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Abstract 

The laminar-turbulent transition of a mixing layer induced by oscillating flat plates 

at an exit of a two-dimensional nozzle was experimentally investigated. The mixing 

layer was formed between the jet, which issued from the nozzle and the 

surrounding quiescent fluid. The plates oscillated vertically in relation to the mean 

flow. The oscillation frequency was two orders of magnitude smaller than the 

fundamental frequency of the velocity fluctuation. Mean and fluctuating velocity 

components in the streamwise and normal directions were measured by hot-wire 

anemometers. In the oscillating state, the same phenomenon as in the natural 

transition process appeared more upstream. In the early stage within the nonlinear 

region, the growth of fluctuating velocity weakened and the Reynolds shear stress 

component decreased. The decrease in their production rate due to the expansion of 

the mixing layer contributed to the weakening and decrease. The probability of the 

streamwise and normal fluctuating velocity components taking the same sign 

increased or decreased in accordance with the increase and decrease of the 

Reynolds shear stress component. The randomness factor, which had been proposed 

by Sato, appeared to be a reasonable indicator of the present transition process, 

especially in the process in which the periodic velocity fluctuation became 

irregular. However, this factor certainly indicated the same value at two streamwise 

positions. 
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1. Introduction

The laminar-turbulent transition phenomenon has been investigated for many years,

because it occurs very often in the natural world and in industrial machinery. A wake of 

turbine cascades in industrial machines(1) is an example of the laminar-turbulent transition 

in free shear flow without constraint by a solid wall. As another example of free shear flow, 

in the early stage of a jet development, both the potential core in which the velocity is 

constant, and the mixing layer in which the velocity has a gradient, are formed. The *Received XX Xxx, 200X (No. XX-XXXX) 
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laminar-turbulent transition process in the mixing layer is classified into three regions. First, 

the linear region appears where disturbances grow exponentially and a periodic fluctuation, 

i.e., a fundamental wave, is observed(2). Next, the nonlinear region appears where the 

harmonic and subharmonic waves of the fundamental wave are observed. At last, the 

irregular region appears where an irregular fluctuation dominates. 

In the case of a boundary layer, during the last stage of the laminar-turbulent transition 

process, isolated turbulent patches, "turbulent spots," are formed and develop downstream. 

Therefore, the intermittency factor, which is the time ratio of the turbulence, has been used 

as the indicator of the transition process. It is known to increase monotonically downstream. 

On the other hand, regarding the transition process of the free shear flow as in the present 

investigation, Sato et al. proposed the randomness factor as the indicator based on the 

variation of the power spectrum density of the velocity fluctuation, although it seems not to 

have been used until recently(3)(4). 

In many studies concerning the transition in the mixing layer and the jet before an 

establishment of self-similarity, the effects of forced disturbance have been investigated. 

Representative studies are mentioned in the previous paper(5). As one example of a forced 

disturbance, a periodic disturbance has been introduced, mainly as a frequency equal to the 

fundamental frequency of velocity fluctuation in the linear region of the natural transition 

process. Though the mixing layer is unstable under disturbances with a low wave number, 

i.e., a long wavelength in contrast with the boundary layer(6), the transition process with a 

periodic disturbance with a long wavelength has not been investigated. 

The present study deals with the transition process in a mixing layer formed between a 

jet just after a two-dimensional nozzle and the surrounding quiescent fluid. The fence-type 

flat plates oscillated and protruded vertically in relation to the jet with low frequency, which 

is two orders of magnitude lower than the fundamental frequency. In the previous paper, 

protrusion of the plate was so small that a disturbance by the protrusion itself was not 

created(5). The streamwise velocity component and development of the mixing layer were 

measured. From these measurements, the relation between the velocity fluctuation and the 

energy production, dissipation and convection rates of the perturbation was examined. The 

transition process downstream of the nonlinear region and the extension of the mixing layer 

in the normal direction, however, have not been elucidated. 

The present paper examines the extension of the transition process in the normal 

direction at first; then the decrease of the disturbance growth in the nonlinear region is 

examined. Finally, the advantage and disadvantage of the randomness factor as an indicator 

of the transition process in the mixing layer are examined. 

Nomenclature 

f : frequency of velocity fluctuation 

f0 : fundamental frequency of periodic velocity fluctuation 

fe : oscillation frequency of oscillating plates = 5 Hz 

fp : preferred frequency of periodic velocity fluctuation 

h : nozzle exit height = 10 mm 

P( f ) : power spectrum density of streamwise fluctuating velocity at frequency f 

p(u/u’, v/v’) : joint probability density function between u and v 

pu,v; i : probability in which value of u and v is included within i-th quadrant 

U, u : mean and fluctuating velocity component in streamwise direction 

U0 : velocity at x = 5 mm, y = 0 

Um : local velocity on the centerline 

V, v : mean and fluctuating velocity component in normal direction 

u’, v’ : root mean square value of u and v, respectively 

x, y : coordinate system 
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z : randomness factor 

*  : time average of quantity * 

 

