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Abstract

We describe a wind speed prediction method using wind vec-
tor images as input. The prediction model combines convo-
lutional neural network (CNN) and convolutional long short-
term memory (CLSTM), which are effective for image anal-
ysis. Several input image data structures expressing wind
vector change are considered and the prediction accuracy is
compared between them. The performance of the proposed
method is evaluated by the root-mean-square error and corre-
lation coefficient between observed and predicted values.

1. Introduction

At present, electricity in Japan is mainly generated using
fossil fuels, but fossil fuels are finite and emit CO2, which
causes global warming. For these reasons, renewable energy,
which will never run out and does not emit CO2 during power
generation, has attracted attention in recent years. In particu-
lar, wind power generation, which can generate electricity as
long as the wind blows, is being introduced worldwide [1].
However, wind power generation has large output fluctua-
tions due to changes in wind speed. For this reason, power
companies adjust the power supply and demand balance us-
ing thermal and pumped-storage power generation. In order
to operate the power system efficiently and stably, it is impor-
tant to predict the output of wind power generation.

In our previous research, A. P. Sari of our laboratory pro-
posed a prediction model of wind speed and direction with a
deep neural network using wind speed vector images as in-
put [2]. The model combines convolutional long short-term
memory (CLSTM) and convolutional neural network (CNN),
which is effective for image analysis. The input is an image
that expresses the wind speed and direction as a plot at 10-min
intervals in one hour. Then, multiple prediction models are
proposed and the prediction accuracy is compared. However,
the input data structure was considered to be insufficient.

Therefore, we aim to improve the prediction accuracy of

wind speed by optimizing the expression method of the in-
put image. Several input image styles with different size
and color of plots to well express the time sequence of wind
change are considered. The accuracy of the prediction results
is evaluated by comparison with observed wind data of sev-
eral months.

2. Time Delay Problem of Wind Speed Prediction

The time delay problem of wind speed prediction, as shown
in Fig. 1, has been studied. The time delay is a major issue
of wind speed prediction based on observed data. Anggi et
al. proposed a wind speed and direction prediction model by
using deep learning with CLSTM and CNN layers. Then, the
input images indicate observed wind speed and direction at
10-min intervals in one hour as plots on 2D coordinates to
express not only the wind vector but also the time sequence
of wind change. However, the prediction accuracy was not
sufficiently improved in terms of the delay. In this work, sev-
eral input image expressions of wind change are considered
with different sizes and color plots.
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Figure 1: Examples of forecast result for June 2–6, 2018[2]

3. Input Image Dataset

Figure 6: BSR and PTR versus x with fixed M and different
K

Figure 7: BSR and PTR versus x with fixed M,K,U and
different Eb/N0

(8, 4, 9), and (16, 8, 17), and Eb/N0 = 10[dB]. PTR is cal-
culated with the parameters taken from [6]. In Figs. 4 and 5,
PTR increases as x decreases. Moreover, BSR becomes bet-
ter until the peak point, and after the peak, BSR starts to de-
teriorate. Therefore, there is a tradeoff relationship between
BSR and PTR, and the value of x exists for optimizing the
tradeoff relationship. Supposing that the minimum require-
ment for BSR is 0.95, in Fig. 5, the optimal value of x is 0.07
for (M,K) = (4, 2), 0.14 for (8, 4), and 0.37 for (16, 8). In
Fig. 5, there is a smaller deterioration of BSR when x is close
to 1.0 than that in Fig. 4. The reason is that x4ASK-CodeSK
has more xASK data than x2ASK-CodeSK at the same K,
and the BSR of xASK improves with larger x. This also ex-
plains why the deterioration of BSR is larger in Fig. 5 when x
is close to 0 than that in Fig. 4. In both Figs. 4 and 5, the peak
value of BSR improves and performs better in a wider range
of x as M becomes larger. This is because BSR performance
of CodeSK becomes better with a higher M .

Figure 6 shows BSR and PTR versus x of x2ASK-CodeSK
when M is 8 and K = (1, 4, 7). The graph indicates that there
is a tradeoff relationship with K. PTR is better with larger K
since there are more pulses within a symbol as K approaches
M . With larger x, both (M,K) = (8, 1) and (8, 4) show a
larger deterioration of BSR than that with (M,K) = (8, 7).
When (M,K) = (8, 1) and (8, 4), CodeSK transmits more
bits per symbol than xASK. Moreover, when (M,K) = (8,
7), xASK transmits more bits per symbol than CodeSK. This
results in a smaller deterioration of BSR when x becomes
close to 1.0.

