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Abstract 

The laminar-turbulent transition of a mixing layer induced by oscillating flat plates 

at an exit of a two-dimensional nozzle was experimentally investigated. A mixing 

layer was formed between the jet from the nozzle and the surrounding quiescent 

fluid. The plates oscillated vertically in relation to the mean flow. The oscillation 

frequency was two orders of magnitude smaller than the fundamental frequency of 

the velocity fluctuation. Mean and fluctuating velocity components in the 

streamwise and normal directions were measured by hot-wire anemometers. The 

oscillation was found to be effective in enhancing the mixing, though the amplitude 

was the same order as the momentum thickness of the boundary layer at the nozzle 

exit. The disturbance traveled downstream as the convective instability, though it 

was damped only far downstream. The downstream development rate of fluctuating 

velocity in the normal component was larger than that in the streamwise one. Thus, 

the need for linear instability analysis of non-parallel flow was suggested. 

Streamwise variations were examined in the fluctuating velocity and perturbation 

energy production and convection rates, which contribute to the velocity. The 

streamwise variation in the streamwise component did not correspond to that of the 

normal component. 

Key words: Mixing Layer, Transition, Turbulence, Jet, Oscillating Plate, Periodic 

Disturbance, Absolute/Convective Instability, Velocity Distribution 

1. Introduction

Laminar-turbulent transition phenomenon has been investigated for many years since it 

occurs many times in the natural world and industrial machines. Recently, an example of 

the transition in a wake of turbine cascades was shown(1). The wake is an example of the 

free shear flow without constraint by a solid wall. The transition in such free shear flow is 

an important issue in the industrial world. 

Many kinds of free shear flow have been shown other than the wake flow(2)(3). One 

example is a mixing layer formed between the jet just behind a nozzle and the surrounding 

quiescent fluid. This type of mixing layer is classified as ‘jet boundary’ in Ref. (4). The 

present study concerns the laminar-turbulent transition in the mixing layer as one of the 

fundamental problems in the transition in free shear flow. 

This type of flow which enters and flows out of a domain is called ‘open flow’(5). In the 

stability analysis of the open flow, disturbance is assumed as a modal type such as 

A(y)exp[i(kx- t)]. Then, the disturbance is discriminated as temporal or spatial 

developments. After the disturbance has been amplified, it is analyzed as a nonlinear 
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disturbance. Recently, a new analysis has been developed in which the disturbance is 

discriminated as absolute or convective instability(5)~(9). Moreover, this disturbance is 

discriminated as a local or global instability. In the analysis, attention is focused on the 

non-normality in equations.  

Regarding the transition just after the nozzle, many studies on many types with and 

without disturbances have been introduced(10). An acoustic wave is an example of a 

high-frequency disturbance(11)~(23). Since the velocity of sound is much faster than the flow 

velocity in these experiments, the acoustic disturbance propagates throughout the whole 

flow field instantaneously. The resulting instability can be said to be absolute instability. On 

the other hand, another type, the convective instability, is induced by a disturbance 

produced by vibrating objects in a local position and was convected downstream(24)~(27). 

Recently, a study which used a piezo film actuator and promoted mixing of the mixing layer 

was published(28). Its amplitude (0.5～2 mm) was relatively large. In these studies, however, 

detailed streamwise variations of velocity distributions have not been demonstrated. 

In many studies, the excitation frequency was set equal to the fundamental frequency of 

the velocity fluctuation in the early stage of the unforced transition. The ideal flow field 

involving the present transition is the free shear flow with a parallel free stream(29). In the 

linear stability theory with this parallel free stream, this type of flow is the most unstable 

among all kinds of free stream, and then becomes unstable due to the disturbance with 

extremely low wave number, i.e., long wavelength in contrast with the boundary layer(30). In 

the present disturbance, the disturbance vorticity is created by a plate oscillation and may be 

convected with the free stream. Therefore, the order of the wavelength of the disturbance 

can be estimated as Um / fe with the free stream velocity, Um, and the oscillation frequency, 

fe. The long wavelength corresponds to the low frequency. The low frequency, 5 Hz, 

adopted in the present study is two orders of magnitude lower than the common 

fundamental frequency of several hundred Hz, which is observed in the early stage of many 

experiments(10)(13)(18)(19). Moreover, it is also smaller than the frequency of the coherent 

structure in the mixing layer of a few hundred or thousand Hz(31)(32). The distribution of 

fluctuating vorticity in such a long wavelength, i.e., the process during large eddy changes 

into a smaller eddy which exists in turbulent flow, has not been investigated thoroughly. 

