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ABSTRACT

Background: Little is known about whether insufficient moderate-to-vigorous physical activity (MVPA) and longer sedentary
behavior (SB) are independently associated with estimated glomerular filtration rate (eGFR) and chronic kidney disease (CKD),
whether they interact with known risk factors for CKD, and the effect of replacing sedentary time with an equivalent duration of
physical activity on kidney function.

Methods: We examined the cross-sectional association of MVPA and SB with eGFR and CKD in 66,603 Japanese cohort study
in 14 areas from 2004 to 2013. MVPA and SB were estimated using a self-reported questionnaire, and CKD was defined as
eGFR <60mL/min/1.73m2. Multiple linear regression analyses, logistic regression analyses, and an isotemporal substitution
model were applied.

Results: After adjusting for potential confounders, higher MVPA and longer SB were independently associated with higher
eGFR (P for trend MVPA <0.0001) and lower eGFR (P for trend SB <0.0001), and a lower odds ratio (OR) of CKD (adjusted
OR of MVPA ≥20MET·h/day, 0.76; 95% confidence interval [CI], 0.68–0.85 compared to MVPA <5MET·h/day) and a
higher OR of CKD (adjusted OR of SB ≥16 h/day, 1.81; 95% CI, 1.52–2.15 compared to SB <7 h/day), respectively. The
negative association between MVPA and CKD was stronger in men, and significant interactions between sex and MVPA were
detected. Replacing 1 hour of SB with 1 hour of physical activity was associated with about 3 to 4% lower OR of CKD.

Conclusion: These findings indicate that replacing SB with physical activity may benefit kidney function, especially in men,
adding to the possible evidence on CKD prevention.
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INTRODUCTION

The global prevalence of chronic kidney disease (CKD) has
markedly increased in recent decades due to population aging,
with the number of CKD patients of all stages reaching almost
700 million in 2017.1 According to the Global Burden of Disease,
Injuries, and Risk Factors Study, impaired fasting plasma
glucose, high blood pressure, and high body mass index (BMI)
are leading risk factors for CKD.1 Additionally, epidemiological
studies have indicated that age, male sex, lower education level,
lower socioeconomic status, alcohol consumption, and lower
dietary quality are independent risk factors for CKD in developed
countries.2–4 Moreover, several recent studies have reported that
lower moderate-to-vigorous physical activity (MVPA) and longer
sedentary behavior (SB), risk factors for obesity, diabetes, and
hypertension, are independently associated with the development
of CKD.5–7 However, the results from some studies have been
inconsistent due to differences in the measurement and analysis of
physical activity and SB.2,4,8,9 Furthermore, the interaction of
physical activity and SB with known risk factors for kidney
function decline has not been fully evaluated.

Regarding physical activity, most intervention studies have
used exercise programs, which are planned, structured, repetitive,
and usually intended to enhance or maintain physical fitness, to
improve both renal and physical function among CKD or dialysis
patients.10–12 A meta-analysis of 13 randomized controlled trials
that examined exercise therapy, including aerobic and resistance
exercise, among 421 non-dialysis CKD patients showed a benefit
of increasing the estimated glomerular filtration rate (eGFR).13 In
contrast, interventions involving modification of physical activity
and SB are limited even among CKD and dialysis patients, and
the benefits for renal outcome have been inconclusive.12,14,15 This
may be due to insufficient evidence indicating which daily life
activity modifications actually improve kidney function in the
early stages of CKD and in the general population.

In the past decade, isotemporal substitution approaches, which
are used to evaluate the effect of replacing daily SB with an
equivalent duration of physical activity on health, have been used
to improve various outcomes.16 Several studies have explored
the relationships between sedentary time allocation and health
outcomes, such as weight change,16 cardiovascular disease
biomarkers,17 cardiometabolic health,18 depression,19 mortal-
ity,20,21 and mortality among CKD patients.22 A recent study by
Kosaki et al measured physical activity using a uniaxial
accelerometer and reported that replacing SB with MVPA was
beneficially associated with renal function in older adults.23 While
their study design and investigation were excellent, the sample
size was small, so further investigation is required to confirm the
reproducibility of their results.

We investigated whether MVPA and SB are independently
associated with eGFR and CKD and examined the interaction
between MVPA and SB with potential risk factors for CKD
among the Japanese general population. In addition, we used the
isotemporal substitution approach to evaluate the effect of
replacing sedentary time with an equivalent duration of physical
activity on kidney function.

METHODS

Study population
We used data from the Japan Multi-Institutional Collaborative

Cohort (J-MICC) Study. The details and rationale of the J-MICC
study have been described elsewhere.24 Briefly, the study
focuses on interactions between genetic and lifestyle factors for
lifestyle-related diseases, the main one being cancer. The J-MICC
study consists of 14 areas throughout Japan, including Chiba,
Shizuoka-Sakuragaoka, Okazaki, Aichi, Shizuoka, Daiko, Iga,
Takashima, Kyoto, Tokushima, Saga, Kagoshima, Fukuoka and
the KOPS (Kyushu and Okinawa Population Study) area. Eligible
participants were residents in the community, health-checkup
examinees, and visitors to a cancer hospital. Participants provided
written informed consent after receiving an explanation of the
study purpose and contents and the conditions of cooperation in
the study. They completed a self-administered questionnaire on
lifestyle and medical information, and donated blood samples.
The study protocol was approved by the Ethics Committees of
Nagoya University Graduate School of Medicine (approval
No. 2010-0939-7) and each participating institute.

