
1 

Depth estimation of pipe wall thinning using multifrequency reflection coefficients of 

T(0,1) mode-guided waves with supervised multilayer perceptron 

Ryujin Katsuma1), Koki Tada1), Tomoya Iriguchi1), Kotaro Seno1), Shinsuke Kondo1), 

Masashi Ishikawa1), Motoki Goka2), and Hideo Nishino1)* 

1) Tokushima University

2) Mitsubishi Chemical Co. Ltd.

* Corresponding author: hidero.nishino@tokushima-u.ac.jp

R Katsuma, K Tada, T Iriguchi, K Seno, S Kondo, M Ishikawa, M Goka, H Nishino, Depth estimation of pipe wall thinning using multifrequency 
reflection coefficients of T(0,1) mode-guided waves with supervised multilayer perceptron, Structural Health Monitoring.
Copyright © 2024 The Author(s). DOI: 10.1177/14759217241249240.



 2 

 

 

 

Depth estimation of pipe wall thinning using multifrequency reflection coefficients of 

T(0,1) mode guided waves with supervised multilayer perceptron 

 

 

 

 

 

 

Keywords: Ultrasonic testing, guided wave, pipe wall thinning, artificial intelligence, 

supervised machine learning, multilayer perceptron. 

 

 

 

 

  



 3 

Abstract 

This study entailed the development of a novel method for estimating the depth of 

wall thinning of pipes using multifrequency (30–65 kHz) reflection coefficients (MRCs) 

of the T(0,1) mode guided waves and a multilayer perceptron (MLP). First, this study 

established why MRCs are a critical feature of the input layer of the MLP for the defect 

depth estimation of wall thinning. Further, a mathematical model that can quickly collect 

large amounts of training data was used to calculate the reflection waveforms. The depths 

of artificial and actual wall thinning were estimated using the MLP based on the MRCs 

and the mathematical model. Experiments were conducted using the T(0,1) mode guided 

waves to obtain the MRCs for 21 artificial and 6 actual wall thinnings to estimate the 

defect depths. A maximum of 8347 training data points were prepared using the 

mathematical model. Because the optimization of the MLP strongly depended on the 

initial weights and biases, 100 random initial values were prepared to evaluate the average 

estimations and their standard deviations. The classification scheme of the MLP was used, 

with classification step widths of 0.5 and 0.25 mm. The correct answer rates for the 21 

artificial defects were 93% with a tolerance of ±0.5 mm for the 0.5 mm classification 

scheme; those for the 0.25 mm classification scheme were 89%. For the six actual defects, 

the correct answer rates were 100% with a tolerance of ±0.5 mm for both the 0.5- and 

0.25 mm classification schemes. Sufficiently high correct answer rates were obtained in 

all the cases. 
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1. Introduction 

Guided wave inspection has been anticipated for the structural health monitoring 

(SHM) of piping in industrial and social infrastructures because it can cover long 

inspection ranges owing to its intrinsic capability of long-range propagation. One hundred 

meter propagation in actual chemical plant piping through butt welds and supports has 

been reported [1]. Guided wave theory was introduced [2] in 1959, and its first 

experimental verifications, notably in the dispersion relationships of the lowest two 

fundamental modes (the T(0,1) and T(0,2) modes), were conducted [3] in 1963. Several 

basic characteristics of guided waves in piping have revealed that the generation and 

detection efficiencies of the two lowest fundamental modes are similar to those of the 

Lamb waves in a plate [4]. Monographs [5,6] and textbooks [7] describing guided waves 

have been published. 

SHM is fundamentally and conceptually different from nondestructive testing (NDT). 

SHM aims at real-time in-service automatic (without human judgments) diagnosis of the 

infrastructure; in contrast, NDT involves manual measurement and human assessment [8]. 