Therefore, studies which can cover a wide range of wavelength corresponding to that of the 

fluctuating vorticity are awaited. The problems with low frequency disturbance are 

expected to be solved also in the industrial world, for example, in an air oscillation whose 

frequency is less than audio frequency. The low-frequency disturbance has been shown to 

persist far downstream(33), though the only examples are in the turbulent jets(34)~(36). 

The present study deals with a local disturbance which is made by fence-like plat plates 

which oscillate and protrude vertically in relation to the main jet. The protrusion is so small 

that the velocity fluctuation due to the net protrusion is almost the same as without it. The 

downstream variation of the distribution of mean and fluctuating velocity components is 

investigated in detail in the region where fluctuation developed spatially until 

self-preservation is established. The mixing layer has local convective instability and its 

spatial development depends on the type of forced disturbance, so it acts as a noise 

amplifier(5). We focus on two points: how far the forced periodic oscillating disturbance 

persists and how the flow field is changed by the convective instability. Additionally, the 

downstream variations in production, convection and dissipation rates of the perturbation 

energy are obtained, for they have not been reported previously. 

Nomenclature 

b : half-width 

fe : oscillation frequency of oscillating plates = 5 Hz 

h : nozzle exit height = 10 mm 
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U, u : mean and fluctuating velocity component in streamwise direction 

U0 : velocity at x = 5 mm, y = 0 

Um : local velocity on centerline, y = 0 

V, v : mean and fluctuating velocity component in normal direction 

u’, v’ : root mean square value of u, v 

x, y : coordinate system 

 : vorticity thickness 

 : perturbation energy dissipation rate 

*    : time average of quantity * 

 

2. Experimental Apparatus and Methods 

A blowing-type wind tunnel was used in which air is blown into the measurement 

section from a two-dimensional nozzle exit of aspect ratio 31 (310 mm in width and 10 mm 

in height, h). The flow at the exit has a velocity gradient within a region of 1.6 mm from the 

upper and lower nozzle walls, respectively, while the velocity is kept constant in the other 

region, 7 mm. The velocity profile measured by a hot-wire anemometer almost coincided 

with the Blasius profile. Two side walls 310 mm apart for a whole measurement section 

were installed to secure the two-dimensionality of the flow. Moreover, a ceiling wall was 

installed whose height from the nozzle centerline is equal to the vertical distance between 

the centerline and the laboratory floor. Mean velocity profiles are measured at some 

spanwise positions downstream of the nozzle, and they well coincided with each other. 

Two oscillation plates 2 mm in thickness were equipped across the whole width to 

make a disturbance in the upper and lower mixing layer. An rpm-controlled motor was used 

for the plate oscillation. The revolution was transmitted to cams by belts, and then the 

revolution of the cams was transmitted to the protrusion of each oscillating plate. A photo 

sensor signal corresponding to the angle of rotation of this cam was output, and the phase of 

the plate oscillation was detected with it. Figure 1 shows the left and right cams and the 

photo sensor on the right side viewed from downstream. The plates oscillate 

perpendicularly and sinusoidally in relation to the flow at a frequency, fe, of 5 Hz. This 

frequency is two orders of magnitude smaller than the fundamental frequency in the natural 

transition process, which is, approximately, 400 Hz. If the oscillation frequency is one order 

of magnitude smaller, any differences might not have appeared. On the other hand, if it is 

more than three orders of magnitude smaller, the frequency is less than 0.5 Hz and the flow 

field may be the same as stationary flow. 