A total of 92,640 participants were recruited between 2004 and
2013 (dataset version 20180602). Of the total participants, we
excluded 17,196 from two areas (Chiba and Aichi) from this study
because of the absence of data on creatinine. Among the remaining
75,444 participants, we excluded 8,841 with one or more of the
following: no serum creatinine data (n = 2,936); serum creatinine
<0.2mg/dL (n = 17); and self-reported diseases, such as renal
failure (n = 53), liver cirrhosis (n = 172), cancer (n = 3,016),
coronary heart disease (n = 2,045), and cerebrovascular disease
(n = 1,288), which may affect physical activity. Thus, the present
cross-sectional study included 66,603 subjects (29,507 men and
37,096 women) for analysis of MVPA. For the evaluation of SB,
we excluded 2,569 subjects who did not have available SB data.
Thus, 64,034 subjects (28,175 men and 35,859 women) were
included in the analysis of SB.

Assessment of MVPA and SB
MVPA corresponding to an activity intensity ≥3 metabolic
equivalents (METs) was calculated as the sum of daily life
physical activity and leisure time physical activity, as assessed
using a self-administered physical activity questionnaire (PAQ).
This PAQ was originally developed as part of the baseline
questionnaire in the J-MICC Study.25–27 Although it has not been
validated, this PAQ has a similar structure to questionnaires that
have previously been confirmed to be valid and reproducible.28

Further, the purpose of this PAQ was to estimate the average
habitual total and domain-specific physical activity in MET-hours
per day over a 1 year period. One MET was defined as an oxygen
consumption of 3.5mL/kg weight/min, which represents the
average energy expenditure at rest.29 For daily life physical
activity, the PAQ comprised four behaviors ranked according to
activity level: hard labor (allocated 4.5 METs), walking (3.3
METs), standing (2.0 METs), and SB (1.5 METs). Time spent per
day on each activity was categorized into one of the following
eight categories (assigned average hours per day): none (0), <1
(0.5), 1 to <3 (2), 3 to <5 (4), 5 to <7 (6), 7 to <9 (8), 9 to <11
(10), and ≥11 (12) hours per day. We calculated daily hours of
SB by subtracting the sum of time spent sleeping, standing,
walking, and performing hard labor from 24 hours. Daily life
physical activity was estimated by multiplying the amount of time
spent walking and engaged in physical hard labor daily by their
assigned MET intensities.

For leisure time physical activity, the PAQ was similar to a
short format of the International Physical Activity Questionnaire

Physical Activity, Sedentary Behavior, and Renal Function

286 j J Epidemiol 2023;33(6):285-293



(IPAQ),30,31 except all bouts of physical activity were included
independent of duration. Our PAQ includes all PA, while the
IPAQ does not include PA those lasting <10 minutes. Activity
was categorized into three levels: vigorous (eg, marathon running
and competitive sports, allocated 8.0 METs), moderate (eg, light
jogging and swimming, allocated 4.0 METs), and light (eg,
walking and hiking, allocated 3.3 METs), as we described
previously.32 The frequency categories (assigned average times
per day) were almost none (0), 1–3 times/month (0.1), 1–2 times/
week (0.2), 3–4 times/week (0.5), and 5–6 times/week (0.8). The
average duration categories (assigned average hours per activity)
were <30 minutes (0.3), 30 minutes to <1 hour (0.8), 1 to <2
hours (1.5), 2 to <3 hours (2.5), 3 to <4 hours (3.5), and ≥4 hours
(4.5). The MET·h/day of leisure time physical activity for each
category of intensity was calculated by multiplying the daily
frequency, duration, and intensity of leisure time physical activity.
Thereafter, MVPA (MET·h/day) was estimated by summing the
daily life physical activity and leisure time physical activity.

