2023

timeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Overview of U-Net. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Schematic of attention gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Schematic of dual attention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Schematic of convolutional block attention module. . . . . . . . . . . . . . . . . . . . . . 22

2.5 Schematic of Transformer encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Three examples of different types of medical images. . . . . . . . . . . . . . . . . . . . . 28

3.2 Overview of MDSU-Net. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Segmentation examples of small lesion area from ATLAS. . . . . . . . . . . . . . . . . . 30

3.4 Schematic of depthwise separable convolution module. . . . . . . . . . . . . . . . . . . . 31

3.5 Schematic of attention gate module in MDSU-Net. . . . . . . . . . . . . . . . . . . . . . 34

3.6 Boxplot of Dice coefficient for all test samples from ATLAS, CHAOS, and NERVE. . . . 40

3.7 Visualization of segmentation results from our method, 3D-ResU-Net, CLCI-Net and U-Net. 45

4.1 Overview of DEU-Net architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Schematic of Transformer encoder in DEU-Net. . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Schematic of CNN encoder with CBAM. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Schematic of dual feature fusion module. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Schematic of CNN decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Validation curve of Transformer with and without pre-trained on the BraTS 2020 dataset. . 61

4.7 Validation curve of Transformer with and without pre-trained on the BraTS 2021 dataset. . 61

4.8 Visualization of segmentation results from our method, 3D attention U-Net, UNETR and

3D U-Net. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



Abstract 1

Abstract

Medical imaging involves the technique and process of generating visual representa-

tions of a patient’s body for clinical analysis and medical intervention. Healthcare profes-

sionals heavily depend on medical images for accurate diagnosis and treatment. In clinical

practice, segmentation is typically performed manually. However, when processing a vast

number of medical images, the quality of segmentation can vary based on the expertise

of the medical professional. This variability underscores the need for a more consistent

and efficient method to enhance the performance of segmentation tasks. Amassing such

datasets is a complex task and is often beyond the capacity of a single institution within

a limited timeframe. As a result, medical datasets tend to be smaller in size and can ex-

hibit inconsistencies. Another notable characteristic of medical images is the imbalance

between the foreground and background areas. Unlike natural scene images, where the

foreground and background might be more balanced, medical images often have a much

larger background compared to the foreground.

Extensive research has been conducted over the years to achieve fully automatic seg-

mentation of the region of interest in medical images, aiming to improve efficiency and

accuracy in comprehending such images. Based on deep learning and the server’s pow-

erful data processing capabilities, pixel-level processing and segmentation methods are

usually used to process medical images, especially for brain tumor segmentation in 3D

MRI scans, and for organ and lesion segmentation in 2D images. With the continuous

development of deep learning, various neural network models have made remarkable

achievements in semantic segmentation, stimulating research interest in medical image

segmentation using deep learning.

In this work, we propose an Multi-Attention and Depthwise Separable Convolu-

tion U-Net (MDSU-Net), a variation of the U-Net, for 2D medical image segmentation.

MDSU-Net incorporates both multi-attention and DSC layer for improved performance.

The multi-attention module within our framework utilizes dual attention and attention

gates to capture rich contextual information and fuse features of different convolutional
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layers. MDSU-Net uses DSC layer to reduce model complexity without degrading model

performance, which is suitable for different segmentation tasks. MDSU-Net registers a

Dice score of 0.7055 on ATLAS, 0.9760 on CHAOS, and 0.8883 on NERVE, respectively.

Notably, these scores outperform the state-of-the-art (SoTA) benchmarks.

Additionally, in terms of 3D medical image segmentation, we propose Dual Encoder

U-Net (DEU-Net), which uses Transformer and CNN respectively to extract 3D medi-

cal image features in the encoder. Transformer is a pre-trained model in BTCV, which

improves its ability to capture contextual features of medical images and increases the

learning speed. Besides, we introduce CBAM with each convolutional layer in the en-

coder part to enhance CNN’s feature extraction capabilities for 3D medical images. To

fuse the two kinds of features, we proposed a Dual Feature Fusion Module (DFFM) to

fuse the features extracted from the Transformer and CNN in the encoder, making full

use of the feature extraction capabilities of the two extractors for datasets of different

sizes. We compare DEU-Net with other SoTA methods on the BraTS 2020 and BraTS

2021 datasets, and the results show that the performance of DEU-Net has improved in 3D

medical image segmentation task.

Keywords: U-Net, Multi-attention, Transformer, Convolutional neural network, 2D med-

ical image segmentation, 3D medical image segmentation
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1 Introduction

1.1 Motivation

Medical imaging involves the technique and process of generating visual represen-

tations of a patient’s body for clinical analysis and medical intervention [1], the main

approach involves examining a series of 2D slice images or 3D images to identify patho-

logical conditions. This often requires the expertise of medical professionals for accurate

interpretation. Utilizing computer image processing techniques to analyze and process

2D slice images allows for segmentation, extraction, 3D reconstruction, and display of

human organs, soft tissues, and pathological structures. This can assist medical profes-

sionals in qualitatively and even quantitatively analyze pathological conditions and other

areas of interest, significantly enhancing the accuracy and reliability of medical diagnosis.

Medical image segmentation has been widely discussed and concerned in the field

of image processing, which has become a basic component and a crucial stage of image

processing [2,3]. Healthcare professionals heavily depend on medical images for accurate

diagnosis and treatment. However, manual interpretation and analysis of these images can

be time-consuming and prone to inaccuracies, especially when the interpreter lacks proper

training. Extensive research has been conducted over the years to achieve fully automatic

segmentation of the region of interest in medical images, aiming to improve efficiency

and accuracy in comprehending such images.

Based on deep learning and the server’s powerful data processing capabilities, pixel-

level processing and segmentation methods are usually used to process medical images.

Recently, Convolutional Neural Networks (CNNs) have achieved advanced performance

in a wide range of visual recognition tasks [4–7]. These deep models dominate medical

image segmentation and achieve excellent performance in a wide range of applications,

such as brain tumor segmentation [8]. U-Net [9] is a variant of CNN, which has achieved

great performance in medical segmentation tasks. U-Net adapts a skip connection oper-

ation to connect downsampling layers and upsampling layers, so that the segmentation

results are more accurate.
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Medical image segmentation is a crucial research area within medical image process-

ing. The advancement and application of its technology have the potential to enhance the

functioning of medical systems, alleviate the workload of medical professionals, improve

diagnostic efficiency for patients, and ease doctor-patient relationships. Additionally, this

technology plays a crucial supporting role in medical education, surgical planning, surgi-

cal simulation, and various medical research endeavors.

1.2 Background

There are two main categories of general image segmentation tasks: semantic seg-

mentation [10,11] and instance segmentation [12,13]. As shown in Fig. 1.1, image seman-

tic segmentation is a pixel-level classification task that involves predicting the category for

each pixel in an image. In contrast, image instance segmentation not only involves pixel-

level classification but also requires distinguishing between different instances, meaning

independently segmenting different objects within the same category. In the field of med-

ical image segmentation, there are some peculiarities. Due to significant differences in

appearance between different organs or tissues in medical images, the emphasis is often

on semantic segmentation rather than instance segmentation. Therefore, medical image

segmentation tasks usually involve semantic segmentation of medical images. Currently,

the main medical image segmentation tasks include abdominal multi-organ segmenta-

tion [14], brain tumor segmentation [15], optic disc segmentation [16], cell segmenta-

tion [17], skin cancer segmentation [18], and lung nodule segmentation [19]. These tasks

are crucial for precisely locating and quantifying different structures and abnormalities in

medical images.

Image segmentation refers to the process of distinguishing and separating different

regions in an image that hold specific meaning. These regions are non-overlapping, and

each region exhibits a certain level of consistency or homogeneity. The goal is to divide

the image into meaningful and distinct segments, facilitating the analysis and understand-

ing of different structures or components within the image. This technique is fundamen-
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(a) Image

(b) Semantic Segmentation

(c) Instance Segmentation

Fig. 1.1. Semantic segmentation and instance segmentation.

tal for various applications, especially in fields like medical imaging, where it is used

for tasks such as identifying organs, tumors, or other relevant structures. Medical image

segmentation has been widely discussed and concerned in the field of image process-

ing, which has become a basic component and a crucial stage of image processing [2, 3].

Medical image segmentation is an indispensable technique for extracting quantitative in-

formation from medical images, enabling the identification of specific tissues or struc-

tures. It serves as a crucial preprocessing step and prerequisite for visualization. Seg-

mented images find widespread applications in various contexts, including quantitative

analysis of tissue volumes , diagnostics, localization of pathological tissues, anatomical

structure learning, treatment planning, local effects correction in functional imaging data,

and computer-guided surgeries.

Medical image segmentation still faces significant challenges, which lies in the in-

herent complexity and diversity of medical images. The intricate shapes of human tissue

structures and the vast individual variations pose additional difficulties for medical image

segmentation. Variances in patient age, differences in imaging equipment, and even re-
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gional disparities among medical institutions can all impact the overall quality of medical

image slices to varying degrees. The diversity in types and storage formats of medi-

cal images, as well as the multitude of lesions or organ locations in patients, presents

a formidable challenge to the universality of segmentation methods. Inevitably, medical

images exhibit features such as blurriness and unevenness, making segmentation methods

less universally applicable compared to natural scene images.

1.2.1 Tasks in Medical Image Segmentation

Medical imaging techniques mainly include Magnetic Resonance Imaging (MRI),

Computed Tomography (CT), and Ultrasound Imaging (UI) [20–22]. MRI images are a

measure of the size of the magnetic resonance signals generated by hydrogen nuclei in

human tissues, organs and lesions under the action of an external strong magnetic field.

Computers perform 3D image reconstruction based on the information data received by

signal detectors, offering highly detailed images of human soft tissue anatomy and abnor-

malities. CT images involve scanning a specific part of the human body using an X-ray

beam. The computer then utilizes the received X-ray signal data to reconstruct corre-

sponding 3D images of the human cross-section, providing clear images of human bone

tissue anatomy and abnormalities. UI employs ultrasound beams to scan the human body,

obtaining images of visceral organs through the reception and processing of reflected sig-

nals.

Compared to monomodal medical images, multimodal medical images can provide

doctors with rich complementary information. Among these, CT images are commonly

used for the diagnosis and imaging of musculoskeletal disorders, such as bone tumors and

fractures. MRI images, on the other hand, offer better soft tissue contrast. Multimodal

MRI [23–25] can also offer supplementary information based on differences in acqui-

sition parameters, including T1-weighted imaging (T1), contrast-enhanced T1-weighted

imaging (T1ce), T2-weighted imaging (T2), and Fluid Attenuated Inversion Recovery

(FLAIR) images. Taking brain tumors as an example, T2 and FLAIR are suitable for

visualizing peritumoral edema, while T1 and T1ce images are suitable for delineating the
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tumor core without peritumoral edema. Therefore, the use of multimodal imaging for

segmentation can reduce information uncertainty and enhance both clinical diagnosis and

segmentation accuracy.

Tab. 1.1. Commonly used datasets for medical image segmentation.

Datasets Tasks Modalities Subjects Formats

LiTS [26] Liver/Liver tumors CT 131+7 nii

Sliver07 [27] Liver CT 20+10 MetaImage

MSD [28] Liver blood vessels CT 443 nii

MSD Lung CT 96 nii

MSD Colon cancer CT 126+64 nii

MSD Pancreatic tumors CT 282+139 nii

Vessel12 [29] Pulmonary blood vessels CT 20 Raw

Covid19-ct-scans [30] COVID-19 infection CT 20 nii

Chaos [31] Liver/Kidney/Spleen CT+MRI 40CT+120MRI dcm

MSD Brain tumor MRI 484+266 nii

MSD Hippocampus MRI 394 nii

BraTS 2020 [23–25] Brain tumor MRI 369+125 nii

BraTS 2021 [32] Brain tumor MRI 1251+219+530 nii

ATLAS [33] Stroke MRI 299 nii

ISLES 2022 [34] Stroke MRI 250+150 nii

EchoNet [35] Heart MRI 10300 nii

MMWHS [36] Heart CT/MRI 20CT+20MRI nii

MSD Left atrium MRI 20+10 nii

NERVE [37] Nerve UI 5635 tif

DRIVE [38] Fundus blood vessels Picture 40 JPEG

STARE [39] Fundus blood vessels Picture 400 ppm.gz

In clinical diagnosis, medical images provide doctors with main patient condition in-

formation, and medical image segmentation facilitates clinical diagnosis and treatment.