The upper half of the flow field and coordinate system are shown in Fig. 2. The bottom 

(a)                                        (b) 

Fig. 1  Nozzle and cam mechanism viewed from left (a) and right side (b) 
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of the oscillating plate in Fig. 2 becomes flush with the nozzle wall surface when it rises to 

its highest point, and then descends from the surface by 0.25 mm at most. In other words, 

the nozzle height 10 mm is decreased 0.5 mm at the moment when the two plates 

simultaneously protrude maximally from the nozzle respective surfaces. The bottom of the 

oscillating plate in Fig. 2 displaces within the region 0.95 ≦ y/(h/2) ≦ 1.00. The value 

0.25 mm is smaller than the displacement thickness in the exit boundary layer, 0.46 mm and 

is of the same order as the momentum thickness, 0.18 mm. The value was chosen so that no 

additional disturbance occurred when the plates protrude and are at rest. Actually, the 

distribution of the fluctuating velocity at the nozzle exit when both plates protrude and are 

at rest was almost the same as when both plates do not protrude and are rather smaller than 

when both plates oscillate. Therefore, an additional disturbance due to a mere protrusion of 

the plates can be ignored, that is, the oscillation of the plates may induce the disturbance. In 

fact, when the protrusion doubled to 0.50 mm each, the fluctuating velocity increased more 

than when without protrusion, although the flow rate through the nozzle area was always 

constant irrespective of the protrusion. The velocity on the nozzle centerline, U0, 

increases/decreases correspondingly with the decrease/increase of the nozzle sectional area. 

On the other hand, the velocity near the nozzle edge shows phase reversal with U0, which 

always makes the flow rate through the nozzle constant. Next, to check the effect of noise 

of the motor and cam when the plates oscillate, the spectral of the noise was analysed. The 

wind tunnel noise and plate oscillation noise did not interact, that is, the plate oscillation 

noise may not affect the growth of the periodic velocity fluctuation.  

Two types of experiments were performed. In one, the plates remained stationary so 

that the plates do not narrow the nozzle exit section (stationary state). In another, the plates 

oscillated at a frequency of 5 Hz (oscillating state). In any case, the Reynolds number was 

5000 based on the nozzle exit velocity without oscillation, U0 ⋍ 7.5 m/s, and nozzle exit 

height, h. The Strouhal number based on plate oscillation frequency, fe, and nozzle exit 

velocity, U0, was about 2×10-4. All measurements were done at the spanwise position, z = 20 

mm, where the streamwise velocity profile was most symmetric with respect to the nozzle 

centerline. X-shaped hot-wire probes with two tungsten sensing elements, each 5 μm in 

diameter and 1 mm in length, were used for the measurements. Output voltage was sampled 

at a sampling frequency of 5 kHz for about 52 seconds. This interval is equivalent to about 

260 oscillations when the plates oscillate. The measurements were conducted in a range of y 

≧ 0. Results are shown here in the range x/h ≦ 10, where the mean velocity profiles did 

not become similar, and x/h = 20 where the profiles had become completely similar. 

 

 

 

Fig. 2  Schematic diagram of two-dimensional mixing layer and coordinate system 
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3. Results and Discussion 

3.1 Variations of Mean Quantities with Oscillation Disturbance  

First, the effects of the plate oscillation on the mean quantities are described. Notations 

in the velocity distributions below are listed in Table 1.  

Figure 3 shows mean velocity profiles in the streamwise component. The potential core 

region where the velocity normalized by the nozzle exit velocity, U0, equals unity persists 

until x/h ⋍ 6 or 3 in the stationary and oscillating states, respectively. Therefore, the 

potential core disappears earlier with plate oscillation. Moreover, velocity in the region 

Table 1  Symbols in Fig. 3 – 6, 8 – 10, and 12 – 16 

symbol x / h symbol x / h

                            

                            

              

              

              

0.5                     4                     10

1                        5                     20

1.5                     6

2                        7

2.5                     8

symbol x / h

              3                        9

Fig. 3  Mean velocity profiles in streamwise component 
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Fig. 4  Mean velocity profiles in streamwise component with similar coordinates 
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away from the nozzle edge, y/(h/2) > 1, increases more in the oscillation state. Thus, plate 

oscillation with a small amplitude such as 0.25 mm can promote mixing of the jet. In the 

region 4 < x/h, however, both profiles correspond with each other because of such a small 

amplitude. 

Figure 4 shows theoretical profiles(37) when the jet is self-preserved and compares with 

the experimental profiles. The profile is calculated with an empirical formula later in Fig. 7, 

b = 0.138(x – x0) (x0 is a virtual origin). Far downstream and after the disappearance of the 

potential core, x/h = 10, the experimental one coincides with the theoretical one. 