SHM generally requires three steps. These include (1) sensing and data collection using 

general-purpose signal processing, (2) feature extraction and selection, and (3) machine 

learning and assessment. In SHM, using a guided wave, time-domain signals are 

generally acquired using a piezoelectric sensor [9] or a magnetostrictive sensor [10] in 

step (1). These sensors are the de facto standards for transmitting and receiving guided 

waves for piping. After the aforementioned sensing process, noise reduction, envelope 

processing, frequency-domain signal processing, or a combination of these is applied to 

the received signals as part of step (1). Step (2) extracts and selects critical features to 

feed into the input layer for machine learning. However, among the features embedded in 
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the observed signals, the ones that are optimal for estimating the depth of wall thinning 

have not been identified. Hence, numerous approaches have attempted to identify critical 

features for extraction and selection. Time- and frequency-domain amplitudes, RMS, and 

their variances have been used in previous studies [11–14] as features for estimating the 

depth of wall thinning. In addition to the depth estimation of wall thinning, wavelet- or 

Hilbert-envelope time-domain signals have been widely used to estimate defect locations. 

These are simple methods for empirically determining critical features from well-known 

wave characteristic parameters. Genetic algorithms (GA) [15, 16] have also been utilized 

to extract and select critical features. The GA, which mimics the biological process of 

acquiring superior genes through generational change, is an optimizing method for 

obtaining the critical combination of features using selection, crossover, and mutation. 

Another important approach is to utilize matching pursuit (MP) [16–19], which is a 

greedy method for obtaining sparse signal representation (SSR) in an overcomplete 

dictionary. An overcomplete dictionary is a group of features that contain duplicate 

information. An SSR can be read as a representation containing only a few critical features 

in an overcomplete dictionary [20]. The extraction and selection of critical features using 

empirical and data-driven approaches (GA and MP) were used to determine the input data 

structure for the machine learning algorithm (MLA). Finally, in step (3), the MLA is 

applied to automatically estimate the wall thinning of the defect and other defect 

parameters [11-19]. Previous studies have demonstrated the significant potential of 

combining MLA and guided wave signals, yielding successful results. However, existing 

studies have focused on simple notched or slit geometries as defects without considering 

any variety of axial elongations. The actual wall thinning in piping typically involves 

gradual thinning, wherein the depth and axial extents of the thinning progress 
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simultaneously with the deterioration. When the depth and axial extents of wall thinning 

progress simultaneously, the signal amplitude does not increase linearly with the depth 

[21–26]. As such, it would be difficult to achieve an accurate estimation of defect sizing, 

even using the MLA. In this type of wall thinning, the signal amplitude of the guided 

wave changes as the axial length changes, even if the depth of the wall thinning is constant 

(Section 2). Experimental and theoretical observations indicate that the nonlinear 

relationship between the actual wall thinning and its signal amplitude depends primarily 

on the axial length of the wall thinning and is determined by the interference between two 

wave packets reflected from the front and rear ends of the wall thinning [21–25]. For 

example, realistic wall-thinning scenarios, such as those considering expansions in the 

axial and thickness directions, were excluded from the dataset due to challenges 

associated with size determination [14]. This is probably the main reason why the 

aforementioned studies were limited to simple notched or slit geometries. 

This study proposes a novel method that uses a multilayer perceptron (MLP) with 

guided wave signals to estimate the depth of wall thinning in realistic defects that progress 

simultaneously in the axial and depth directions. This study showed that the depth of the 

wall thinning could be estimated using multifrequency reflection coefficients (MRCs) as 

a dataset for the input layer of the MLP. The importance of the MRCs for the depth 

estimation of realistic wall thinning is explained in Section 2. The cross-sectional loss 

(CSL) is widely used as an indicator of pipe deterioration. However, there can be high-

risk pitting and low-risk shallow wall thinning at the same CSL value. Therefore, this 

study aimed to determine the maximum wall thinning depth, a field-required indicator. 

This study presents a mathematical model [24, 26] used to obtain training data for a 

supervised machine learning system. The basic idea of the mathematical model is that the 
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reflection and transmission coefficients of the waveguide depend on the changes in the 

cross-sectional area of the medium [27]. The mathematical model used in this study can 

calculate the reflected waveform from any defect shape distributed axially along the pipe. 

