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Abstract 1

Abstract

With the proliferation of Deep Learning (DL) methodologies and Large Language

Models (LLMs) in sentiment analysis, significant advancements have been achieved in

recent years. However, these models introduce a set of challenges that have not been

adequately addressed. Foremost among them is the lack of model interpretability, which

hinders the understanding of the mechanisms through which these models make deci-

sions. Furthermore, the current state-of-the-art models necessitate expensive computa-

tional resources for training and require vast datasets with manual annotations, posing

both financial and time constraints for researchers and practitioners.

Addressing these challenges, this research presents a unique, interpretable frame-

work for text sentiment analysis that is not only cost-efficient but also high in precision.

Our proposed framework synthesizes three principal methods:

1. Enriched Semantic Layer: By merging the unsupervised topic clustering Latent

Dirichlet allocation (LDA) matrix with the hidden expression matrix generated by

Transformer-like models, we bolster the semantics of the hidden layer. This synthe-

sis allows the model to capture deeper and more nuanced sentiments from the text,

bridging the gap between raw data and interpretability.

2. Symbolic Logic Integration: We incorporate symbolic logic systems, such as Real

Logic and Logic Tensor Network (LTN), into our framework. By doing so, we

translate the traditionally obscure operations of deep learning models into a more

understandable and logical format. This layer of logic helps decode the complex

operations, rendering the model interpretable to a significant extent.

3. Large Language Model Supervision: Using a sophisticated language model, such as

ChatGPT, as the teacher model, we generate target text. This text acts as a bench-

mark, evaluating the quality of the text produced by the student model. Through

this teacher-student Causal Inference dynamic, our framework gains insights from
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state-of-the-art models without inheriting their inherent opacity. In this process, we

also utilies technologies such as Prefix Instruction Fine-tuning, within-Domain Fur-

ther Fine-tuning, and Task-specific Decoding to further improve the efficiency and

accuracy of the model.

Incorporating these strategies, our methodology prioritizes both model simplicity

and transparency, while also leveraging domain knowledge. Initial results indicate that

this hybrid approach melds interpretability with high performance, suggesting a com-

pelling alternative to the prevailing deep learning-centric models. This research aspires

to spearhead the development of more transparent, efficient, and accessible sentiment

analysis tools in the future.

In order to further verify the effectiveness of the framework proposed in this re-

search, we conducted extensive experiments on multiple sentiment analysis subtasks.

These include: Weibo emotion detection, emotion intensity analysis, financial argument

analysis, human-machine customer service dialogue satisfaction evaluation, etc. The

model outperforms state-of-the-art baselines on various subtasks and achieves first place

in both NTCIR-16 DialEval-2 and NTCIR-17 FinArg-1 tasks.

Keywords: Affective computing; Text sentiment analysis; Model fine-tuning; Prompt

engineering; Feature fusion
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1 Introduction

1.1 Motivation

As we dive deeper into the digital age, vast amounts of textual data are generated

every second across online platforms, ranging from social media posts and news articles

to customer reviews and patient feedback. Understanding the sentiment embedded within

this data can provide invaluable insights into consumer preferences, political landscapes,

and even predictive healthcare outcomes. The field of sentiment analysis with Artificial

Intelligence (AI) has thus rapidly evolved to decode these nuanced emotions and opinions

hidden in textual form [1].

However, with the advent and dominance of deep learning models in sentiment anal-

ysis, a paradoxical situation has emerged. While these models can achieve impressive

accuracy, they often function as “black box” [2], with their intricate architectures and

millions of parameters making it challenging to discern how they arrive at particular de-

cisions. This opacity is problematic for several reasons:

1. Accountability & Trust: In sectors where decisions have profound implications, like

finance, healthcare, or public policy, understanding the rationale behind a sentiment

prediction is crucial. It instills confidence in stakeholders and ensures accountability

in AI-driven decisions.

2. Model Improvement: A clear understanding of how a model processes information

can highlight areas of improvement. For instance, if a model consistently misin-

terprets certain phrases or contexts, pinpointing the cause becomes feasible with

interpretability.

3. Regulatory Compliance: In many industries, regulations mandate that algorithmic

decisions be explainable to those affected by them. An interpretable sentiment anal-

ysis model would thus align better with such regulatory landscapes.
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4. Generalization & Bias Detection: Interpretable models can help in identifying bi-

ases or over-generalizations the model might have inherited from its training data,

ensuring fairness and broader applicability.

Moreover, there’s an economic dimension to consider. Advanced deep learning

models come with heavy computational demands, translating to high training costs [3].

These costs are not just financial—labor cost concerns are emerging regarding the ex-

tensive AI training sessions. By focusing on interpretable models, there’s potential to

develop more efficient algorithms that require less data and computational power. The

promise is twofold: reduced costs for businesses and researchers, and more sustainable

approach to AI training.

Given the immense potential applications of sentiment analysis in shaping business

strategies, informing public policies, enhancing patient care, and more, there’s a pressing

need for models that are not only accurate but also transparent in their operations. In-

terpretable text sentiment analysis stands at this crucial intersection, aiming to demystify

the complexities of sentiment predictions and make AI more accessible, trustworthy, and

effective.

1.2 Significance of Research

The importance of understanding human emotions and sentiments in textual data has

always been clear, but with the surging reliance on machine learning and artificial intel-

ligence, the need for interpretable text sentiment analysis has gained newfound urgency.

The significance of this research extends across multiple dimensions.

One of the most pressing concerns in AI today is the opacity of decision-making

processes, particularly in deep learning models. This research offers a tangible solu-

tion, seeking to make intricate AI decisions understandable and relatable to humans, thus

bridging this transparency gap. When stakeholders in any domain, be it finance, health-

care, or public policy, can understand the ’why’ behind an AI’s sentiment prediction, it
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augments their decision-making process. With clarity on how conclusions are drawn, de-

cisions can be made confidently and with increased precision. As societies grapple with

the ethical implications of AI, regulations are emerging that demand transparency in AI-

driven decisions. Research in interpretable sentiment analysis is thus pivotal in ensuring

that AI tools remain compliant with evolving legal landscapes, avoiding potential legal

ramifications. Simultaneously, with an emphasis on interpretability often comes model

simplicity and efficiency. By reducing the complexity and data demands, businesses and

researchers can deploy sentiment analysis tools at a fraction of the traditional cost. This

democratizes access, allowing even small-scale entities to harness the power of senti-

ment analysis without exorbitant investments. Last but not least, transparent models can

shed light on inherent biases in AI algorithms, which can originate from skewed training

data or model architectures. By making these biases visible, this research plays a pivotal

role in promoting fairness and inclusivity in AI tools, ensuring that they serve diverse

populations equitably.

In summary, the significance of research on interpretable text sentiment analysis

cannot be overstated. It promises a future where AI not only understands human senti-

ments with high accuracy but also communicates its conclusions transparently, operates

ethically, and does so in an economically and environmentally efficient manner. This

research thus stands at the intersection of technological advancement, ethical consid-

erations, and practical applications, holding the potential to redefine the landscape of

sentiment analysis.

1.3 Research Contents and Contributions

Affective computing, first provided by Picard in 1977 [4], is a key technology for

sentiment recognition and opinion mining in the field of natural language processing

(NLP). It has a wide range of applications in public opinion monitoring [5], business

prediction [6], consumer preference analysis [7], patient situation analysis [8], and other

fields. As a important branch of affective computing, text sentiment analysis is also an
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upstream task of many other NLP tasks, such as style transfer [9, 10], emotional text

generation [11], and chatbot [12].

However, text sentiment analysis is a difficult task, as shown in Figure 1.1. Initially,

the emotions expressed by words or sentences are often ambiguous or have serious se-

mantic diversity. The phrase “I got you!” may have complex and diverse semantics. In

addition, the emotions expressed by the text are usually complex, not single. If we di-

vide emotions into positive and negative, and in some tasks, the positive emotions can be

further divided into joy, love, surprise, expect, and the like. The problem is that we have

many other complex emotions. This kind of emotion usually contains other emotions, for

example, when you miss someone, you always feel expectation and anxiety at the same

time. Last but not least, emotions can also be affected by subjective personality. For ex-

ample, the smiling emoticon is just a smile for the elders. But for young people, it means

a lot.

Fig. 1.1. Difficulties of sentiment analysis.

Furthermore, as explained in Sections 1.1 and 1.2, the prevailing sentiment analy-

sis paradigm within the context of large language models is uninterpretable, expensive,

and unreliable. To address these challenges, this research introduces a unique and inter-

pretable framework for text sentiment analysis that is both cost-efficient and precise. Our
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proposed framework incorporates three primary methods: the Enriched Semantic Layer,

Symbolic Logic Integration, and Large Language Model Supervision. Technical details

will be elaborated upon in Section 3. When compared to related works, our contributions

primarily focus on the following:

1. We introduce a novel architecture for text sentiment analysis that offers reduced

training costs, enhanced classification and detection outcomes, and superior inter-

pretability.

2. We investigate the integration of feature vectors from various modalities. This in-

cludes feature vectors produced by models with differing supervision types, feature

vectors for different levels of text granularity, and feature vectors for multiple lan-

guages. The advantages and disadvantages of these combinations are discussed in

depth.

3. We examine the potential of merging traditional neural networks with symbolic

logic methods in text sentiment analysis tasks. This not only enhances the frame-

work’s interpretability but also bolsters its accuracy.

4. We devise a comprehensive set of prompts effective for both LLMs and text genera-

tion models. By employing a range of prompt engineering strategies, the text-to-text

model becomes adept at text classification and relational reasoning. Furthermore, it

can tackle a variety of downstream tasks using simple decoders.

5. We apply the proposed framework to multiple practical sentiment analysis tasks.

These include Weibo emotion detection, emotion intensity analysis, financial ar-

gument analysis, human-machine customer service dialogue satisfaction evalua-

tion, etc. The model outperforms state-of-the-art baselines on various subtasks and

achieves first place in both NTCIR-16 DialEval-2 and NTCIR-17 FinArg-1 tasks.

In summery, this research introduces a unique sentiment analysis framework that

addresses challenges in large language models, emphasizing cost-efficiency, precision,
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and interpretability. Key contributions encompass the development of a novel sentiment

analysis architecture with heightened efficiency and clarity, the innovative integration of

feature vectors from various modalities, the pioneering combination of traditional neural

networks with symbolic logic methods, and the crafting of versatile prompts optimized

for both LLMs and text generation, ensuring superior classification, reasoning, and adapt-

ability to diverse tasks.

1.4 Thesis Organizations

The research on Interpretable Text Sentiment Analysis is divided into five sections

in this paper. Each section of this paper is organized as follows:

1. Introduction.

This section introduces the research background of the affective computing and the

significance difficulties of sentiment analysis. Motivation and innovation of our

research are also introduced.

2. Background and preliminaries.

Necessary preliminary knowledge is introduced briefly in this section. Some related

or similar works are also listed.

3. Interpretable text sentiment analysis framework.

In this section, we introduce the proposed model and method of our research, includ-

ing enriched semantic feature fusion, symbolic logic integration and large language

model supervision.

4. Experiments and analysis.

This section includes detail experiments and discussions. Extensive experimental

results demonstrate that our model outperforms state-of-the-art baselines on various

subtasks. In addition, ablation experiments and case studies are proposed.
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5. Conclusions and future work.

We conclude our work and outline the direction of future work.
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2 Background and Preliminaries

2.1 Text Sentiment Analysis

The goal of sentiment analysis is to extract and analyze information from subjective

material, such as blogs and tweets published on the Internet, or conversations in an online

customer service system. Sentiment analysis has lately been a popular study subject in

data mining and Natural Language Processing (NLP) due to its wide range of academic

and corporate applications, as well as the exponential growth of social media data [1].

Sentiment analysis is a challenging process. First, the emotions communicated by words

or phrases are frequently imprecise or with a significant semantic variation. Second, the

feelings portrayed by the text are frequently complicated, rather than simple. Lastly,

subjective personality can have a significant influence on emotions.

Generally speaking, the process of text sentiment analysis can be divided into three

parts, as shown in Figure 2.1: text information collection, sentiment feature extraction,

and information analysis. The text information collection module obtains the sentiment

comment text through text grabbing tools (such as web crawler tools) and transmits it

to the sentiment feature extraction module. The sentiment feature extraction module

transforms the natural language text into a form that can be recognized and processed by

the computer and gives it to the information analysis module to get different results.

1. Text information collection.

Emotional feature tagging is to annotate emotional semantic features, usually tak-

ing words or semantic blocks as feature items. Emotional feature tagging firstly

designs the attributes of emotional semantic features, such as commendatory words,

derogatory words, enhanced mood, general mood, sadness, happiness and so on;

then it labels the emotional semantic features by machine automatic tagging or man-

ual tagging to form a set of emotional features. Emotion dictionary is a typical set of

emotion features, and it is also the basis of emotion computing. In most researches,

the research on affective computing usually introduces the affective dictionary di-
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Fig. 2.1. General process of sentiment analysis.

rectly into the custom dictionary.

It is a simple and rapid method to calculate the text emotion value with an emotion

dictionary, but the accuracy needs to be improved. In the actual emotional comput-

ing, it will be different because of the specific language application environment.

For example, the word "sick" is usually regarded as a negative word, but it is re-

garded as a positive word in spoken English when used with “pretty”. At the same

time, there are often negative preposition, double negation, colloquialism, and ex-

pression used in text, which will have a great impact on the extraction and judgment

of text emotional features. Therefore, when extracting text emotion, we need to

analyze the text and its corresponding context and environment.