Figure 5 shows mean velocity profiles in the normal component. At first, the velocity 

distributes in a narrow region in the vicinity of the nozzle edge. Then the value gradually 

increases near the center of the nozzle and the maximum value decreases with the 

disappearance of the potential core. In the outer region the values become negative, 

indicating that the surrounding fluid is entrained toward the mixing layer. 

Figure 6 compares the theoretical profiles of the mean velocity in the normal 

component(37). In the region where the theoretical profile takes a positive value, 0 < y/b < 1, 

the experimental values coincides with the theoretical one at x/h = 20 and 10 in the 

stationary and oscillating states, respectively. Away from the nozzle the theoretical value 

takes a largely negative value, though the experimental one finally tends to zero. The 

discrepancy may be attributed to the fact that the interface of the jet has not been considered 

in the theory and that the jet has been assumed to extend infinitely. There may have not 

Fig. 5  Mean velocity profiles in normal component 
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Fig. 6  Mean velocity profiles in normal component with similar coordinates 
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been a definite policy for the treatment of the interface(38). 

Figure 7 shows distributions of a half-width and vorticity thickness. First, due to the 

existence of the potential core, mean velocity gradient, ∂U/∂y, exists within a narrow 

region near the nozzle edge, the half-width exists there. Then, the half-width gradually 

increases in accordance with the reduction of the potential core and expansion of the mixing 

layer region. The increase is faster in the oscillating state than the stationary state, though 

the difference disappears finally. 

The vorticity thickness is estimated by –Um / (∂U/∂y)max, where (∂U/∂y)max is the 

maximum value in the mean velocity gradient at a local x/h. The thickness is small at first, 

and then increases in accordance with the reduction of the potential core and expansion of 

mixing layer region. In the oscillating state, the increase is faster than the stationary state 

due to the fast reduction of the potential core, though the difference disappears finally. Such 

an effect may affect the vortex formation and breakdown within the mixing layer. 

According to the velocity signals and power spectrum of the fluctuating velocity(39), the 

subharmonic fluctuation appears earlier in the oscillating state, i.e., the oscillation promotes 

the amalgamation of the vortices. From the downstream variation of the half-width and 

vorticity thickness, the oscillation disturbance may amplify with the convective instability 

at first, then become stable so it attenuates and effect of the disturbance disappears. That is, 

the behavior of the present flow field as the noise amplifier does not always persist because 

of the small amplitude such as 0.25 mm without additional disturbance due to the plate 

protrusion. 
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Fig. 7  Half-width and vorticity thickness 

Fig. 8  Distributions of fluctuating velocity component in streamwise direction 
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3.2 Variations of Fluctuating Quantities with Oscillation Disturbance 

During the laminar-turbulent transition process in the mixing layer, the linear region 

appears at first where disturbances grow exponentially and a periodic fluctuation, i.e., a 

fundamental wave, is observed(40). Next, the nonlinear region appears where the harmonic 

and subharmonic waves of the fundamental wave are observed. At last, the irregular region 

appears where an irregular fluctuation dominates. In the present section, the growth of the 

fluctuation and effect of the oscillation on it are considered in the respective regions. 

Figure 8 shows distributions of rms value of the fluctuating velocity component in the 

streamwise direction. Just after the nozzle the fluctuating velocities are rather high only in 

the vicinity of the nozzle edge in the stationary state, and then the values rapidly increase 

downstream. This increase occurs more upstream in the oscillating state. The detailed 

increase is considered in Fig. 11. The fluctuating velocity also increases in the vicinity of 

the nozzle centerline in accordance with the potential core reduction. This increase 

continues until it overshoots and finally slightly decreases to reach a constant value. The 

final values in the stationary and oscillating states are almost the same. 

Figure 9 shows distributions in rms values of the fluctuating velocity component in the 

normal direction. It also increases downstream, and the increase occurs earlier in the 

oscillating state than in the stationary state, especially in the region of 2 ≦ x/h ≦ 3. This 

increase of the fluctuating velocity in the normal direction is larger than that of the 

streamwise direction. The increase in the perturbation energy production and convection 

Fig. 9  Distributions of fluctuating velocity component in normal direction 
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Fig. 11  Distributions of Reynolds shear stress component 
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rates within this region, later shown in Fig. 14 and 15, are larger than those in the 

streamwise direction later shown in Fig. 12 and 13. The increase may contribute to the 

fluctuating velocity. The plate oscillation in the normal direction may cause the increase in 

the normal direction. Just after the nozzle, the value of this component is larger than the 

streamwise component, though its final value is smaller than that. 