2. Experimental Apparatus and Methods 

The experimental apparatus is the same one used in a previous paper(5). The mixing 

layer is formed just downstream of a two-dimensional nozzle with an aspect ratio of 31 (310 

mm in width and 10 mm in height, h). For the convenience of the reader, the upper half of 

the flow field and coordinate system are reproduced in Fig. 1. Two types of experiments 

were performed. In one, the oscillating plates which were installed at the exit of the nozzle 

remained stationary so that the plates would not narrow the nozzle exit section (stationary 

state). In another, the plates oscillated at a frequency of 5 Hz and an amplitude of 0.25 mm 

(oscillating state). In both cases, the Reynolds number was 5000 based on the nozzle exit 

velocity without oscillation, U0 ⋍ 7.5 m/s, and the nozzle exit height, h. X-shaped hot-wire 

probes with two tungsten sensing elements, each 5 μm in diameter and 1 mm in length, 

were used for the measurements. Output voltage was sampled at a sampling frequency of 5 

kHz for about 52 seconds. This interval corresponds to about 260 oscillations in the 

oscillating state. The measurements were conducted in a range of y ≧ 0. Results are shown 

here in the range x/h ≦ 25 (stationary state) and x/h ≦ 20 (oscillating state), where the 

mean velocity profiles had become identical. 

 

3. Results and Discussion 

3.1 Spatial Distribution of Fluctuation in Linear Region 

From the exponential increase of the streamwise fluctuating velocity, the linear region 

was estimated as x/h ≦ 3 or ≦ 1.5 in the stationary or oscillating regions, respectively(5). 

In the nonlinear region downstream, the increasing rate of fluctuating velocity decreased. 

The distributions in the normal direction of the periodic and irregular fluctuations within 

linear and nonlinear regions will be observed in this section. 

Figures 2 and 3 show instantaneous velocity signals and the power spectrum density of 

the streamwise fluctuating velocity at the terminal of the linear region, x/h = 3 and 1.5, in 

the stationary and oscillating states, respectively. The figures are shown at three normal 

positions. They are (a), on the centerline, y/(h/2) = 0; (b), at the edge of the potential core 

region, y/(h/2) = 0.60 and 0.68 in the stationary and oscillating states, respectively; (c), and 

in the position of maximum streamwise fluctuating velocity, at y/(h/2) = 1.0 and 0.95, in the 

stationary and oscillating states, respectively. The region of the abscissa in the instantaneous 

velocity signal was 0.2 seconds, which is the same as one period of the plate oscillation in 

the oscillating state. The integration of the power spectrum density, P( f ) within the whole 

Fig. 1  Schematic diagram of two-dimensional mixing layer and coordinate system. 
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frequency region became 2u . Here, the density was normalized by the square of the 

centerline velocity, U0. In the stationary state in the whole y position, periodic fundamental 

waves with frequencies of approximately 500 Hz, and subharmonic waves with frequencies 

of approximately 200 and 300 Hz, can both be seen in the velocity signal and the power 

spectrum density. Additionally, in Figs. 2(c) and 3(c), periodic harmonic wave whose 

frequency is approximately 1000 Hz can be seen. Many peaks which can be seen in Figs. 

3(a) and 3(b) in the stationary state are small peaks exaggerated by the log scale, though the 

values are very small due to the small fluctuating velocity around these stations. 

In the oscillating state in the whole y position, a periodic wave whose frequency is 5 

Hz, corresponding to the plate oscillation frequency, can be seen. The periodic wave whose 

frequency is approximately 400 Hz is superposed on it. In Figs. 2(b) and 3(b), the 

fundamental wave dominates. Additionally, in Figs. 2(a) and 3(a), the subharmonic wave 

can be seen, and in Figs. 2(c) and 3(c), the harmonic wave can be seen. In this way, in the 

oscillating state, besides the 5 Hz-wave, the fundamental, subharmonic and harmonic waves 

can be seen as during their stationary state. 

In this way, the dominant frequency varies with the normal position, y, and therefore, 

the distribution of the dominant frequency in the normal direction will be examined in 

detail. Figure 4 shows contour maps of the power spectrum density of the fluctuating 

velocity at subharmonic, fundamental and harmonic frequencies. Here, from the peak 

frequency in the whole measurement region, the fundamental frequency, f0, was determined 

as 485Hz or 408 Hz in the stationary or oscillating states, respectively. The contour maps 

were drawn until a position within the nonlinear region. Just after the nozzle exit, there 

were positions where a large value of y was not measured. In addition, the maps were drawn 

from x/h = 0 for convenience, though the measurements were performed in the region of 0.5 

≦ x/h. In Fig. 4, in the region where the mean velocity gradient -∂U/∂y exists, white lines 

were drawn where U/Um equals 0.99 and 0.05. The velocity gradient was smaller on the 

outside, therefore, the criterion in the outside region was selected not as 0.01 but as 0.05. 