Questionnaire and anthropometric and biochemical
measurements
At the time of enrollment, a self-administered questionnaire was
used to obtain participants’ lifestyle information, including sex,
age, smoking habit, alcohol consumption, daily coffee con-
sumption, dietary behavior over the past year, medical history,
perceived stress status, and sleep duration, as well as activity
in daily life and leisure time.32 Smoking status was classified
as current, former or never. Alcohol consumption (g/day) was
estimated according to average intake frequency and quantity by
beverage type. Dietary intake of energy (kcal/day) was estimated
using a validated food frequency questionnaire containing 47
food items.33 Data from anthropometric measurements, including
height (to the nearest 0.1 cm) and body weight (to the nearest 0.1
kilogram), systolic blood pressure (SBP; mmHg), serum total
cholesterol (mg/dL), serum creatinine (mg/dL), and hemoglobin
A1c (%), were obtained. BMI was calculated using the following
formula: body weight (kg)/(height [m])2. History of hypertension
was defined as SBP >140mmHg and/or diastolic blood pressure
(DBP) >90mmHg or use of anti-hypertensive medication.
History of diabetes mellitus was defined as a fasting serum
glucose level ≥126mg/dL, hemoglobin A1c level ≥6.9%
(National Glycohemoglobin Standardization Program), or use of
anti-diabetic medication. History of dyslipidemia was defined as
fasting serum total cholesterol level ≥220mg/dL and/or fasting
low density lipoprotein cholesterol level ≥140mg/dL and/or use
of anti-dyslipidemic medication.

eGFR and definition of CKD
eGFR was calculated based on participants’ serum creatinine, age,
and sex according to the Japanese Society of Nephrology,34 using
the following formula: eGFR (mL/min/1.73m2) = 194 × serum
creatinine (mg/dL)−1.094 × age−0.287 (× 0.739 if female)34 We
defined CKD as eGFR <60mL/min/1.73m2, which is indicative
of stage G3a CKD or higher,35 because we did not have urine data.

Statistical analysis
Continuous variables are expressed as mean and standard
deviation, and categorical variables as number and proportion
(%). For analysis of MVPA, 66,603 subjects were divided into
four categories of MVPA (<5, ≥5 and <10, ≥10 and <20, and
≥20MET·h/day), while 64,034 subjects were divided into five

categories of sedentary time (<3, ≥3 and <5, ≥5 and <7, ≥7 and
<9, and ≥9 hours/day) for analysis of SB. The cross-sectional
association of MVPA and SB categories with eGFR (mL/min/
1.73m2) and CKD was evaluated using multiple linear regression
analyses and logistic regression analyses. We adjusted for the
following covariates to examine whether they affect the associa-
tion of MVPA and SB with kidney function: model 1, age, sex,
and study sites; model 2, further adjusted for health-related
behaviors such as alcohol consumption (g/day), current smoking
(yes or no) and daily coffee consumption (yes or no); model 3,
further adjusted for history of hypertension, hyperlipidemia, and
diabetes (yes or no), and BMI (kg/m2, quartiles), factors that may
confound but also mediate associations of MVPA and SB with
kidney function; model 4, further adjusted for SB (h/day) for
MVPA analysis and MVPA (MET·h/day) for SB analysis.
Potential confounders and mediators were selected based on
associations reported in the literature2–6 or a significant univariate
correlation. The linear trend for risk was evaluated relative to the
level of MVPA (as a continuous variable for 1MET·h/day) and
SB (as a continuous variable for 1 hour). To examine interactions
between MVPA or SB and CKD risk, multiplicative interaction
terms were added to the model. We also conducted stratified
analyses according to baseline characteristics that showed a
significant interaction. Additionally, 64,034 subjects were divided
into two strata based on MVPA (<10 and ≥10MET·h/day) and
five categories of sedentary time (<3, ≥3 and <5, ≥5 and <7, ≥7
and <9, and ≥9 hours/day) to examine the CKD risk according
to SB stratified by MVPA.

In addition, we used two models, a single factor model and an
isotemporal substitution model, to assess the cross-sectional
associations of daily life physical activity, including SB, standing,
walking, and hard labor, with eGFR and CKD using multiple
linear regression and logistic regression analyses. We used
1 hour/day as the unit for daily life physical activity and defined
waking hours as the sum of hours spent performing each behavior
per day. Details of these models are described elsewhere.36,37 The
single factor model assessed each behavior component separately
and was only adjusted for waking hours and the confounders
listed for model 3 above. The isotemporal substitution model
specifies a “target” behavior that is to be replaced with a behavior
of interest, while holding total waking hours constant. This model
can also be expressed by omitting the target behavior from
the model and adding total waking hours. For example, the
coefficient can be interpreted as the effect of replacing SB with
the same duration of standing, since walking, hard labor, and total
waking hours are held constant.

In the multivariable models, we calculated variance inflation
factors (VIFs) to check for multicollinearity among the
independent variables. All VIFs in the isotemporal substitution
model were below 5, the pre-determined threshold value. In
addition, correlation coefficients between variables did not exceed
0.7 using the isotemporal substitution model, and the sample
size was sufficient. Thus, the analyzed data met the theoretical
assumptions of the isotemporal substitution model.

All analyses were performed using the SAS statistical software
package (Ver. 9.4 for Windows; SAS Institute, Cary, NC, USA).
A P value of less than 0.05 was considered statistically significant.

RESULTS

Among the 92,640 subjects who participated in the baseline
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survey, 66,603 subjects were included in this analysis. The
baseline characteristics of the 66,603 included subjects differed
from those of the 26,037 excluded subjects (eTable 1). Briefly, all
baseline characteristics except sex; daily coffee consumption;
leisure time physical activity level; and sleeping, walking,
and standing hours differed between the two groups. These
differences may have arisen by excluding subjects who had
self-reported disease.