Figure 10 shows distributions of Reynolds shear stress. In the oscillating state, the value 

once overshoots, and then slightly decreases downstream. 

To investigate such downstream growth of the fluctuation, maximum values in the 

normal distribution of u’ and v’ at respective station x/h are obtained in Fig. 8 and 9, 

respectively. Figure 11 shows the downstream variation of the maximum values. In the 

stationary state, distributions in both streamwise and normal components are on linear in the 

x/h ≦ 3 region, that is, the fluctuating velocity grows exponentially. Therefore, this is the 

linear region of the present flow. The growth rate in the normal component is larger than in 

the streamwise one. After the linear region the growth rate decreases. In the oscillating 

state, the exponential region exists in the region of x/h ≦ 1.5; the growth rate of the 

respective component is almost the same as that of the same component in the stationary 

state. In the region of 4 ≦ x/h, the maximum values are almost the same in both states 

because of the small amplitude. 

Freymuth obtained the streamwise growth rate of the streamwise fluctuating velocity u’ 

by the slope of the straight line in a semi-log plot like Fig. 11(11). He assumed the stream 

function  of the small disturbance in the linear equations in the parallel flow to be an 

exponential function. As he did in the streamwise component, u’, the growth rate of the 

normal component, v’ was obtained and turned out to be the same form. The experimental 

fact that the slope of the straight line in v’max is steeper than that in u’ max contradicts the 

above theoretical result. This implies that the parallel flow assumption is not valid in the 

present flow. Therefore, an important issue is to estimate how parallel the present flow is. 

Chomaz showed that the parallel flow assumption is valid when the streamwise gradient of 

a characteristic local length scale such as a displacement thickness, a momentum thickness, 

a vorticity thickness, etc., is much smaller than unity(9). Also, in accordance with Chomaz, 

when the vorticity thickness in Fig. 7 is adopted as the length scale, the d/dx increases 

monotonically in the linear region above and finally reaches above 0.1 both in the stationary 

and oscillating states. This shows that the parallel flow assumption is not valid in the 

present flow. The function of the small disturbance in a linear stability theory in non parallel 

flow has not been established. The discrepancy between the present experiment and the 

usual theory may be attributed to the non parallelism of the flow. Although variations of the 

maximum values at respective station x/h are shown in Fig. 11, the value in the fixed normal 

Fig. 11  Streamwise variation of maximum fluctuating velocities 
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position e.g., y/(h/2) = 1 showed the same results, that is, the growth rates are different 

between the streamwise and normal components and the same both in the stationary and 

oscillating states with the same component.  

The nonlinear region starts from the end of the linear region. The end of the nonlinear 

region, i.e., the beginning of the irregular region, may be regarded as the station where the 

instantaneous velocity signal has become irregular, and may be estimated as x/h = 15 and 10 

in the stationary and oscillating state, respectively.  

Near the end of the linear region the fluctuating velocity reaches a fairly large value as 

seen in Fig. 11. Therefore, the perturbation energy production and convection rates due to 

the second-power term of the perturbation may be critical even in the linear region. The 

boundary-layer-approximated perturbation energy budget equations are(41): 
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Fig. 12  Perturbation energy production rates in streamwise component 
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Fig. 13  Perturbation energy convection rates in streamwise component 
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Where in Eq. (2), the production rate based on the streamwise gradient of the normal 

mean velocity, ∂V/∂x, which had been ignored in Ref. (41), are also shown. These 

equations are the same whether u and v are regular or irregular. 