In clinical practice, segmentation is typically performed manually. However, when pro-

cessing a vast number of medical images, the quality of segmentation can vary based
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on the expertise of the medical professional. This variability underscores the need for a

more consistent and efficient method to enhance the performance of segmentation tasks.

One significant challenge in this domain is the acquisition and creation of high-quality

datasets. Amassing such datasets is a complex task and is often beyond the capacity of

a single institution within a limited timeframe. As a result, medical datasets tend to be

smaller in size and can exhibit inconsistencies. Another notable characteristic of medical

images is the imbalance between the foreground and background areas. Unlike natural

scene images, where the foreground and background might be more balanced, medical

images often have a much larger background compared to the foreground [40]. Medical

image segmentation datasets commonly used for medical image segmentation are listed

in Tab. 1.1.

1.2.2 Method for Medical Image Segmentation

Based on deep learning and powerful data processing capabilities of servers, pixel-

level processing and segmentation of medical images are generally performed [41]. U-

Net adapts a skip connection operation to connect downsampling layers and upsampling

layers, so that the segmentation results are more accurate [42]. However, the receptive

field of U-Net decreases during training, which results in the inability to extract wider

and richer contexts [43]. Many extensions of the U-Net have emerged to address image

segmentation in practical applications. Alom et al. [44] proposed to extend the U-Net

architecture with RCNN and recurrent residual CNN, but it did not improve the ability

to extract long-range contextual features. Gu et al. [45] proposed a contextual encoder

network (CE-Net) to extract more advanced information for 2D medical images. Sun

et al. [46] proposed a Shape Attentive U-Net (SAU-Net) to improve model robustness

and interpretability. Chen et al. [47] proposed a Multi-View U-Net (MV U-Net), which

effectively improved the robustness of the network. Due to the small amount of data in

medical images datasets, traditional U-Net is not suitable for medical image segmentation

tasks.

Attention mechanisms [48] can effectively integrate local and global features [49]
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and are widely used in segmentation tasks [50]. Attention mechanisms focus on the most

relevant features, which avoid using multiple similar or repeated feature maps and signif-

icantly extract task-related features [51–53]. X-Net [54] and MSDF-Net [55] introduced

a single attention mechanism to integrate contextual features specifically for stroke lesion

segmentation. However, the combination of a solitary self-attention module with convo-

lutional layers has shown limited success in augmenting the model’s capability to model

non-local features. In response to this limitation, MALUNet [56] and RemaNet [57]

incorporated multi-attention mechanisms for skin lesion segmentation. Despite these

advancements, achieving a universal solution for various segmentation tasks remains a

challenge. Addressing this, TA-Net [58] and MAD-Net [59] employed multi-attention

to bolster the model’s efficacy across a spectrum of segmentation tasks. It’s worth not-

ing, however, that while multi-attention can enhance performance, it also considerably

increases the model’s parameters. Moreover, current implementations do not sufficiently

explore feature fusion across different convolutional layers.

Inspired by the good performance of Visual Transformers (ViT) in the field of natural

images [60], there have been many studies trying to combine visual Transformers with

medical image segmentation and achieved performance close to or even better than CNN

on different datasets. Several researchers have ventured into incorporating Transformers

within the realm of medical image segmentation. Notable models such as TransUNet

[61], Swin-Unet [62], and UNETR [63] have harnessed the power of self-attention to

capture long-range dependencies inherent in medical images. For multi-scale medical

images, DS-TransUNet [64] uses Swin Transformer to extract features in the encoder and

fuses features extracted by CNN in the decoder. As shown in the Fig. 1.2, we list the

main U-Net-based models for medical image segmentation according to the 2015-2023

timeline. In recent years, models using Transformer for medical image segmentation have

become increasingly popular. However, it lacks feature fusion in the encoder. However, a

notable challenge with Transformer-based models is their inherent complexity. They often

necessitate large datasets for training to achieve optimal performance. Consequently,

Transformers may not be the ideal choice for every medical segmentation task.
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Fig. 1.2. The main U-Net-based models for medical image segmentation according to the 2015-2023 time-

line.
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1.3 Research Contents and Contributions

1.3.1 MDSU-Net for 2D Medical Image Segmentation

To solve the problem in the field of 2D medical image segmentation, we propose an

Multi-Attention and Depthwise Separable Convolution U-Net (MDSU-Net), a variation

of the U-Net, for 2D medical image segmentation. MDSU-Net incorporates both multi-

attention and DSC layer for improved performance. The multi-attention module within

our framework utilizes dual attention and attention gates to capture rich contextual infor-

mation and fuse features of different convolutional layers. MDSU-Net uses DSC layer

to reduce model complexity without degrading model performance, which is suitable for

different segmentation tasks.

1.3.2 DEU-Net for 3D Medical Image Segmentation

To solve the problem in the field of 3D medical image segmentation, we propose Dual

Encoder U-Net (DEU-Net), which uses Transformer and CNN respectively to extract 3D

medical image features in the encoder. Transformer is a pre-trained model in BTCV,

which improves its ability to capture contextual features of medical images and increases

the learning speed. Besides, we introduce CBAM with each convolutional layer in the

encoder part to enhance CNN’s feature extraction capabilities for 3D medical images. To

fuse the two kinds of features, we proposed a Dual Feature Fusion Module (DFFM) to

fuse the features extracted from the Transformer and CNN in the encoder, making full use

of the feature extraction capabilities of the two extractors for datasets of different sizes.

The main contributions of our work are summarized as follows:

1. We propose a novel MDSU-Net for 2D medical image segmentation, which consists

of multi-attention and DSC layer. One DSC layer consists of 3 DSC Blocks and a

residual connection. DSC blocks are used to reduce model complexity.

2. We propose a novel attention gate and introduce a dual attention to construct multi-

attention. Dual attention captures rich contextual information, and attention gates
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fuse features of different convolutional layers. Our multi-attention can accurately

predict and localize the small lesion area.

3. Our MDSU-Net is versatile and can be employed for 2D medical image segmenta-

tion across various 2D image types.

4. We propose a novel DEU-Net, which uses pre-trained Transformer and CNN respec-

tively to extract 3D medical image features in the encoder, which improves its ability

to capture contextual features of medical images and increases the learning speed.

We introduce CBAM with each convolutional layer in the encoder part to enhance

CNN’s feature extraction capabilities for 3D medical images.

5. To fuse the two kinds of features, we proposed a Dual Feature Fusion Module

(DFFM) to fuse the features extracted from the Transformer and CNN in the en-

coder, making full use of the feature extraction capabilities of the two extractors for

datasets of different sizes.

1.4 Thesis Organizations

This paper focuses on the exploration and study of medical image segmentation mod-

els, specifically investigating 2D and 3D image segmentation models in response to the

diverse dimensions of medical images. This includes research on feature extraction for

both 2D and 3D images, a study on the generality of segmentation models for differ-

ent modal images, as well as the extraction and fusion of features from different modal

images. The organizational framework of this paper is as follows:

Chapter 1: Introduction

In this chapter, we discuss the motivation, background of this research and introduce

the research contents and contributions of our work.

Chapter 2: Related Work

In this chapter, we introduced the basic concepts of medical image segmentation,

introduced the basic models and principles used for medical image segmentation, and
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variant networks. We also introduced the principles and applications of attention mecha-

nisms and Transformers for image segmentation.

Chapter 3: MDSU-Net for 2D Medical Image Segmentation

In this chapter, to improve the feature extraction and contextual relationship capabili-

ties of traditional U-Net for 2D medical images, we propose an MDSU-Net, a variation of

the U-Net, for medical image segmentation. MDSU-Net incorporates both multi-attention

and DSC layer for improved performance. The multi-attention module within our frame-

work utilizes dual attention and attention gates to capture rich contextual information

and fuse features of different convolutional layers. MDSU-Net uses DSC layer to reduce

model complexity without degrading model performance, which is suitable for different

segmentation tasks.

Chapter 4: DEU-Net for 3D Medical Image Segmentation

In this chapter, to better integrate multi-modal features for 3D medical images and

combine the advantages of Transformer and CNN, We propose Dual Encoder U-Net

(DEU-Net), which uses pre-trained Transformer and CNN respectively to extract med-

ical image features in the encoder. We introduce CBAM with each convolutional layer in

the encoder part to enhance CNN’s feature extraction capabilities for 3D medical images.

To fuse the two kinds of features, we proposed a Dual Feature Fusion Module (DFFM)

to fuse the features extracted from the Transformer and CNN in the encoder, making full

use of the feature extraction capabilities of the two extractors for 3D medical image.

Chapter 5: Conclusion and Future work

In this chapter, we summarize the research content and discuss the future work.
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2 Related Work

2.1 CNN for Medical Image Segmentation

Based on deep learning and powerful data processing capabilities of servers, pixel-

level processing and segmentation of medical images are generally performed [41]. Com-

pared with traditional CNN, fully convolutional network (FCN) [65] is composed solely

of convolutional layers, eliminating any fully connected layers at the network’s end. Ad-

ditionally, the feature maps from intermediate layers can be resized to match the dimen-

sions of the input image. Therefore, the predictions of FCN have a spatial one-to-one

correspondence with the input image, which greatly promotes semantic segmentation re-

search. Based on the FCN network, the U-Net [9] network was proposed, and other

networks based on U-Net appeared at the same time. The structure of U-Net is illustrated

in Fig. 2.1, consisting of an Encoder and a Decoder. These two components together form

a U-shaped architecture, hence the name U-Net.

Encoder: The Encoder is primarily responsible for capturing contextual information

in the image. It comprises multiple convolutional layers, activation functions, and max-

pooling layers. The sequence involves two consecutive operations of 3× 3 convolution

and 2 × 2 max-pooling. Each convolutional layer processes the input feature map to

extract features. As the network depth increases, the size of the feature maps gradually

decreases while the channel count increases, aiding the model in learning higher-level

abstract features.

Decoder: The Decoder is mainly tasked with precisely locating the boundaries of

objects in the image. It consists of multiple upsampling layers, convolutional layers,

and activation functions. The sequence involves one 2× 2 upsampling and two 3× 3

convolutions to restore the size of the segmentation map. During the upsampling process,

the size of the feature maps gradually enlarges, recovering to the original input image’s

resolution, allowing the model to capture high-level features. Simultaneously, the channel

count of the feature maps decreases, losing localization information. Therefore, after each

upsampling, the output of each upsampling layer is fused with the corresponding level of
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Fig. 2.1. Overview of U-Net.

feature map in the contracting path, a process known as skip connections.

Skip Connections: Skip connections are a key feature of U-Net, combining the fea-

ture maps from the Encoder with the corresponding levels in the Decoder. This helps

retain more detailed information in the segmentation result, enhancing segmentation ac-

curacy. Specifically, the feature maps from the Encoder are concatenated channel-wise

with the feature maps at the corresponding level in the Decoder.

Output Layer: At the end of the expansive path, there is a convolutional layer used to

transform the feature maps into per-pixel classification results. This output layer typically

employs a 1× 1 convolutional kernel, with the output channel count set based on the

number of classes for segmentation. Finally, employing per-pixel classification strategy

generates the segmentation result.

Since the introduction of U-Net, CNN-based models have set the benchmark for

performance on various medical image segmentation tasks in both 2D and 3D [50, 66].

In contrast, 3D methods directly exploit full volumetric images represented by a series

of 2D slices or modalities [67]. Most of the current 3D methods are based on the U-Net
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framework, which uses the U-shaped structure of the encoder and decoder to better learn

the features of different convolutional layers.

U-Net has exhibited strong performance for medical image segmentation [68], so

that U-Net is widely adopted as fundamental framework for medical image segmenta-

tion [69, 70]. There are many variations of U-Net proposed to improve accuracy and

stability of segmentation [71]. Multi-scale strategies were used to obtain different medi-

cal image features from different scales [72]. Chen et al. [73] proposed a MV U-Net for

cardiac short-axis image segmentation. Fang et al. [74] proposed MIMO-FAN to employ

multi-scale inputs to better exploit hierarchical information. Skip connection was also

re-designed to reduce the semantic gap by merging feature maps from different encoders

and decoders, like UNet++ [75, 76] and ResUNet++ [77].