Only in the map of the harmonic frequency, Fig. 4(c), were the values one order of 

magnitude smaller. 
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Fig. 2  Fluctuating velocity signals in the           Fig. 3  Power spectrum density of the streamwise 

streamwise component: stationary, x/h = 3;           fluctuating velocity: stationary, x/h = 3; 

oscillating, x/h = 1.5.                            oscillating, x/h = 1.5. 
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In the stationary state at around x/h = 3, the terminal of the linear region and within the 

region where -∂U/∂ y exists, positions where the power spectrum density at the 

fundamental frequency has a relatively large value, y/(h/2) = 0.9 and 1.1, and positions 

where it has a relatively small value, y/(h/2) = 1.0, exist side by side as shown in Fig. 4(b). 

On the contrary, the power spectrum density at the subharmonic frequency is relatively 

large and small, at around y/(h/2) = 1.0 and 1.1, respectively in Fig. 4(a). The fact that the 

maximum and minimum positions of the power spectrum density at fundamental and 

subharmonic frequencies are opposite each other can be seen in the case of sonic 

disturbance in Sato(7). Hsiao-Huang examined distributions of power spectrum density at the 

fundamental and subharmonic frequencies, not in the normal direction but in the streamwise 

direction(8). They explained the appearance of the subharmonic wave as the coalescence of 

the vortices of the fundamental frequency. In addition, they measured until the preferred 

frequency remained as the consecutive coalescence process. The preferred frequency in the 

present investigation will be described in section 3.3. 

The nonlinear region of stationary state, 3 ≦ x/h, the region where -∂U/∂y exists, 

extends and approaches the centerline. Accordingly, the power spectrum density at the 

fundamental frequency reaches a maximum at x/h = 4, y/(h/2) = 0.5. It is well-known that in 

the nonlinear region, subharmonic and harmonic waves appear(2). In the present 

investigation, the spectrum of the fundamental frequency in Fig. 4(b) becomes maximum at 

(a) 

(b) 

(c) 

Fig. 4  Isocontour maps of power spectrum density of fluctuating velocity in the streamwise component 

       at subharmonic, fundamental and harmonic frequencies: (a), subharmonic; (b), fundamental;  

and (c), harmonic frequencies. 
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around x/h = 4 in the nonlinear region. On the contrary, the subharmonic frequency in Fig. 

4(a) becomes maximum at around x/h = 5, well within the nonlinear region. The harmonic 

frequency in Fig. 4(c) also becomes maximum at x/h = 4, y/(h/2) = 1.3 in the nonlinear 

region, though it is one order of magnitude smaller than that at fundamental and 

subharmonic frequencies. 

In the oscillating state in the linear region, x/h ≦ 1.5, the spectrum of the fundamental 

frequency in Fig. 4(b) becomes minimum at around y/(h/2) = 1.0 as well as in the stationary 

state. In addition, in the larger or smaller y-positions of the minimum position, the values 

show maximum as well as in the stationary state. The streamwise station, however, where 

the spectrum of the fundamental frequency becomes maximum, is around x/h = 1.5, where 

the terminal of the linear region, in opposition to the stationary state. The fact that the 

maximum and minimum positions of the power spectrum density at fundamental and 

subharmonic frequencies are opposite each other also holds as in the stationary state. The 

spectrum in the subharmonic frequency becomes the largest in the nonlinear region as well 

as in the stationary state. The spectrum in the harmonic frequency becomes largest just after 

the start of the nonlinear region. In this way, in the oscillating state, respective events occur 

earlier than in the stationary state. Due to the small amplitude and low frequency of the 

disturbance which is induced by the plate oscillation, however, the difference between the 

stationary and oscillating states is nothing but the shift of maximum stations of spectrum in 

the fundamental wave in the upstream direction. 

The normal position where the minimum value of spectrum in the fundamental wave 

exists is y/(h/2) ⋍ 1.0 as seen in Fig. 4(b). The phase reverses between regions y/(h/2) < 1.0 

and 1.0 < y/(h/2) in the present stationary state. In the forced disturbance with the sound 

wave in a two-dimensional jet, Sato(9) confirmed that at the minimum position of the 

spectrum in the forced frequency, the phase of the periodic motion with the frequency 

reverses. The present investigation found that in the oscillating state, phase reversal with 

respect to the oscillating frequency was confirmed. 

3.2 Velocity Fluctuation in Nonlinear Region 

In the nonlinear region, the growth of velocity fluctuation is weaker than in the linear 

region(2)(5). In this section, the nature of velocity fluctuation will be described. Figure 5 

shows the streamwise variation of the maximum values of the root mean square value of 

fluctuating velocity components in the streamwise and normal direction. The maximum 

values are determined from the distribution in the y-direction. In the previous paper, to 

define the linear region, streamwise distributions of both maximum values were drawn just 

after the nozzle. Here, they are drawn in linear scale until well downstream. The defined 

nonlinear regions, 3 ≦ x/h ≦ 15 or 1.5 ≦ x/h ≦ 10 in the stationary or oscillating 

states, respectively, are also shown in Fig. 5. In both cases, the increasing rate of the 

maximum values weakens in the nonlinear region, and then the values decrease. The 

decrease is due to the velocity decrease in the whole y-position according to the expansion 

of the mixing layer in the y-direction. In fact, when normalized by the local centerline 

velocity, Um, the maximum values are almost constant at 10 ≦ x/h. In this way, when the 
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distribution in the stationary state is shifted upstream, it almost corresponds to the 

oscillating state. That is, the general shape of distribution does not change due to the small 

amplitude of the oscillating plate, 0.25 mm. The amplitude did not create a new disturbance 

by the protrusion itself. The potential core disappears at x/h ⋍ 6 and 4 in the stationary and 

oscillating states, respectively. 