The characteristics of the 66,603 participants (29,507 men and
37,096 women) according to eGFR categories are shown in
Table 1. The number and proportion of missing data are indicated
in the footnote. In general, the majority of participants with
lower eGFR were men, older, had lower alcohol consumption,
lower coffee consumption, higher energy intake, took anti-
hypertensives, anti-dyslipidemics, and anti-hyperglycemics, had
higher SBP, lower MVPA, longer sleep and SB hours, and shorter
waking hours. Additional analysis stratified by MVPA and SB
is shown in eTable 2. Participants with lower MVPA were
younger; had higher education levels; higher coffee consump-
tion; took anti-dyslipidemics; had lower eGFR; higher CKD;
lower leisure time physical activity; and lower hard labor,
walking, and standing hours. Participants with longer SB were
men; younger; had higher education levels; higher coffee
consumption; lower eGFR; higher CKD; lower MVPA and
leisure time physical activity; and lower hard labor, walking, and
standing hours.

In regression analysis, lower MVPA and longer SB were both
associated with lower eGFR levels (Table 2). While adjustment
for age, sex, study area (model 1), and baseline characteristics
(models 2 and 3) slightly attenuated these correlations, they

remained significant (Table 2). In the multivariable model
including both MVPA and SB, these correlations remained
statistically significant, indicating that MVPA and SB were
independently associated with eGFR (Table 2, model 4).
Analysis stratified by MVPA (<10 and ≥10MET·h/day) showed
that adjusted eGFR with longer SB was similar between the
MVPA groups (Pfor interaction = 0.46) (eFigure 1).

Table 3 shows the association of MVPA and SB with CKD. In
analysis that adjusted for age, sex, and study area, a lower odds
ratio (OR) of CKD was observed in subjects with higher MVPA,
while a higher OR of CKD was found in subjects with longer SB
(Pfor trend < 0.0001 for both) (Table 3, model 1). These associa-
tions remained significant after adjustment for health behaviors
(Table 3, model 2) and comorbidities (Table 3, model 3).
Compared to subjects whose MVPA was <5MET·h/day,
adjusted ORs of CKD of subjects whose MVPA was ≥10
MET·h/day and ≥20MET·h/day were 0.83 (95% confidence
interval [CI], 0.77–0.91) and 0.74 (95% CI, 0.68–0.80), respec-
tively (Table 3, model 3). Further adjustment for SB in model 4
attenuated the trend in ORs of CKD for active MVPA, leading
them to remain significant, although adjusted ORs were slightly
increased (Table 3, model 4). Compared to subjects with a
sedentary time of less than 7 hours/day, adjusted ORs of CKD of
subjects whose sedentary time was ≥7 to <10 hours/day, ≥10 to
<13 hours/day, ≥13 to <16 hours/day, and ≥16 hours/day were
1.13 (95% CI, 1.02–1.25), 1.28 (95% CI, 1.16–1.41), 1.46 (95%
CI, 1.32–1.60), and 1.65 (95% CI, 1.47–1.84), respectively
(Table 3, model 3). In contrast to MVPA, analysis of SB showed
that fully adjusted ORs of CKD for longer sedentary time were
unchanged (Table 3, model 4). Analysis stratified by MVPA (<10

Table 1. Characteristics of study participants at the baseline survey of the Japan Multi Institutional Collaborative Cohort study by
estimated glomerular filtration rate category (n = 66,603)

Characteristic

eGFR (mL/min per 1.73m2)

≥90
(n = 12,970)

60 to 89
(n = 48,267)

45 to 59
(n = 4,971)

30 to 44
(n = 316)

<30
(n = 79)