Figure 7 shows BSR and PTR vs. x of x2ASK-CodeSK
with fixed M,K,U and different Eb/N0 In Fig. 7, the peak
value of BSR improves and BSR remains at the peak for a
wider range of x as Eb/N0 improves.

4. Conclusions

In this paper, we evaluated the performance of the vari-
able xASK-CodeSK system for SLIPT. We also evaluated the
BER, BSR, and PTR by using theoretical formulas. As a re-
sult, a tradeoff relationship between BSR and PTR was found.
It was also found that there is a value of x that optimizes the
tradeoff. In future work, we will investigate ways to improve
both BSR and PTR and clarify the relationship between the
parameter to optimize BSR and PTR.
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3.1 Expression of wind on two-dimensional plane

The wind speed and direction obtained from AMeDAS are
observed at 10-min intervals. The wind direction is repre-
sented by 16 azimuths, as in Fig. 2. Then the wind vec-
tor is represented in a two-dimensional coordinate system, as
shown in Fig. 3(a). Also, the wind information can be rep-
resented by vX (t) and vY (t), as shown in Fig. 3(b), and the
X-axis and Y-axis mean the wind speed components of the
east–west and north–south directions. From Fig. 3(a), the
wind vector components vX (t) and vY (t) are calculated as

vX (t) = v (t) · cosφ (t) (1)
vY (t) = v (t) · sinφ (t) (2)

where v (t) is the wind speed [m/s] and φ (t) is the wind di-
rection [°].

Figure 2: Representation of 16 directions of wind
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Figure 3: Wind speed and direction on a 2D coordinate

3.2 Dataset structure

The wind vector is drawn on an image (128×128 pixels) at
position p = (pX and pY ) calculated by

pX (t) = 64 +
64

vmax
vX (t) (3)

pY (t) = 64− 64

vmax
vY (t) (4)

where 64 is half the image size and vmax is the maximum
wind speed. In this work, vmax is set to 20 m/s which does
not exceed the wind speed observed in Tokushima, Japan.

The wind vectors from p(t−5) to p(t) are drawn as shown
in Fig. 4 with the oldest data in blue and the latest data in
red. At this time, the change in color of the plotted points ex-
presses the change over one hour. Then six images are com-
posed into a image m(t) to express the wind change. Also, in
order to express the wind change pattern for one hour at 10-
min intervals, nine images from m(t−8) to m(t) are made in
the same way. Those nine images are input to the prediction
model.
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Figure 4: Input image construction process

4. Prediction Model of Wind Speed and Direction

The prediction model of wind speed and direction is shown
in Fig. 5. The model is composed of an encoder network and
a forecaster network with CLSTM and CNN. The nine im-
ages with the size of 128×128 pixels are input. The output is
the wind vector one hour in the future to consider the adapt-
ability of thermal power generation plant. Table 1 shows the
learning parameters. In this paper, the same model configura-
tion and learning parameters are used as those in our previous
study [2]. The encoder network consists of three convolu-
tional layers and five CLSTM layers, and the forecaster net-
work consists of six CLSTM layers and three deconvolutional
layers. The number of filters in the three convolutional layers
is 16, 16, and 32, respectively, and the number of filters in
the three deconvolutional layers is 32, 16, and 1, respectively.
The stride width of the filters in the convolutional and decon-
volutional layers is 2. The number of units in the CLSTM
layer is 32. All kernel sizes are 5 × 5. The fore input se-
quence uses an array of zeros in the forecaster network. The
internal state of the CLSTM layer of the encoder network is
copied to the CLSTM layer of the forecaster network, and the
outputs of all CLSTM layers of the forecaster network are
concatenated as inputs to the last CLSTM layer and fed to the
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deconvolutional layer. One image with the size of 128× 128
pixels is output from the last deconvolutional layer.