In previous studies, the finite element method (FEM) was widely used to generate training 

data. However, FEM requires considerable time and is unsuitable for collecting training 

data. Regarding FEM or experimental data, the amount of training data for a supervised 

machine learning system has been limited from 10 to less than 100. Section 3 presents the 

details of the mathematical model and compares its calculation results to those of the 

large-scale FEM calculations. Section 4 presents the details and results of the guided wave 

experiments on artificial circular defects. The details of the MLP used in the verification 

and estimation results are also presented. Artificial circular defects are artificially created 

defects that mimic the shape of an actual thinning wall that partially emerges on a pipe 

surface. In Section 5, depth estimations using the MLP were demonstrated for six actual 

wall thinning in a chemical plant. In this study, a classification scheme was applied to the 

MLP. An important hyperparameter is the dropout rate for the MLP input layer, which is 

sensitive to the correct answer rate. This issue is discussed in Section 6. Section 7 presents 

the conclusion. This paper presents one of the first instances of the automatic estimation 

of actual wall thinning depths in 2B pipes, thereby achieving high accuracy through the 

application of an MLP. 

 

2. MRCs as critical feature for MLP 

This section explains why the MRCs are a critical feature for estimating the depth of 

wall thinning and why they are suitable as the input layer of the MLP. Using the shear 

horizontal (SH) plate wave as an example, the guided wave reflection phenomena are 
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described, especially highlighting the relationship between the defect length (concerning 

the propagation direction), the guided wave’s reflection coefficient, and its frequency. The 

content concerning wave phenomena presented in this section is based on Figures 9 [21] 

and 14 [22] from original studies by Demma et al. Given its direct relevance to the current 

study, a concise overview is provided in this section. 

The reflection coefficient of the SH-plate wave reflected at the rectangular notches as 

a function of the notch length in the propagation direction is shown in Figure 1(a). The 

notch depths for all the results were uniform, corresponding to 30% of the plate thickness. 

Two-dimensional (2D) FEM was used to obtain all the results (frequency=40 kHz and 

shear wave velocity=3120 m/s). The 2D FEM calculations were performed using 

ComWaveTM (Ito-chu Techno Solutions Inc.) [28, 29]. The mesh geometry is square, each 

side is 0.5 mm long, and the total mesh count is 35880. The output of the simulation is 

wave displacement. The time-domain signals at notch lengths of 20 mm, 30 mm, and 40 

mm are shown in the inset in Figure 1(a). The figure shows that the reflection coefficient 

varies considerably and is sometimes close to zero, even though the depth is the same. 

This suggests that it is impossible to quantify wall thinning with guided waves and that 

the presence of wall thinning may not even be detected. However, the aforementioned 

phenomenon occurs only for a single frequency. Figure 1(b) shows the reflection 

coefficient as a function of the frequency for a constant notch length of 40 mm. The inset 

in Figure 1(b) shows the time domain signals for three different frequencies. Using 

multiple frequencies can confirm the existence of non-zero reflection coefficients, thereby 

suggesting the possibility of quantitative measurements. Figure 2 shows 9 graphs of the 

reflection coefficient versus the frequency for different notch depths and lengths. Each 

graph was aligned horizontally with 20, 30, and 40 mm notch lengths and vertically with 
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10, 20, and 30% thinning depths to the wall thickness. The maximum reflection 

coefficients for the same notch depth remained unchanged, even when the notch length 

changed. In contrast, the maximum (even if the frequency at which the maximum value 

is taken changes) increased with the thinning depth. This is why we used MRCs as the 

input layer of the MLP, as they contribute to robust wall-thinning estimations for any 

defect length. 

 

3. Mathematical model for calculating reflection signals at wall thinning 

A large amount of high-quality training data is required to achieve high-accuracy 

supervised machine learning. However, obtaining these training data under various 

experimental conditions is almost impossible. In many previous studies, training data 

were obtained using the FEM. However, recent research has been limited to 

approximately 100 cases. This is because a large-scale FEM requires substantial 

computing power, thereby requiring a considerable amount of computing time. To solve 

the aforementioned problem, a mathematical model [24, 26] was used to calculate the 

waveform reflected from wall-thinning regions. Using this model, waveforms reflected 

at defects under different conditions can be obtained in large quantities at high speeds. 