Men 4,492 (34.6) 22,102 (45.8) 2,672 (53.8) 195 (61.7) 46 (58.2)
Age, years 51.4 [9.7] 55.4 [9.0] 60.2 [7.0] 61.5 [6.7] 61.4 [6.7]
Education ≤12 years 5,096 (39.3) 17,501 (33.4) 1,673 (33.7) 120 (29.0) 21 (26.6)
Current smoker 2,646 (20.4) 8,264 (15.8) 606 (12.2) 46 (11.1) 19 (24.1)
Alcohol consumption, g/day 6.5 [15.0] 6.8 [14.3] 6.4 [13.1] 6.2 [13.1] 2.7 [8.3]
Drink coffee everyday 7,192 (55.5) 26,809 (51.2) 2,631 (52.9) 137 (33.1) 26 (32.9)
Total energy intake, kcal/day 1,689 [394] 1,712 [378] 1,728 [360] 1,737 [335.7] 1,671 [354.3]
Taking antihypertensives 1,420 (10.9) 7,137 (13.6) 1,302 (26.2) 177 (42.8) 58 (73.4)
Taking antidislipidemics 870 (6.7) 4,355 (8.3) 4,218 (84.9) 242 (58.5) 55 (69.6)
Taking antihyperglycemics 514 (4.0) 1,516 (2.9) 236 (4.7) 48 (11.6) 15 (19.0)
BMI, kg/m2 22.7 [3.5] 23.0 [3.2] 23.7 [3.2] 24.3 [3.4] 22.9 [3.9]
SBP, mmHg 125.3 [19.9] 127.6 [19.8] 131.8 [20.2] 137.9 [22.4] 141.9 [24.3]
Total cholesterol, mg/dL 206.5 [35.5] 211.7 [34.3] 215.9 [34.8] 211.1 [41.4] 196.4 [39.9]
HbA1c 5.2 [0.9] 5.2 [0.6] 5.2 [0.6] 5.5 [1.2] 5.3 [0.7]
Creatinine, mg/dL 0.6 [0.1] 0.7 [0.1] 1.0 [0.1] 1.3 [0.2] 4.7 [3.6]
Total physical activity, MET·h/day 16.3 [14.5] 15.2 [13.6] 14.7 [13.4] 15.0 [14.0] 14.0 [16.1]
Leisure time physical activity, MET·h/day 1.3 [2.1] 1.7 [2.5] 2.1 [2.8] 1.9 [2.4] 1.5 [2.2]
Activities performed in daily life (n = 12,273) (n = 46,559) (n = 4,822) (n = 305) (n = 75)
Sleeping, h/day 6.6 [1.0] 6.6 [1.0] 6.7 [1.0] 6.8 [1.1] 7.0 [1.1]
Hard labor, h/day 1.1 [1.9] 1.0 [1.8] 1.0 [1.8] 1.0 [1.8] 0.9 [1.7]
Walking, h/day 2.4 [2.0] 2.2 [2.0] 2.1 [1.9] 2.1 [1.8] 1.8 [2.0]
Standing, h/day 3.9 [2.7] 3.4 [2.6] 3.0 [2.5] 2.8 [2.4] 2.9 [3.1]
Sedentary behavior, h/day 10.1 [4.4] 10.7 [4.3] 11.2 [4.3] 11.3 [4.4] 11.4 [5.0]

BMI, body mass index; eGFR, estimated glomerular filtration rate; METs, metabolic equivalents; SBP, systolic blood pressure.
Data are presented as mean [standard deviation] or number (percentage).
Note: Missing data on current smoking (n = 309, 0.5%), alcohol consumption (n = 1,247, 1.9%), everyday coffee drinking (n = 7, 0.01%), take antihypertensives
(n = 51, 0.08%), antidyslipidemics (n = 51, 0.08%), and antihyperglycemics (n = 51, 0.08%).
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and ≥10MET·h/day) showed that CKD risk with longer SB
was greater in subjects with lower MVPA (Pfor interaction = 0.06)
(Figure 1).

Additional analysis stratified by baseline characteristics
showed significant interactions between sex and MVPA for
CKD. The negative dose-response association between the

Table 2. Adjusted mean estimated glomerular filtration rate according to moderate-to-vigorous physical activity (n = 66,603) and
sedentary behavior (n = 64,034)

Number

Crude Model 1 Model 2 Model 3 Model 4

Mean (95% CI)
Adjusted mean

(95% CI)
Adjusted mean

(95% CI)
Adjusted mean

(95% CI)
Adjusted mean

(95% CI)

MVPA, MET·h/day
<5 16,672 77.9 (77.7–78.1) 77.4 (77.2–77.7) 77.5 (77.3–77.7) 77.4 (77.2–77.6) 77.5 (77.3–77.7)
≥5, <10 14,408 78.3 (78.0–78.5) 77.7 (77.5–77.9) 77.8 (77.6–78.0) 77.8 (77.6–78.0) 77.9 (77.6–78.1)
≥10, <20 17,399 78.4 (78.2–78.6) 78.6 (78.4–78.8) 78.6 (78.4–78.8) 78.6 (78.3–78.8) 78.6 (78.3–78.8)
≥20 18,124 79.3 (79.1–79.5) 80.0 (79.8–80.2) 79.9 (79.7–80.1) 79.8 (79.6–80.0) 79.7 (79.5–79.9)

β 0.43 (0.33–0.53) 0.94 (0.84–1.03) 0.77 (0.68–0.87) 0.79 (0.69–0.87) 0.72 (0.62–0.82)
Ptrend < 0.0001 Ptrend < 0.0001 Ptrend < 0.0001 Ptrend < 0.0001 Ptrend < 0.0001