For 3D medical images, professional 3D networks were proposed to deal with the

feature extraction of multi-sequence 3D images. Zheng et al. [66] proposed HFA-Net,

which exploited complementary information from 3D data. Chen et al. [67] proposed

DMFNet, which reduced computational cost for real-time dense volume segmentation.

Hatamizadeh et al. [63] proposed UNETR to capture global multi-scale information for

3D medical image. Yan et al. [78] proposed AFTer-UNet, which addressed segmentation

by considering aspects within and between slices.

3D medical images are more complex and contextual features are more difficult to

capture, some work achieves contextual feature extraction by adding fusion modules.

Tseng et al. [79] proposed a deep convolutional encoder-decoder structure with fusion

layers to segment multi-modal 3D medical images. Zhang et al. [80] proposed 3D con-

textual residual network (ConResNet) for accurate segmentation of 3D medical images.

Sun et al. [81] effectively extracted features from multi-modal 3D MRI images by ap-

plying a multi-channel architecture to feature extraction. Despite achieving success, the

limitation of these networks lies in their pixel-wise segmentation approach, which hinders

their ability to capture global context, resulting in suboptimal performance on large-scale

medical image datasets.
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2.2 Attention Mechanism for Medical Image Segmentation

Attention refers to the direction and concentration of psychological activities to-

wards specific objects, while attention is the measure of the degree of focus, consisting

of breadth, stability, allocation, and transfer of attention. When observing or listening to

something, individuals tend to selectively focus on what they consider important and ig-

nore what they deem unimportant. Over time, an individual’s visual attention shifts based

on changes in the focus area, demonstrating the manifestation of attention. The process

of weight allocation involves unconsciously focusing on a particular part or entity while

disregarding others. Higher weights indicate a greater concentration of attention on im-

portant events, while lower weights weaken the significance of unimportant information,

and adjustments to weight allocation occur continuously throughout this process.

The attention mechanism mimics biological observation behavior. It involves a com-

prehensive scan of the entire image to identify regions of interest, focusing on extracting

feature information from those specific areas while suppressing irrelevant information.

The concept of attention was initially introduced in the field of image recognition by

Mnih et al. [82] in 2014, simulating the attention mechanism of the human brain.

The attention mechanism has become a common component in neural network ar-

chitectures, widely applied in tasks such as image recognition and natural language pro-

cessing [83, 84]. Currently, there are three main network frameworks that combine with

the attention mechanism. First is the classic Encoder-Decoder framework, which is the

framework most models use. Second is combining with memory networks, storing task-

related information in auxiliary memory for retrieval when needed. The last is a special

neural network structure that can capture long-distance dependencies without using Re-

current Neural Networks (RNNs) [85], which has found applications in certain scenarios.

The attention has been gradually introduced in medical image segmentation. Oktay

et al. [86] proposed Attention Gate (AG) for medical imaging to learn objects of different

sizes and shapes. Sinha et al. [87] introduced a Dual Attention to extract the feature of

medical images. Henry et al. [88] introduced a Convolutional Block Attention Module
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(CBAM) for brain tumor segmentation. Attention mechanism can extract contextual in-

formation and long-distance features of medical images. Below we introduce these three

attention mechanisms in detail:

2.2.1 Attention Gate

A model based on AGs for medical image applications has been proposed, aiming

to automatically learn to differentiate the shapes and sizes of targets. This AG-equipped

model, during training, learns to suppress irrelevant regions and focus on meaningful

salient features, proving effective for a specific task. This approach can be beneficial for

tasks such as CNNs without explicit localization for organs and structures.The integra-

tion of AGs into standard CNN models is straightforward, requiring minimal additional

computational overhead while significantly improving model sensitivity and accuracy.

The AG can extract rough image information through skip connection for image

feature recovery [89]. As shown in Fig. 2.2, there are two inputs for AG. The first input

is x ∈ RF×H×W×D, where F , H, W , and D represent channel, height, width and depth,

respectively. The second input is gating signal g ∈ R2F×H×W×D. x is fed into a 1×1×1

convolution to get x1 ∈ RF×H×W×D. At the same time, g is fed into an upsampling layer

to get g1 ∈ RF×H×W×D. In order to fuse features from encoder and decoder, we add x1

with g1 and apply a rectified linear unit (ReLU) to get r ∈ RF×H×W×D by the following

formula:

r = max(0,x1 +g1). (2.1)

r is fed into a 1×1×1 convolution to get r1 ∈ R2F×H×W×D and apply a Sigmoid to get

s ∈ R2F×W×H×D. In order to adjust the dimension of s to be unified with x, s is fed into

an upsampling layer to get s1 ∈ RF×H×W×D. s1 is added with x to get x̂ ∈ RF×H×W×D.

x̂ = up(
1

1+ e−r1
). (2.2)
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Fig. 2.2. Schematic of attention gate.

Additionally, downsampling the input feature map to the dimension of the gate sig-

nal is carried out, effectively reducing dimensionality. The corresponding linear trans-

formation decouples the feature map and maps it to a lower-dimensional space for gate

operations. The model enforces distinctiveness in the semantic representation of inter-

mediate feature maps at each image scale, ensuring that attention units at different scales

have the capability to influence responses to foreground content across a wide range.

2.2.2 Dual Attention

Dual Attention mechanism consists of position attention module and channel atten-

tion module. This model can adaptively integrate local features and their global depen-

dencies. Specifically, the authors augment the traditional FCN with two types of attention

modules that simulate semantic interdependencies in both spatial and channel dimen-

sions. The position attention module selectively aggregates features from each position

by weighting and summing features across all positions, mimicking semantic interdepen-

dencies in spatial dimensions. Similar features are considered correlated regardless of

their spatial separation. Simultaneously, the channel attention module selectively empha-

sizes mutually dependent channel mappings by integrating correlated features across all

channel maps. These attention modules collectively capture global information in the

image.

In top part of Fig. 2.3, the input is F ∈ RC×W×H , where C, W , and H represent

the channel, width and height, respectively. In the first path, F is reshaped to I0 ∈

R(W×H)×C/8. In the second path, F is convoluted and transposed to I1 ∈ RC/8×(W×H)
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Fig. 2.3. Schematic of dual attention.

to diminish the impact of channel count on position representation of features. The mul-

tiplication operation is applied to I0 and I1, followed by a softmax to focus on extracting

position-sensitive features, yielding P ∈ R(W×H)×(W×H) as follows:

Pi, j =
exp(I0,i · I1, j)

∑
W×H
i=1 exp(I0,i · I1, j)

, (2.3)

where Pi, j measure jth position’s impact on ith position. In the third path, F is convoluted

and reshaped to I2 ∈ RC×(W×H) to enhance feature extraction capabilities. Finally, I2 is

multiplied by P, and the result is fused with F to get position attention map to aggregate

position contextual information, which is IP ∈ RC×W×H as follows:

IP, j = ϕ1

W×H

∑
i=1

Pi, jI2, j +Fj, (2.4)

where ϕ1 is initialized to 0.
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In bottom part of Fig. 2.3, F ∈ RC×W×H is reshaped and permuted to get I0 ∈

R(W×H)×C, I1 ∈ RC×(W×H), and I2 ∈ RC×(W×H), respectively. I0 is multiplied by I1 to

eliminate dimensional effects and highlight relationships between channels. The applica-

tion of softmax enables us to obtain C ∈ RC×C, which is described as follows:

Ci, j =
exp(I0,i · I1, j)

∑
C
i=1 exp(I0,i · I1, j)

, (2.5)

where Ci, j measure the jth channel’s impact on ith channel and model interdependencies

between channels. Then we multiply C and I2 and fuse with F to get channel attention

map to reintroduce position information from medical images, which is IC ∈ RC×W×H as

follows:

IC, j = ϕ2

C

∑
i=1

Ci, jI2, j +Fj, (2.6)

where ϕ2 is also initialized to 0. Finally, IP and IC are summed to get dual attention

features.

Lastly, the position and channel features are merged to leverage the Dual Attention

to enhance representation of higher-level features, effectively capturing contextual infor-

mation in medical images.

2.2.3 Convolutional Block Attention Module

CBAM is an attention mechanism that combines spatial attention module and chan-

nel attention module.

The channel attention module is shown in top part of Fig. 2.4. To mitigate the im-

pact on the spatial dimensions, the input feature F undergoes global max-pooling and

global average-pooling separately to compress spatial information, resulting in two fea-

ture maps. Subsequently, each of these feature maps undergoes multilayer perceptron

(MLP) processing, yielding two new feature maps. The fusion of these two feature maps

is then carried out, followed by a Sigmoid operation, generating channel attention features

Mc(F). The channel attention mechanism can be expressed as:
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Fig. 2.4. Schematic of convolutional block attention module.



2 RELATED WORK 23

Mc(F) = σ(MLP(Avgpool(F))+MLP(MaxPool(F)))

= σ(W1(W0(Fc
avg))+W1(W0(Fc

max))),
(2.7)

where σ represents the Sigmoid, W0 ∈ RC/r×C, and W1 ∈ RC×C/r.

As shown in bottom part of Fig. 2.4, through residual connections, the channel at-

tention features Mc(F) and the input feature F are merged, producing the input features

required for the subsequent spatial attention module.

The spatial attention module, as depicted in middle part of Fig. 2.4, is designed to

mitigate the impact on channel dimensions. The input feature F
′

is fed through global

max-pooling and global average-pooling to compress channel information, resulting in

two feature maps. These two feature maps are then concatenated to fuse the features.

Subsequent convolution operations and a Sigmoid function generate spatial attention fea-

tures Ms(F
′
). The spatial attention mechanism can be expressed as:

Ms(F
′
) = σ( f 7×7([Avgpool(F);MaxPool(F)]))

= σ( f 7×7([Fs
avg;Fc

max])),
(2.8)

where σ represents the Sigmoid, Fs
avg ∈ R1×H×W , Fc

max ∈ R1×H×W , and f 7×7 is a 7× 7

size convolution kernel.

Similarly, as shown in bottom part of Fig. 2.4, through residual connections, the

spatial attention features Ms(F
′
) and the input feature F

′
are merged to obtain the final

result. In image processing, channel attention focuses on determining meaningful features

in the image, while spatial attention concentrates on identifying significant features within

the image. Average pooling provides feedback on each pixel in input feature, whereas

max pooling only provides feedback on the most responsive areas in input feature.

In terms of introducing multi-attention modules, Li et al. [58] proposed TA-Net,

which designed channel with self-attention, and spatial attention for global information

capturing. Qin et al. [59] proposed multi-attention dense network for bone marrow seg-

mentation. Ruan et al. [56] proposed MALUNet for skin lesion segmentation, which
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utilized four attention modules to extract global and local feature respectively. From the

above, it can be seen that advancements have been achieved in various aspects of med-

ical image segmentation tasks. However, the generality of most of the above methods

in medical image segmentation tasks is challenging, and most of model parameters are

relatively large. Besides, most of the above multi-attention methods do not explore the

fusion between feature of different convolutional layers.

Overall, a well-designed attention mechanism can enhance the efficiency of neural

network processing, enabling systems to achieve specific goals more quickly and effec-

tively. The application of attention is not only significant in understanding human psy-

chological activities but also plays a crucial role in the field of artificial intelligence.

2.3 Transformer for Medical Image Segmentation

Vision Transformers have recently gained attention in computer vision tasks. In

medical image segmentation, Transformer-based models designed for end-to-end tasks

perform prominently on multiple benchmarks. There have been many studies trying

to combine visual Transformers with medical image segmentation and achieved perfor-

mance close to or even better than CNN on different datasets.