The basic idea behind the mathematical model is that the reflection and transmission 

coefficients in the waveguide depend on changes in the cross-sectional area of the 

medium [27]. 

This section presents the mathematical model used to calculate the waveform 

reflected at wall thinning of an arbitrary shape. As is well known, the reflection and 

transmission at the boundary between the two bulk materials are represented by a specific 

acoustic impedance. Conversely, the reflection and transmission of the guided wave are 
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caused by the loss of its propagation medium. The reflection and transmission coefficients, 

𝑅!,#  and 𝑇!,# , respectively, at an area change (from 𝐴!  to 𝐴# ) of the propagation 

medium can be represented [27] using the characteristic acoustic impedances (𝑍! =

𝐴!𝜌𝑐$ and 𝑍# = 𝐴#𝜌𝑐$) instead of the specific acoustic impedances, as follows: 

 𝑅!,# =
%!&%"
%"'%!

= (!&("
("'(!

, 𝑇!,# =
)%!
%"'%!

= )(!
("'(!

,   (1) 

where 𝜌 and 𝑐$ are the density and shear wave velocity of the medium, respectively. In 

other words, the reflection and transmission coefficients can be represented using only 

their respective areas. Although the aforementioned calculation is for a single gap, the 

reflection waveform 𝑢(𝑡)  for an arbitrary thinning shape can be expressed using 

Equation (2) (Figure 3) [24, 26]. This equation can be obtained by dividing the wall-

thinning extent into microregions and summing their corresponding transmission and 

reflection coefficients, as expressed in Equation (2). The number of microregions, 

including those before and after wall thinning, was 𝑁. 

 𝑢(𝑡) = ∑ ./∏ 𝑇*,*'# · 𝑇*'#,*+&#
*,# 2𝑅+,+'#𝑒)-+.∆0𝑒&-1$42&#

+,# ,  (2) 

where i, 𝑘, ∆𝑧, 𝜔, and 𝑡 represent the imaginary number, wavenumber of the guided 

wave, length of the microregion, angular frequency, and time, respectively. Here, 

∏ = 1!
# . The amplitude of the incident wave was set as one. In Equation (2), the multiple 

reflections within the microregion and group of microregions are omitted as they are 

insignificant. 

Because the mathematical model is a 2D model and is a method for calculating 

the waveform based on the distribution of the cross-sectional area change owing to wall 

thinning along the axial direction of the piping, information on the circumferential 

distribution of the defect is not included in the mathematical model. The reduction in the 

computation time is advantageous relative to the FEM. Although the calculation speed 
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was advantageous, it was slightly less accurate. Although the computed values of the 

mathematical model are inevitably less rigorous, they are conversely generalized or 

abstracted, which could be beneficial for the MLP training data. To evaluate the accuracy 

of the mathematical model, the 2D reflection coefficients calculated using the 

mathematical model were compared to those using the 3D FEM. The software [28, 29] 

used to calculate the 3D FEM was the same as that used for the 2D calculations in the 

previous section. The mesh geometry was cubic with a side length of 0.5 mm. The total 

number of meshes was approximately 22.3 million. The mathematical model was 

implemented in python. The step size for axial discretization (∆𝑧) was set to 0.5 mm for 

the calculations. The wall-thinning shape for the verification is an artificial circular defect. 

Figure 4 shows photographs of the artificial circular defect on the 60.5 mm outer diameter 

and 3.9 mm thick steel pipe (2B Schedule 40) used in the laboratory tests and the 

geometry of the circular defect. Here, the parameter d represents the maximum depth, and 

r is the radius of the circular defect (see Figure 4). The parameter r is a quantity related to 

the axial extent of the wall thinning. The larger the r, the wider the wall reduction in the 

axial direction. In Figures 5(a)–5(i), the reflection coefficients calculated using the 3D 

FEM and mathematical model are shown for defect circular radii of 50, 100, and 200 mm 

and depths of 1, 2, and 3 mm. To quantitatively evaluate the difference between the two 

calculations, Equation (3) was used: 