2. Sentiment feature extraction.

The text usually contains complex emotional information. In the research of giv-

ing computers the ability to recognize text emotion, it is very important to extract

feature patterns from text signals. After preprocessing the text, we need to extract

emotional semantic features. The basic idea of feature extraction is to determine

which features can give the best emotion recognition according to the text data. The

usual algorithm is to score the existing emotional feature words, and then the fea-
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ture subset is composed of the features that exceed a certain threshold in the order

of score. The quality of the feature word set directly affects the final result, so in

order to improve the accuracy of calculation, the research of text feature extraction

algorithm will continue to be concerned. In the long run, the technology of auto-

matic text feature generation will be further improved, and the research focus of

feature extraction will shift from the analysis of word frequency to text structure

and emotional words.

3. Emotion information analysis.

In the early text sentiment analysis technology, there are mainly two technical routes:

rule-based method and statistics-based method. In the 1980s, the rule-based ap-

proach dominated the mainstream position. It acquired syntactic rules through lin-

guists’ language experience and knowledge and used them as the basis of text anal-

ysis. However, the process of acquiring rules is complex and costly, which also has

a negative impact on the performance of the system, and it is difficult to find an

effective way to improve the efficiency of developing rules. After the 1990s, people

tend to use statistical methods to select features and train parameters through train-

ing samples. According to the selected features, the input samples to be classified

are formalized, and then input to the classifier to determine the category, and finally

get the category of the input sample. Nowadays, with the rise of LLMs, more and

more companies and researchers prefer to use LLMs for sentiment analysis.

Recently, many sentiment analysis problems, such as polarity detection [13] and sen-

timent intensity prediction [14], have been effectively handled using traditional machine

learning approaches including Support Vector Machines (SVM) [15], Latent Dirichlet al-

location (LDA) [16], and graph mining. More recently, Deep Neural Networks (DNN)

have demonstrate their impressive ability to imitate the hierarchical organizational struc-

ture of the human brain, enhancing their capacity for deeper emotional semantic expres-

sion capabilities, and have been widely employed in the field of sentiment analysis. In
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particular, Transformer-based language models [17, 18], i.e., deep neural networks that

are first pre-trained on massive corpora and then fine-tuned for a specific domain, are the

emerging paradigm that successfully tackles the sentiment analysis tasks.

Although DNN networks achieve human-like accuracy on many tasks, they are not

without flaws. Most DNN models require a substantial amount of annotated data and sig-

nificant training costs, and lack interpretability due to their "black box" nature. Over the

past few decades, many researchers have attempted to solve the aforementioned problems

by combining traditional computing approaches and DNN models. On the traditional

computing side, it is desirable to retain the high interpretability and provability inher-

ent in these systems, as well as the simplicity of leveraging expert human background

knowledge. On the DNN side, desirable advantages include trainability on raw data and

robustness to faults in the underlying data. As a result, methods like Symbolic or Sub-

symbolic AI for sentiment analysis have emerged [19, 20, 21, 22]. These methods are

committed to integrating logical reasoning within deep learning architectures to build a

commonsense knowledge base for sentiment analysis.

2.2 LDA for Topic Clustering

LDA (Latent Dirichlet Allocation) [16] was proposed by Blei, Ng and Jordan in

2003 to infer the topic distribution of documents. The LDA model is a traditional three-

layer Bayesian model. The core concept is to describe both the document-topic and

the topic-word as a Multinomial distribution with a Dirichlet prior probability. LDA

employs hyperparameters in the parameter settings to solve the overfitting problem in

other approaches such as PLSA [23]. The LDA model utilized in this paper is a three-

level generative model, as illustrated in Fig. 2.2. The document is viewed as a sequence

of N words, and the corpus is made up of D documents. There are K subjects in the

corpus, thus K signifies that there are K topics in the corpus. The boxes in the figure

represent repeated sampling.

The idea of topic word is not taken into account in the standard unigram model.
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Fig. 2.2. The basic LDA architecture.

When we produce articles, we make absolutely sure that each content is about a certain

topic. As a result, in the LDA structure depicted in Fig. 2.2, each circle represents a

random variable. The grey circles are the observable variables, while the white circles

are the latent variables. Words in the corpus are the only information we can observe

in actual activities. The goal of LDA is to use observable words to infer the underlying

topic information. When constructing a text corpora model, the generative procedure is

as follows (assuming the corpus comprises D documents and K topics):

1. For each topic k ∈ K, calculate βk ∼ Dirichlet(η). This draws a distribution of the

words, which can be treated as the probability of a word appearing in topic k.

2. For each document d ∈ D, calculate the topic proportions θd ∼ Dirichlet(α).

3. For each word i in document d:

(a) Calculate the topic assignment zdi ∼Multinomial(θd).

(b) Calculate the observed word wi j ∼Multinomial(βzdi).

The bag of words model is also utilised in LDA. D documents correspond to d indepen-

dent Dirichlet-Multinomial conjugate structures, whereas K subjects are k independent

Dirichlet-Multinomial conjugate structures. Each word in a document must be generated

by rolling the dice twice. The first time we roll a doc-subject dice and receive a topic; the
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second time we roll a topic-word dice to get a word. Each time we generate a word in

each document, the two actions of rolling the dice are carried out close rotational. If the

corpus contains N words, we will roll the dice 2N times. In this scenario, we can obtain

the following outcomes:

p(w,z | α,η) = p(w | z,η)p(z | α)

=
K

∏
k=1

∆(βk +η)

∆(η)

D

∏
d=1

∆(θd +α)

α
.

(2.1)

The classic topic generating model LDA has a strong mathematical foundation and

flexible scalability, and it has produced some great topic extraction performances. How-

ever, because LDA ignores the local subject words, it cannot directly examine the sub-

ject’s emotional polarity. The LDA approach of text topic extraction is an unsupervised

method, and the number of topics K is a hyperparameter. The value of K has a significant

impact on the performance of sentiment classification with diverse text lengths. If K is

too small, the extracted topic expression will have inadequate weight in comparison to

the Transformer hidden representations, resulting in a diluted extracted probability. On

the other hand, if K is too big, the extracted topic expression will be excessively intricate,

resulting in overfitting and loss of topic information. In this research, we experimented

with K values ranging from 5 to 50, and we treated text as a "text sequence" at different

levels: sentence, paragraph, or document. Section 4 contains more information on the

parameters and settings.

2.3 Logic Tensor Network

Logic Tensor Network (LTN) [24, 25] is a Neural-Symbolic (NeSy) framework that

supports the learning of neural networks by using the satisfaction of a first-order logic

knowledge base as an objective. In other words, LTN employs logical reasoning on

the knowledge base to guide the learning of a potentially deep neural network. The

concept behind LTN is straightforward: it consists of a first-order logic knowledge base
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containing a set of axioms; some predicates, functions, or logical constants appearing in

these axioms are targeted for learning; and there is data available that can be utilized to

learn the parameters of these symbols. The approach involves using the logical axioms

as a loss function for the Logic Tensor Network. The objective is to find solutions in the

hypothesis space that maximally satisfy all the axioms contained in the knowledge base.

In LTN, the learnable parameters are contained in the predicates, functions, and

possibly learnable logical constants that appear in the logical axioms of the knowledge

base. The LTN framework can be easily implemented through the Pytorch tool using

LTNtorch [26]. The background knowledge that LTN can express can be roughly divided

into three categories:

1. Symbol embedding: including domain boundaries, explicit expressions of symbols,

and parameterized definitions of symbols;

2. Formulas: including factual propositions and generalized propositions;

3. Fuzzy syntax: implemented by defining operators.

Through the above methods, the LTN framework can complete a variety of tasks, such

as: Binary Classification, Multi-class Single-label Classification, Multi-class Multi-label

Classification, Semi-supervised Pattern Recognition, Regression, Clustering, or Learning

Embeddings.

Here gives a workflow that uses the LTN framework to complete Binary Classifica-

tion tasks, as shown in Fig2.3. In the figure, G(x+) and G(x−) are inputs to the network

Gθ (A) and the dotted lines indicate the propagation of activation from each input through

the network, which produces two outputs. Suppose that one wants to learn a binary clas-

sifier A for a set of points in [0,1]2. Suppose that a set of positive and negative training

examples is given. LTN uses the following language and grounding:

Domains:

points (denoting the examples).

Variables:
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Fig. 2.3. Symbolic tensor computational graph for the binary classification example.

x+ for the positive examples;

x− for the negative examples;

x for all examples;

D(x) = D(x+) = D(x−) = points, where D(.) is a function which returns the domain

of a non-logical symbol given in input.

Predicates:

A(x) for the trainable classifier;

Din(A) = points, where Din(.) is a function which returns the domain of the input of

a function or predicate given in input.

Axioms:

∀x+A(x+): the predicate must be true for positive examples;

∀x−¬A(x−): the predicate must be false for negative examples.

Let us define E the data set of all examples. The objective function with K =

{∀x+A(x+),∀x−¬A(x−)} is given by SatAggφ∈KGθ ,x←E(φ). In practice, the optimizer

uses the following loss function:

L = 1−SatAgg
φ∈K

Gθ ,x←B(φ), (2.2)

where B is a mini batch sampled from E. By minimizing the loss, we will try to maximize

the SatAgg operator applied to the knowledge base. Maximizing the SatAgg operator
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means maximizing the satisfaction level of each formula included in the knowledge base.

In general, LTN achieves an interpretable training process by replacing the loss func-

tion in the ordinary deep learning gradient descent process with a knowledge base com-

posed of first-order logic and real logic. Theoretically speaking, model Gθ (A) in Fig. 2.3

can be any neural network model. In this study, we mainly tested on the BERT base model

and Multi-label Multi-class Emotion Classification tasks. Detailed grouding process can

be found in Section 3.

2.4 Languege Models

2.4.1 Transformer based Models

Transformer architecture, as shown in Fig. 2.4, was first proposed by Google in "At-

tention is all you need" [27] on machine translation task in 2017, which caused consid-

erable repercussions.1 Transformer’s main mechanism is known as Self-attention, which

converts the distance between two words in any location to one using three new vectors.

These three vectors are referred to as Query, Key, and Value, respectively. The entire

procedure is as follows:

1. Firstly, Self-attention generates three additional vectors, Query, Key, and Value,

with a dimension of 512. These three vectors are calculated by multiplying an em-

bedding vector by a randomly initialized matrix, the dimension of which is (64,

512).

2. Then we compute the Self-attention score, which indicates how many attention we

pay to the rest of the input sequences when encoding a word in a certain place. The

dot product of Query and Key yields this fractional value.

3. The result of the dot product is divided by a constant, which is typically the root

of the first dimension of the aforementioned matrix, i.e. 8. Then we do a softmax
1Note that the Transformer architecture mentioned in this paper is not what the original paper refers to. The Transformer mentioned in the

original paper refers to the complete Encoder-Decoder framework, and the Transformer architecture mentioned in this paper can be simply
understood as the Encoder part in the original Transformer.
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Fig. 2.4. The transformer model architecture. Gray background part represents a transformer block.

calculation of the result. The final result is the correlation of each word in a cer-

tain position. Additionally, the word correlation value of the current position will

certainly be large.

4. Then the value obtained from the previous step is multiply and add by softmax, and

the end result is the score of Self-attention in the current position.

In the actual application case, we utilise a matrix to compute using GPU to boost

computation performance. Self-attention can be represented as:

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V, (2.3)

where Q, K and V present the Query, Key and Value matrix respectively. Self-attention

differs from the classic seq2seq paradigm in the following two ways. One advantage is

that the encoder sends more data to the decoder. The encoder will represent the hidden

state of all tokens regarding the decoder, not simply the hidden state of the encoder’s

final token. Another difference is that the decoder does not simply accept the hidden
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state represented by all encoders as input, but instead uses a selection method to pick the

most appropriate hidden state for the current position.

To boost the model’s performance, the original Transformer not only initializes one

group of Q, K, V matrices, but eight. So the ultimate output is calculated by eight ma-

trices, which is called Multi-head Self-attention. The Multi-head Self-attention can be

expressed as:

MultiHead(Q,K,V ) = Concat(head
1

, . . . ,head
h

)W O, (2.4)

where headi = Attention(QW Q
i ,KW K

i ,VWV
i ). Each sublayer in the original Transformer

model is followed by a feedforward module and a normalisation layer. There are several

types of normalisation, but they all serve the same purpose: to turn the input data into

output with a mean value of 0 and a variance of 1.

Due to the fantastic results achieved by the Transformer model on multiple NLP

tasks in recent years, various Transformer-based methods are constantly being proposed.

Representative models are BERT [28], Roberta [29], GPT-2 [30], XLM [31], etc. Trans-

former models today have a large family and can be easily used via Huggingface [32].

2.4.2 Large Languege Models

Large Language Models (LLMs) [33] represent a significant leap in the field of artifi-

cial intelligence, particularly in natural language processing (NLP). These models, based

on deep learning techniques, are trained on vast datasets and are capable of understand-

ing, generating, and translating text in a way that closely mimics human language. Their

performance has been revolutionary, setting new benchmarks in tasks like text comple-

tion, question answering, translation, summarization, and more.

The development of LLMs has been characterized by rapid advancements and a

steady increase in the size and complexity of the models. Starting with models like GPT

and BERT, the field has seen an exponential growth in the scale of these models. GPT-

3 [34], developed by OpenAI, is one of the most well-known examples, featuring 175
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billion parameters. Its successor, GPT-4 [35], and others like Google’s T5 [36], or Face-

book’s BART [37], continue this trend, pushing the boundaries of what’s possible with

AI in understanding and generating human-like text.

Taking the T5, or "Text-To-Text Transfer Transformer" model as an example, it is

a notable advancement in the field of natural language processing (NLP) developed by

Google. Unlike traditional models that are designed for specific tasks such as translation,

summarization, or question answering, T5 adopts a unified framework where every NLP

task is converted into a text-to-text format. This means that inputs are always treated

as text and the outputs are also generated as text. For instance, a translation task is

framed as converting a sentence in one language to another, while a classification task

involves transforming a piece of text into a label. The T5 model is pre-trained on a large

corpus of text in a self-supervised manner, using tasks like "masked language modeling"

where the model predicts missing words in a sentence. This pre-training helps the model

understand language context and structure. It is then fine-tuned on specific tasks, allowing

for impressive flexibility and performance across a wide range of NLP applications.