The input image is x ∈ RH×W×C, which is first divided into fixed-size patches. The

size of each patches is P×P, and N = (H ×W )/(P2) is the number of patches. As shown

in Fig. 2.5, the flattened patches are linearly mapped. In order to retain the position infor-

mation of each patch, position encoding information is added to each slice before the slice

is sent to the Transformer encoder. The Transformer encoder consists of L layers stan-

dard Transformer modules. Each module is composed of layer normalization (LN) [90],

multi-head self-attention module (MSA), multi-layer perceptron (MLP) and residual con-

nection [91]. MLP consists of two linear layers with GELU activation function, and the

MSA sub-layer consists of n parallel self-attention (SA) heads. The calculation process

is as follows:
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Fig. 2.5. Schematic of Transformer encoder.

z0 = [xclass;x1
pE;x2

pE; · · · ;xN
p E]+Epos, E ∈ R(P2·C)×D,Epos ∈ R(N+1)×D (2.9)

z
′
l = MSA(LN(zl−1))+ zl−1, l = 1 . . .L (2.10)

zl = MLP(LN(z
′
l))+ z

′
l, l = 1 . . .L (2.11)

y = LN(z0
L). (2.12)

Where input image x ∈RH×W×C, 2D patches xp ∈RN×(P2·C), C is the number of channel,

P is the size of patch, and N = (H×W )/(P2) is the number of patches. z
′
l and zl represent

the output features of MHSA and MLP in the lth module respectively. Finally, the last

layer of sequence representation y is obtained from the Transformer encoder.

Inspired by the good performance of ViT in the field of natural images [60], there

have been many studies trying to combine visual Transformers with medical image seg-

mentation and achieved performance close to or even better than CNN on different datasets.

Hatamizadeh [63] directly used Transformer as an encoder to extract abdominal organ fea-

tures, but it lacks the feature extraction of CNN and the ability to capture long-distance



2 RELATED WORK 26

features. For multi-scale medical images, DS-TransUNet [64] uses Swin Transformer

to extract features in the encoder and fuses features extracted by CNN in the decoder.

However, it lacks feature fusion in the encoder.

Chen et al. [61] proposed TransUNet, which is the first research work to combine

Transformer with medical image segmentation. It combines the respective advantages of

Transformer and U-Net and embeds Transformer into the encoder. Swin UNETR [92]

directly uses Swin Transformer as an encoder to extract medical image features. Xie et

al. [93] proposed Cotr, which employs a CNN as the feature extraction backbone, uti-

lizes a Transformer for encoding representation processing, and employs a CNN decoder

to make predictions for the segmentation output. Yan et al. [94] proposed AFTer-UNet,

which benefited from convolutional layers for detailed feature extraction and harnessed

Transformers’ strengths in modeling long sequences. Compared with these methods,

DEU-Net fuses the features extracted from Transformer and CNN in the encoder by

proposing a DFFM, making full use of the feature extraction capabilities of the two ex-

tractors for datasets of different sizes.
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3 MDSU-Net for 2D Medical Image Segmentation

3.1 Introduction

Medical imaging techniques mainly include Magnetic Resonance Imaging (MRI),

Computed Tomography (CT), and Ultrasound Imaging (UI) [20–22]. As shown in Fig. 3.1,

there are three examples of different types of medical images from ATLAS [33], CHAOS

[31], and NERVE [37], respectively. The top line are original images and the bottom

line is Ground Truth (GT) from three datasets. In clinical diagnosis, medical images

provide doctors with main patient condition information, and medical image segmenta-

tion facilitates clinical diagnosis and treatment [95,96]. In clinical practice, segmentation

is typically performed manually. However, when processing a vast number of medical

images, the quality of segmentation can vary based on the expertise of the medical pro-

fessional. This variability underscores the need for a more consistent and efficient method

to enhance the performance of segmentation tasks. One significant challenge in this do-

main is the acquisition and creation of high-quality datasets. Amassing such datasets is

a complex task and is often beyond the capacity of a single institution within a limited

timeframe. As a result, medical datasets tend to be smaller in size and can exhibit in-

consistencies. Another notable characteristic of medical images is the imbalance between

the foreground and background areas. Unlike natural scene images, where the foreground

and background might be more balanced, medical images often have a much larger back-

ground compared to the foreground.

Medical image segmentation has been widely discussed and concerned in the field

of image processing, which has become a basic component and a crucial stage of im-

age processing [2, 3]. Based on deep learning and powerful data processing capabilities

of servers, pixel-level processing and segmentation of medical images are generally per-

formed [41]. U-Net [9] is a variant of CNNs, which has achieved great performance in

medical segmentation tasks [64]. U-Net adapts a skip connection operation to connect

downsampling layers and upsampling layers, so that the segmentation results are more

accurate [42]. However, the receptive field of U-Net decreases during training, which
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Fig. 3.1. Three examples of different types of medical images.

results in the inability to extract wider and richer contexts [43]. We introduce multi-

attention with U-net to capture rich contextual information from medical images. Due

to the small amount of data in medical images datasets, traditional U-Net is not suitable

for medical image segmentation tasks. We adopt depthwise separable convolution (DSC)

layer instead of traditional convolution to reduce model complexity without degrading

model performance [97].

Several researchers have ventured into incorporating Transformers within the realm

of medical image segmentation. Notable models such as TransUNet [61], Swin-Unet [62],

and UNETR [63] have harnessed the power of self-attention to capture long-range depen-

dencies inherent in medical images. However, a notable challenge with Transformer-

based models is their inherent complexity. They often necessitate large datasets for train-

ing to achieve optimal performance. Consequently, Transformers may not be the ideal

choice for every medical segmentation task.

In this work, we propose an Multi-Attention and Depthwise Separable Convolution

U-Net (MDSU-Net), a variation of the U-Net, for medical image segmentation. MDSU-

Net incorporates both multi-attention and DSC layer for improved performance. The

multi-attention module within our framework utilizes dual attention and attention gates
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Fig. 3.2. Overview of MDSU-Net.

to capture rich contextual information and fuse features of different convolutional lay-

ers. MDSU-Net uses DSC layer to reduce model complexity without degrading model

performance, which is suitable for different segmentation tasks.

3.2 Methodology

In this section, we first elaborate on the proposed model, MDSU-Net, as shown in

Fig. 3.2. MDSU-Net combines multi-attention and DSC layer. Afterward, we introduce

the DSC layer and multi-attention in detail.

We propose an MDSU-Net for medical image segmentation, which is a variation of

U-Net architecture. Our MDSU-Net incorporates both multi-attention and DSC layer to

improve performance. As shown in Fig. 3.3, we randomly select segmentation examples

of small lesion area in stroke from ATLAS [33], where the yellow part is lesion area. The
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Fig. 3.3. Segmentation examples of small lesion area from ATLAS.

size of lesion is variable, the boundary of lesion area is not smooth and obvious, and the

context features are relatively dense in medical images. In the encoder part, DSC layer

is used to reduce model complexity. The multi-attention within our framework utilizes

dual attention and attention gates to fuse feature of different convolutional layers, which

enables better extraction of dense contextual features of medical images.

3.2.1 Depthwise Separable Convolution Module

In actual clinical application, the computing power of device is limited. However,

U-Net [9] is heavy with traditional convolution and is prone to overfitting. Inspired by X-

Net [54], we introduce DSC layer to reduce trainable parameters [97]. DSC decomposes a

complete convolution operation into two steps, namely Depthwise Convolution (DC) and

Pointwise Convolution (PC). Unlike convolution, a kernel of DC is responsible for one

channel. The operation of PC is similar to the convolution operation, and its convolution
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Fig. 3.4. Schematic of depthwise separable convolution module.

kernel has a size of 1×1. Therefore, model parameters are greatly reduced.

As shown in Fig. 3.4, (a) is DSC Block and (b) is DSC layer, where we use DSC

to build a DSC block. Different from DSC of MobileNet series [98–100], we utilize

three DSC blocks and one residual connection [91] to form a DSC layer. The design of

combination of three DSC blocks can improve feature extraction from medical images

in the encoder, and addition of residual connections can support the deep construction

of network and prevent overfitting. Compared with the traditional convolution, the DSC

layer reduces the complexity of the model without sacrificing the performance of model,

which is suitable for various types of medical image segmentation.

3.2.2 Dual Attention Module

To avoid the insufficiency in extracting advanced features of original networks, we

introduce a dual attention. The function of dual attention is to integrate different repre-

sentations of features in both position and channel dimensions to better learn long-range

dependencies, enhance ability to capture contextual information, and focus on extracting

position-sensitive features in medical images. The information capture ability of the self-

attention mechanism models are typically complex, and its performance in small datasets
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is not as good as CNN. Different from the self-attention mechanism, dual attention can

better capture rich contextual information.

Position attention module: Position attention module is used to aggregate position

contextual information. There are four branches, with top two branches initially reduc-

ing channels to 1/8 of the original to diminish the impact of channel count on position

representation of features. After fusion of two branches, the use of a softmax activation

function allows the model to focus on extracting position-sensitive features in medical

images. The outcome is then combined with the features from the third branch to rein-

troduce channel information, enhancing its feature extraction capabilities. Finally, it is

directly fused with the input feature to enhance position feature extraction.

The input is F ∈ RC×W×H , where C, W , and H represent the channel, width and

height, respectively. In the first path, F is reshaped to I0 ∈ R(W×H)×C/8. In the second

path, F is convoluted and transposed to I1 ∈ RC/8×(W×H) to diminish the impact of chan-

nel count on position representation of features. The multiplication operation is applied

to I0 and I1, followed by a softmax to focus on extracting position-sensitive features,

yielding P ∈ R(W×H)×(W×H) as follows:

Pi, j =
exp(I0,i · I1, j)

∑
W×H
i=1 exp(I0,i · I1, j)

, (3.1)

where Pi, j measure jth position’s impact on ith position. In the third path, F is convoluted

and reshaped to I2 ∈ RC×(W×H) to enhance feature extraction capabilities. Finally, I2 is

multiplied by P, and the result is fused with F to get position attention map to aggregate

position contextual information, which is IP ∈ RC×W×H as follows:

IP, j = ϕ1

W×H

∑
i=1

Pi, jI2, j +Fj, (3.2)

where ϕ1 is initialized to 0.

Channel attention module: Channel attention is used to capture interdependencies

between channels. Similarly, there are four branches in total. The middle two branches

initially conceal position information of medical images to highlight relationships be-
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tween channels in features. Then, the results are fused with the feature from the fourth

branch, reintroducing position information from medical images, enhancing its feature

representation capability, and increasing the receptive field. Finally, it is also directly

fused with the input feature to enhance channel feature extraction.

F ∈ RC×W×H is reshaped and permuted to get I0 ∈ R(W×H)×C, I1 ∈ RC×(W×H), and

I2 ∈ RC×(W×H), respectively. I0 is multiplied by I1 to eliminate dimensional effects and

highlight relationships between channels. The application of softmax enables us to obtain

C ∈ RC×C, which is described as follows:

Ci, j =
exp(I0,i · I1, j)

∑
C
i=1 exp(I0,i · I1, j)

, (3.3)

where Ci, j measure the jth channel’s impact on ith channel and model interdependencies

between channels. Then we multiply C and I2 and fuse with F to get channel attention

map to reintroduce position information from medical images, which is IC ∈ RC×W×H as

follows:

IC, j = ϕ2

C

∑
i=1

Ci, jI2, j +Fj, (3.4)

where ϕ2 is also initialized to 0. Finally, IP and IC are summed to get dual attention

features.

Lastly, the position and channel features are merged to leverage the dual attention to

enhance representation of higher-level features, effectively capturing contextual informa-

tion in medical images.

3.2.3 Attention Gate Module

The AG further improves the ability to fuse features of different convolutional layers

in the encoder and decoder. Among them, i is the output feature on the encoder, and g

is the output feature on the decoder. Through fusion, the feature representation ability of

the skip connection can be enriched. Subsequently, the skip connection and convolution
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Fig. 3.5. Schematic of attention gate module in MDSU-Net.

calculation inside the AG are used to improve the decoder’s ability to handle long-range

dependencies.

The AG can extract rough image information through skip connection for image

feature recovery [89]. As shown in Fig. 3.5, there are two inputs for AG. The first input is

i ∈ RC×W×H , where C, W , and H represent channel, width and height, respectively. The

second input is gating signal g ∈ R2C×W×H .