Difference = #
34
∑ |678(:)&8<$=(:)|

678(:)
4>
:,3! ,    (3) 

where 𝐹𝐸𝑀(𝑓) and 𝑀𝑎𝑡ℎ(𝑓) are the calculated reflection coefficients based on the 

FEM and mathematical model, respectively, and 𝑓  represents frequency. Every 

evaluated value (percentage difference) is described in each graph of Figure 5. As shown 

in the figure, the difference increases with an increase in the radius of the circular defect. 
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The average differences for the three depths at the circular radii r = 50 mm and 100 mm 

are 11% and 21%, respectively. Hence, they are relatively close. Contrarily, when the 

circular radius r is 200 mm, the average difference reaches 46%. Unfortunately, the value 

is significant. This is because the FEM is a 3D model, and the mathematical model is a 

2D model. Despite the aforementioned differences in the absolute values, there exist some 

similarities in the frequency characteristics of the reflection coefficients. In results (f), (h), 

and (i), the two calculations show similar characteristics, such as a relatively large 

reflection coefficient in the low-frequency region, which decreases toward the high-

frequency region and peaks again. Finally, the engineering usefulness of the mathematical 

model must be evaluated using the estimation results of the MLP with the training data 

obtained from the mathematical model. This is particularly important when large amounts 

of training data are difficult to collect. The MLP evaluation results presented in later 

sections show accurate results in the cases for the circular radii r=50 mm and 100 mm. In 

comparison, the MLP with cases for the circle radius r=200 mm is rated high enough, 

although it is slightly lower. 

 

4. Verification using artificial circular defects 

4-1 Experiments 

This section presents the experimental verification of the depths of artificial 

defects estimated using the MLP with the MRCs of the T(0,1) mode guided waves. A 

piezoelectric dry-coupled transducer [9] was used to generate and detect the T(0,1) mode 

guided waves. The sensor ring is manufactured in the laboratory and is made of aluminum 

alloy. It comprises nine shear vibration sensor elements that are installed evenly around 

the circumference of the pipe as one set. Two sets of them are supported on the sensor 
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ring and installed at 20 mm intervals in the axial direction of the specimen pipe. The 

selective transduction of the forward or backward propagation direction of the pipe was 

realized using the appropriate time-delay control of the input signals between the two 

sets; 4-cycle tone burst signals were used as the input waveforms. The frequencies of the 

T(0,1) mode guided waves ranged from 30–65 kHz in steps of 1 kHz. The 60.5 mm outer 

diameter and 3.9 mm thick steel pipes (2B Schedule 40) with artificial circular defects 

were prepared for evaluation. The photographs and geometries of the artificial circular 

defects are shown in Figure 4. The experiments were conducted separately at two different 

times. In the first experiment, three different wall thicknesses (1.0, 2.0, and 3.5 mm) were 

prepared, and in the second, finer 0.5 mm steps of 3.5 mm. A lathe was used to create 

artificial circular defects with three different circular radii (r=50, 100, and 200 mm) on 

the specimen pipes. Eighteen different artificial circular defects were created, and the 

MLP was evaluated by estimating the defect depths. 

The frequency variation (30‒65 kHz) of the RF time-domain signals observed at 

the artificial circular defect (defect radius r=50 mm and depth d=2.5 mm) is represented 

as a typical signal, as shown in Figure 6. At every frequency, the launch signal is observed 

at 0.0 ms and the defect signal at approximately 0.5 ms. At around 65 kHz, ringing signals 

that extend after the launch signals can be observed. These signals are caused by the 

resonance of the circumferential Lamb waves generated just below the sensor. The 

mechanism of the resonant phenomena and its experimental verification have already 

been revealed in previous studies [30, 31]. The phenomenon principally depends on the 

number of sensor elements located evenly on the circumference [30, 31]. This spurious 

resonance is unwanted when detecting wall thinning, and it occurs in all of the present 

experiments because of its sensor dependence. For this reason, the upper limit of the 
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frequency range in all the experiments used here was set to 65 kHz. These spurious 

ringing signals can also be seen in the time domain signals shown in Figure 15. The 