Fig. 2.5. The workflow of T5.

T5 works well on a variety of tasks out-of-the-box by prepending a different prefix

to the input corresponding to each task, as shown in Fig. 2.5. For example, consider an

English to German task, the original input is:
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{"en": "That is good.", "de": "Das ist gut."}

Now it transform to:

{"inputs": "translate English to German: That is good.",

"targets": "Das ist gut.''}

Large language models have substantially enhanced various NLP tasks. Their ad-

vanced capabilities in text generation and completion enable them to produce coherent,

contextually appropriate, and creative outputs. In question answering, these models ex-

cel in providing precise and relevant responses by effectively processing large data sets.

LLMs have improved sentiment analysis and text classification, offering deeper insights

into emotions and categorizations in texts. Furthermore, they have refined the accuracy

in tasks like named entity recognition and part-of-speech tagging, and provides the pos-

sibility of automatically generating causal inference for logical reasoning.

2.5 Related Works

As a key branch of affective computing [38], text sentiment analysis offers a wide

range of applications in consumer preference analysis [7], public opinion monitoring

[5], patient situation analysis [8], business prediction [6], and other fields. It is also an

upstream task of many other NLP tasks, such as style transfer [9, 39], emotional text

generation [40], and cross-domain learning [41, 42]. Many text sentiment analysis algo-

rithms have been recently developed, based on the “dictionary + rule” [43, 44, 45, 46]

method, machine learning [47, 48, 49], or deep learning [50, 21]. Traditional sentiment

analysis methods confront several difficulties and challenges. Early methods, reliant on

the creation and adaptation of a dictionary or traditional machine learning approaches,

often exhibit low domain adaptability. Furthermore, a single sentiment dictionary strug-

gles to manage complex ambiguity situations, leading to these approaches typically being

used as supplementary methods in conjunction with other procedures. While deep learn-

ing circumvents the limitations of advanced feature engineering compared to machine
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learning approaches, supervised deep learning still necessitates a large annotated corpus

for training. At the same time, unsupervised deep learning has strict requirements for

semantic correlations in data and requires additional development.

Following the Transformer based model’s astounding success in numerous NLP

tasks, the “pre-training + fine-tuning” framework paradigm has gained popularity among

more and more researchers. Recently, many “pre-training + fine-tuning” models are em-

ployed in sentiment analysis tasks. Sun et al. [51] propose a general solution to fine-tune

the pre-trained BERT model on text classification tasks and target task. We employ pre-

traind BERT and topic clutering to solve the multi-label emotion classification problem

[52]. On the basis of this research, we conduct additional experiments to verify the cor-

relation between the selection of Transformer model, fine-tuning method, feed-forward

network architecture, the setting of the number of topics and the final classification effect

in this paper. Huang et al. [53] proposed an ensemble approach composed of two deep

learning models (LSTM and BERT) for contextual emotion detection task. Zhang et al.

propose an Efficient Adaptive Transfer Network (EATN) for aspect-level sentiment anal-

ysis which emphasizes the need to incorporate the correlation among multiple domains

[54]. Other methods, such as DATN [55], HATN [41] or IATN [42], also exploit the com-

bination of transfer network and pre-trained model to solve the Cross-Domain Sentiment

Classification task. These pre-trained Transformer-based models have shown to be quite

powerful in the field of sentiment analysis. However, they have certain drawbacks, such

as a lack of reasoning and interpretability, difficulties in training from small datasets, and

poor transferability to other domains.

Another prevalent paradigm for enhancing sentiment analysis outcomes is to com-

bine traditional logical methods with deep neural methods. Early neuro-symbolic AI was

applied to vision and language understanding task, yielding breakthrough progress. Yi et

al. propose NS-VQA and its improved system [56, 57], which combines two strong con-

cepts: deep representation learning for visual recognition and language comprehension,

and symbolic program execution for reasoning. This system using symbolic structure
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as previous knowledge has distinct advantages. Hamilton et al. [58] conducted a struc-

tured review of studies implementing neuro-symbolic for NLP, challenges, and future

directions, with the goal of determining whether neuro-symbolic is meeting its promises

of reasoning, out-of-distribution generalization, interpretability, training from small data,

and transferability to new domains. Cambria et al. [19] integrate top-down and bottom-up

learning via an ensemble of symbolic and subsymbolic AI tools to solving sentiment anal-

ysis tasks. Huang et al. [59] proposed a combination model of LDA and the Internet short

review theory to solve the problem of sentiment analysis on Internet short text, which is

called the TSCM model. State-of-the-art research on neuro-symbolic AI is focusing on

more fine-grained sentiment analysis tasks. For example, SKIER [60] leverages different

symbolic knowledge graph relations to learn knowledge-enhanced features for the Emo-

tion Recognition in Conversation (ERC) task. Zeroc [61] introduces a neuro-symbolic

architecture that can recognize and acquire novel concepts in a zero-shot manner. Con-

currently, many frameworks and tools for neuro-symbolic method have been proposed,

such as SenticNet 7 [62] and PyReason [63]. The emergence of these frameworks has

expedited the study of neuro-symbolic AI in sentiment analysis, facilitating faster and

easier research while also presenting significant opportunities and challenges.

As NLP models enter the era of large models, more complex domain-specific tasks

are constantly breaking records. In terms of applications in specialized fields, AI technol-

ogy has also garnered significant attention from researchers in areas such as healthcare

[64, 65], education [66, 67], smart home [68, 69], and finance [70, 71]. Interestingly,

many of these studies highlight the interpretability issues and the high training costs as-

sociated with current large-model AI technologies. As one of the pioneering LLMs, T5

[36] is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised

and supervised tasks converted into a text-to-text format. It offers a unified framework

for the realm of NLP pre-trained models by unifying diverse tasks into a single format.

Subsequent research such as [72, 73] explored the limits of text-to-text generative models

applying to the Aspect-Based Sentiment Analysis (ABSA) tasks [74]. Jordan et al. [75]
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introduced a Chatbot Interaction with Artificial Intelligence (CI-AI) framework which

outlines a strategy for training transformer-based, chatbot-esque architectures for task

classification. Within this approach, T5 plays a pivotal role in data augmentation. Sim-

ilarly, a study by [76] explored a framework for fact verification. This framework har-

nesses pre-trained sequence-to-sequence transformer models and employs T5 in a listwise

method, paired with data augmentation techniques.

As one of the representative tasks in a specific field, Financial Argument Analy-

sis tasks have attracted more and more attention from scholars. Financial information

is inherently dynamic. BloombergGPT [77] retrains an LLMs using a mixed dataset of

finance and general data sources. This endeavor consumed approximately 1.3M GPU

hours, translating to a staggering cost of around $5M. Given the prohibitive expenses as-

sociated with retraining LLMs on a monthly or even weekly basis, there’s a pronounced

preference for more lightweight adaptations within the finance sector. In response, [78]

unveiled an interpretable neural network framework tailored for financial analysis. This

solution adopts a hierarchical strategy, complemented by a query-driven attention mecha-

nism, to discern sentiments in financial news texts. In a similar vein, Dogu Tan Araci [79]

introduced FinBERT, a language model rooted in BERT, designed to address nuanced

tasks specific to the financial landscape. Remarkably, even with a condensed training

dataset and by fine-tuning only segments of the model, FinBERT consistently surpasses

the performance benchmarks set by leading machine learning methodologies. Keane

Ong et al. proposed FinXABSA [80], a novel approach for enhancing explainability in

financial analysis. This technique employs the Pearson correlation coefficient to draw

connections between aspect-based sentiment analysis and stock price fluctuations. In a

similar vein, Hongyang Yang et al. present an open-source large language model named

FinGPT [3], tailored for the finance domain. Setting it apart from proprietary counter-

parts, FinGPT champions a data-centric ethos, offering both researchers and industry

professionals a transparent and readily available resource to evolve their financial LLMs.

The contemporary trend in the NLP sector revolves around leveraging robust LLMs as
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foundational models. These are further refined through fine-tuning, data augmentation,

Parameter-Efficient Fine-Tuning (PEFT) [81], and other techniques to address intricate

downstream challenges.

2.6 Conclusion

In conclusion, section 2 has laid a comprehensive foundation for understanding key

concepts and methodologies that are pivotal in the field of Interpretable Text Sentiment

Analysis. We began by exploring Text Sentiment Analysis, delving into its significance

and methodologies for interpreting emotions and opinions in text. This was followed by

an examination of LDA for Topic Clustering, highlighting its utility in uncovering latent

thematic structures within large text corpora.

The section further introduced the Logic Tensor Network, an innovative approach

combining logical symbolic reasoning with sub-symbolic machine learning, offering a

novel perspective on handling complex data. In the Language Models subsection, we

delved into Transformer-based Models, underscoring their revolutionary impact on NLP

tasks through advanced architectures that emphasize parallel processing and attention

mechanisms. Lastly, the discussion on Large Language Models provided insights into

the latest developments in this domain, showcasing how these sophisticated models, with

their immense scale and advanced training techniques, have set new standards in text

generation, understanding, and language translation.
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3 Interpretable Text Sentiment Analysis Framework

3.1 Introduction and Overview

This work introduces a unique sentiment analysis framework that addresses chal-

lenges in large language models, emphasizing cost-efficiency, precision, and interpretabil-

ity. The overview of the proposed framework is shown in Fig. 3.1.

Fig. 3.1. The overview of the proposed interpretable text sentiment analysis framework.

In the era of the information age, we are witnessing an unprecedented explosion of

text data, generated across various digital platforms like Twitter, YouTube, and numerous

others. This vast expanse of data holds a wealth of information, particularly in terms

of emotional content. This is where efficient text sentiment analysis methods become

crucial.

Data from various domains and platforms require normalized data cleaning. The

semantics embedded in this data can be enriched using methods such as topic clustering

and data augmentation. For more details, refer to Section 3.2. In the backbone of the

framework, we integrate state-of-the-art transformer-based language models with neural-

symbolic networks. This combination allows the framework to maintain the high inter-
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pretability and provability of symbolic logic inherent in these systems, as well as the ease

of incorporating expert human knowledge. Additionally, it preserves the trainability of

neural networks on raw data and their robustness against faults in the underlying data.

Further information can be found in Section 3.3. Various pre-training and fine-tuning

techniques are applied to the learning process within the framework. Concurrently, a

large language model is utilized as a ’teacher model’ to iteratively optimize the frame-

work, enhancing the model’s capabilities in explanation, reasoning, and causal inference.

Detailed insights are provided in Section 3.4. Finally, the framework completes different

sentiment analysis tasks through different Task-specific Decoding.

3.2 Enriched Semantic Feature Fusion

3.2.1 LDA Topic Clustering Matrix and Text Feature Extraction

In this section, we will take Weibo Multi-label Emotion Prediction (MEP) task as

an example to explain how to integrate topic clustering and feature extraction. General

architecture of the proposed method is shown in Fig. 3.2.

Inputs 

LDA topic extractor  Pre-traind 
Transformer models 

Feedforward layer1 Feedforward layer2 Feedforward layer3 

Add & norm 

Task 1 outputs Task 2 outputs Task 3 outputs 

Word segmentation & 
stop word removal Text preprocessing 

Fig. 3.2. General integrate architecture of LDA topic clustering and text feature extraction method.
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The proposed method is applied to Ren_CECps[82] corpus, a well-known Chinese

blog sentiment dataset. The corpus was annotated at three different levels: sentence,

paragraph, and document. Every level is not only labeled with eight emotional categories

(joy, hate, love, sorrow, anxiety, surprise, anger, expect), but also with an emotional

intensity rate ranging from 0.0 to 1.0. The entire corpus consists of 1486 Weibo articles

with 36525 sentences. In this Multi-label Emotion Prediction (MEP) task, we employ a

similar structure like Fig. 3.2, as shown in Fig. 3.3. For better comparative experiments,

we use bert-base-chinese as the Transformer model for feature extractor.

[CLS] 

+ 

size:256 

size:9 

size:64 

Pre-Trained BERT 

T1 T2 T3 T4 

Topic 
extraction 

hidden representation: 768 

ReLU 

ReLU 

Emotion 

Drop out 

Drop out topic tensor: 5-50 

Fig. 3.3. Model detail architecture for multi-label emotion prediction task.

Here gives an example of the topic matrix clustered by the LDA method, as shown

in the Fig. 3.4. We set the number of topics to 20 and the clustering level to paragraphs.

The table lists the corresponding English translations of the five most frequent words in

each topic.

The LDA approach to text topic extraction is an unsupervised method, and the num-

ber of topics K is a hyperparameter. The value of K significantly impacts the performance
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Fig. 3.4. Topic clustering example with the total topic number of 20 and clustering level of the
paragraph on Ren_CECps.

of sentiment classification across different text lengths. If K is too small, the weight of

the extracted topic expression compared to the Transformer’s hidden representations may

be insufficient, resulting in a diluted probability extraction. Conversely, if K is too large,

the extracted topic expression will be overly complex, potentially leading to overfitting

and loss of topic information. In this study, we experimented with K values ranging from

5 to 50, and we treated text at different granularity levels: sentence, paragraph, and doc-

ument. Additional information about the parameters and settings can be found in Section

4.

The maximum input length for bert-base-chinese is 512 tokens, hence the model

is incapable of directly reading longer inputs. LDA, on the other hand, does not have

this issue. As a result, we tested with six different combinations of BERT levels in sen-

tences and paragraphs, as well as LDA levels in sentences, paragraphs, and documents,

respectively. The hidden representations retrieved by BERT and the topic representations

extracted by LDA must be fused. There are two issues to consider: how to combine the
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hidden representations and how to cope with texts of varying levels.