SB, h/day
<7 12,928 79.9 (79.7–80.2) 80.3 (80.1–80.6) 80.2 (80.0–80.4) 80.1 (79.9–80.4) 80.2 (79.8–80.5)
≥7, <10 13,350 79.2 (78.9–79.4) 79.1 (78.9–79.3) 79.1 (78.8–79.3) 79.0 (78.8–79.2) 79.0 (78.8–79.2)
≥10, <13 14,394 78.6 (78.3–78.8) 78.4 (78.2–78.6) 78.5 (78.2–78.7) 78.4 (78.2–78.6) 78.4 (78.2–78.6)
≥13, <16 15,311 77.2 (77.0–77.5) 77.1 (76.9–77.3) 77.2 (76.9–77.4) 77.1 (76.9–77.3) 77.1 (76.8–77.3)
≥16 8,051 76.3 (76.0–76.6) 76.4 (76.1–76.7) 76.5 (76.2–76.8) 76.5 (76.1–76.8) 76.4 (76.1–76.8)

β −0.90 (−0.99 to −0.82) −0.99 (−1.07 to −0.91) −0.84 (−0.93 to −0.76) −0.86 (−0.94 to −0.77) −0.87 (−0.99 to −0.75)
Ptrend < 0.0001 Ptrend < 0.0001 Ptrend < 0.0001 Ptrend < 0.0001 Ptrend < 0.0001

CI, confidence interval; MVPA, moderate-to-vigorous physical activity; SB, sedentary behavior.
Model 1: adjusted for age, sex (for all), and study site.
Model 2: additionally adjusted for education level (≤12 years or >12 years), current smoking (yes or no), alcohol consumption (g/day) and daily coffee
consumption (yes or no).
Model 3: additionally adjusted for history of hypertension (yes or no), history of hyperlipidemia (yes or no), history of diabetes (yes or no), body mass index
(quartile).
Model 4: additionally adjusted for sedentary behavior (h/day) or total physical activity (MET·h/day).

Table 3. Odds ratios of chronic kidney disease according to moderate-to-vigorous physical activity (n = 66,603) and sedentary behavior
(n = 64,034)

MVPA
(MET·h/day)

Number
eGFR <60 Crude Model 1 Model 2 Model 3 Model 4

n OR (95% CI)
Adjusted OR
(95% CI)

Adjusted OR
(95% CI)

Adjusted OR
(95% CI)

Adjusted OR
(95% CI)

All (n = 66,603)
<5 16,672 1,654 1 (reference) 1 (reference) 1 (reference) 1 (reference) 1 (reference)
≥5, <10 14,408 1,380 0.97 (0.89–1.05) 1.00 (0.92–1.08) 0.99 (0.91–1.08) 0.988 (0.91–1.08) 0.987 (0.91–1.08)
≥10, <20 17,399 1,622 0.91 (0.84–0.98) 0.82 (0.76–0.89) 0.82 (0.75–0.89) 0.83 (0.77–0.91) 0.84 (0.77–0.91)
≥20 18,124 1,563 0.87 (0.81–0.94) 0.71 (0.65–0.77) 0.72 (0.66–0.78) 0.74 (0.68–0.80) 0.76 (0.69–0.83)

Ptrend < 0.0001 Ptrend < 0.0001 Ptrend < 0.0001 Ptrend < 0.0001 Ptrend < 0.0001

SB
(h/day)

Number
eGFR <60 Crude Model 1 Model 2 Model 3 Model 4

n OR (95% CI)
Adjusted OR
(95% CI)

Adjusted OR
(95% CI)

Adjusted OR
(95% CI)

Adjusted OR
(95% CI)

All (n = 64,034)
<7 12,928 880 1 (reference) 1 (reference) 1 (reference) 1 (reference) 1 (reference)
≥7, <10 13,360 954 1.05 (0.96–1.16) 1.13 (1.03–1.25) 1.14 (1.04–1.26) 1.13 (1.02–1.25) 1.13 (1.02–1.26)
≥10, <13 14,394 1,159 1.20 (1.09–1.31) 1.30 (1.18–1.43) 1.30 (1.18–1.43) 1.28 (1.16–1.41) 1.28 (1.14–1.44)
≥13, <16 15,311 1,383 1.36 (1.25–1.48) 1.53 (1.40–1.68) 1.50 (1.37–1.65) 1.46 (1.32–1.60) 1.46 (1.28–1.66)
≥16 8,051 826 1.57 (1.42–1.73) 1.80 (1.63–2.00) 1.72 (1.54–1.92) 1.65 (1.47–1.84) 1.65 (1.42–1.92)

Ptrend < 0.0001 Ptrend < 0.0001 Ptrend < 0.0001 Ptrend < 0.0001 Ptrend < 0.0001

CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; MVPA, moderate-to-vigorous physical activity; OR, odds ratio;
SB, sedentary behavior.
Bold values indicate P < 0.05.
Model 1: adjusted for age, sex (for all), and study site.
Model 2: additionally adjusted for education level (≤12 years or >12 years), current smoking (yes or no), alcohol consumption (g/day) and daily coffee
consumption (yes or no).
Model 3: additionally adjusted for history of hypertension (yes or no), history of hyperlipidemia (yes or no), history of diabetes (yes or no), body mass index
(quartile).
Model 4: additionally adjusted for sedentary behavior (h/day) or total physical activity (MET·h/day).
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adjusted OR of CKD and active MVPA was more evident in men
than women (Pfor interaction = 0.013) (Figure 2).