At first, for the streamwise component, 2/2u , the production rate based on the normal 

gradient, yUuv − / , and the sum of the two convection rates, are shown in Fig. 12 and 13, 

respectively. They are seen in the region within the nonlinear region, x/h ≦ 6. The 

streamwise and normal gradients are estimated by the experimental data. All rates are 

normalized by the nozzle exit velocity, U0, and nozzle exit height, h. Among all production 

rates, quantities based on the streamwise gradient were negligible compared with that based 

on the normal gradient. In addition, among all convection rates, the V∂/∂y term was one 

order of magnitude smaller than the U∂/∂x term. Moreover, the W∂/∂z term might be 

sufficiently smaller than the others. The production rates in Fig. 12 increase until x/h = 3 

and 1.5 in the stationary and oscillating states, respectively. These stations are the end of the 

region where the fluctuating velocity increases exponentially in the respective state. After 

the region the distributions suddenly change, and in the nonlinear region the rates change 

gradually. 

The convection rates in Fig. 13 increase even in the nonlinear region until x/h = 4 and 

2.5 in the stationary and oscillating states, respectively. The fluctuating velocity itself, u’, 

continued to increase until x/h = 8 and 6 in the stationary and oscillating states, respectively, 

though not shown in the figure. Therefore, a factor other than the perturbation energy 

Fig. 14  Perturbation energy production rates in normal component 
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Fig. 15  Perturbation energy convection rates in normal component 
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production and convection rates might contribute to the increase of u’ in the nonlinear 

region such as the energy redistribution rate between components due to the 

three-dimensionalization of the perturbation. 

Next, the production and convection rates in the normal energy 2/2v  are shown in Fig. 

14 and 15, respectively. The production rates in Fig. 14 become maximum at x/h = 4 and 2.5 

in the stationary and oscillating states, respectively. These stations are both in the nonlinear 

region. 

The convection rates in Fig. 15 become maximum at x/h = 3, which is the end of the 

linear region, and 2 within the nonlinear region in the stationary and oscillating states, 

respectively. The fluctuating velocity itself, v’, becomes maximum at almost the same 

stations, i.e., x/h = 5 and 2.5 in the stationary and oscillating states, respectively. Therefore, 

the production and convection rates may well contribute to the increase of v’. These types 

of increase in u’ and v’ may not have been mentioned before in the literature. 

Figure 16 shows the perturbation energy dissipation rate, which is an important factor 

as the production and convection rates. As usual, the dissipation rate was estimated from 

( ) 22
//15 Utu  , by assuming an isotropy and frozen turbulence. As different from the 

production and convection rates in Figs. 12-15, the dissipation rate is for the total 

component, ( 222 wvu ++ )/2. The rate becomes maximum at x/h = 2.5 and 1.5, in the 

stationary and oscillating states, respectively. Hence, the stations with maximum dissipation 

virtually coincide with those of the production of 2/2u  in both states. In both states, the 

condensed distribution suddenly changes and the maximum decreases near the end of the 

linear region. The Kolmogorov scale eddy scale K = ( 3/ )1/4, increases around there. This 

means that the spatial variation developed in the linear region may become gradual. 

The results for the fluctuating quantities above show that the present small local 

disturbance greatly affects the fluctuating quantities. 

 

4. Conclusions  

A small amplitude disturbance without additional fluctuation from the protrusion itself 

was locally created with low frequency, and then this disturbance was forced to enter a 

mixing layer formed at the exit of a two-dimensional nozzle. The laminar-turbulent 

transition in the mixing layer is investigated experimentally. The following conclusions 

within this Reynolds number are obtained. 

(1) Mixing and expansion of the mixing layer can be promoted by a disturbance. The small 

amplitude such as the momentum thickness at the exit of the nozzle is effective for 

expansion of the mixing layer. 

(2) The present disturbance amplifies as the convective instability at first, and then 

Fig. 16  Perturbation energy dissipation rates 
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attenuates convectively downstream; finally, the difference between the stationary and 

oscillating states disappears. 

(3) In the linear region the growth rate in the velocity fluctuation is larger in the streamwise 

component than in the normal one. To explain this, the need for linear stable analysis based 

on the non parallel flow is implied. 

(4) The perturbation energy production, convection and dissipation rates which contribute 

to the streamwise component become maximum near the end of the linear region and 

decrease downstream, though fluctuating velocity itself continues to increase downstream. 

Factors other than the production, convection and dissipation rates may contribute to the 

increase in velocity fluctuation. On the other hand, production, convection and dissipation 

rates which contribute to the normal component become maximum in the nonlinear region, 

and the fluctuating velocity itself becomes maximum around there. 
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