We feed i into a 2× 2 convolution to get i1 ∈ RC×W×H . At the same time, g is fed

into an upsampling layer to get g1 ∈ RC×W×H . In order to fuse features from encoder

and decoder, we add i1 with g1 and apply a ReLU to get r ∈ RC×W×H by the following

formula:

r = max(0, i1 +g1). (3.5)

To enhance feature expression capabilities of MDSU-Net, we feed r into a 1×1 convolu-

tion to get r1 ∈ R2C×W×H and apply a Sigmoid to get s ∈ R2C×W×H as follows:

s =
1

1+ e−r1
. (3.6)

In order to adjust the dimension of s to be unified with i, s is fed into an upsampling layer

to get s1 ∈ RC×W×H . We add s1 and i to get s2 ∈ RC×W×H . To enhance the ability to

extract image feature, we feed s2 into a 3× 3 convolution and a batch normalization to

get s3 ∈ RC×W×H . Finally, a ReLU is applied to get o ∈ RC×W×H as follows:

o = max(0,s3). (3.7)
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3.2.4 Loss Function

The cross-entropy (CE) loss function evaluates predictions for all pixels, but in cases

of extremely imbalanced datasets, it can lead the model into local optima, causing pre-

dictions to strongly favor the background. On the other hand, the dice loss function [101]

directly optimizes the dice coefficient. When calculating the intersection and ratio, dice

loss function ignores a substantial number of background pixels, which effectively ad-

dresses the issue of foreground-background imbalance while also enhancing convergence

speed. Therefore, we fuse the two loss functions to take advantage of both, which is

defined as follows:

L = Lce +λdiceLdice, (3.8)

where λdice = 1.0. The ablation experiments regarding λdice weight selection can be found

in Section 3.4.3.

3.3 Experiment Setup

3.3.1 Datasets

We employ three medical segmentation datasets to validate our method, which are

the ATLAS [33] dataset, the CHAOS [31] challenge, and the Ultrasound Nerve Segmen-

tation challenge [37], as shown in Tab. 3.1.

In ATLAS [33], there are 229 MRI segmentation subjects. The size of each image is

233×197, and each 3D image is sliced into 189 slices, which corresponds 43,281 slices.

We crop the image size to 224×192. We randomly select subjects for training, validation,

and testing in a ratio of 6:2:3.

CHAOS [31] contains two datasets (abdominal CT and MRI), and we choose the

dataset for the CT part, that is, the liver segmentation. The dataset contains CT images

from 40 different patients, where each of size is 512×512. In total, 2,874 slices are used

for training, 2,874 slices are used for validation, and 1,408 slices are used for testing.
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Ultrasound Nerve Segmentation [37] is an dataset for the brachial plexus. There

are 5,635 images for training and 5,508 images for testing with a size of 580×420. We

randomly select 20% of training images for validation.

Tab. 3.1. Three different types of medical image segmentation datasets.

Tasks Datasets Modalities Subjects Size

Stroke ATLAS MRI 299 233×197×189

Liver CHAOS CT 40 512×512

Nerve NERVE UI 5,635 580×420

3.3.2 Evaluation Metrics

We choose a series of evaluation metrics to quantify the segmentation networks. The

evaluation index formula is as follows:

Dice =
2T P

2T P+FP+FN
, (3.9)

IoU =
T P

T P+FP+FN
, (3.10)

Precision =
T P

T P+FP
, (3.11)

Recall =
T P

T P+FN
. (3.12)

where T P represent true positive, FP is false positive, and FN is false negative.

3.3.3 Implementation Details

All models are constructed using the PyTorch framework and trained on an NVIDIA

TITAN X GPU. During model training, we utilize Adam optimizer [102] with an initial

learning rate of 0.001 and weight decay of 0.0005. We choose resolutions of 224× 192
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for the ATLAS and training epochs are set to 100, 512×512 for the CHAOS and training

epochs are set to 800, and 580×420 for the Ultrasound Nerve and training epochs are set

to 400, respectively. The batch size is set to 8. Additionally, an early stopping strategy is

employed.

Attention gate: We use 4 AGs to apply in the skip connections with resolution of 1,

1/2, 1/4, and 1/8, respectively. We select features from decoder layers as input of gating

signal.

Dual attention: We apply dual attention after bottom layer with resolution 1/16.

3.4 Experimental Results

3.4.1 Comparison with State-of-the-arts

ATLAS: The training of network converges over 100 epochs on ATLAS. In Tab. 3.2,

we get validation results of our network, U-Net [9], CLCI-Net [103], SAN-Net [104], and

3D-ResU-Net [105]. The results indicate that our network achieves a superior Dice of

0.0545 compared to 3D-ResU-Net. Our network sets a state-of-the-art (SoTA) benchmark

with IoU of 0.5450, Precision of 0.7789, and Recall of 0.6447, respectively. Compared

with other U shape networks, the parameters of our network are reduced over 10M, which

improves the efficiency of network training.

CHAOS: The training of network converges over 800 epochs on CHAOS. In Tab. 3.3,

we get the validation results of our network, U-Net [9], FC-Densenet [106], SGU-Net

[107], and Nas-UNet [108]. The results indicate that our network achieves a superior

Dice of 0.0020 compared to Nas-UNet. Our network sets a SoTA benchmark with IoU

of 0.9932. Furthermore, the parameters of our network are 6.7M less than those of Nas-

UNet.

ULTRASOUND NERVE: The training of network converges over 400 epochs on

NERVE. In Tab. 3.4, we get the validation results of our network, U-Net [9], FC-Densenet

[106], EHA-Net [53], and Nas-UNet [108]. Our network achieves a superior Dice of

0.0073 compared to Nas-UNet. In terms of IoU, our network achieves score of 0.9892.
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Tab. 3.2. Comparison results on the ATLAS dataset.

Methods Dice IoU Precision Recall Parameters

U-Net [9] 0.4606 0.2992 0.5993 0.4449 34.5M

CLCI-Net [103] 0.5810 0.4094 0.6490 0.5810 36.8M

SAN-Net [104] 0.5711 0.3997 - 0.5977 29.64M

3D-ResU-Net [105] 0.6400 0.4706 0.6200 - -

MDSU-Net(ours) 0.7055 0.5450 0.7789 0.6447 23.5M

Tab. 3.3. Comparison results on the CHAOS dataset.

Methods Dice IoU Parameters

U-Net [9] 0.9370 0.9820 34.5M

FC-Densenet [106] 0.9650 0.9830 9.4M

SGU-Net [107] 0.9574 0.9183 5.0M

Nas-UNet [108] 0.9740 0.9850 30.2M

MDSU-Net(ours) 0.9760 0.9932 23.5M

Tab. 3.4. Comparison results on the NERVE dataset.

Methods Dice IoU Parameters

U-Net [9] 0.7400 0.9890 34.5M

FC-Densenet [106] 0.8440 0.9890 9.4M

EHA-Net [53] 0.8009 0.6679 -

Nas-UNet [108] 0.8810 0.9920 30.2M

MDSU-Net(ours) 0.8883 0.9892 23.5M
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3.4.2 Statistical Evaluation

By introducing multi-attention mechanism, MDSU-Net exhibits significant perfor-

mance improvements across three diverse datasets. DSC layers are used to reduce train-

able parameters, which improves the efficiency of network training.

In order to validate the effectiveness and stability of MDSU-Net for medical image

segmentation, we test Dice coefficient comparison between MDSU-Net and other models

on three datasets respectively. As shown in Fig. 3.6, orange line within each box rep-

resents the median and green triangle represents the mean. MDSU-Net performs better

than other models in quartiles, mean, and median. In both CHAOS and NERVE datasets,

the discrete distribution of MDSU-Net outperforms other models. Our test results on the

three datasets have the highest mean and median of Dice coefficient. At the same time,

the median is biased towards the third quartile, indicating that result distribution is more

concentrated and deviation is smaller, indicating that our method is more efficient and

stable.

3.4.3 Ablation Study

To thoroughly evaluate the proposed MDSU-Net framework under different settings,

we conduct various ablation study on the ATLAS, CHAOS, and NERVE datasets, respec-

tively, including: 1) the number of AGs, 2) the number of dual-attention, 3) the number

of DSC blocks in residual DSC layer, and 4) the effect of λdice in loss function.

The number of AGs: We add AGs in the skip connections from resolution of 1/8

to resolution of 1 in the encoder part. The 1 AG means that only one AG is added in

the skip connections with resolution of 1/8, the number of AGs increases with resolution.

We sequentially increase AGs on skip connections starting from the lowest level image

feature to validate the effect from different number of AGs.

As shown in Tab. 3.5, in terms of Dice, IoU, and Recall, scores increase with num-

ber of AGs. When the number of AGs is 4, network performs best, which shows that

setting AGs with every skip connection can fully extract the context information of image
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Fig. 3.6. Boxplot of Dice coefficient for all test samples from ATLAS, CHAOS, and NERVE.

Tab. 3.5. Results of different number of AGs on the ATLAS, CHAOS, and NERVE datasets.

Datasets Methods Dice IoU Precision Recall Parameters

ATLAS

1 AG 0.6494 0.4809 0.7960 0.5484 22.0M

2 AGs 0.6364 0.4668 0.8178 0.5209 23.1M

3 AGs 0.6674 0.5008 0.8085 0.5682 23.4M

4 AGs 0.7055 0.5450 0.7789 0.6447 23.5M

CHAOS

1 AG 0.9707 0.9483 0.9904 0.9665 22.0M

2 AGs 0.9710 0.9488 0.9963 0.9634 23.1M

3 AGs 0.9738 0.9648 0.9850 0.9717 23.4M

4 AGs 0.9760 0.9688 0.9884 0.9681 23.5M

NERVE

1 AG 0.8806 0.8329 0.9908 0.8942 22.0M

2 AGs 0.8825 0.8345 0.9907 0.8857 23.1M

3 AGs 0.8853 0.8443 0.9906 0.8973 23.4M

4 AGs 0.8883 0.8502 0.9933 0.8992 23.5M
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features.

Tab. 3.6. Results of different number of dual attention on the ATLAS, CHAOS, and NERVE datasets.

Datasets Methods Dice IoU Precision Recall Parameters

ATLAS
No dual attention 0.6424 0.4732 0.8060 0.5341 18.6M

With dual attention 0.7055 0.5450 0.7789 0.6447 23.5M

CHAOS
No dual attention 0.9695 0.9445 0.9977 0.9618 18.6M

With dual attention 0.9760 0.9688 0.9884 0.9681 23.5M

NERVE
No dual attention 0.8678 0.7863 0.9896 0.8960 18.6M

With dual attention 0.8883 0.8502 0.9933 0.8992 23.5M

The number of dual attention: We start by pruning dual attention to validate the

effect of dual attention on networks. In Tab. 3.6, the Dice of network with dual atten-

tion outperform network without dual attention by 0.0631, 0.0065, and 0.0205 in three

datasets, respectively. As well as Dice, IoU and Recall of network with dual attention

also outperform network without dual attention. In terms of Precision, network with dual

attention is about the same as network without dual attention. When the highest-level

image features of network are connected to dual attention, network performs best, which

shows that dual attention can improve network’s ability to focus on segmenting partial

features in advanced image features, thereby improving the decoder’s image segmenta-

tion performance.

The number of DSC blocks: We sequentially reduce the number of DSC blocks in

the DSC layers to validate the effect from different number of DSC blocks on network

performance. As shown in Tab. 3.7, in terms of Dice, IoU, and Recall, scores increase

with number of DSC blocks. When the number of DSC blocks is 3, network performs

best, which shows that residual network block composed of three DSC blocks can bet-

ter extract the image features in the encoder and avoid overfitting phenomenon during

network training.

The effect of λdice: In order to validate of weight of dice loss in the loss function
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Tab. 3.7. Results of different number of DSC blocks on the ATLAS, CHAOS, and NERVE datasets.