Table 4 shows the eGFR and CKD findings for SB. In the
single factor model, sedentary time was significantly associated
with lower eGFR (β = −0.31, 95% CI, −0.34 to −0.28) and
higher OR of CKD (adjusted OR 1.05, 95% CI, 1.04–1.06), while
time spent standing, walking, and performing hard labor was
significantly positively associated with eGFR and negatively

associated with OR of CKD. In the isotemporal substitution
model, replacing sedentary time with standing, walking, and hard
labor was significantly associated with larger eGFR values. The
positive association with eGFR was greater when sedentary time
was replaced with hard labor than with standing and walking.
Replacing sedentary time with walking and hard labor was also
significantly negatively associated with OR of CKD.

Figure 1. Adjusted odd ratios (ORs) for chronic kidney disease (CKD) according to sedentary behavior (SB; h/day) by moderate-
to-vigorous physical activity (MVPA; MET&h/day). Adjusted variables are age, study site, education level (:12 years or
>12 years), current smoking (yes or no), alcohol consumption (g/day), daily coffee consumption (yes or no), history of
hypertension (yes or no), history of hyperlipidemia (yes or no), history of diabetes (yes or no), and body mass index
(quartile). Error bars indicate 95% confidence interval. P for trends of adjusted OR for CKD among subjects with MVPA
;10 and <10 were <0.001 and <0.002, respectively.

Figure 2. Adjusted odd ratios (ORs) for chronic kidney disease (CKD) according to moderate-to-vigorous physical activity
(MVPA; MET&h/day) by sex. Adjusted variables are age, study site, education level (:12 years or >12 years), current
smoking (yes or no), alcohol consumption (g/day), daily coffee consumption (yes or no), history of hypertension (yes or
no), history of hyperlipidemia (yes or no), history of diabetes (yes or no), body mass index (quartile), and sedentary
behavior (hours/day). Error bars indicate 95% confidence interval. P for trends of adjusted OR for CKD among men
and women were 0.528 and 0.038, respectively.
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DISCUSSION

In our study of a middle-aged Japanese general population, lower
MVPA and longer SB were independently negatively associated
with kidney function and positively associated with OR of CKD
after adjustment for other established risk factors, such as sex,
age, alcohol consumption, smoking, obesity, hypertension, and
diabetes, in concordance with previous studies in Western
countries.1–6,8,9 We found that higher OR of CKD with longer
SB was more evident in subjects with lower MVPA. Addition-
ally, interactions between MVPA and sex were observed for
CKD. A major finding was that replacing SB with standing,
walking, and hard labor was significantly positively associated
with eGFR and negatively associated with CKD. These findings
suggest that modification of daily life activity has a preventive
effect on kidney function decline in the general population, and
the effect may be most pronounced in men.

The mechanisms underlying the associations of MVPA and SB
with eGFR are multifactorial and have not been fully clarified. A
study reported that inflammation, oxidative stress, and endothelial
dysfunction are inversely associated with eGFR.38 Sedentary
behavior can lead to overweight and obesity, where the
accumulation of adipose tissue can induce inflammation and
oxidative stress.39 However, physical activity has been shown to
reduce inflammation and oxidative stress in both the general
population and patients with CKD.11 We previously reported the
presence of an inverse correlation between daily physical activity
and levels of circulating inflammatory cytokines, including
interleukins40 and urine 8-hydroxydeoxyguanosine, as an index
of whole-body oxidative stress.41 Further, while prolonged SB
markedly reduces micro- and macrovascular dilator function,42

these impairments can be improved with walking.43 Thus,
physical activity is expected to have protective effects on renal
function.

We found significant interactions between MVPA and sex for
CKD in this study. Gender-dependent incidence and progression
of chronic renal disease have been observed in previous
epidemiological studies, which suggested that sex hormones

may have an effect on renal structure and function.44 One study
reported that estrogen has pleiotropic effects on various cell types,
including renal cells, and that ovarian hormones have a protective
effect against renal aging.45 We thus speculate that the protective
effects of female hormones may explain the lower protective
effects of MVPA on CKD in women.

Given that comorbidities, such as obesity, diabetes, and
hyperlipidemia may affect the impact of MVPA and SB on
eGFR and CKD, adjustments for these comorbidities may have
resulted in over-adjustment bias. However, small changes in the
regression coefficients of eGFR and OR of CKD after adjustment
in model 3 suggest that these factors are not mediators, and that
MVPA and SB are associated with renal function independent of
these comorbidities.

Compared to individuals whose sedentary time was <7 hours,
individuals whose sedentary time was ≥10 hours had about 40%
higher adjusted OR of CKD. Meanwhile, isotemporal substitution
analysis showed that replacing 1 hour of SB with 1 hour of
standing, walking, and hard labor led to 5% lower OR of CKD
and significantly higher eGFR values of 0.32mL/min/1.73m2

(95% CI, 0.27–0.37), 0.22mL/min/1.73m2 (95% CI, 0.16–0.29),
and 0.42mL/min/1.73m2 (95% CI, 0.35–0.50), respectively.
These results suggest that replacing SB with not only hard labor
but also standing can provide a significant benefit to kidney
function.