Figure 6 shows the streamwise variation of the maximum value of the Reynolds stress 

component. The increasing rate of the maximum value weakens drastically in the nonlinear 

region, and the maximum value decreases next. The decrease ceases immediately, and 

increases again in 5 ≦ x/h ≦ 10 or 4 ≦ x/h ≦ 8 in the stationary and oscillating states, 

respectively. In the latter half of the nonlinear region, they decrease as well as u’max and 

v’max. The distribution of the oscillating state is almost the same as the stationary state if it is 

shifted upstream. The first peak value within the nonlinear region, however, is larger than 

the stationary state. That is, the plate oscillation disturbance increases the Reynolds shear 

stress component just after the nozzle exit, though the effect does not continue for long. 

Here, the variation of the Reynolds shear stress component shown in Fig. 6 is examined 

in relation to its production rate. If the boundary layer simplification is introduced, the 

equation of the Reynolds shear stress component becomes(10),  
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The most dominant production rate in Eq. (1) is - 2v ∂U/∂y. Other production rates 

based on the velocity gradient in y-direction, -uv∂V/∂y, and those based on velocity 

gradient in the x-direction are negligibly small as well, as with Ref. (10). The maximum 

value of the production rate - 2v ∂U/∂y in the distribution in y-direction is shown in Fig. 7. 

The Reynolds shear stress component becomes maximum at x/h = 4 and 2.5 in the 

stationary and oscillating states, respectively, during the early stage in the nonlinear region 

in Fig. 6. The production rate in Fig. 7 becomes maximum at almost the same stations. 

Thus, the increase in the linear region and the decrease in the nonlinear region of the 

Reynolds shear stress component correspond to the variation of its production rates. In this 

way, oscillation of the plates in the normal direction increases the production rate of the 

Reynolds shear stress component. 

The reason why the production rate decreases in the early stage of the nonlinear region 

will be examined here. This decrease is caused by the decrease of two factors in the 

production rate, i. e., the velocity gradient -∂U/∂y and turbulent energy 2v . The former 

decreases immediately and the latter decreases later in the nonlinear region(5). The decrease 

of the former is due to an expansion of the mixing layer. On the other hand, the decrease of 

the latter can be explained from the decrease of its production and convection rates, - 2v ∂

V/∂y and (U∂/∂x + V∂/∂y)( 2v /2), respectively, as mentioned before. The decrease of 

the production rate is caused by the decrease of 2v  itself and of a velocity gradient, -∂V/

∂y, i. e., the expansion of the mixing layer. The decrease of the convection rate is mainly 

caused by the decrease of ∂ 2v /∂y, i. e., the expansion of the mixing layer. In any case, the 

Fig. 7  Streamwise variation of maximum production rates of Reynolds shear stress component. 
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decrease of the Reynolds shear stress component, uv , is caused by the expansion of the 

mixing layer. 

Next, after uv max decreased, it increased again in 5 ≦ x/h ≦ 10 and 4 ≦ x/h ≦ 8 

in the stationary and oscillating states, respectively. The increase of u’ in x/h ≦ 8 and x/h 

≦ 6 in the stationary and oscillating states, respectively, may have contributed to it. 

In the previous paper, the distributions in the y-direction of the dominant production 

rate in 2u  and 2v , i. e., -uv∂U/∂y and - 2v ∂V/∂y, respectively, are shown in the region 

of x/h ≦ 6(5). Here, the maximum values in the distribution in the y-direction at the 

respective x/h are shown in Fig. 8 in a streamwise direction. The production rate in 2u  in 

Fig. 8(a) immediately decreases in the nonlinear region due to the decrease in uv  itself, 

and -∂U/∂y as mentioned before. The production rate in 2v  in Fig. 8(b) also decreases 

early in the nonlinear region due to the decrease in 2v  itself and -∂V/∂y. The production 

rate in 2u  in the oscillating state in Fig. 8(a) was almost the same as the rate in the 

stationary state when it was shifted upstream. On the other hand, when the production rate 

in the stationary state of 2v  in Fig. 8(b) is shifted upstream, and when the peak value is 

increased, the rate almost corresponds to the one in the oscillating state. Thus, the 

oscillation of the plates in the normal direction increases the production rate of the 

fluctuating velocity in the normal direction. 