The LDA model receives a sequence of words as input, from which stop words are

deleted and word segmentation is performed. The output of LDA is the topic word proba-

bility distribution of K topics and the probability tensor of each input sequence belonging

to each topic. We concatenate each topic tensor with the hidden representations extracted

by BERT and extend the K-dimensional tensor to one dimension. After concatenation,

the size of each tensor ranges from 773 to 818.

Since the maximum input of BERT is 512 tokens, when we input text at the para-

graph and document levels, the majority of the sequences surpassed the limit permitted by

the BERT model. To cope with the long text problem, we propose the head-tail technique

and the hierarchical method, as seen in Fig. 3.5.

Fig. 3.5. Two methods to deal with the long text problem: (a) Head-tail, (b) Hierarchical.

1. Head-tail: keep the first 256 and the last 254 tokens of the input sequence (the 512

tokens include [CLS] and [SEP], so there are 500 tokens remaining).

2. Hierarchical: the input text is firstly divided into n = L/510 fractions, where L

represents the length of the input sequence. Then we fed them into BERT to obtain

the representation of the n text fractions. Then we use mean pooling to combine the

representations of all the fractions.

Upon experimental comparison, the two methods for processing long texts had min-

imal impact on the results. This is partly because long texts, those exceeding 512 tokens,
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make up a small portion (about 1.2%) of the training set. Additionally, the beginning and

end of a paragraph often encapsulate sufficient information. Given the constraints on the

length of this paper, we won’t delve into detailed experiments of these two methods. By

default, all subsequent experiments employ the hierarchical long text method.

3.2.2 Parallel Text Translation and Sentence Rearrangement

In this section, we will take human-machine customer service dialogue satisfaction

evaluation task as an example to explain how to deal with the Parallel Text Translation

and Sentence Rearrangement process. It is worth noting that this process can also be

combined with the topic clustering and feature extraction method proposed in Section

3.2, which detailed model overview is shown in Fig. 3.6.

Chinese Pre-Trained 
model (BERT etc.)

U1 U2 U3 … 

LDA Topic 
extraction 

size: 768 

Drop out 

Softmax 

ReLU 

size: topic_num 

[CLS] Structured utterances 

size: 1536 + topic_num 

Full_connection 

Chinese dataset English dataset 

size: 768 

English Pre-Trained 
model (BERT etc.) 

U1 U2 U3 … 

[CLS] Structured utterances 

size: 1536 + topic_num 

Drop out 

Softmax 

ReLU 

Drop out 

Softmax 

ReLU 

A-score S-score E-score

Fig. 3.6. The structure of dialogue quality prediction network. A-score, S-score, E-score present task
accomplishment, customer satisfaction, and dialogue effectiveness, respectively.
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Human-machine customer service dialogue satisfaction evaluation task has two sub-

tasks: Dialogue Quality prediction (DQ) and Nugget Detection (ND). In the DQ subtask,

we examine the proposed method on the DCH-2[83] dialogue corpus for dialogue qual-

ity prediction. The DCH-2 corpus contains 4,390 real customer-helpdesk dialogues in

Chinese with their English translations. DCH-2 additionally includes dialogue-level and

turn-level annotations acquired independently from 19 or 20 annotators for three different

sorts of dialogue quality scores.

1. A-score: task accomplishment, representing whether a customer’s problem has been

solved.

2. S-score: customer satisfaction, representing whether a customer is satisfied at the

end of the dialogue.

3. E-score: dialogue effectiveness, representing whether the helpdesk and the cus-

tomer interact effectively to solve the problem.

The above three scores are annotated from -2 to 2, representing strongly disagree, some-

what disagree, neither agree nor disagree, somewhat agree, strongly agree, respectively.

S-score is a standard sentiment polarity annotation, representing the customers’ five lev-

els from dissatisfaction to satisfaction. The A-score and E-score have a strong correlation

with customers’ satisfaction, which plays an auxiliary role in researching users’ mental

state, and further analyze the sentiment of customers.

We employ multiple pre-trained Transformer models and a LDA topic clustering

model, as a feature extractor. The extractor extracts the hidden representations and topical

information from the one-to-one translated Chinese and English dialogues respectively.

Then we feed the extracted features into a feedforward network to finally predict the

quality scores of the input dialogue sequences. Our network simultaneously evaluates

three types of dialogue quality, namely the task accomplishment score, the customer

satisfaction score, and the dialogue effectiveness score. The two parts are shown in Fig.

3.6, separated by a dotted line in between.
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Firstly, in order to better represent the structure of a set of dialogue, we preprocess

the input dialogue sequence. For example, consider a tokenized dialogue below:

"id": "3830772740080373"

[CLS]

Customer(1/6): "What's going on with ... "

Helpdesk(2/6): "Hi, I'm Little @ of ... "

...

Helpdesk(6/6): "Dear, please choose ... "

[SEP]

We add [CLS] and [SEP] special tokens at the beginning and end of each dialogue re-

spectively to fit the training of Transformer models. Moreover, we append meta data

at the beginning of every utterance in the dialogues. The meta data consists of both

the sender information and the utterance position information in the entire dialogue.

Customer/Helpdesk indicates the sender of the utterance. For the n-th utterance of a

customer-helpdesk dialogue of m utterances in total, we append (n/m) as the utterance

position information. Both the Chinese and English corpora are preprocessed by using

the same procedure as depicted above.

Secondly, we employ pre-trained Transformer networks to extract the hidden rep-

resentations of the structured dialogue input. We explored the HuggingFace[32] and ex-

perimented with a variety of the Transformer models, including BERT, Chinese-BERT,

Roberta, and their fine-tuned models, for obtaining the proper hidden representations of

dialogue utterances. We put the details of the model selection and experimental compar-

ison in section 4.

Topic information is also extracted as a part of the hidden representation of the input

dialogue. Specifically, we employ a Latent Dirichlet Allocation (LDA) model to obtain

the topic information from the input dialogue. The setting of topic number K has a crucial

influence on the result of prediction with different text lengths, which is discussed in sec-
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tion 5. The purpose of LDA is to infer the hidden topic structure using observable words

which follows the process described in section 3.2. The topic probability vector of each

dialogue is used as the input of the downstream module, together with the hidden rep-

resentations extracted by the Transformer models. We use Jieba2 for word segmentation

and remove common stop_words to obtain more effective topic information.

Thirdly, the feedforward network is located above the dotted line, as shown in Fig.

3.6. The architecture of the feedforward network is arranged as follows: a full connection

layer, an activation function, a dropout layer, a linear dimension reduction layer, and a

softmax function. The full connection layer can be regarded as a weight layer, whose

input and output dimensions are the same. Due to the role of the full connection layer,

the model can act on both Chinese and English datasets and only need to fine-tune the

parameters of the feedforward network, with the parameters of the extractor untouched.

The linear layer takes the input of a 1546 to 1586 dimensional vector, and the output

is a 5-dimensional vector, which is the probability distribution of the dialogue quality

scores. The model has three linear layers, which output the A-score, S-score, and E-score

respectively.

Finnally, the network obtains the probabilities over the quality label set Γ =

{−2,−1,0,1,2} for every quality type. More illustrations of the quality labels can be

found in [83]. We employ the mean squared error (MSE) loss for evaluating the train-

ing loss. The model generates three distributions ŷA
i , ŷS

i , and ŷE
i as the predictions for the

A-score, S-score, and E-score of dialogue quality, respectively. We take the means of yi

over l human annotators for the A, S, and E scores as the targets, which are denoted by

ȳA
i , ȳS

i , and ȳE
i respectively. The training loss based on mean squared error is then given

by:

loss(ȳ, ŷ) = ∑
κ∈{A,S,E}

1
n

n

∑
i=1

(ȳκ

i − ŷκ

i )
2 . (3.1)

2https://github.com/fxsjy/jieba
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In the ND subtask, we examine the proposed method on another set of labels, where

each utterance is annotated whether it is a nugget. A nugget is a key turn that helps the

customer transition from the current state (where the problem is yet to be solved) towards

the target state (where the problem has been solved). These nuggets can effectively help

researchers track the transition of customers’ emotional states.

A Raw Dialogue
Turn 1 Speaker Identity 1: Utterance 1, Utterance 2, …
…
Turn n Speaker Identity n: Utterance 1, Utterance 2, …

Customer part
Turn 1: Utterance 1, …
…
Turn n: Utterance 1, …

Helpdesk part
Turn 1: Utterance 1, …
…
Turn n: Utterance 1, …

Pre-Trained Transformer 
model + LDA

Pre-Trained Transformer 
model + LDA

Feed forward network Feed forward network

Nugget of 
customer 

Nugget of 
helpdesk

Fig. 3.7. The structure of nugget detection network.

We utilize the same dataset used in the dialogue quality subtask, but with different

annotations. In order to fit the nugget labels, we applied a Sentence Rearrangement

strategy, which divide all the dialogue utterances into two parts, namely the customer

part and the helpdesk part. All modules in the dialogue quality subtask are carried over

to the nugget detection subtask. We feed the concatenated utterances to the pre-trained

Transformer models and the LDA topic model to obtain the Chinese and English hidden

representations and employ a feedforward network to get the probability distribution of

each nugget label.

The mean squared error loss is also used for training in nugget detection subtask.

Detailed formula description can refer to Equation 3.1. A simple schematic diagram of
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the nugget detection network is shown in Fig. 3.7.

3.3 Symbolic Logic Integration

In this section, we take Multi-class Multi-label Emotion Prediction as an exam-

ple and give the corresponding grouding based on the LTN definition given in section

2.3. Suppose that one wants to learn a multi-label classifier P for the multi-class sen-

timent classification of a set of Weibo articles. Suppose that a set of training examples

with multi-label emotions, including “Joy”, “Hate”, “Love”, “Sorrow”, “Anxiety”, “Sur-

prise”, “Anger”, and “Expect”, is given on average. LTN uses the following language and

grounding:

Domains:

articles, denoting the Weibo articles;

labels, denoting the emotion class labels.

Variables:

x joy, xhate, xlove, xsorrow, xanxiety, xsurprise, xanger, xexpect for the positive examples of each

class;

x used to denote all the examples;

D(x) = D(x joy) = D(xhate) = · · · = articles, where D(.) is a function which returns

the domain of a non-logical symbol given in input.

Constants:

l joy, lhate, llove, lsorrow, lanxiety, lsurprise, langer, lexpect : the labels of each class;

D(l joy) = D(lhate) = · · ·= labels.

Predicates:

P(x, l) denoting the fact that article x is labelled as l;

Din(P) = articles, labels, where Din(.) is a function which returns the domain of the

input of a function or predicate given in input.

Axioms:
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∀x joyP(x joy, l joy): all the articles that include the emotion of “Joy” should have label

l joy;

∀xhateP(xhate, lhate): all the articles include the emotion of “Hate” should have label

lhate;

. . . : Same for “Love”, “Sorrow”, “Anxiety”, “Surprise”, “Anger”, and “Expect”;

∀x¬(P(x, l joy)∧P(x, lhate)): if an articles x is labelled as “Joy”, it cannot be labelled

as “Hate” too;

∀x¬(P(x, llove)∧P(x, lsorrow)): if an articles x is labelled as “Sorrow”, it cannot be

labelled as “Hate” too;

∀x¬(P(x, lanxiety)∧P(x, lsurprise)): if an articles x is labelled as “Anxiety”, it cannot

be labelled as “Surprise” too;

∀x¬(P(x, langer)∧P(x, lexpect)): if an articles x is labelled as “Expect”, it cannot be

labelled as “Hate” too;

∃x(P(x, l joy)∧P(x, llove)): if an articles x is labelled as “Joy”, it maybe labelled as

“Love” too;

∃x(P(x, lhate)∧P(x, lsorrow)): if an articles x is labelled as “Hate”, it maybe labelled

as “Sorrow” too;

∃x(P(x, lanxiety)∧P(x, langer)): if an articles x is labelled as “Anxiety”, it maybe la-

belled as “Anger” too;

∃x(P(x, lsurprise)∧ P(x, lexpect)): if an articles x is labelled as “Surprise”, it maybe

labelled as “Expect” too;

. . . : other similar emotional logics can also be defined with corresponding axioms.

Grounding:

G(articles) = R768: the articles are represented by a 768-dimensional hidden repre-

sentations extracted by language models like BERT;

G(labels) = N8: we use an one-hot encoding to represent labels;

G(x joy)⊆Rm1×768, G(xhate)⊆Rm2×768, . . . . These sequences are not mutually-exclusive,

one article can for instance be in both x joy and xlove.;



3 INTERPRETABLE TEXT SENTIMENT ANALYSIS FRAMEWORK 39

G(x)⊆ Rm×768, that is, G(x) is a sequence of all the articles;

G(l joy)= [1,0,0,0,0,0,0,0], G(lhate)= [0,1,0,0,0,0,0,0], G(llove)= [0,0,1,0,0,0,0,0],

. . . , G(lexpect) = [0,0,0,0,0,0,0,1];

G(P | θ) : x, l 7→ l⊤ ·σ(MLPθ (x)), where MLP has 8 output neurons corresponding

to as many labels, and · denotes the dot product as a way of selecting an output for

G(P | θ). In fact, multiplying the output by the one-hot vector l⊤ gives the probability

corresponding to the label denoted by l. By contrast with the previous example in section

2.3, notice the use of a sigmoid function instead of a softmax function, for the labels are

not mutually exclusive anymore.