Datasets Methods Dice IoU Precision Recall Parameters

ATLAS

DSC 1 0.5907 0.4191 0.8195 0.4617 19.9M

DSC 2 0.7029 0.5419 0.7709 0.6459 21.6M

DSC 3 0.7055 0.5450 0.7789 0.6447 23.5M

CHAOS

DSC 1 0.9705 0.9455 0.9932 0.9656 19.9M

DSC 2 0.9694 0.9493 0.9931 0.9655 21.6M

DSC 3 0.9760 0.9688 0.9884 0.9681 23.5M

NERVE

DSC 1 0.8792 0.8337 0.9896 0.8861 19.9M

DSC 2 0.8810 0.8470 0.9906 0.8833 21.6M

DSC 3 0.8883 0.8502 0.9933 0.8992 23.5M

of MDSU-Net, we selected λdice as 0, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, and 5, which are

validated on CHAOS and NERVE datasets. As shown in Tab. 3.8, when the value of

λdice is too small or large, it does not improve the performance of MDSU-Net. When

λdice is 1, the model performs best, where MDSU-Net can effectively extract foreground

features without ignoring background information. It achieves the balance of foreground

and background feature extraction in the process of model learning medical images.

3.4.4 Efficiency Analysis

Tab. 3.9 shows the Dice, FLOPs, parameters, training time, and inference time of

MDSU-Net and other SoTA methods on CHAOS dataset. FLOPs and inference time

are tested on an input size of 256×256. According to our tests, MDSU-Net is a model

with 23.5M parameters and 102.01G FLOPs. Compared with other models of the same

scale, such as U-Net [9] and Nas-UNet [108], which have 34.5M and 30.2M parame-

ters, and 113.44G and 111.80G FLOPs respectively. Compared with models of same

scale, MDSU-Net has smaller parameters and FLOPs and achieves higher performance.

Other lightweight models, such as SGU-Net [107] and FC-Densenet [106], have 5.0M

and 9.4M parameters, and 5.0G and 74.09G FLOPs, respectively. Although the parame-
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Tab. 3.8. Results of different λdice in loss function on CHAOS and NERVE datasets.

Datasets λdice Dice IoU Precision Recall

CHAOS

0 0.9224 0.8560 0.9922 0.9384

0.2 0.9605 0.9240 0.9921 0.9409

0.4 0.9574 0.9183 0.9922 0.9482

0.6 0.9586 0.9205 0.9897 0.9547

0.8 0.9641 0.9307 0.9930 0.9665

1 0.9760 0.9688 0.9884 0.9681

2 0.9682 0.9384 0.9932 0.9617

3 0.9657 0.9337 0.9823 0.9589

4 0.9622 0.9272 0.9925 0.9576

5 0.9645 0.9314 0.9929 0.9513

NERVE

0 0.7577 0.6099 0.9714 0.8743

0.2 0.8788 0.7838 0.9890 0.8843

0.4 0.8539 0.7450 0.9876 0.8848

0.6 0.8707 0.7710 0.9886 0.8819

0.8 0.8795 0.7849 0.9892 0.8955

1 0.8883 0.8502 0.9933 0.8992

2 0.8782 0.7828 0.9895 0.8858

3 0.8332 0.7141 0.9857 0.8382

4 0.8588 0.7525 0.9872 0.8871

5 0.8721 0.7732 0.9878 0.8711

Tab. 3.9. Results of Dice, FLOPs, parameters, training time, and inference time in CHAOS.

Datasets Methods Dice FLOPs Parameters Training Time Inference Time

CHAOS

U-Net [9] 0.9370 113.44G 34.5M 7.30h 27s

FC-Densenet [106] 0.9650 74.09G 9.4M 6.28h 129s

SGU-Net [107] 0.9574 5.0G 5.0M 6.55h 46s

Nas-UNet [108] 0.9740 111.80G 30.2M 7.45h 38s

MDSU-Net(ours) 0.9760 102.01G 23.5M 7.13h 36s
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ters and FLOPs of MDSU-Net are larger compared with light models, Dice obtained by

MDSU-Net is better than these light models. Furthermore, MDSU-Net takes the least

inference time compared to models of the same size and less than FC-Densenet. Overall,

our method achieves the highest segmentation performance with reduced computational

complexity.

3.4.5 Case Study

We conduct case studies of our methods with the SoTA through cases from five

distinct patients in the ATLAS dataset, where the yellow part is the lesion area after seg-

mentation. For the convenience of observation and comparison, we enlarge the lesion

area in Fig. 3.7. We randomly select five patient cases where the size and location of le-

sions exhibit variations. The first vertical column is the original MRI, the second vertical

column is GT from ATLAS, the third vertical column is the zoom of GT, and the last

four vertical columns are the zoom of visualized results from our network, 3D-ResU-Net,

CLCI-Net and U-Net, respectively.

In the cases of lesions with smaller sizes in the top three rows, the visualized re-

sults from our network are closest to GT. The errors of other three methods are relatively

large, while lesion edges predicted by our network are smoother in small lesions. In the

cases of larger size lesions in the bottom two rows, the visualized results from our net-

work and 3D-ResU-Net outperform CLCI-Net and U-Net in segmentation accuracy with

smoother predicted lesion edges. MDSU-Net performs well in different size lesions, and

the margins of lesion are closest to the GT.

3.5 Discussion

In order to improve the ability of the model to capture the contextual information

of medical images, we explore the importance of dual attention and AGs for extract-

ing position-sensitive features of medical images, and by introducing a DSC layer in the

encoder, we propose a multi-attention network called MDSU-Net. Among them, dual at-
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Fig. 3.7. Visualization of segmentation results from our method, 3D-ResU-Net, CLCI-Net and U-Net.
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tention can fuse the channel features and position features in the encoder, AG can encode

rough information and fuse features of different convolutional layers, and the DSC layer

can reduce complexity of the encoder. Experiments are conducted in three different types

of medical image datasets, namely ATLAS, CHAOS, and NERVE segmentation datasets.

Experimental results show that MDSU-Net outperforms SoTA, especially in terms of Dice

from Tab. 3.2, Tab. 3.3, and Tab. 3.4. As shown in Fig. 3.6, test results of MDSU-Net in

the three datasets have the highest average and median Dice coefficients. At the same

time, the median is biased towards the third quartile, and results are more concentrated

and deviation is smaller, which means that our method has better effectiveness and stabil-

ity.

We conduct ablation experiments in three datasets to evaluate the impact of these

three modules on MDSU-Net. The results are shown in Tab. 3.5, Tab. 3.6, and Tab. 3.7,

from which we can see that the introduction of dual attention and AGs have improved the

performance of MDSU-Net, all of which have improved in Dice, IoU, and Recall. By

introduction of DSC layer modules, number of parameters of MDSU-Net is reduced by

11.0M compared with U-Net. These ablation experiments show that the multi-attention

can well fuse channel features and position features, and can well fuse features from

encoder and decoder. In addition, the introduction of DSC layer modules can achieve

better performance on three different datasets with fewer parameters than U-Net, which

means that MDSU-Net has better accuracy and lower redundancy.

In actual clinical application, the computing power of device is limited. Our pro-

posed MDSU-Net can reduce the operating pressure of medical equipment by reducing

network complexity and improving computing efficiency. From Tab. 3.9, compared with

models of same scale, MDSU-Net has smaller parameters and FLOPs. However, com-

pared with lightweight models, MDSU-Net has larger parameters and FLOPs, which is

not light enough. As shown in Tab. 3.7, in ATLAS, whether segmenting small or large

areas, MDSU-Net has achieved better segmentation results, and performance has been

significantly improved. However, compared with GT, segmentation edges of MDSU-Net

are too smooth and details of segmentation edges are not depicted. In all, MDSU-Net is
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adaptable to the segmentation of medical images of different types and sizes, increasing

the practical applicability of our model.

Although MDSU-Net performs well on three different types of datasets, there are

some shortcomings in this work. (1) The segmentation results of MDSU-Net in the 3D

MRI dataset are far inferior to those in the CT and UI datasets. MDSU-Net is based on

the characteristics of two-dimensional U-Net, which is mainly used for 2D medical im-

age segmentation tasks. In 3D medical image segmentation tasks, MDSU-Net lacks the

ability to correlate information between slices. (2) While MDSU-Net employs the DSC

layer in lieu of the traditional convolutional layer to mitigate model complexity and alle-

viate strain on medical equipment, challenges persist. The extensive convolutions within

the DSC layer, combined with the introduction of multi-attention, result in a model that

still has a relatively heavy parameter load. (3) MDSU-Net performs well on small and

medium-sized datasets, but its performance on large datasets requires further experimen-

tal validation.

3.6 Summary

In order to enhance reliability of medical image segmentation, we propose a novel

MDSU-Net, which introduces multi-attention and DSC layers. MDSU-Net registers a

Dice score of 0.7055 on ATLAS, 0.9760 on CHAOS, and 0.8883 on NERVE. Notably,

these scores surpass the current state-of-the-art (SoTA) benchmarks. The coarse informa-

tion extracted is effectively applied to the decoder through AGs, which can fuse features

of different convolutional layers. By incorporating dual attention, the network’s capability

to extract abundant contextual information is significantly improved, thereby enhancing

its feature extraction capacity. DSC layer reduces parameters of MDSU-Net and improves

network training efficiency. By introducing multi-attention and DSC layer, MDSU-Net

can perform medical image segmentation tasks efficiently and reliably. However, in 3D

medical images, the segmentation result is easily affected by the size of lesion in the slice,

so in future work we need to propose a 3D network to correlate information between slices
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and extract whole 3D lesion features. In addition, we need to reduce model complexity

further to reduce computational pressure of device.
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4 DEU-Net for 3D Medical Image Segmentation

4.1 Introduction

Medical image segmentation is a crucial task in medical image processing [2, 3],

especially 3D medical image segmentation. Its significance lies not only in the precise

segmentation of lesions to better guide medical image classification but also in the im-

portance of extracting features such as the size and morphology of segmented lesions

for determining the malignancy of tumors and preoperative analysis [109]. In clinical

practice, 3D medical image segmentation is often performed manually [96]. However,

errors can easily occur when dealing with a large number of medical images, and the

accuracy of segmentation relies on the experience of medical professionals [110]. With

the advancement of medical imaging technology, Magnetic Resonance Imaging (MRI)

has taken a leading role in the field of radiological imaging [62]. MRI typically consists

of multiple image sequences, forming its 3D structure [58]. Manual segmentation of 3D

images requires extensive segmentation expertise and skillful operation [111]. Therefore,

an effective automated method for 3D image segmentation is needed to achieve efficient

segmentation tasks. Collecting MRI data is particularly challenging compared to other

natural scene segmentation data, resulting in a scarcity of large MRI datasets.

Recently, CNNs have demonstrated SoTA performance in a wide range of visual

recognition tasks [56, 59, 64]. With the introduction of deep learning networks, medical

image segmentation has made significant progress [41, 96]. Currently, the mainstream

framework for medical image segmentation is the encoder-decoder structure known as

U-Net [9], which has shown excellent performance in various segmentation tasks [42,

112]. However, with the emergence of large medical image datasets, pixel-wise image

segmentation methods alone are insufficient to support the network’s ability to process a

massive amount of data [68].

Inspired by the good performance of ViT in the field of natural images [60], there

have been many studies trying to combine visual Transformers with medical image seg-

mentation and achieved performance close to or even better than CNN on different datasets.
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Hatamizadeh [63] directly used Transformer as an encoder to extract abdominal organ fea-

tures, but it lacks the feature extraction of CNN and the ability to capture long-distance

features. For multi-scale medical images, DS-TransUNet [64] uses Swin Transformer

to extract features in the encoder and fuses features extracted by CNN in the decoder.

However, it lacks feature fusion in the encoder.

We propose Dual Encoder U-Net (DEU-Net), which uses Transformer and CNN re-

spectively to extract medical image features in the encoder. Transformer is a pre-trained

model in Beyond the Cranial Vault (BTCV) [113], which improves its ability to cap-

ture contextual features of medical images and increases the learning speed. Besides, we

introduce CBAM with each convolutional layer in the encoder part to enhance CNN’s

feature extraction capabilities for 3D medical images. To fuse the two kinds of features,

we proposed a Dual Feature Fusion Module (DFFM) to fuse the features extracted from

the Transformer and CNN in the encoder, making full use of the feature extraction capa-

bilities of the two extractors for 3D medical image.