Next, the first decrease and the following increase of the Reynolds shear stress 

component in the nonlinear region is examined from the aspect of streamwise and normal 

fluctuating velocity. The contribution of the respective velocity is viewed from a joint 

probability density function (jpdf) of both directions. Figure 9 shows the contour maps of 

the jpdf in 6 representative stations. The y-positions in the respective stations are the 

maximum positions of uv . The surface integral of the jpdf in the respective figure becomes 

unity. The maps in the oscillating state almost correspond to those in the stationary state 

Fig. 8  Streamwise variation of maximum fluctuating energy production rates in the (a) streamwise 

and (b) normal components. 
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when they are shifted upstream. The characteristics of the maps in both states are examined 

below.  

At x/h = 2 and 1 in the stationary and oscillating states, respectively, where the uv max 

increases in the linear region, the jpdf distributes widely in the first quadrant where u ≧ 0 

and v ≧ 0, and in the third quadrant where u ≦ 0, v ≦ 0. This fact confirms that uv  

takes a positive value. In addition, the jpdf is almost symmetric with the line of u/u’ = v/v’. 

At x/h = 3 and 1.5 in the stationary and oscillating states, respectively (the terminal of 

the linear region), the shape of the jpdf somewhat deforms. Moreover, the area in which the 

jpdf distributes is small and large in the first and third quadrants, respectively. In the region 

of 4 ≦ x/h ≦ 5 and 3 ≦ x/h ≦ 4 in the stationary and oscillating states, respectively, 

where the uv max decreases in the nonlinear region, the pdf starts to distribute in the second 

and fourth quadrant. In the second and fourth quadrants, both fluctuating velocity 

components contribute uv  negatively. Thus, the decrease of the uv max in the early stage of 

the nonlinear region is confirmed. 

In the region of 5 ≦ x/h ≦ 10 and 4 ≦ x/h ≦ 8 in the stationary and oscillating 

states, respectively, where the maxuv  increases again, the distribution of the pdf again 

becomes symmetric with the line of u/u’ = v/v’. At x/h = 10 and 8 in the stationary and 

oscillating states, respectively, the jpdf once again distributes mainly in the first and third 

quadrants. 

To express the distribution of the jpdf in four quadrants quantitatively, the area 

integration of the jpdf in the respective quadrant was obtained, i.e., the probability that both 

fluctuating velocities exist in the i-th quadrant, pu,v;i. Figure 10 shows streamwise variations 

of the four probabilities. During the uv max increases in the linear region, the pu,v;1 and p u,v;3 

decrease and pu,v;2 and pu,v;4 increase. In the nonlinear region and during the decrease of 

uv max, this tendency continues. At x/h = 5 and 4 in the stationary and oscillating states, 

respectively, where maxuv  takes minimum, the pu,v;1 and pu,v;3 take minimum correspondingly. 

On the other hand, the pu,v;2 and pu,v;4 take maximum. Downstream, in the region of 5 ≦ 

x/h ≦ 10 and 4 ≦ x/h ≦ 8 in the stationary and oscillating states, respectively, where 

uv max increases again, the pu,v;1 and pu,v;3 increase and pu,v;2 and pu,v;4 decrease. In the region 

of 10 ≦ x/h and 8 ≦ x/h in the stationary and oscillating states, respectively, the 

probabilities are almost constant and the same as the value at the station of x/h ⋍ 16 and 10 

in the stationary and oscillating states, respectively, where the turbulent transition is 

completed. The constant values of the sum of the pu,v;1 and pu,v;3 that contribute positively to 

uv  are approximately 0.66 and 0.68 in the stationary and oscillating states, respectively. On 

the other hand, the sum of the pu,v;2 and pu,v;4 that contribute positively to uv  are 

approximately 0.34 and 0.32 in the stationary and oscillating states, respectively. In this 

way, the constant values between the stationary and oscillating states in their respective 

quadrant are almost small. Thus, the present disturbance does not affect the characteristics 

of the turbulent transition process, though it accelerates the transition. In this way, through 

the decrease and re-increase processes of the uv max, the probabilities change. The tendency 

to change in the nonlinear region is divided into three regions; the region during the 

decrease of maxuv , the region during the re-increase of maxuv , and the constant-probability 

region. 
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3.3 Quantitative Representation of Progress of Laminar-Turbulent Transition 

In this section, the laminar-turbulent transition process of the mixing layer throughout 

the linear, nonlinear and random regions will be quantitatively presented. First of all, the 

general characteristic of the transition in the present experiment is described.  

Figures 11 and 12 show instantaneous velocity signals and power spectrum densities of 

the streamwise fluctuating velocity at six streamwise stations. They are shown at the normal 

position, y, where u’ takes maximum value at the respective x. The velocity signals are 

shown during 0.2 seconds, i.e., one period. In Fig. 11, the magnitude of the ordinate at x/h = 

0.5 in the stationary and oscillating states is expanded more than the others. In what 

follows, the characteristics of respective stations are examined from both figures. 