In order to define our knowledge base (axioms), we need to define predicate P, con-

stants, connectives, universal quantifier, and the SatAgg operator. For the connectives

and quantifier, we use the stable product configuration. For predicate P, we use bert-base-

chinese in this example. The constants represent the one-hot labels for the 8 classes, have

already seen in the definition of the grounding above. Finally, let us define D the data set

of all examples. The objective function is given by Formula 2.2 in section 2.3, where B

is an mini batch from D.

3.4 Large Language Model Supervision

In this section, we will take Fine-Grained Argument Analysis (FinArg) tasks as

examples to show the power of Large Language Model Supervision. The task of Fine-

Grained Argument Analysis often encompasses various subtasks, each with distinct input

and output in terms of both content and structure. To address this, we employ the T5 [36]

model as the central backbone of our framework. T5 standardizes multiple NLP tasks

into a unified text-to-text format, ensuring that both input and output are consistently

represented as text strings. A comprehensive visualization of the Large Language Model

Supervision framework is provided in Fig. 3.8.
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Text:
“And that really helps 
the growth rate 
for ….”
Label:
“Claim”
…

### Instruction:
Which view does the 
following argument belong 
to? Premise or Claim?
### Sentence:
…

This sentence is making a 
statement about the actions 
that …. In summary, the 
sentence is a claim. 

Chat-GPT 
Category 
Reasoning 

Prefix Instruction 
Fine-tuning

In-domain Further 
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Text-to-text 
Generation Models

+
Financial Phrasebank

+
Low Rank Adapters

Text-to-text 
Generation 

Models

Sentence decoding
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Instruction Generation Category Judgment

Unit Identification/
Relation Identification

FinArg-1 Datasets

Fig. 3.8. Large language model supervision approach overview.

3.4.1 Prefix Instruction Fine-tuning

Both Prompt-based Learning [84] and Instruction Fine-tuning[85, 86] have been

demonstrated to effectively enhance the performance of various LLMs. In the paradigm

of prompt-based learning, the description of the task is embedded in the input. For exam-

ple, instead of implicitly giving certain parameters to the model, they are directly input

in the form of questions. To address different FinArg subtasks, we extensively tested a

myriad of potential prompts and instructions. From this, we curated a generic prefix. For

each subtask, we keep one long instruction and one short instruction respectively. Con-

currently, we aimed to align the instructions utilized for fine-tuning the T5 model with the

prompts adopted by ChatGPT. The specifics of these prompts can be found in Table 3.1.

For an in-depth examination of how varying instructions influence the outcomes across

different subtasks, please refer to Section 4. Subsequently, these refined datasets were

employed to fine-tune the T5 model, as depicted in Fig. 3.8.
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Tab. 3.1. Prompts and insturctions for different subtasks. ARI stands for Argument Relation Iden-
tification and AUI stands for Argument Unit Identification. {text} and {label} stand for the original
dataset inputs and outputs respectively.

Sub tasks Prompt/Instruction
Short Instruction

for ARI
Judge the relationship between the two sentences.
Attack/Support/None: {text_1}{text_2}

Long Instruction
for ARI

Below are two sentences that contain opinions. Please judge the
logical relationship between sentence 1 and sentence 2. The rela-
tionship can only be among Attack, Support, or no-relation.
### Sentence 1:
{text_1}
### Sentence 2:
{text_2}

Short Instruction
for AUI Premise or Claim:

Long Instruction
for AUI

### Instruction:
Which view does the following argument belong to? Premise or
Claim?
### Sentence:
{text}
### Argument:

Long Instruction
for AUI

(train with
ChatGPT reasoning)

Below is a sentence belonging to an argumentation, contained with
its component category of ‘Premise’ or ‘Claim’.
Write an explanation that appropriately explains which category the
sentence belongs to and why the sentence falls into this category.
Your explanation must end with ‘In summary, the sentence is a
premise’ or ‘In summary, the sentence is a claim’.
### Sentence:
{text}
### Explanation:

ChatGPT
category inference

prompt

Below is a sentence belonging to an argumentation, Paired with its
component category of ‘Premise’ or ‘Claim’.
Write an explanation that appropriately explains which category the
sentence belongs to and why the sentence falls into this category.
Your explanation must end with ‘In summary, the sentence is a
premise’ or ‘In summary, the sentence is a claim’.
### Sentence:
{text}
### Category:
{Label}
### Explanation:

3.4.2 Within-domain Further Pre-training

Pre-training language models on specific in-domain data, known as domain-adaptive

pre-training (DAPT), or on data relevant to particular tasks, termed task-adaptive pre-
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training (TAPT), has been demonstrated to enhance performance in downstream tasks

[87]. The nature of financial data is particularly apt for this approach. It is highly dy-

namic, deeply specialized, and has clear data demarcations. This makes it a prime can-

didate for further pre-training. Thanks to the commendable efforts of the huggingface

team3, fine-tuning and further pre-training are very convenient today.

In this paper, in addition to the original T5 model, we also fine-tune the Flan-t54

model through the financial phrasebank dataset5 with Low-Rank Adapters (LoRA) [88].

The experimental results show that in some cases, further pre-training can indeed improve

the effect of the model, but the instruction used in downstream tasks needs to be adjusted

accordingly. See Section 4 for a detailed discussion and parameter settings.

3.4.3 Task-specific Decoding

Given that the T5 model always utilizes text strings for both input and output, we

transformed the labels from the FinArg-1 task dataset into corresponding textual repre-

sentations. Notably, when employing the “Explanation” generated by ChatGPT as the

ground truth label, we consider the penultimate token of the output string as the model’s

label output word. This approach is adopted primarily because, in most instances, the last

token of the string tends to be a period.

In the AUI subtask, we use the mapping fu : 0→ ‘premise’,1→ ‘claim’ to map the

corresponding labels. It is worth noting that words with a capitalized first letter cannot be

used, because in the tokenizer of T5, words with capital letters are sometimes split into

two tokens. In the ARI subtask, we use the mapping fr : 0→ ‘none’,1→ ‘support’,2→

‘attack’ to map the corresponding labels. When using “no relation” or “unrelated” as

the mapping word, the tokenizer will also split them into 2 tokens. Finally, we choose

“none” as the mapping word for label “0”. Experimental results show that after at least

one epoch of training, the output of the T5 model is always included in the mapping
3https://huggingface.co/
4https://huggingface.co/google/flan-t5-base
5https://huggingface.co/datasets/financial_phrasebank
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vocabulary. Therefore, the final output label can be obtained without any other decoding.

When using the “Explanation” generated by ChatGPT as the ground truth label, due

to the existence of instruction, almost all the text sequences output by the T5 model will

end with words in the mapping vocabulary, just like the examples in Table 3.2. In some

extreme cases, when the output of the T5 model exceeds the set max length parameter,

the output will be truncated. This situation can usually be solved by limiting the output

length of ChatGPT or increasing the max length of the T5 model. But for the sake of

saving computing resources, we usually prefer a smaller max length. Therefore, when

the output string does not end with the words in the mapping vocabulary, there are two

ways to deal with it: 1) Simply considering the output to be wrong or, 2) Reinputing the

output sentence into the fine-tuned model and judging what the category label contained

in the sentence is, which we called Category Judgment. The results of the experiments

are elaborated in section 4.

3.4.4 Causal Inference from ChatGPT

Inspired by Chain-of-Thought Prompting [89] and Causal Reasoning [90], we tried

to equip the T5 model with the capability to not just classify the category of AUI, but also

furnish explanations for its decisions, aiming to bolster classification accuracy. Initially,

we employed a specific prompt, as shown in Table 3.1, to let the ChatGPT-3.5 model

(model number ‘text-davinci-003’) generate an “Explanation” that rationalizes the clas-

sification determinations made. To ensure that the “Explanation” yielded by ChatGPT

aligns with the label of the original dataset, we embedded a strong correlation constraint

within the prompt (the bold part in Table 3.1). Under the restriction of strong constraints,

all “Explanation” generated by ChatGPT conform to the ground truth label of the data.

Table 3.2 contains some examples of explanations generated by ChatGPT.

Subsequently, the “Explanation” generated by ChatGPT is harnessed as the target

text for the fine-tuning process of the T5 model, as shown in Fig. 3.8. When the reasoning

of ChatGPT is used as the label, we aim to align the instruction during T5’s fine-tuning
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Tab. 3.2. “Explanation” examples generated by ChatGPT.

Label ChatGPT “Explanation”

Premise

“This sentence provides evidence to support a larger ar-
gument by providing an example of how success can be
achieved. It does not make a statement that can be proven
or disproven, but rather provides an example of how success
can be achieved. In summary, the sentence is a premise.”

Claim

“This sentence is making a statement about the actions that
Amazon is taking, which is a claim. It is not providing any
evidence or reasoning to support a conclusion, which is what
a premise would do. In summary, the sentence is a claim.”

with the prompt that was initially utilized by ChatGPT, as shown in “Long Instruction for

AUI (train with ChatGPT reasoning)” in Table 3.1.

3.5 Conclusion

In conclusion, the third section has comprehensively detailed the workflow of the

proposed Interpretable Text Sentiment Analysis Framework. This innovative framework

is strategically divided into three main components, each playing a crucial role in enhanc-

ing the effectiveness and interpretability of text sentiment analysis.

Firstly, the Enriched Semantic Feature Fusion part focuses on extracting and amal-

gamating diverse semantic features from the text. This process not only captures the

explicit sentiments expressed but also uncovers the topic information, ensuring a more

holistic understanding of the text’s sentiment.

Secondly, the Symbolic Logic Integration introduces a layer of logical reasoning to

the framework. By embedding symbolic logic, this component brings a high degree of

interpretability and reliability to the analysis. It allows the framework to process textual

data in a manner that is not only analytically profound but also aligns closely with human

logical reasoning.

Lastly, the Large Language Model Supervision employs advanced language models

to oversee and refine the analysis process. This supervision ensures that the framework
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stays updated with the latest linguistic trends and nuances, thereby enhancing its ability

to reason, infer causality, and provide explanations.

Together, these three components form a robust, interpretable, and dynamic frame-

work for text sentiment analysis. This framework not only addresses the current chal-

lenges in sentiment analysis but also sets a new standard for future developments in this

field, promising enhanced accuracy and deeper insights into the vast and varied terrain of

human emotions as expressed through text.
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4 Experiments and Analysis

In the current study, our proposed framework is evaluated on four datasets in five

subtasks for text sentiment analysis, which details are as follows.

4.1 Setup

4.1.1 Datasets

1. DCH-2: Dialogues contains 4,390 real customer-helpdesk conversation in Chinese

and their English translations. It contains 2 subtasks: Dialogue quality prediction

(DQ), which assign quality scores to each dialogue in terms of three subjective

criteria: task accomplishment, customer satisfaction, and dialogue effectiveness;

Nugget detection (ND), which classify whether a customer or helpdesk turn is a

nugget, where being a nugget means that the turn helps towards problem solving.

The statistics of the above-mentioned datasets are described in more details in Table

4.1

Tab. 4.1. DCH-2 statistics. Each dialogue was annotated by 19 or 20 annotators independently.

(a) Total number and ratio of dialogue quality labels over all 4,390 dialogues
-2 -1 0 1 2

Task accomplishment 13937 (16.6%) 15497 (18.5%) 33810 (40.4%) 13659 (16.3%) 6807 (8.1%)
Customer satisfaction 12877 (15.4%) 14829 (17.7%) 36754 (43.9%) 13334 (15.9%) 5916 (7.1%)
Dialogue effectiveness 12643 (15.1%) 12308 (14.7%) 24810 (29.6%) 25397 (30.3%) 8552 (10.2%)

(b) Total number and ratio of turn-level nugget type labels over all 4,390 dialogues
Trigger Regular Goal Not_a_Nugget

Customer turns 71925 (37.0%) 71115 (36.6%) 8079 (4.2%) 43186 (22.2%)
Helpdesk turns N/A 93542 (59.4%) 23557 (15.0%) 40341 (25.6%)

2. Ren_CECps: Weibo articles consists of 1,486 documents with 36,525 sentences.

Based on this corpus, we perform the Multi-label emotion prediction (MEP) task,

which predict multi-label emotion and sentiment intensity contained in text at sen-

tence, paragraph, and document level. The statistics of the above-mentioned datasets

are described in more details in Table 4.2.
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Tab. 4.2. The emotional distribution of multi-label sentences in Ren_CECps over all 36525 sentences
with eight emotional categories (joy, hate, love, sorrow, anxiety, surprise, anger, expect).

Laber amount Sentence amount per.(%)
no-emo 2753 7.54

1 19998 54.75
2 11731 32.12
3 1847 5.06
4 175 0.48
5 15 0.04
6 6 0.02

total 36525 100

3. Argument Unit Identification (AUI): This subtask requires models to distinguish

whether the given argumentation sentence as a claim or a premise. The data set has

a total of 9,691 sentences, of which 5,078 are premises and 4,613 are claims.

4. Argument Relation Identification (ARI): This subtask necessitates the identifica-

tion of the relationship, specifically discerning whether it’s one of support, attack,

or other. The text portion of the dataset consists of two separate sentences. It is

worth mentioning that this dataset is a very imbalanced dataset. The “attack” label

accounted for only 1.1% Among the total label. Table 4.3 show the statistics of the

datasets.

Tab. 4.3. Data statistics of argument unit identification and argument relation identification.

Argument Unit Identification

Train Dev Test Whole
Preminse 4,062 508 508 5,078(52.4%)

Claim 3,691 461 461 4613(47.6%)
Total 7,753 969 969 9,691

Argument Relation Identification

Train Dev Test Whole
Support 3,859 482 482 4,823(69.9%)
Attack 62 8 8 78(1.1%)
Other 1,600 200 200 2,000(29.0%)
Total 5,521 690 690 6,901
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4.1.2 Computer Configuration

All experiments were run on the following servers. OS: CentOS Linux release

7.6.1810. Linux Core: 3.10.0-957.el7.x86 64. CPU: Intel Core i7 6700k. GPU: NVIDIA

GeForce RTX 3090Ti 24 GB. RAM: TeamGroup 32 GB. Python version: 3.7.3.