reflection coefficients for the 6 defect depths (d=1.0~3.5 mm) as a function of the 

frequency are shown for the three circular radii (r=50, 100, and 200 mm) of the defects, 

as shown in Figures 7(a)–(c). In the low-frequency region, the deeper the defect or the 

smaller the defect radius, the larger the reflection coefficient. Contrarily, in the high-

frequency region, the reflection coefficient tends to be smaller than that in the low-

frequency region. Furthermore, it can be confirmed that the reflection coefficients 

sometimes switch between large and small values depending on the frequency. As shown 

in a later section, these phenomena have also been confirmed in actual wall thinning. 

 

4-2 MLP details and training data preparation 

Verifications were performed separately on the two MLP structures using the 0.5 

mm step classification scheme (9 categories) and 0.25 mm step classification scheme (17 

categories). The network architecture of the MLP for the 0.5 mm step classification 

scheme is illustrated in Figure 8. Four hidden layers are used. The input layer received 

the reflection coefficients of 36 frequencies (30–65 kHz). Regarding the input layer of 

the MLP, the frequency interval is 1 kHz in all the cases. These intervals were set 

relatively finely, although setting them sparsely may be necessary from a practical 

standpoint. This valid option contributes to simplicity and measurement speed in the field. 

Further study is needed for future work. In the 0.5 mm step classification scheme, the 

depth of the wall thinning was classified into 9 categories: 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 

3.5, and 3.9 mm. The 0.25 mm step classification scheme was classified into 17 categories, 

including 0.0–3.75 mm in 0.25 mm steps, along with 3.9 mm. The network architecture 
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parameters for both schemes are presented in Table I. Among the hyperparameters, the 

dropout rate to the input layer had a significant influence [32] on the estimation results. 

The backpropagation procedure was applied to the MLP to optimize the weights and 

biases of all the perceptrons using the Adam optimization algorithm [33]. The Adam 

hyperparameters are presented in Table III. The Adam parameters used here are the same 

as those recommended as the default values in the original study [33]. 

The training data were prepared separately for the 0.5 and 0.25 mm step 

classification schemes. The change in the cross-sectional area in the axial direction owing 

to a circular defect formed on the surface of a steel pipe with an outer diameter of 60.5 

mm and wall thickness of 3.9 mm was calculated, from which the reflection waveform 

was finally calculated using Equation (2). The training data were prepared for artificial 

circular defects with radii ranging from 10–500 mm in 1 mm steps. The defect depths 

were the same as the depths used in the classification steps for the two classification 

schemes. The total training data for the 0.5 and 0.25 mm step classification schemes were 

4419 and 8347 pieces, respectively. Each training dataset contained the reflection 

coefficients for 36 frequencies. As the number of classification steps increases, the 

required training data also increases. However, the mathematical model can rapidly 

calculate the training data, which addresses the increase in the training data. This is an 

advantage of the method that uses the mathematical model. 

As presented in Tables I and II, dropout [32] was applied to the MLP. The dropout 

rate applied to the input layer contributed considerably to the correct answer rate, which 

is discussed in detail in the Discussion section. The initial values of the connection 

weights and biases for all the perceptrons are set randomly before applying the 

backpropagation procedure to optimize their values. The accuracy of the supervised 
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machine learning is strongly based on the initial weights and biases. Therefore, in our 

approach, the estimation results have been validated using 100 randomly generated initial 

values. The mini-batch method (mini-batch size of 350) was used for the Adam 

optimization procedure. 

 

4-3 Estimation results 

Figures 9(a) and (b) show the accuracy and loss versus the epoch for the artificial 

circular defects in terms of the 0.5 mm classification scheme, respectively. The blue lines 

in Figures 9(a) and (b) indicate the training accuracy and loss calculated using the training 

datasets computed using the mathematical model. The orange lines indicate the accuracy 

and loss (hereinafter referred to as test accuracy and test loss, respectively) calculated 

using all the MRCs obtained by the experiments of the 18 circular defects. A green line, 

as shown in Figure 9(a), shows the accuracy for defect depth with ±0.5 mm tolerance. 