In the stationary state, few fluctuations are observed at x/h = 0.5. The power spectrum 

density is small due to normalization by U0
2. At the terminal of the linear region, x/h = 3, 

peaks are observed at approximately 250, 480 and 960 Hz in the power spectrum. These 

frequencies correspond to the subharmonic, fundamental and harmonic frequencies, 

respectively. That is, the subharmonic and harmonic waves exist at the end of the linear 

region. This fact is also recognized in Fig. 4. 

Downstream, at x/h = 5, periodic fluctuations also remain in the velocity signal. In the 

power spectrum density, besides an acute peak at approximately 200 Hz, a wide bulge 

appears at approximately 100 Hz. The sequential process of the vortex merging introduced 

by Hsiao-Huang(8) starts from the merging of the fundamental wave, f0, and an appearance 

of the subharmonic wave, f0/2. Then, after the saturation of f0/2, its harmonic wave, f0, 

appears again from the modulation (f0/2 + f0/2). The same process continues after the an 

appearance of f0/4, until the disappearance of the potential core. They explained that this 
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process was caused by the sideband instability based on the nonlinear interactions between 

the fundamental and subharmonic waves(8). The wide bulge of 100 Hz in the present 

experiment is estimated as the preferred frequency, fp, because it remained in the end after 

the continuous merging of vortices. In fact, they reported that the preferred frequency, f0 /4, 

was observed at the end of the potential core. In the present experiment, as mentioned 

before, the potential core disappeared at x/h ⋍ 6, and the fundamental frequency, f0, was 

approximately 480 Hz. Thus, the results of the present experiment coincide with those of 

Hsiao-Huang. 

At x/h = 7, only the preferred frequency dominates. Though Hsiao-Huang measured up 

to the station where the preferred frequency remains, measurements in the present 

experiment were continued until reaching the station where the turbulent transition is 

completed. At x/h = 10, the preferred frequency becomes unclear, and the power spectrum 

has almost changed to a continuous spectrum without specific peak frequencies. In the 

velocity signals, only irregular fluctuation is observed. At x/h = 14, the turbulent transition 

has almost completed. 

In the oscillating state, at x/h = 0.5, the amplitude of a sinusoidal wave whose frequency 

is the same as the plate oscillation frequency, 5 Hz, is large. A small amplitude oscillation 

whose frequency is approximately 400 Hz is superposed on it. At x/h = 1.5, waves whose 

frequencies are the same as the plate oscillation frequency and its subharmonic frequency, 

can be seen. The fundamental, subharmonic and harmonic waves can also be observed well 

at x/h = 3 in the stationary state. Their magnitudes are of the same order as the 5 Hz-wave. 

At x/h = 4, an irregular wave can be seen in the velocity signal. Here, the power spectrum 

density becomes smooth and the preferred frequency appears in a wide range at 

approximately 100 Hz. The potential core disappears at x/h ⋍ 4; this station almost 

coincides with the appearance of the preferred frequency. Under this oscillating state, the 

preferred frequency appears more in the upstream station than in the stationary state. At x/h 

= 6, only the velocity signal in the preferred frequency remains. At x/h = 8, the preferred 

frequency in the velocity signal becomes unclear. The power spectral density has almost 

changed into a continuous spectrum. Thus, the station where the preferred frequency 

disappears is also more upstream than in the stationary state. At x/h = 10, an irregular wave 

signal peculiar to the turbulent flows, dominates. Thus, in the natural transition process in 

the stationary state, fundamental wave appears first, then its harmonic and subharmonic 

waves appear, and the preferred frequency becomes dominant. In the end, the domination of 

irregular fluctuation is confirmed. In the oscillating state, each process in the natural 

transition process appears more in the upstream station by the large amplitude of the plate 

oscillation frequency. The turbulent transition is promoted by plate oscillation.  

The transition from regular laminar flow to irregular turbulent flow and the reverse 

transition from turbulent to laminar flow are typical examples of important changes in fluid 

flows. How to express this transition process depends on how to represent the complexity or 

randomness of the flow. From an experimental point of view, an important condition of the 

measure is simply being able to measure with it. From the present author's experience, the 

intermittency factor is suitable for the normal transition(11)～(14) and reverse transition(15). To 

obtain the intermittency factor there, hot wire signals were distinguished between turbulent 

or non-turbulent. In gradual transition processes such as the present mixing layer, however, 

the intermittency factor is not always suitable. 

In this sense, the randomness factor proposed by Sato et al. for free shear layer seems 

useful, though it seems not to have been applied for other purposes(3)(4). Therefore, the 

randomness factor is applied to measure the transition process in the present mixing layer 

quantitatively. The randomness factor is defined as the ratio of an area in which a 

continuous spectral region of the power spectral density of the fluctuating velocity 

dominates. In the linear and nonlinear regions where band or line spectral regions are 
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dominant, the continuous spectral region is less dominant. Therefore, the randomness factor 

is less than unity. On the other hand, after the completion of the transition, the line and band 

spectra disappear and only the continuous spectral dominates. Thus the randomness factor 

becomes unity. Details of the calculation method of the randomness factor will be explained 

in the appendix. 