4.1.3 Evaluation metrics

Cross-bin metrics are preferable to bin-by-bin metrics because the classes of DQ

subtasks are non-nominal. As a result, we employ two cross-bin metrics: Normalised

Match Distance (NMD) and Root Symmetric Normalised Order-aware Divergence (RSNOD)

in DQ subtask[91]. Unlike the DQ subtask, the classes in the ND subtask are nomi-

nal, so bin-by-bin metrics are more appropriate. In particular, the ND subtask employs

two metrics: Root Normalised Sum of Squares (RNSS) and Jensen-Shannon Divergence

(JSD)[92]. In the Ren_CECps corpus, Multi-label emotion prediction task is more similar

to the multi-label classification task. To better compare with similar works, we chose the

Accuracy, Precision, Recall, F1-score, One Error, and Average Precision as our metrics,

which are widely used in text classification and sentiment analysis tasks[93][94]. In the

ARI and AUI tasks, we report both Micro-F1 and Macro-F1 scores. Due to the presence

of imbalanced datasets, we use Macro-F1 to rank the results. These metrics are calculated

as follows:

NMD(p, p∗) =
MD(p, p∗)

L−1
. (4.1)

RSNOD(p, p∗) =

√
SOD(p, p∗)

L−1
, (4.2)

where MD presents for the sum of absolute errors compared from the cumulative prob-

ability distributions and SOD presents for Symmetric Order-Aware Divergence, respec-
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tively.

RNSS =

√
∑i∈A (p(i)− p∗(i))2

2
. (4.3)

JSD(p∥p∗) =
KLD(p∥pM)+KLD(pM∥p∗)

2
, (4.4)

where KLD(p1∥p2) = ∑
is.t. p1(i)>0

p1(i) log2
p1(i)
p2(i)

. (4.5)

Precision =
T P

T P+FP
, (4.6)

Recall =
T P

T P+FN
, (4.7)

F1-score =
2×Precision×Recall

Precision+Recall
, (4.8)

Accuracy =
T P+T N

T P+FP+T N +FN
, (4.9)

where TP, TN, FP, and FN are true positive, true negative, false positive, and false nega-

tive, respectively[93]. Specifically, Micro-F1 calculates metrics globally by counting the

total true positives, false negatives and false positives. Macro-F1 calculates metrics for

each label, and find their unweighted mean.

OneError =
1
n

n

∑
i=1

δ

[
argmax

et

gt (xi) /∈ Ri

]
, (4.10)

where One Error (OE) evaluates the fraction of sentences whose top-ranked emotion is

not in the relevant emotion set.

AveragePrecision = 1
n ∑

n
i=1

1
|Ri|×(

∑t:et∈Ri
|{es ∈ Ri | gs (xi)> gt (xi)}|

)
/(|{es | gs (xi)> gt (xi)}|) ,

(4.11)

where Average Precision(AP) evaluates the average fraction of the relevant emotions

ranked higher than a particular emotion.
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4.2 Customer Service Dialogue Evaluation

In this section, comparative experiment results are provided. In DQ subtask, our

proposed method is compared with 7 runs for Chinese dialogue and 6 runs for English

dialogue respectively. In ND subtask, 8 runs for both Chinese and English dialogues are

considered.

4.2.1 Dialogue Quality Prediction

In this section, we report the brief results of three types of DQ prediction scores for

both Chinese and English subtasks in Table 4.4 and 4.5. The specifics of each run are

detailed as follows:

1. Chinese_TUA1_run0: similar to the method from TUA1 team proposed in NTCIR

15 DialEval-1 Task[95], simply replace BERT with Roberta.

2. Chinese_TUA1_run1: proposed dialogue quality prediction network in section 3.2

with topic nunber of 20 and dropout probability of 0.2.

3. Chinese_TUA1_run2: proposed dialogue quality prediction network with topic nun-

ber of 10 and dropout probability of 0.1.

4. English_TUA1_run0: same model structure as Chinese_TUA1_run2, just retrain

the parameters with English dev dataset. Note that although the best results for the

Chinese and English subtasks of DQ in the overview paper are run_2 and run_0

respectively, they are actually the same model structure with the same hyperparam-

eters.

Among all types of scores, the model of run_2 in Chinese subtask and run_0 in En-

glish subtask achieved the highest overall score. Note that they are the same model. The

model structure can refer to Fig. 3.6 with a topic number of 10 and dropout probability

of 0.1, thus the dimension of the concatenated hidden representation is 1546. We employ
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Tab. 4.4. Results for Chinese dialogue quality prediction. “TUA1” is our team name. The bold font
in the table indicates the best result in DialEval-2 task. “↓” indicates “the smaller the better”. A-score,
S-score, E-score present task accomplishment, customer satisfaction, and dialogue effectiveness, re-
spectively.

Score
type Run Mean

RSNOD↓
Mean

NMD↓

A-score

TUA1-run2 0.1992 0.1325
TUA1-run1 0.2092 0.1369
TUA1-run0 0.2154 0.1474

Baseline-run0 0.2301 0.1772
Baseline-run2 0.2320 0.1577
RSLDE-run0 0.2438 0.1537
RSLDE-run1 0.2446 0.1551

IMNTPU-run0 0.2479 0.1618
Baseline-run1 0.2767 0.2500
NKUST-run0 0.2774 0.2453

S-score

TUA1-run2 0.1758 0.1166
TUA1-run1 0.1840 0.1159
TUA1-run0 0.1884 0.1305

RSLDE-run0 0.1938 0.1243
RSLDE-run1 0.1964 0.1229
Baseline-run0 0.1998 0.1523
IMNTPU-run0 0.2032 0.1315
Baseline-run2 0.2062 0.1288
NKUST-run0 0.2732 0.2293
Baseline-run1 0.2959 0.2565

E-score

TUA1-run0 0.1545 0.1136
TUA1-run1 0.1647 0.1262

RSLDE-run0 0.1660 0.1222
TUA1-run2 0.1671 0.1310

RSLDE-run1 0.1725 0.1286
Baseline-run0 0.1854 0.1579
IMNTPU-run0 0.1860 0.1427
NKUST-run0 0.2253 0.1897
Baseline-run1 0.2496 0.2106
Baseline-run2 0.2569 0.1710

"roberta-base-finetuned-jd" as the Chinese Pre-trained Transformer model and "roberta-

base" as the English Pre-trained Transformer model. The last 2 layer parameters of the

model are unfrozen for fine-tuning. A detailed discussion of Transformer model selection

and unfreeze layers can be found in discussions section.
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Tab. 4.5. Results for English dialogue quality prediction. “TUA1” is our team name. The bold font in
the table indicates the best result in DialEval-2 task. “↓” indicates “the smaller the better”. A-score,
S-score, E-score present task accomplishment, customer satisfaction, and dialogue effectiveness, re-
spectively.

Score
type Run Mean

RSNOD↓
Mean

NMD↓

A-score

TUA1-run0 0.1967 0.1327
Baseline-run2 0.2320 0.1577
Baseline-run0 0.2321 0.1780
IMNTPU-run0 0.2535 0.1654
RSLDE-run0 0.2615 0.1957
RSLDE-run1 0.2725 0.1896
Baseline-run1 0.2767 0.2500

S-score

TUA1-run0 0.1855 0.1214
Baseline-run0 0.1986 0.1467
IMNTPU-run0 0.2020 0.1312
Baseline-run2 0.2062 0.1288
RSLDE-run0 0.2078 0.1381
RSLDE-run1 0.2154 0.1438
Baseline-run1 0.2959 0.2565

E-score

TUA1-run0 0.1742 0.1360
Baseline-run0 0.1745 0.1431
IMNTPU-run0 0.1826 0.1400
RSLDE-run0 0.1832 0.1429
RSLDE-run1 0.1889 0.1444
Baseline-run1 0.2496 0.2106
Baseline-run2 0.2569 0.1710

4.2.2 Nugget Detection

In this section, we report the result of nugget detection in Table 4.6, which is eval-

uated based on the mean JSD metric and the mean RNSS metric, respectively. The

specifics of each run are detailed as follows:

1. Chinese_TUA1_run0: proposed nugget detection network in section 3.2.

2. Chinese_TUA1_run1: similar to the method from TUA1 team proposed in NTCIR

15 DialEval-1 Task, simply replace BERT with Roberta.

3. English_TUA1_run0: same model as Chinese_TUA1_run0.
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Tab. 4.6. Results for nugget detection. “TUA1” is our team name. The bold font in the table indicates
the best result in DialEval-2 task. “↓” indicates “the smaller the better”.

Language Run Mean
JSD↓

Mean
RNSS↓

Chinese

RSLDE-run0 0.0560 0.1604
Baseline-run0 0.0585 0.1651
RSLDE-run2 0.0607 0.1720
RSLDE-run1 0.0634 0.1712
NKUST-run0 0.0670 0.1761
TUA1-run0 0.0700 0.1780

Baseline-run2 0.1864 0.2901
Baseline-run1 0.2042 0.3371
NKUST-run1 0.2432 0.3774

English

RSLDE-run0 0.0557 0.1615
IMNTPU-run0 0.0601 0.1574
Baseline-run0 0.0625 0.1722
NKUST-run0 0.0641 0.1744
RSLDE-run2 0.0676 0.1778
RSLDE-run1 0.0691 0.1853
TUA1-run0 0.0728 0.1830

Baseline-run2 0.1864 0.2901
Baseline-run1 0.2042 0.3371

The experimental results show that our proposed model, although not the best among

the participants, still exceeds the baseline using uniform and popularity prediction. For

other teams and the method used by baseline, please refer to the official paper of the

DialEval-2 task[96].

4.2.3 Selection of Pre-trained Transformer Model

One of the reasons that transformer-based models have received so much focus is

that they can be quickly fine-tuned for diverse tasks and domains without considerable

pre-training. Tansformer-based models trained on different pre-datasets have varied pa-

rameters and obtained text features, as well as different application effects in multiple

domains. In this section, we discuss the influence of different Transformer models in

DQ subtask. Thanks to the Hugging Face model library 6, we can easily try a variety
6https://huggingface.co/models
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of pre-trained models. Several of the Chinese and English model pairs we tried and

their experimental results are listed in Table 4.7. Notation “-” represents English dia-

logue datasets not used in the model. “Score-sum” denotes the summation of RSNOD

and NMD scores for all A, S, and E scores. The distance scores were transformed by

−log() for readability. Thus, the higher the transformed scores, the better the model’s

effectiveness.

Tab. 4.7. Results for different pre-trained transformer models. “↑” indicates “the larger the better”
and “-” indicates not used in model.

Chinese_model English_model Score_sum↑
bert-base-chinese - 13.37

chinese-bert - 14.59
bert-base-chinese bert-base-cased 14.56

chinese-roberta-base roberta-base 16.14
roberta-base-finetuned-jd roberta-base 16.27

The best result is achieved by “roberta-base-finetuned-jd”7 for Chinese dialogue and

“roberta-base” for English dialogue. “roberta-base-finetuned-jd” is a Chinese RoBERTa-

Base model fine-tuned with the “JD full”[97] dataset, which consist of user reviews of

different sentiment polarities. The experimental results show that using a pre-trained

model in which data type and domain are closer to a certain task, or making appropriate

domain adaption, can significantly improve the accuracy of model predictions.

We also experimented with several methods for unfreezing the parameter layers

in Transformer model training. All models used in the tests are based on the original

BERT_BASE model, which has 12 layers of bidirectional Transformer blocks and one

layer of pooler. The experimental results reveal that having too many or too few unfreeze

layers reduces model prediction accuracy and may even invalidate the final prediction

result. Table 4.8 shows the entire comparison test. When the last two Transformer layers

and the pooling layer were unfrozen, the best results were achieved. It’s worth noting that

if we unfreeze all of the pre-trained model’s parameters, the GPU will run out of memory
7https://huggingface.co/uer/roberta-base-finetuned-jd-full-chinese
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and training will be disabled.

Tab. 4.8. Results for different unfreeze layers. “↑” indicates “the larger the better” and “-” indicates
GPU out of memory.

unfreeze layers Score_sum↑
none 13.37

pooler only 14.14
pooler & layer.11 16.14

pooler & layer.10-11 16.27
pooler & layer.9-11 15.96
pooler & layer.8-11 13.86
pooler & layer.6-11 13.77

all -

Compared with the massive quantity of data required for pre-training, the training

method of unfreezing several parameter layers of Transformer and fine-tuning can be well

adapted to training on small datasets. All training processes can converge in less than 20

epochs, with a suitable learning rate. Depending on the number of unfreezing parameter

layers, each training epoch takes a different training time. The training time for each

epoch on the server mentioned above is about 9 minutes at most and 1 minute at least.

4.2.4 Neuro or Symbolic

In this section, we attempt to answer the question “Neuro or Symbolic?” through

some non-qualitative experiments. To evaluate whether neuro or symbol plays a greater

role in the overall model, we compared the shapeley value of model input with the multi-

head attention weight of BERT and the high-frequency topic words of LDA clustering.

SHapley Additive exPlanations (SHAP) [98] is a model-agnostic method for interpreting

the predictions of machine learning models. It assigns a feature importance score to each

input feature, based on its contribution to the model’s output. SHAP values are calculated

using the Shapley values, which measure the contribution of each feature to the model’s

output on average, across all possible combinations of features. Shapley values can be
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easily implemented by calling the SHAP library8. BertViz9 is an interactive tool for

visualizing attention in Transformer language models such as BERT. It can demonstrate

the weight of attention across all layers and heads. The higher the attention weight,

the more BERT pays attention to a certain token in a certain layer. Furthermore, we

highlight the top 10 high-frequency topic words of each topic in LDA to represent the

most concerned words of LDA, as shown in Fig. 4.4.