4.2 Methodology

In this work, we propose DEU-Net shown in Fig. 4.1, which uses Transformer and

CNN respectively to extract medical image features in the encoder. Among them, CBAM

can extract 3D medical image feature in the encoder, pre-trained Transformer can im-

proves its ability to capture contextual features of medical images and increases the learn-

ing speed in the encoder, and the DFFM can fuse the features extracted from the Trans-

former and CNN in the encoder, making full use of the feature extraction capabilities of

the two extractors for 3D medical image.

4.2.1 Transformer Encoder

As shown in Fig. 4.2, the input image is a 3D volume x ∈ RH×W×D×C, which is

first divided into fixed-size slices in Linear Projection module. The size of each slice is

P×P×P, and N = (H ×W ×D)/(P3) is the number of slices. The flattened slices are
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Fig. 4.1. Overview of DEU-Net architecture.
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then linearly mapped. In order to retain the position information of each slice, position

encoding information is added to each slice before the slice is sent to the Transformer

encoder. Then, we project the patches into a K dimensional embedding space using linear

layers, which remains constant throughout the entire transformer layer.

Transformer Encoder

CNN

Segmentation
Output

2 3 4 5 6 7 8 91

Linear Projection of FlattenedPatches

DFFM

Decoder

*0

3D Patches
H×W×D×C

Fig. 4.2. Schematic of Transformer encoder in DEU-Net.

We extract the hidden feature from the last layer of sequence representation in Trans-

former, with dimension N×K. In order to obtain more accurate image features and denser

contextual information, we fuse the hidden features with the features extracted from the

last layer of the CNN Encoder. To align their dimensions, we reshape the hidden feature

into an H/P×W/P×D/P×K tensor. Additionally, we employ a 3×3×3 convolutional

layer and normalization layer to map the reshaped features from the embedding space

back to the input space. At the bottleneck layer of the U-shaped network, we concatenate
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the features extracted by the Transformer after reshape and convolution with the features

obtained by the CNN. Finally, the fused feature pass through the DFFM and undergo

upsampling before entering the Decoder.

4.2.2 CNN Encoder with CBAM

The encoder takes feature representation of the image as input and encodes the input

features layer by layer through multiple encoder layers. This process is designed to cap-

ture contextual information and feature representations within the input sequence. Gener-

ally, the repeated stacking of encoder layers contributes to the deep feature representation

of the input sequence. There are four convolutional layers in the CNN Encoder. As shown

in Fig. 4.3, each of which contains two 3D convolutional blocks and one CBAM. Each

3D convolutional block contains a 3D convolution, followed by BN and ReLU activa-

tion functions. Finally, the output features and input features are fused through a residual

connection [91] to enhance the feature extraction capability of the encoder.

3×3×3
conv

3×3×3
conv

BN +
ReLU

CBAM

input
feature

output
feature

BN +
ReLU

Fig. 4.3. Schematic of CNN encoder with CBAM.

4.2.3 Dual Feature Fusion Module

While employing Transformers alone to extract medical image features has shown

satisfactory performance, this approach may not fully leverage the potential of Transform-

ers in the context of segmentation. After patching, the resolution of each slice is much

lower than that of the original image, which can lead to the loss of fine segmentation de-

tails during the encoding process. To address segmentation information loss, DEU-Net
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adopts a hybrid CNN-Transformer architecture as a parallel encoder to achieve long-range

contextual feature capture.

After implementing parallel encoders to extract medical image features, it is im-

portant to fuse two features from different encoders. As shown in Fig. 4.4, we propose

a DFFM to fuse features extracted from Transformer and CNN respectively. At the output

of the last layer of Transformer, we reconstruct the output feature It ∈R(H/16×W/16×D/16)×768

into a 3D feature map I1
t ∈ RH/16×W/16×D/16×768, and then obtain the feature map I2

t ∈

RH/8×W/8×D/8×512 through a deconvolution to increase its resolution by 2 times. Then,

we fuse the adjusted feature with output feature by the CNN encoder and feed them to a

deconvolution layer to upsample the output to get the feature map Ih ∈RH/8×W/8×D/8×512.

Ih passes through a 3D convolution layer to obtain I1
h ∈ RH/8×W/8×D/8×512, and through

a residual connection [91] to get I2
h ∈ RH/8×W/8×D/8×512 to prevent the network from

overfitting and improve the feature expression ability. The module finally obtains I3
h ∈

RH/8×W/8×D/8×216 through upsampling. The final output is fed to the CNN Decoder.
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Fig. 4.4. Schematic of dual feature fusion module.

4.2.4 CNN Decoder

The decoder receives the encoded input sequence (output from the encoder) and pro-

gressively generates the input sequence through multiple decoder layers. There are three
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convolutional layers in the CNN Decoder, each of which contains two 3D convolutional

blocks. As shown in Fig. 4.3, each 3D convolutional block contains a 3D convolution,

followed by BN, ReLU and upsampling layer.

3×3×3
conv

3×3×3
conv

BN +
ReLU

input
feature output

feature

BN +
ReLU

Fig. 4.5. Schematic of CNN decoder.

4.2.5 Loss Function

We use Dice Loss to train the DEU-Net. The loss L is calculated per batch and

channel:

L =
1
n ∑

n

S ·T +ϕ

S2 +T 2 +ϕ
, (4.1)

where n is the number of channels, S is the output of the neural network after Sigmoid

activation, T is the true label, and ϕ is a constant to prevent division by zero.

4.3 Experiment Setup

4.3.1 Datasets

BraTS 2020 [23–25] and BraTS 2021 [32] is a series of datasets for the MICCAI

brain tumor segmentation competition. As shown in Tab. 4.1, on BraTS 2020, the training

set has 369 cases, the validation set has 125 cases, and the testing set has 125 cases. On

BraTS 2021, the training set has 1251 cases, the validation set has 219 cases, and the

testing set has 530 cases. Each case contains 4 modalities and 3 segmentation tasks. The

four modalities are T1, T2, FLAIR, and T1ce. Multi-modality is a commonly used way
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of reflecting images in medical images. The three segmentation tasks are whole tumor

(WT), enhance tumor (ET), and tumor core (TC).

Tab. 4.1. BraTS datasets for 3D medical image segmentation.

Tasks Datasets Modalities Training Validation Testing Size

Brain tumor
BraTS 2020 MRI 369 125 125 240×240×155

BraTS 2021 MRI 1251 219 530 240×240×155

4.3.2 Evaluation Metrics

The segmentation challenge lies in accurately delineating the ET, TC, and WT por-

tions of the tumor. The main evaluation metric is the Dice Coefficient, which can be

defined as follows:

Dice =
2T P

2T P+FP+FN
, (4.2)

where T P represent true positive, FP is false positive, and FN is false negative.

4.3.3 Implementation Details

We implement DEU-Net in PyTorch. The model is trained using an NVIDIA A100

server. Because the 3D image size in the BraTS datasets is large, we resize the 3D image

to 128× 128× 128 and set the batchsize to 2 to relieve GPU computing pressure. The

initial learning rate is set to 10−4, the Adam optimizer [102] is used, and the training

epoch of the network is set to 200. Our Transformer-based encoder follows the ViT

architecture with L = 12 layers and embedding size K = 768. We used a patch resolution

of 16× 16× 16. ϕ is set to 1 in loss function. For all experiments, we used five-fold

cross-validation.
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Tab. 4.2. Comparison results with SoTA methods on the BraTS 2020 dataset.

Methods
Dice

ET TC WT Average

3D U-Net [9] 0.7345 0.8164 0.9029 0.8179

UNETR [63] 0.7473 0.8140 0.9012 0.8208

3D attention U-Net [114] 0.7782 0.8364 0.8893 0.8346

DEU-Net (Ours) 0.7836 0.8384 0.9047 0.8422

Tab. 4.3. Comparison results with SoTA methods on the BraTS 2021 dataset.

Methods
Dice

ET TC WT Average

3D U-Net [9] 0.8747 0.9257 0.9352 0.9119

UNETR [63] 0.8676 0.9097 0.9250 0.9008

3D attention U-Net [114] 0.8763 0.9281 0.9387 0.9144

DEU-Net (Ours) 0.8831 0.9317 0.9408 0.9185
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4.4 Experiment Results

4.4.1 Comparison with State-of-the-arts

BraTS 2020 dataset: We compare performance of DEU-Net with other SoTA meth-

ods on BraTS 2020, as shown in Tab. 4.2. The training and validation are all performed

on the Brats 2020 dataset. It can be observed that in the ET segmentation task, the Dice

coefficient of our proposed network DEU-Net is 0.0054 higher than that of 3D attention

U-Net. In the TC segmentation task, DEU-Net improves 0.0020 compared to 3D atten-

tion U-Net. In the WT segmentation task, DEU-Net improves 0.0018 compared to 3D

U-Net. Taken together, in terms of the average Dice coefficient of the three segmentation

tasks, DEU-Net is 0.0076 higher than 3D attention U-Net. It can be concluded that by

fusing Transformer and CNN features, we have improved the network’s ability to capture

contextual features.

BraTS 2021 dataset: As shown in Tab. 4.3, we compare performance of DEU-Net

with other SoTA methods on BraTS 2021. The training and validation are all performed

on the Brats 2021 dataset. It can be observed that in the ET segmentation task, the Dice

coefficient of our proposed network DEU-Net is 0.0068 higher than that of 3D attention

U-Net. In the TC segmentation task, DEU-Net improves 0.0036 compared to 3D atten-

tion U-Net. In the WT segmentation task, DEU-Net improves 0.0021 compared to 3D

attention U-Net. Taken together, in terms of the average Dice coefficient of the three seg-

mentation tasks, DEU-Net is 0.0041 higher than 3D attention U-Net. It can be concluded

that by fusing Transformer and CNN features, we have improved the network’s ability to

capture contextual features.

4.4.2 Ablation Study

To thoroughly evaluate the proposed DEU-Net framework under different settings,

we conduct various ablation studies on the BraTS datasets, including: 1) effect of CBAM,

2) effect of pre-trained Transformer, 3) effect of DFFM, and 4) effect of feature size in

CNN.
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Tab. 4.4. Results of CBAM on the BraTS 2020 and BraTS 2021 datasets.

Datasets Methods
Dice

ET TC WT Average

BraTS 2020
- CBAM 0.7795 0.8257 0.9034 0.8362

+ CBAM 0.7836 0.8384 0.9047 0.8422

BraTS 2021
- CBAM 0.8771 0.9234 0.9283 0.9096

+ CBAM 0.8831 0.9317 0.9408 0.9185

Tab. 4.5. Results of Transformer with and without pre-trained on the BraTS 2020 and BraTS 2021 datasets.

Datasets Methods
Dice

ET TC WT Average

BraTS 2020

Backbone 0.7345 0.8164 0.9029 0.8179

Transformer 0.7758 0.8336 0.9037 0.8377

Pre-trained 0.7836 0.8384 0.9047 0.8422

BraTS 2021

Backbone 0.8747 0.9257 0.9352 0.9119

Transformer 0.8809 0.9299 0.9380 0.9163

Pre-trained 0.8831 0.9317 0.9408 0.9185
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Effect of CBAM: We add CBAM after each layer of convolutional layer from res-

olution of 1/8 to resolution of 1 in the encoder part. As shown in Tab. 4.4, on the BraTS

2020 dataset, the performance of the pre-trained network is improved by 0.0041, 0.0127

and 0.0013 on the three tasks compared with the network without pre-trained, with an

average improvement of 0.0080. We can know that on the BraTS 2021 dataset, the per-

formance of the pre-trained network is improved by 0.0060, 0.0083 and 0.0025 on the

three tasks compared with the network without pre-trained, with an average improvement

of 0.089. When we add the CBAM with all convolutional layers, network performs best,

which shows that CBAM can fully extract the context information of 3D medical image

features.

Effect of Pre-trained Transformer: We train and validate the Transformer with-

out pre-trained and the Transformer with pre-trained on the BraTS 2020 and BraTS 2021

datasets, and the results are shown in Tab. 4.5. We can know that on the BraTS 2020

dataset, the performance of the pre-trained network is improved by 0.0078, 0.0048 and

0.0010 on the three tasks compared with the network without pre-trained, with an average

improvement of 0.0045. We can know that on the BraTS 2021 dataset, the performance

of the pre-trained network is improved by 0.0022, 0.0018 and 0.0028 on the three tasks

compared with the network without pre-trained, with an average improvement of 0.0022.