In Fig. 13 the streamwise variation of the randomness factor obtained from streamwise 

fluctuating velocity is shown. They are obtained at normal position, y, where the u’ takes 

maximum at respective streamwise stations. Just after the nozzle exit in the stationary state, 

the flow is laminar and contains no periodic fluctuation. Thus, the randomness factor is 

almost at unity since the power spectrum is almost a continuous spectrum type. In the 

downstream, the periodic fluctuation appears and amplifies gradually, therefore, the 

randomness factor decreases. It takes minimum at around the terminal of the linear region, 

x/h = 3. After that, it increases with the disappearance of the periodic fluctuation in the 

nonlinear region. At x/h ⋍ 16, it becomes almost constant around unity. Also, with the 

velocity signal and power spectral in Figs. 11 and 12, the turbulent transition may be 

completed nearby. 

In the oscillating state from just after the nozzle exit, the randomness factor is smaller 

than in the stationary state since the periodic fluctuation with plate oscillation frequency 

dominates. Also in this case, once it decreases and takes minimum, it increases as the 

stationary state. That is, it takes the same value at two different positions where the 

condition of the flow is different. The station where it takes the minimum value is more 

upstream than in the stationary state. The station where it becomes almost constant is 

around unity, x/h ⋍ 10, which is more upstream than the stationary state. The turbulent 

transition in this case may be completed near this area. 

In this way, for the process in which the band spectrum decreases and changes into the 

continuous spectrum, the randomness factor is regarded as valid, for it increases 

monotonically. In the early process, however, where the periodic fluctuation becomes 

dominant, Sato et al. did not report the fact that the randomness factor decreases(3)(4). As 

opposed to the randomness factor, the intermittency factor which is often used in wall 

turbulence increases monotonically from zero to unity with the progress of turbulent 

transition. Therefore, the randomness factor cannot discriminate between the minute 

turbulence in the first laminar flow and the turbulence with vorticity after the completion of 

the transition.  

To examine the y-distribution of the velocity fluctuation, contour maps of the 

randomness factor in a x-y plane is shown in Fig. 14. Two white lines which show U/Um are 

0.99 and 0.05, and are also drawn in Fig. 4. The white region shows that the region has not 

been measured as Fig. 4. As shown in Fig. 14, the randomness factor is not constant in the 

y-direction. 

In the linear region's stationary state, x/h ≦ 3, the randomness factor takes a minimum 

in 0.95 ≦ y/(h/2) ≦ 1.0, where the fluctuating velocity takes maximum. Thus, the 

periodic fluctuation contributes to the increase of velocity fluctuation. The minimum of the 

randomness factor in the whole region exists around the nozzle centerline, y/(h/2) = 0, in the 
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Fig. 13  Streamwise variation of randomness factor. 
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nonlinear region, 4 ≦ x/h ≦ 6. In this region, the power spectra of the fundamental and 

subharmonic fluctuation take large values, as shown in Fig. 4. In the nonlinear region, the 

randomness factor does not become minimum where the fluctuating velocity takes 

maximum at y/(h/2) ⋍ 1. That is, in the nonlinear region the periodic fluctuation does not 

contribute to the increase of velocity fluctuation, as opposed to the linear region. Also on 

the centerline, the distribution of the randomness factor is shifted downstream from the 

maximum fluctuation points in Fig. 13. 

In the linear region's oscillating state, x/h ≦  1.5, the randomness factor takes 

minimum at y/(h/2) ⋍ 0.95, where the fluctuating velocity takes maximum as well as the 

stationary state. The minimum of the randomness factor in the whole region exists around 

the nozzle edge, at y/(h/2) ⋍ 1 and 1 ≦ x/h ≦ 2. At the region of 2.5 ≦ x/h ≦ 4, the 

randomness factor is smaller on the nozzle centerline than around the nozzle edge as well as 

at the region of 4 ≦ x/h ≦ 6 in the stationary state. That is, at the station where the region 

of the potential core can be barely recognized, the randomness factor is smaller in the 

potential core than in other y-positions. From these randomness factors, it is considered that 

the turbulent transition in the oscillating state is promoted more than the stationary state. 

Finally, the relationship between velocity fluctuation and periodic fluctuation is 

examined in detail. In the stationary state, as an example of a linear region, the station of x/h 

= 2.5 distributions in the y-direction of fluctuating velocity, the randomness factor and the 

power spectrum density at the fundamental and subharmonic frequencies are shown in Fig. 

15(a). At y/(h/2) ⋍ 0.95 where the fluctuating velocity takes maximum, the randomness 

factor becomes minimum and the power spectra at fundamental and subharmonic 

frequencies are large. Nearer to the centerline, at y/(h/2) = 0.7 where the fluctuating velocity 

becomes slightly maximal, the randomness factor becomes slightly minimum and the power 

spectra at both frequencies are slightly enlarged. Therefore, in the linear region, the 

fluctuating velocity is large where the fundamental and subharmonic waves are dominant; 

therefore, the periodic fluctuation contributes to the rise of fluctuating velocity. 