DCH-2 "id": "4235334818389354"

Shapley value -0.02 -0.02 -0.05 -0.07 -0.01 -0.05 -0.01 -0.01 -0.02 -0.03 -0.10 -0.14 0.04 -0.04 -0.06 0.00 0.04 0.08 0.12 0.13 0.07 0.13 -0.34

SHAP @ China Un icom I’ve used it for severall years . This happened every time when I went home . Please give me an explanation .

Bertviz (layer 11) @ China Un## icom I’ve used it for severall years . This happened every time when I went home . Please give me an explanation .

LDA [SW] China Unicom [SW] used [SW] [SW] severall yaers [SW] happened every time when [SW] went home Please give [SW] [SW] explanation

Shapley value 0.02 0.01 0.06 0.02 0.29 0.07 0.03 -0.04 -0.02 -0.08 -0.11 0.06 -0.33 0.30 0.24 -0.01

SHAP The staff will contact you as soon as possible after verification , please pay attention to it .

Bertviz (layer 11) The staff will contact you as soon as possible after ve## rification , please pay attention to it .

LDA [SW] staff will contact [SW] [SW] soon [SW] possible after verification please pay attention [SW] [SW]

Fig. 4.1. Visualization of the impact of each module on the classification results.

We performed the analysis on samples from the DCH-2 dataset using the method

described above. The results of the comparison are shown in Fig. 4.1. “[SW]” represents

the stop words that are ignored when LDA builds the word dictionary. “##” represents

one word divided into multiple tokens through BERT tokenizer. The special tokens [CLS]

and [SEP] are omitted. It is worth noting that the darker the color of the block, the bigger

the value of attention or shapley. In the shapley value, red means that this token shifts

the result tend to be positive, and blue vice versa. In Bertviz and LDA, the color of the

block does not represent positive or negative polarity, but only represents the attention

weight or top-frequency topic words. The Shapley value is a verbatim interpretation of

the entire model. Bertviz shows how the last hidden layer of the Transformer model pays

attention to different tokens. LDA highlights the top 10 high-frequency topic words. The

highlighted words of SHAP show that its contribution to emotional prediction is in line

with human common sense. For example, the word "explanation" is more inclined to

negative emotions in human cognition. Bertviz highlighted words contain more demon-
8https://github.com/slundberg/shap
9https://github.com/jessevig/bertviz
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strative pronouns and punctuation marks, which shows that the Transformer model is

more concerned with the grammatical structure and implication logic of the sentence (re-

ferring only to the last attention layer). LDA, on the other hand, focuses on the keywords

or commonality of certain topics, such as “China Unicom”, which are sometimes ignored

by the Transformer model. In general, Bertviz shows how the Transformer model pays

attention to different tokens and LDA focuses on high-frequency topic words that may

be ignored by the Transformer model. The final SHAP value shows that the highlighted

emotional words of the model output are in line with human common sense. Each module

provides unique insights into the model’s workings, and all are important for a compre-

hensive understanding.

4.2.5 Fast Cross-Task Training

In this section, we conduct some comparative experiments to verify the fast cross-

task training ability of the proposed method. We employ the “roberta-base-finetuned-jd-

binary-chinese”10 as the pre-trained Transformer model and an LDA topic model with

the topic number of 20. Then we randomly select a trainset of 5000 sentences from the

“JD binary” dataset11. This trainset is used to train the feedforward network as shown in

Fig. 3.3, with freezing all the parameters of “roberta-base-finetuned-jd-binary-chinese”

model. Because the “JD binary” dataset is a binary polarity dataset, the number of labels

finally output by the feedforward network is set to 2. After 5 epochs of training, the

prediction accuracy tends to converge. The LDA topic model is also trained on this

dataset.

Then we use Ren_CECps dataset to verify the cross-task learning ability of the pro-

posed method. In addition to multi-label emotional labels, Ren_CECps has binary po-

larity labels as well. We retrain the LDA model to extract different topic information

and then use the same Transformer model and feedforward model without fine-tuning as
10https://huggingface.co/uer/roberta-base-finetuned-jd-binary-chinese
11https://github.com/zhangxiangxiao/glyph
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mentioned in the previous paragraph to predict the binary results. The LDA model is an

unsupervised approach and requires quite limited training time (takes an average of 6.74

seconds across 4 experiments on the device described in Section 5.1.2).

Tab. 4.9. Results cross-task learning. “RBFJBC” presents for “roberta-base-finetuned-jd-binary-
chinese”.

model dataset accuracy↑
RBFJBC JD binary 0.972

RBFJBC + LDA JD binary 0.977
RBFJBC Ren_CECps 0.793

RBFJBC + LDA Ren_CECps 0.836

The experimental results are shown in Table 4.9. The results demonstrate that our

proposed method can further improve the accuracy of the pre-trained model with almost

negligible further training.

4.3 Multi-label Emotion Prediction and Intensity Analysis

4.3.1 Experimental Results

To further prove the effectiveness of our model in sentiment analysis of Chinese

text, we compared our proposed model with the state-of-the-art research results, which

are also based on the Ren_CECps corpus like [99, 94, 55, 100]. We also selected some

classic machine learning algorithms and transformer-based networks as our baselines,

like TF-IDF and BERT. The details of the baselines are as follows:

TF-IDF[99]: a basic Term Frequency–Inverse Document Frequency method.

TF-IDF_word2vec[99]: an enhanced TF-IDF method utilizes word embeddings

learned by word2vec as weights for each associated word.

WMD[99]: an emotion-separated method to assign the emotion labels of sentences

with different values utilizes the Word Mover’s Distance algorithm as a way of

feature representation.
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Rank-SVM[100]: adapts the maximum margin strategy to deal with multilabel data,

focusing on distinguishing relevant from irrelevant labels while ignoring relevance

rankings.

RER[94]: a novel framework based on Relevant Emotion Ranking to identify mul-

tiple emotions from emotion relationships with text constraint.

RERc[94]: extends RER by incorporating emotion relationships as constraints into

the learning framework.

HNet[100]: a Hierarchical Network with label embedding for contextual emotion

recognition.

DATN-1[55]: a Dual Attention Transfer Network which divides the sentence rep-

resentation into two different feature spaces. DATN-1 obtains the shared attention

weights of source text first.

DATN-2[55]: the same architecture as DATN-1, which computes the attention weights

of target text first.

RoBERTa: we use “xlm-roberta-base”12 as the baseline of pre-traind RoBERTa in

this experiment.

BERT: we use “bert-base-chinese”13 as the baseline of pre-traind BERT in this ex-

periment.

We chose macro F1-score as our primary evaluation metric from among the numerous

evaluation standards. One of the reasons is that all the papers we chose for comparison

utilized the same F1-score measures. Other metrics, on the other hand, cannot appropri-

ately evaluate the experimental results due to some specific characteristics of the corpus.

In the Ren_CECps corpus, two or more sentiment labels appear in a significant portion of

sentences at the same time, and the sentiment intensities are occasionally annotated with
12https://huggingface.co/xlm-roberta-base
13https://huggingface.co/bert-base-chinese
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the same value. However, none of the comparison papers addressed how to assess the ac-

curacy of the results in this scenario. In addition, we provide the other metrics mentioned

in section 5.1.3 for reference.

Tab. 4.10. Compared with similar works on Ren_CECps, “↑” indicates “the larger the better”, “↓”
indicates “the smaller the better”, and “-” indicates not provided in the original paper. The first four
methods are based on traditional machine learning or its variants. The latter five methods are based
on deep learning and attention mechanisms.

Model Acc↑ Precision↑ Recall↑ macro
F1-score↑

Average
Precision↑

One-
error↓

TF-IDF - 0.203 0.190 0.197 - -
TF-IDF_word2vec - 0.239 0.231 0.235 - -

WMD - 0.338 0.300 0.318 - -
Rank-SVM - - - 0.397 0.583 0.561

RER - - - 0.410 0.675 0.456
RERc - - - 0.416 0.680 0.455
HNet - - - 0.419 - 0.356

DATN-1 0.393 - - 0.410 0.670 0.501
DATN-2 0.457 - - 0.444 0.674 0.498

RoBERTa 0.528 0.428 0.449 0.429 0.669 0.410
BERT 0.516 0.427 0.472 0.431 0.682 0.379

Our work 0.525 0.479 0.496 0.484 0.695 0.363

The results demonstrate that our model can compute the emotional intensity of each

emotion label at the same time. In the instance where a sentence includes two sentiment

tags with the same intensity, we calculate the model classification accuracy with a 50%

accuracy rate. In Table 4.10, we can observe that our model outperformed all emotion

categorization techniques mentioned above on macro F1-scores.

4.3.2 What does the LDA learned?

The number K of LDA topics has a significant impact on the outcome of emotional

computing. The use of a different number of topics will result in unequal classification

effects. At the same time, the optimum value of K is incompletely homologous during

the extraction of representations at different levels or in different tasks.

As shown in Fig. 4.2, is an example of different classification results with varying
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Fig. 4.2. Different results for different topic numbers in MEP task, with sentences level bert-base-
chinese and paragraphs level LDA.

numbers of topic K in MER task. In general, it will get a higher F1-score with a K

number between 10 and 30, and in this example, the F1-score reaches the highest value

when K is 20. If K is too small, the distance between the extracted topic features is too

short, and the probability distribution of different emotions under different topics cannot

be distinguished well. If K is too large, the extracted topic features will instead become

noise, which does not work on classification results.

We also verify the above-mentioned conclusions on the ND task. When the number

of topics is 10, the model achieves the best prediction results, as shown in Fig. 4.3.

We performed some case studies to see what LDA learned during topic clustering.

In LDA’s topic clustering results on MEP task, the same topic words usually contain dif-

ferent emotions, as shown in Fig. 3.4. The probability of the topic words goes from

left to right. This is an example of topic extraction, with a total topic number of 20 and

clustering level of the paragraph. The gray blocks indicate the word “like”, the white

blocks with boxes indicate “woman”, and the black blocks indicate “maybe”, respec-

tively. Text with both the topic words “like” and “women” will have a high probability

of emotions containing “love” and “joy”, however, text with topic words of “like” and

“maybe” will have a high probability of “sorrow” and “anxiety”. When we combine the
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Fig. 4.3. Different results for different topic numbers in DQ task.

hidden representation extracted by BERT with the topic probability of LDA, the previous

attention will be more inclined to “like” and “maybe”. This helps the model to recognize

the sentiment of the sentence better.

It is worth noting that not all topic words are single English words (made of two

Chinese words), but the high-frequency keywords in the sample happen to be single En-

glish words. Furthermore, concatenating different levels of topic extraction on hidden

representations of sentences, paragraphs, or documents has a significant impact on the

classification result.

Another case study for what LDA learned can be referred to Fig. 4.4 on DCH-2

dataset. When “China Unicom” (gray blocks, a Chinese telecom company) and “Signal”

(the white block with boxe) appear in the same dialogue, the customer satisfaction and

task accomplishment scores for dialogue quality always tend to be low because China

Unicom’s signal is admittedly poor.

Compared to the “black box” of the DNN network, these case studies partly ex-

plain why our proposed method can accurately predict the sentiment contained in the

text, within the range of human comprehension. The fully-connection layer of the feed-

forward network is equivalent to a weight layer, which is used to determine the weight of

the visible LDA topic features and the hidden representations extracted by the invisible
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Fig. 4.4. Topic clustering with the total topic number of 10 on DCH-2.

Transformer, which ultimately play a key role in predicting the outcome. The following

section contains more information about the relationship between the topic information

extracted by LDA and the final classification results. Furthermore, since LDA topic clus-

tering is an unsupervised and fast process, it can facilitate cross-task learning. That will

be discussed in the next section.

4.4 Financial Argument Analysis

4.4.1 Experimental Results

To prove the effectiveness of our proposed framework in fine-Grained argument

understanding tasks within the domain of financial analysis, we compared our proposed

model with some strong baselines. We also compared the results from the state-of-the-art

LLMs, such as GPT-4. The details of the baselines are as follows:

BERT: [101] is an NLP model developed by Google’s AI, which stands for Bidirec-

tional Encoder Representations from Transformers. We use “bert-base-uncased”14

as the baseline of pre-traind BERT in this experiment. The hidden representation of

the [CLS] token is extracted, and a single-layer MLP is added for label classifica-

tion.
14https://huggingface.co/bert-base-uncased
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RoBERTa: [29] is an NLP model builds upon the BERT architecture, utilizing

dynamic masking and larger batch size. We use “xlm-roberta-base”15 as the baseline

of pre-traind RoBERTa in this experiment. We added same MLP layer as BERT.

FinBert: [79] is a pre-trained NLP model to analyze sentiment of financial text. It

is built by further training the BERT language model in the finance domain, using a

large financial corpus.

T5: [36] is an encoder-decoder model pre-trained on a multi-task mixture of unsu-

pervised and supervised tasks and for which each task is converted into a text-to-text

format. We use “t5-large”16 with 770 million parameters as baseline. The text and

labels of the dataset are directly used as input and output of T5, without any prompts.

ChatGLM: [102] is an open bilingual language model based on General Language

Model (GLM) framework. We choose ChatGLM-6B17, with 6.2 billion parameters,

as the baseline.

GPT-4: [35] is a large multimodal model accepting image and text inputs and emit-

ting text outputs, which was recently released by OpenAI. Since the parameters of

GPT-4 is not public, we use the few-shot method to complete the experiment.

TMUNLP: [103] uses a voting strategy to determine the optimal output from several

language models.

IDEA: [104] adds a multi-layer convolution mechanism based on the text features

extracted by BERT to improve the robustness of argument analysis.