A strength of this study is that we evaluated the effect of
MVPA and SB not only on CKD risk but also on eGFR in healthy
individuals. Most previous studies have used data from CKD
patients and evaluated CKD progression. To our knowledge, this
is the largest study to examine kidney function in the general
population using isotemporal substitution analysis with adjust-
ment for multiple potential confounders. We had few missing
data, and multiple imputations analysis using the chained
equation method produced comparable results to those using
the original dataset (data not shown).

However, this study also has several limitations. First, due to
its cross-sectional nature, causal relationships of MVPA and SB
with kidney function could not be evaluated in this study,

Table 4. Single factor model and isotemporal substitution model examining the associations of sedentary behavior, standing, walking,
and hard labor with estimated glomerular filtration rate and chronic kidney disease

Sedentary behavior Standing Walking Hard labor

eGFR Model β (95% CI) β (95% CI) β (95% CI) β (95% CI)

Single factor model −0.30 (−0.33 to −0.28) 0.37 (0.33–0.42) 0.33 (0.27–0.38) 0.45 (0.40–0.52)
Isotemporal substitution model
Replace 1 hour of sedentary time with other behavior Dropped 0.31 (0.27–0.36) 0.21 (0.15–0.27) 0.39 (0.33–0.45)
Replace 1 hour of standing time with other behavior −0.31 (−0.36 to −0.27) Dropped −0.10 (−0.18 to −0.02) 0.08 (0.02–0.14)
Replace 1 hour of walking time with other behavior −0.21 (−0.27 to −0.15) 0.10 (0.02–0.18) Dropped 0.18 (0.09–0.27)
Replace 1 hour of hard labor time with other behavior −0.39 (−0.45 to −0.33) −0.08 (−0.16 to −0.01) −0.18 (−0.27 to −0.09) Dropped

CKD Model OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Single factor model 1.04 (1.04–1.05) 0.95 (0.94–0.96) 0.95 (0.94–0.97) 0.97 (0.94–1.00)
Isotemporal substitution model
Replace 1 hour of sedentary time with other behavior Dropped 0.96 (0.94–0.97) 0.96 (0.94–0.97) 0.97 (0.95–0.99)
Replace 1 hour of standing time with other behavior 1.05 (1.03–1.06) Dropped 1.02 (0.99–1.04) 1.00 (0.98–1.02)
Replace 1 hour of walking time with other behavior 1.03 (1.01–1.05) 0.99 (0.96–1.01) Dropped 0.98 (0.96–1.01)
Replace 1 hour of hard labor time with other behavior 1.05 (1.03–1.07) 1.00 (0.98–1.02) 1.02 (0.99–1.04) Dropped

CI, confidence interval; CKD, chronic kidney disease; OR, odds ratio. Bold values indicate P < 0.05.
Adjusted for age, sex (for all), study site, educational level (≤12 years or >12 years), current smoking (yes or no), alcohol consumption (g/day), history of
hypertension (yes or no), history of hyperlipidemia (yes or no), history of diabetes (yes or no), body mass index (quartile).
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although a recent prospective study revealed that a greater
number of sedentary workers developed CKD than workers who
stood or walked at work.46 Physical activity may be lower and SB
may be longer in individuals with reduced eGFR with muscle loss
in renal disease.47 To minimize the potential of reverse causality,
we excluded individuals who had a history of renal disease.
Second, assessment of physical activity was based on self-report,
which may be associated with some degree of misclassification.
However, such misclassification may be non-differential and
may have little attenuation on the true associations. Consistent
with our results, a recent study that assessed PA using an
accelerometer found that replacing SB with MVPA may benefit
renal health.23 Third, CKD was defined according to eGFR only,
and was not linked to proteinuria or duration of kidney function
decline. Because we defined CKD as eGFR <60mL/min/1.73
m2, which is representative of stage 3a CKD or higher,35 the
effect of MVPA and SB on earlier stages of CKD remains
unclear. Fourth, unmeasured residual confounding must be
considered when interpreting the results. For example, frailty
status may be associated with both SB and renal function and
may have confounded the association between these factors.
Finally, selection bias may have occurred through data cleaning.
Subjects included this analysis were healthier than those who
were excluded. In fact, prevalence of CKD was 8.6% in this
study, which is lower than that found for representative popula-
tions of Japanese in this age group.48,49 The healthy volunteer
effect may have affected the true associations, and our results may
not be generalizable to other age or ethnic groups.

Conclusion
We found that insufficient MVPA and longer SB were
independently negatively associated with eGFR and positively
associated with OR of CKD in Japanese men and women.
Theoretically, replacing SB with daily life activity was estimated
to lead to higher eGFR and lower OR of CKD in the general
population, a finding that may be most pronounced in men. A
longitudinal study is needed to confirm our findings.
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