Farther downstream, in the nonlinear region where the periodic fluctuation disappears, 

as shown in Fig. 15(b), x/h = 6, there is no maximum in the fluctuating velocity near the 

centerline, although the randomness factor becomes slightly smaller around y/(h/2) = 1.0. In 

this way, in the nonlinear region, the periodic fluctuation does not contribute to the rise in 

fluctuating velocity. The reason for the difference of the y-distribution between x/h = 2.5 

and 6 can be found in the difference of the y-position in the minimum randomness factor. 

The randomness factor takes minimum around the maximum position in the velocity 

fluctuation, y/(h/2) ⋍ 0.95 in the linear region. On the other hand, in the nonlinear region it 

Fig. 14  Isocontour maps of randomness factor. 
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takes minimum around the centerline, y/(h/2) = 0. 

The oscillating state, at x/h = 1.5 in the linear region is shown in Fig. 15(c), near the 

y-position of the maximum fluctuation, where the randomness factor is small and the power 

spectrum density at plate oscillation, fundamental, and subharmonic frequencies are 

maximum. Therefore, also in the oscillating state, periodic fluctuation contributes to the rise 

in fluctuating velocity.  

In the nonlinear region at x/h = 4, shown in Fig. 15(d), as well as the stationary state, 

Fig. 15(b), the randomness factor is not small around the maximum fluctuation position. 

The randomness factor becomes minimum at the centerline, and increases monotonically 

with the normal distance from the centerline. 

 

4. Conclusions 

Forced small-amplitude and low-frequency disturbances were locally added to a mixing 

layer formed at the exit of a two-dimensional nozzle. The laminar-turbulent transition in the 

mixing layer was investigated experimentally. The following conclusions were obtained 

within this Reynolds number. 

(1) In the velocity signals in the oscillating state the periodic fluctuation with the oscillation 

frequency appeared at first. Next, the fundamental, subharmonic and harmonic waves were 

imposed on it. Then, the preferred frequency dominated. Finally, the turbulent flow with an 

irregular fluctuation dominated at all. The phenomenon which was observed in the natural 

transition process appeared more upstream, and the turbulent transition was completed 

earlier. 

(2) In the early stage of the nonlinear region, due to the expansion of the mixing layer, the 

decrease of the velocity gradient, -∂U/∂y and -∂V/∂y, lowered the production rate of the 

fluctuating velocity in the streamwise and normal directions and the Reynolds shear stress. 

Therefore, the growth rates of both fluctuating velocities weakened. The Reynolds shear 

stress once decreased, but increased again. The probabilities which positively contributed to 

the Reynolds shear stress decreased once and then increased again. 
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Fig. 15  Distributions of fluctuating velocity, randomness factor and power spectrum density. 
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(3) In the oscillating state, the Reynolds shear stress and its perturbation energy production 

rate just after the nozzle increased earlier than in the stationary state. Their maximums were 

larger than in the stationary state. Their effect, however, did not continue long due to their 

low frequency and small amplitude. 

(4) As a quantitative measure of the turbulent transition, the randomness factor which has 

been proposed by Sato et al. was applied to the present mixing layer. In the process in which 

the periodic fluctuation changes into an irregular one, it increased monotonically, thus 

showing validity as a quantitative measure. On the other hand, upstream where laminar flow 

changes to the periodic fluctuating flow, the randomness factor decreased monotonically. In 

this way, it has a disadvantage in that it takes the same value at two stations where the flow 

conditions differ. 
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Appendix: How to estimate the randomness factor 

Here, the method for estimating the randomness factor is explained. Both axes in the 

schematic diagrams, Fig. 16, are drawn linearly. 

(1) First, the original power spectrum density (Fig. 16(a)) is moving averaged with 5 points. 

The averaged spectrum is indicated in Fig. 16(b) with a blue line. 

(2) If the averaged spectrum increases monotonically with the frequency, the spectrum is 

changed to be constant within the range. Then the "pseudo-continuous spectrum" without 

peaks is obtained, and expressed with the green line in Fig. 16(b). 

(3) The threshold level is obtained as the pseudo-continuous spectrum times 0.2 (the red 

line in Fig. 16(b)). The value 0.2 has been selected from the visual check of a comparison 

between the original spectrum and the final randomness factor. 

(4) The difference between the moving-averaged spectrum (blue line) and the 

pseudo-continuous spectrum (green line) in Fig. 16(b) is set to the discrimination function 

(blue line in Fig. 16(c)). In Fig. 16(c); the threshold level is also shown with a red line. 

(5) The discrimination function is compared with the threshold level. If it is larger than the 

threshold level, the spectrum is regarded as a band spectrum region. The continuous 

spectrum is obtained from the original spectrum subtracted by the band spectrum and is 

shown in Fig. 16(d). As can be easily recognized, regions which contain peaks in the 

original spectrum have been removed. 

(6) The randomness factor is the ratio of the area of the continuous spectrum, Fig. 16(d), to 

that of the original spectrum, Fig. 16(a). 
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