Figure 5: Structure of prediction model

Table 1: Learning parameters
Loss function Mean square error (MSE)

Activation Function Leaky ReLU

Optimizer RMSProp lr 0.001
ρ 0.9

Batch size 4
Epochs 20

To obtain predicted wind speed and direction, the position
of the center of gravity and the maximum coordinate (p̂X (t),
p̂Y (t)) is calculated from the output image represented by
values from 0 to 255 in grayscale. Then (p̂X (t), p̂Y (t)) is
converted to v̂X (t), v̂Y (t) as

v̂X (t) =
vmax

64
(p̂X (t)− 64) (5)

v̂Y (t) =
vmax

64
(64− p̂Y (t)) (6)

where vmax is the preset maximum wind speed, which is
the same value used in Eqs. (3) and (4), and v̂X (t), v̂Y (t)
are east–west and north–south components of predicted wind
speed, respectively. The predicted wind speed is calculated
from v̂X (t) and v̂Y (t) as

v̂ (t) =
√
v̂2X (t) + v̂2Y (t) (7)

where v̂ (t) is the predicted wind speed [m/s].

5. Prediction Results

5.1 Suitable square plot size

In this paper, we first examine the size of the square plot
points in the input image to determine suitable plot size. Set
all six plots to the same size, and increase the size from 2× 2
pixels to 20 × 20 pixels by adding two pixels on each side.
Figure 6 represents 10 types of input image.

2 2 pixels 4 4 pixels 18 18 pixels 20 20 pixels

Figure 6: Examples of input images from 2 × 2 pixels to
20× 20 pixels

The prediction error is evaluated as the following root
mean square error (RMSE),

RMSE =

√√√√ 1

N

N∑
k=1

(ŷk − yk)
2 (8)

where N is the number of data, ŷk is the predicted wind speed
and yk is the actual wind speed. In addition, the prediction
accuracy is also evaluated by the correlation to evaluate time
delay. The predicted image is output as shown in Fig. 7,
and the wind prediction values are obtained using Eqs. (5)
to (7). At this time, we evaluate the prediction accuracy by
comparison. With the pixel coordinates extracted from the
image using at the center of gravity value or the maximum
value. Each prediction result is shown in Table 2.

Table 2: Prediction accuracy
Image size RMSE [m/s] Correlation coefficient

(pixel) Centroid Maximum Centroid Maximum
2×2 2.20 1.17 0.728 0.807
4×4 2.31 1.18 0.694 0.810
6×6 2.21 1.21 0.715 0.814
8×8 2.14 1.36 0.732 0.827

10×10 2.37 1.40 0.701 0.819
12×12 2.16 1.24 0.689 0.824
14×14 2.27 1.48 0.746 0.806
16×16 2.52 1.77 0.708 0.790
18×18 2.50 1.86 0.657 0.747
20×20 2.46 1.94 0.725 0.727

Table 2 shows that when pixel values at the center of grav-
ity are obtained, the RMSE value becomes larger when the
plot size is larger, resulting in lower accuracy. The correla-
tion coefficients did not change much at any plot size. Next,
looking at the case where the maximum value is introduced,
it can be seen that as the plot size increases, the RMSE value
increases, and that the correlation coefficient is high when
the plot size is neither too small nor too large. Moreover, the

3.1 Expression of wind on two-dimensional plane

The wind speed and direction obtained from AMeDAS are
observed at 10-min intervals. The wind direction is repre-
sented by 16 azimuths, as in Fig. 2. Then the wind vec-
tor is represented in a two-dimensional coordinate system, as
shown in Fig. 3(a). Also, the wind information can be rep-
resented by vX (t) and vY (t), as shown in Fig. 3(b), and the
X-axis and Y-axis mean the wind speed components of the
east–west and north–south directions. From Fig. 3(a), the
wind vector components vX (t) and vY (t) are calculated as

vX (t) = v (t) · cosφ (t) (1)
vY (t) = v (t) · sinφ (t) (2)

where v (t) is the wind speed [m/s] and φ (t) is the wind di-
rection [°].

Figure 2: Representation of 16 directions of wind

(t)

N

E

v(t)

S

W

(a) Wind vector diagram

vX(t)

Y

X

vY(t)

W

S
(b) Wind components of v (t)

Figure 3: Wind speed and direction on a 2D coordinate

3.2 Dataset structure

The wind vector is drawn on an image (128×128 pixels) at
position p = (pX and pY ) calculated by

pX (t) = 64 +
64

vmax
vX (t) (3)

pY (t) = 64− 64

vmax
vY (t) (4)

where 64 is half the image size and vmax is the maximum
wind speed. In this work, vmax is set to 20 m/s which does
not exceed the wind speed observed in Tokushima, Japan.