That means pre-trained model can capture contextual information very well. As shown

in Fig. 4.6 and Fig. 4.7, the performance of the pre-trained model is relatively stable dur-

ing the training and validation processes, which shows that pre-training can significantly

improve the stability of network segmentation.

Effect of DFFM: DFFM is a module we proposed that integrates Transformer and

CNN features to achieve efficient and effective interaction between multi-scale features.

In order to validate the contribution of DFFM to network, we do training and validation

on the BraTS 2020 and BraTS 2021 datasets. As shown in Tab. 4.6, we can know that

the performance of the network with DFFM is improved by 0.0350, 0.0305 and 0.0120

on the three tasks compared to the network without DFFM, with an average improvement

of 0.0258 on BraTS 2020. The performance of the network with DFFM is improved by
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Fig. 4.6. Validation curve of Transformer with and without pre-trained on the BraTS 2020 dataset.
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Fig. 4.7. Validation curve of Transformer with and without pre-trained on the BraTS 2021 dataset.
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Tab. 4.6. Results of DFFM on the BraTS 2020 and BraTS 2021 datasets.

Datasets Methods
Dice

ET TC WT Average

BraTS 2020
- DFFM 0.7486 0.8079 0.8927 0.8164

+ DFFM 0.7836 0.8384 0.9047 0.8422

BraTS 2021
- DFFM 0.8769 0.9188 0.9386 0.9114

+ DFFM 0.8831 0.9317 0.9408 0.9185

0.0062, 0.0129 and 0.0022 on the three tasks compared to the network without DFFM,

with an average improvement of 0.0071 on BraTS 2021. This shows that DFFM can

well integrate Transformer and CNN features and improve the network’s ability to extract

medical image features.

Effect of feature size in CNN: In order to validate effect of input feature size of

CNN in the encoder of DEU-Net, we select the input feature size as 8, 16, 32, 48, and 64.

We train and validate the networks on the BraTS 2020 and BraTS 2021 datasets, and the

results are shown in Tab. 4.7. We can know that both on the BraTS 2020 and BraTS 2021

datasets, as the feature size becomes larger, the performance of the network improves, but

the improvement trend of network segmentation accuracy is not very obvious. When the

input feature size of CNN is 8, the performance of the network has reached an advanced

level. At the same time, as the feature size increases, the performance of the network

is slowly increasing. However, the number of parameters of the network also increases

accordingly. Compared with the input feature size of 8, when it is 64, the number of

parameters of the network increases by 47.72%. In order to improve segmentation accu-

racy, we can increase the input feature size of CNN, but this will increase the number of

parameters of the network, thereby increasing the amount of calculation and increasing

the computational pressure.
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Tab. 4.7. Results of feature size in CNN on the BraTS 2020 and BraTS 2021 datasets.

Datasets Feature Size
Dice

Parameters
ET TC WT Average

BraTS 2020

8 0.7756 0.8212 0.8842 0.8270 99.1M

16 0.7766 0.8341 0.8939 0.8349 101.6M

32 0.7770 0.8367 0.8961 0.8366 110.9M

48 0.7818 0.8317 0.8953 0.8363 125.8M

64 0.7836 0.8384 0.9047 0.8422 146.4M

BraTS 2021

8 0.8642 0.9169 0.9343 0.9051 99.1M

16 0.8729 0.9240 0.9362 0.9110 101.6M

32 0.8775 0.9202 0.9397 0.9125 110.9M

48 0.8825 0.9307 0.9405 0.9179 125.8M

64 0.8831 0.9317 0.9408 0.9185 146.4M
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4.4.3 Case Study
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Fig. 4.8. Visualization of segmentation results from our method, 3D attention U-Net, UNETR and 3D

U-Net.

In order to observe more clearly the segmentation effect of each network on brain

tumors, we performed 3D visualization of the segmentation results. As shown in Fig. 4.8,

we visualize segmentation results of our method (DEU-Net), 3D attention U-Net, UN-

ETR and 3D U-Net on five different cases from BraTS 2020 dataset. The green area is

peritumoral edema, the yellow area is enhancing tumor, and the red area is non-enhancing

tumor. The red area is usually obscured by green and yellow areas. Due to the small size

of the tumor in some cases, we enlarged the lesion. We randomly selected 5 cases from

the BraTS 2020 dataset. Due to the small size of the tumor in some cases, we enlarged the

lesion. Among them, the first column is the original MR image, the second column is the
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GT after expert segmentation in the dataset, and the 3rd to 6th columns are our methods,

3D attention U-Net, UNETR and 3D U-Net segmentation results.

After comparative analysis, it can be found that the segmentation results obtained by

the automatic segmentation method lack the segmentation details of GT, especially the

surface of the lesion is relatively smooth and does not have too many details. Although

our method has some over-segmentation in the WT segmentation task compared with

GT, compared with the other three methods, the over-segmentation rate of our method is

smaller. Moreover, automatic segmentation methods are prone to under-segmentation in

ET segmentation tasks. Compared with the other three methods, the under-segmentation

rate of our method is also smaller. These results show that we effectively fuse features ex-

tracted by Transformer and CNN and improve the network’s ability to capture contextual

features.

4.5 Discussion

To improve the ability of the 3D model to capture the contextual information of

3D medical images, we explore the importance of CBAM, pre-trained Transformer, and

DFFM for extracting 3D medical image features, we propose a dual encoder network

called DEU-Net. Among them, CBAM can extract 3D medical image feature in the en-

coder, pre-trained Transformer can improves its ability to capture contextual features of

medical images and increases the learning speed in the encoder, and the DFFM can fuse

the features extracted from the Transformer and CNN in the encoder, making full use of

the feature extraction capabilities of the two extractors for 3D medical image. Exper-

iments are conducted in three medical image datasets, namely BraTS 2020 and BraTS

2021 brain tumor segmentation datasets. Experimental results show that DEU-Net out-

performs SoTA, in terms of Dice from Tab. 4.2 and Tab. 4.3.

Ablation experiments are conductedv on BraTS datasets to evaluate the impact of

these three modules on DEU-Net. The results are shown in Tab. 4.4, Tab. 4.5, Tab. 4.6, and

Tab. 4.7, from which we can see that the introduction of CBAM, pre-trained Transformer,
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and DFFM have improved the performance of DEU-Net in Dice coefficients. These ab-

lation experiments show that CBAM can extract the context information of 3D medical

image features very well, DFFM can well fuse the features extracted from the Transformer

and CNN in the encoder, making full use of the feature extraction capabilities of the two

extractors for 3D medical image from encoder. In addition, the introduction of pre-trained

Transformer can achieve better performance on segmentation tasks with higher learning

speed, which means that DEU-Net has better accuracy and lower redundancy.

Although DEU-Net performs well on BraTS datasets, there are some shortcomings

in this work. (1) DEU-Net does not fully utilize the Transformer to extract medical image

features and does not fully integrate the feature maps output by the 12 layers of Trans-

former. (2) The types of 3D medical image segmentation tasks are diverse, we do not

train, validate, and test on other medical image segmentation tasks. (3) The network com-

bines Transformer and CNN as the encoder of the network. Because the standard Trans-

former is oriented to large data sets, its parameters are large, which greatly increases the

parameter load of the network and increases the amount of calculations.

4.6 Summary

For 3D medical segmentation task, we propose DEU-Net, which uses Transformer

and CNN to extract 3D medical image features in the encoder. Transformer is a pre-

trained model in BTCV, which improves its ability to capture contextual features of med-

ical images and increases the learning speed. We introduce CBAM with each convolu-

tional layer in the encoder part to enhance CNN’s feature extraction capabilities for 3D

medical images. To fuse the two kinds of features, we proposed DFFM to fuse the fea-

tures extracted from the Transformer and CNN in the encoder, making full use of the

feature extraction capabilities of the two extractors for 3D medical image. DEU-Net reg-

isters a Dice score of 0.7836 for ET segmentation task, 0.8384 for TC segmentation task,

and 0.9047 for WT segmentation task, respectively. The results demonstrate that DEU-

Net outperforms state-of-the-art for three segmentation tasks on the BraTS 2020 dataset.
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However, the proposed network does not fully utilize the Transformer to extract medical

image features and does not fully integrate the feature maps output by the 12 layers of

Transformer. In addition, the types of medical image segmentation tasks are diverse, and

how our method performs in other segmentation tasks requires further validation.
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5 Conclusion and Future Work

5.1 Conclusion

Medical image segmentation has been widely discussed and concerned in the field

of image processing, which has become a basic component and a crucial stage of im-

age processing. In clinical diagnosis, medical images provide doctors with main patient

condition information, and medical image segmentation facilitates clinical diagnosis and

treatment. In clinical practice, segmentation is typically performed manually. However,

when processing a vast number of medical images, the quality of segmentation can vary

based on the expertise of the medical professional. This variability underscores the need

for a more consistent and efficient method to enhance the performance of segmentation

tasks.

Currently, medical image segmentation still faces significant challenges. Firstly, the

acquisition and creation of high-quality datasets. Amassing such datasets is a complex

task and is often beyond the capacity of a single institution within a limited timeframe.

As a result, medical datasets tend to be smaller in size and can exhibit inconsistencies.

Secondly, notable characteristic of medical images is the imbalance between the fore-

ground and background areas. Unlike natural scene images, where the foreground and

background might be more balanced, medical images often have a much larger back-

ground compared to the foreground. The third challenge lies in the inherent complexity

and diversity of medical images. The intricate shapes of human tissue structures and

the vast individual variations pose additional difficulties for medical image segmentation.

Variances in patient age, differences in imaging equipment, and even regional disparities

among medical institutions can all impact the overall quality of medical image slices to

varying degrees. The diversity in types and storage formats of medical images, as well

as the multitude of lesions or organ locations in patients, presents a formidable challenge

to the universality of segmentation methods. Inevitably, medical images exhibit features

such as blurriness and unevenness, making segmentation methods less universally appli-

cable compared to natural scene images.
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The currently popular medical image segmentation method is still a network with

an encoder-decoder structure. However, current method implementations do not fully ex-

plore feature fusion between different features. Furthermore, a notable challenge with

Transformer-based models is their inherent complexity. They often necessitate large

datasets for training to achieve optimal performance. Consequently, Transformers may

not be the ideal choice for every medical segmentation task.

To address these two challenges in field of medical image segmentation, we proposed

two models to segment 2D and 3D medical image respectively.

• For 2D medical image segmentation, we propose an MDSU-Net, a variation of the

U-Net, for 2D medical image segmentation. MDSU-Net incorporates both multi-

attention and DSC layer for improved performance. The multi-attention module

within our framework utilizes dual attention and attention gates to capture rich con-

textual information and fuse features of different convolutional layers. MDSU-Net

uses DSC layer to reduce model complexity without degrading model performance,

which is suitable for different segmentation tasks.

• In the field of 3D medical image segmentation, we propose DEU-Net, which uses

Transformer and CNN respectively to extract 3D medical image features in the

encoder. Transformer is a pre-trained model in BTCV, which improves its ability

to capture contextual features of medical images and increases the learning speed.

We introduce CBAM with each convolutional layer in the encoder part to enhance

CNN’s feature extraction capabilities for 3D medical images. To fuse the two kinds

of features, we proposed DFFM to fuse the features extracted from the Transformer

and CNN in the encoder, making full use of the feature extraction capabilities of the

two extractors for datasets of different sizes.

5.2 Future Work

There is a wide variety of tasks in 3D medical image segmentation, and the 3D

network we proposed has undergone validation experiments specifically for brain tumor
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segmentation. Further verification is needed for other segmentation tasks and different

types of images. Given the high complexity of medical images, we will explore new

model structures to enhance feature extraction and feature fusion.

We have constructed two segmentation networks for medical images in different

dimensions. In the future, we will further explore a universal model that combines tasks

from both dimensions. Additionally, regardless of whether it is 2D or 3D medical images,

the parameter magnitudes of the two models we proposed are relatively large. For datasets

with smaller volumes, we will further reduce model complexity to alleviate computational

pressure and enhance the practicality of the model in real clinical environments.
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