LIPI: [105] uses pre-trained language models like BERT-SEC [106] and FinBERT,

and a cross-encoder architecture to handle deep semantics and relationships.

For comparative experiments, we also use “t5-large” as the backbone of the proposed

framework. BERT-like models use a learning rate of 5e−5 while other models use a
15https://huggingface.co/xlm-roberta-base
16https://huggingface.co/t5-large
17https://github.com/THUDM/ChatGLM-6B
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learning rate of 3e−4. All experiments were trained for 10 epochs, and the final result was

the best result among 5 runs.

Tab. 4.11. Experiment sesults for AUI and ARI subtasks. ‘CIC’ presents causal inference from
ChatGPT and ‘FFP’ presents financial further pre-training. Bold fonts represent the best results.

Argument Unit Iden. Argument Relation Iden.
Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT 75.33 75.32 82.78 52.85
RoBERTa 74.93 74.91 81.92 55.67
FinBert 75.80 75.52 82.69 51.85
T5 73.89 73.82 82.19 54.03
ChatGLM 76.47 76.47 79.63 60.17
GPT-4 (few-shot) 62.51 62.49 69.88 49.00
TMUNLP 76.57 76.55 82.07 57.90
IDEA 76.47 76.46 81.74 51.85
LIPI 73.89 73.86 79.42 60.22
Ours 77.40 77.32 85.65 61.50
Ours w/o CIC&FFP 74.61 74.56 - -
Ours w/o FFP 76.47 76.41 85.94 55.36
Ours w/o CIC 76.37 76.36 - -

In the AUI subtask, we used all framework modules mentioned in sections 3.2-3.4

simultaneously. However, in the ARI subtask, Causal Inference from ChatGPT is not

used. That is because, even with strong constraints added, when inferring the argument

relationship, a considerable part of the reasoning strings generated by the ChatGPT and

T5 models still exceed the mapping vocabulary. The experimental results are shown

in the Table 4.11. Our proposed framework exceeds the comparative baselines on both

tasks. Since the GPT-4 model cannot be fine-tuned, it does not perform well on specific

fine-grained financial analysis tasks, even worse than BERT-like models. Our proposed

framework also achieves the first F1-scores in ARI subtask and the third F1-scores in AUI

subtask of NTCIR-17 FinArg-1, respectively. Tasks details can refer to [107].

4.4.2 Ablation Experiments for Financial Argument Analysis

This section provides the ablation study for the proposed framework, as shown in

the lower part of Table 4.11. In the AUI task, if only Prefix Instruction Fine-tuning
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(PIF) is used instead of Financial Further Pre-training (FFP) and Causal Inference from

ChatGPT (CIC), the obtained Macro-F1 score is 74.56, which is only slightly higher than

the original T5 model, not as good as other SOTA LLMs model. If FFP or CIC is not

used, the effect of the model will slightly decrease.

In the ARI task, we observed analogous results. Notably, in the absence of FFP, the

model’s Micro-F1 score for the ARI task exhibits an increase. However, this is accompa-

nied by a significant decline in the Macro-F1 score. This underscores that the FFP mod-

ule notably enhances the model’s stability, especially when handling imbalanced datasets.

For all ablation studies, we employed a substantial max length to mitigate the potential

influence of the mapping vocabulary issue. A more in-depth discussion on max length

can be found in the following sections.

4.4.3 Long or Short Instructions

When not using CIC, for each subtask, we use one long instruction and one short

instruction for each subtask respectively, as mentioned in Table 3.1. At this point, we

observed that whether to use FFP will have a significant impact on the inference results,

as shown in Fig. 4.5. In general, shorter prompts give better results if FFP is used, on

the other hand, longer prompts are better if FFP is not used. This could be attributed to

the model acquiring relevant background knowledge during further pre-training. Without

this knowledge, a more specific instruction-guided approach might be necessary during

fine-tuning to produce the appropriate response.

4.4.4 Category Judgment with LLMs Supervision

In the actual inference process, when the output of the T5 model exceeds the max

length parameter, it will be truncated. This situation can usually be avoided by setting

max length greater than 256. But reducing the max length of the T5 model can exponen-

tially speed up the inference, therefore, we always prefer a smaller max length. In order

to solve this problem, we propose the Category Judgment method, which is to re-enter the
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Fig. 4.5. Long/short instructions act on inference results.

outputs outside the mapping vocabulary into the fine-tuned model for further reasoning.

Some examples of case study and category judgment are listed in Table 4.12. Over-

all, the shorter the input sentence and the fewer compound arguments it contains, the

more accurate the output of the model will be. The wrong predictions are concentrated

in the case when the input sentence contains some complex ideas. When max length was

set to be 40, with the Category Judgment method, most of the output exceeding the max

length can be accurately identified. We also observed that some incorrectly predicted

sentences leads to correct results after Re-Output, as shown in the third example in Talbel

4.12. Based on these results, we fond that after category judgment, the prediction accu-

racy of the model can reach a comparable level to that of using a large max length, thus

greatly saving the computing resources of inference.

4.5 Conclusion

In conclusion, section 4 provides a detailed account of the experimental evaluations

conducted using our proposed framework, encompassing five subtasks across four diverse

datasets. These tasks, namely DQ, ND, MEP, ARI and AUI, serve as comprehensive test

beds to assess the framework’s efficacy in varied contexts.

The experimental results demonstrate the framework’s robustness and adaptability.

For instance, in DQ and ND subtasks, the framework showed a remarkable ability to dis-
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Tab. 4.12. Case study and category judgment examples. Words in curly brackets indicate truncated
parts when max length was set to be 40. Re-Output is the result of re-entering the output into the
model with a larger max length. Green ticks represent correct predictions and red crosses represent
incorrect predictions.

Predictions Sentences

Output:
Premise✓

Re-Output:
Premise✓

Input: “And in that context, of course, they’re lifting and shifting some of
the older workloads, but they’re modernizing the entire business process
flow.”

Output: “This sentence provides evidence to support the argument
by providing an example of how the argument is being implemented. It
explains the action being taken to achieve the goal, which is to lift and
shift older workloads, {and to modernize the entire business process flow.
In summary, the sentence is a premise.}”

Re-Output: “This sentence provides evidence to support the argu-
ment by providing an example of how the argument is being implemented.
It does not make a statement that is meant to be accepted as true, but rather
provides evidence to support the argument. In summary, the sentence is a
premise.”

Output:
Claim✓

Re-Output:
Claim✓

Input: “And in this particular case, now back to commenting on this
one, we’re hopeful that over time the restrictions that we’re seeing are
loosened because innovation really requires freedom to collaborate and
communicate, and I know that that is a major focus there.”

Output: “This sentence is making a statement about the potential
outcome of the restrictions that are being seen. It is expressing a hope
that the restrictions will be loosened, and that this is a major focus of the
argument{. In summary, the sentence is a claim.}”

Re-Output: “This sentence is making a statement about the poten-
tial outcome of the restrictions being seen, and is expressing a hope that
the restrictions will be loosened. This is a statement of opinion, and is
therefore a claim. In summary, the sentence is a claim.”

cern nuanced aspects of conversations and text segments. In the realms of MEP subtask,

the framework adeptly handled the complexities of human emotions in text, showcasing

its fine-grained analytical capabilities. Similarly, in Financial Argument Analysis, the

framework’s effectiveness in processing and interpreting specialized, domain-specific

content was evident.

The section also delves into critical discussions that shed light on the underlying
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Tab. 4.13. Case study and category judgment examples (continuation).

Predictions Sentences

Output:
Claim×

Re-Output:
Premise✓

Input: “I also really like what I’ve seen with the iPhone SE and the fact
that it’s opening the door to customers that we weren’t reaching before
and likely convincing some people to upgrade that wanted a smaller form
factor but wanted to stay with iPhone, and so they were waiting for the
iPhone SE.”

Output: “This sentence is making a claim about the success of the
iPhone SE and the potential for it to convince customers to upgrade to a
smaller form factor. It is not providing any evidence or facts to support
this {claim, but is instead making a statement about the potential of the
iPhone SE. In summary, the sentence is a claim.}”

Re-Output: “This sentence provides evidence to support the argu-
ment by providing an example of a success of the iPhone SE and the
potential for it to convince customers to upgrade to a smaller form factor.
It does not make a statement about the argument itself, but rather provides
evidence to support the argument. In summary, the sentence is a premise.”

Claim✓

Input: “And one important way we drive selection is through FBA, and
so we continue to be very pleased with the progress we’re making in FBA.”

Output: “This sentence is making a statement about the progress
that is being made inFBA, and is therefore a claim. In summary, the
sentence is a claim.”

mechanics and strategic choices in the framework’s design. The selection of the pre-

trained Transformer model was pivotal, highlighting the trade-offs between various mod-

els and their impact on the framework’s performance. The debate between Neuro and

Symbolic approaches underscored the importance of integrating logical reasoning with

neural network-based learning. Insights into what the LDA learned revealed the depth of

thematic understanding the framework could achieve.

Furthermore, the examination of long versus short instructions provided valuable

findings on how instructional length influences model performance. Lastly, the discussion

on category judgment with LLMs supervision brought to the forefront the role of large

language models in enhancing the framework’s accuracy and interpretability.

Overall, the experimental section not only validates the effectiveness of the pro-
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posed framework but also opens avenues for future research. It highlights the potential of

combining advanced NLP techniques with logical reasoning and large language models,

setting a precedent for more sophisticated and interpretable sentiment analysis tools in

various domains.
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5 Conclusion and Future Work

5.1 Conclusion

In this paper, we have undertaken an in-depth exploration of text sentiment analysis,

particularly focusing on the challenges posed by the predominant use of Deep Learning

(DL) methodologies and Large Language Models (LLMs) in this domain. Despite the

remarkable advancements achieved through these models, they often fall short in terms of

interpretability and require substantial computational resources and extensively annotated

datasets. These limitations not only impose financial and time constraints but also hinder

a deeper understanding of the decision-making processes of these models.

Our research presents a groundbreaking, interpretative framework for text sentiment

analysis. This framework is distinctive for its cost-efficiency and high precision, address-

ing the pivotal needs of the current sentiment analysis landscape. The core of our frame-

work is built upon three innovative components. (1) Enriched Semantic Layer: We merge

the unsupervised topic clustering LDA matrix with the hidden expression matrix gener-

ated by Transformer-like models. This integration significantly enhances the semantics

of the hidden layer, enabling the model to discern deeper and more nuanced sentiments

within the text. This step is crucial in bridging the gap between the raw data and its in-

terpretability, allowing for a more profound understanding of the underlying emotional

content; (2) Symbolic Logic Integration: Our framework incorporates symbolic logic

systems, such as Real Logic and LTN, translating the often opaque operations of deep

learning models into a format that is more logical and understandable. This integration

is a leap towards demystifying the complex internal workings of these models, thereby

rendering them significantly more interpretable. (3) Large Language Model Supervision:

We utilize sophisticated language models, like ChatGPT, in a teacher-student dynamic.

The ’teacher model’ generates target text, serving as a benchmark to evaluate and guide

the ’student model’. This approach not only allows our framework to glean insights from

state-of-the-art models but also does so without inheriting their inherent opacity. We



5 CONCLUSION AND FUTURE WORK 72

further enhance our framework’s performance and efficiency through techniques such

as Prefix Instruction Fine-tuning, within-Domain Further Fine-tuning, and Task-specific

Decoding. By incorporating these strategies, our methodology prioritizes simplicity and

transparency while leveraging domain-specific knowledge. Initial results from our frame-

work indicate a harmonious blend of interpretability and high performance, positioning

it as a compelling alternative to existing deep learning-centric models.

To substantiate the efficacy of our proposed framework, we conducted extensive

experiments on multiple sentiment analysis subtasks, including Weibo emotion detection,

financial argument analysis, and human-machine customer service dialogue satisfaction

evaluation. The framework’s performance was outstanding, outperforming state-of-the-

art baselines in various subtasks. Notably, it achieved first place in both the NTCIR-

16 DialEval-2 and NTCIR-17 FinArg-1 tasks, underscoring its superiority in practical

applications.

In conclusion, this research marks a significant stride towards developing more

transparent, efficient, and accessible tools for sentiment analysis. The hybrid approach

we have adopted, which skillfully combines interpretability with high performance, sets a

new paradigm in the field. Our work not only contributes a novel perspective to sentiment

analysis but also lays the groundwork for future innovations in creating more reliable,

comprehensible, and user-friendly sentiment analysis methodologies. As we continue to

refine and expand upon our framework, we are optimistic about its potential to revolu-

tionize the field, making advanced sentiment analysis more attainable and insightful for

a broader range of users.

5.2 Future Work

Building on the accomplishments and insights given from the research of this paper,

several avenues for future work can be considered to further enhance and extend the

capabilities of our Interpretable Text Sentiment Analysis Framework. These potential

directions include:
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Cross-Domain Adaptability: Future work could focus on adapting and testing the

framework across a wider range of domains and text genres. This would involve

tailoring the framework to handle the unique linguistic and sentimental nuances

of texts from various fields such as healthcare, legal, educational, and technical

domains.

Multilingual and Cross-Cultural Analysis: Expanding the framework to support

multiple languages and cultural contexts is crucial. This would involve training

and fine-tuning the model on diverse linguistic datasets and incorporating cultural

context understanding to improve sentiment analysis accuracy in a global context.

Integration with Emerging Technologies: Exploring the integration of the frame-

work with cutting-edge technologies such as Voice Recognition [108] and Computer

Vision [109] could open up new applications. For instance, extending the multi-

modal capabilities [110] of the framework would significantly broaden the frame-

work’s applicability.

Advancements in Symbolic Logic Integration: Further research could delve into

more advanced symbolic logic systems and their integration with neural networks.

This could include exploring newer logic paradigms (such as PyReson) or enhancing

the existing LTN opproach for better interpretability and accuracy.
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