The wind vectors from p(t−5) to p(t) are drawn as shown
in Fig. 4 with the oldest data in blue and the latest data in
red. At this time, the change in color of the plotted points ex-
presses the change over one hour. Then six images are com-
posed into a image m(t) to express the wind change. Also, in
order to express the wind change pattern for one hour at 10-
min intervals, nine images from m(t−8) to m(t) are made in
the same way. Those nine images are input to the prediction
model.
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4. Prediction Model of Wind Speed and Direction

The prediction model of wind speed and direction is shown
in Fig. 5. The model is composed of an encoder network and
a forecaster network with CLSTM and CNN. The nine im-
ages with the size of 128×128 pixels are input. The output is
the wind vector one hour in the future to consider the adapt-
ability of thermal power generation plant. Table 1 shows the
learning parameters. In this paper, the same model configura-
tion and learning parameters are used as those in our previous
study [2]. The encoder network consists of three convolu-
tional layers and five CLSTM layers, and the forecaster net-
work consists of six CLSTM layers and three deconvolutional
layers. The number of filters in the three convolutional layers
is 16, 16, and 32, respectively, and the number of filters in
the three deconvolutional layers is 32, 16, and 1, respectively.
The stride width of the filters in the convolutional and decon-
volutional layers is 2. The number of units in the CLSTM
layer is 32. All kernel sizes are 5 × 5. The fore input se-
quence uses an array of zeros in the forecaster network. The
internal state of the CLSTM layer of the encoder network is
copied to the CLSTM layer of the forecaster network, and the
outputs of all CLSTM layers of the forecaster network are
concatenated as inputs to the last CLSTM layer and fed to the
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accuracy of prediction is higher when taking the maximum
value rather than the center of gravity value. This is thought
to be due to the fact that the predicted image is output with
two main distributions. There are mainly two cases of pre-
dicted images, as shown in Fig. 7. If the coordinates of the
center of gravity are taken, as in Fig. 7(b), it may not be pos-
sible to obtain the position in the coordinates with a higher
probability of the predicted plot point.

Figure 8 shows the prediction results when the coordinates
of the maximum value of 8×8 pixels, which had the strongest
positive correlation, were obtained. From Fig. 8, it can be
seen that the predicted value has a time delay during the rise
period, but the time delay is relatively small during the fall
period of wind speed. Also, it can be seen that 0 m/s is likely
to be taken when the value of wind speed is small.

(a) case 1 (b) case 2

Figure 7: Predicted images

0

1

2

3

4

5

6

7

0 24 48 72 96 120

W
in

d
 s

p
e

e
d

 [
m

/s
]

Time [hour]

Observed Predicted

Figure 8: Predicted wind speed for June 2–6, 2018

5.2 Change six plot sizes on the wind vector image

By changing the size of the six plotted points, the degree of
change from the past wind speed is expressed. Set the latest
data to 8 × 8 pixels and increase by 2 × 2 pixels so that the
oldest data is 18× 18 pixels. This is called variable size. The
coordinates of the predicted value is the maximum value. Ta-
ble 3 shows the evaluation of prediction accuracy, and Fig. 9
shows the prediction results. The same size in Fig. 9 means
that the size of all six plot points is 8 × 8 pixels. The con-
ventional method refers to the method used in our previous
research. The most recent data is plotted as the largest square,
and the other five are plotted as smaller squares of the same

size and connected by lines. From Table 3, it is confirmed that
changing the plot size decreased the prediction error, but the
correlation coefficient also decreased. In addition, as shown
in Fig. 9, the existing method has the smallest time delay at
startup. Regarding the time delay during the fall period, there
is not much difference between the methods. By changing
the plot size, it is confirmed that the wind speed change at
low wind speed can be captured better. It was not possible to
obtain prediction accuracy that surpasses that of the conven-
tional methods.

Table 3: Wind speed prediction accuracy
RMSE [m/s] Correlation coefficient

Same size (8× 8 pixels) 1.36 0.827
Variable size 1.31 0.785

Conventional method 1.01 0.865
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Figure 9: Predicted wind speed for June 2–4, 2018

6. Conclusions

In this study, we optimized the square plot size of the input
image with the aim of improving the prediction accuracy. As
a result, changing the six plot sizes made it easier to detect
changes over time, but there was no significant difference in
prediction accuracy. In addition, the time delay problem was
not sufficiently resolved.

Future tasks are is to optimize the number of plot points,
colors, and number of input images.
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