The orange and green lines are accompanied by pale areas above and below them. These 

areas indicate the range of plus/minus one sigma obtained during 100 optimization trials 

for the weights and biases of the MLP from random initial values. The training accuracy 

and loss depicted by the blue lines also have pale areas, although they are too narrow to 

be seen in each graph. The solid line indicates the average value of each. Generally, some 

parts of the training data are split and used for validation calculations of the MLP. 

However, the experimental reflection coefficients were used as the validation data for 

network optimization to involve them in the optimization. We used the experimental 

reflection coefficients not only for defect depth estimation but also to validate the MLP. 

In other words, all the experimentally obtained MRCs were also used as validation data 

to determine the optimum epochs when the validation loss was minimized. As shown in 
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Figures 9(a) and (b), the training accuracy and loss monotonically increase and decrease, 

respectively, as the number of epochs increases. The test loss reached a minimum of 1.51 

at 268 epochs. At 268 epochs, the test accuracy was 0.56, while the 0.5 mm tolerant 

accuracy was 0.94. After 268 epochs, the 0.5 mm tolerant accuracy slightly decreased, 

although high scores (>90%) were attained. Conversely, the test loss increased slightly 

with an increase in the number of epochs. This resulted in a gradual overfitting after 268 

epochs. Figures 10, 11, and 12 show the classification results at 268 epochs for the 

experimental circular defects with radii of 50, 100, and 200 mm, respectively. The 

experiments were conducted using two different thinning steps. Each is indicated as Exp. 

1 and Exp. 2 in the legends of Figures 10–12. The red vertical line in each graph indicates 

the correct defect depth. The error bars in each result indicate plus/minus one sigma for 

100 estimation trials with random initial weights and biases. Because it is possible to 

confirm cases wherein the standard deviation is relatively large, in actual cases, two 

approaches can be applied: (1) the average estimate of at least ten trials may be obtained 

and evaluated in the actual operation, or (2) the optimal initial value obtained in advance 

may be used as transition learning. The estimation results for all the 27 separate 

experiments for the 18 different artificial circular defects are presented in Table IV. The 

overall percentages for the correct answers were 63% and 93% in ±0.5 mm tolerance, 

respectively. Overall, the estimated results generally corresponded with the correct depths 

of the artificial circular defects. In the ±0.5 mm tolerance, 100% correct answer rates were 

obtained in both cases for the defect circular radii of 50 and 100 mm. However, the correct 

answer rate for the 200 mm radius circular defects shows a high 7/9 (78%) in the 0.5 mm 

tolerant accuracy but a relatively poor 5/9 (56%) for the exact matches. As shown in 

Figure 5, the reflection coefficients as represented by the mathematical model do not 
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exactly correspond with the results of the FEM calculations especially for the 200 mm 

radius circular defects. This accounts for the relatively low estimated results. Further, the 

experimental reflection coefficients were relatively small in the circular defect with a 

radius of 200 mm than the other two circular defects (Figure 7), which may also have 

resulted in the aforementioned results. 

Regarding the 0.25 mm classification scheme, the minimum loss was 2.06 at 136 

epochs. At 136 epochs, the accuracy was 0.34, while the 0.25 and 0.5 mm tolerant 

accuracies were 0.73 and 0.90, respectively. Figure 13 shows the classification results of 

the 0.25 mm classification scheme with a circular radius of r = 50 mm at 136 epochs. The 

estimation results for all the evaluations are presented in Table IV, together with the results 

of the 0.5 mm classification scheme. The overall correct answer rates are 48%, 78% in 

±0.25 mm tolerance, and 89% in ±0.5 mm tolerance, respectively. The exact match result 

is low, but this is inevitable due to the increase in the number of classification steps. The 

estimation results fairly corresponded with the correct depths, notably in ±0.25 and ±0.5 

mm tolerances. 

Compared to the 0.25 mm and 0.5 mm classification schemes (Figures 10 and 13), 

the positions of the peaks and the spreads of the distributions are considerably similar. In 

other words, although the overall correct answer rate is high, the correct answer rate is 

relatively low when the defect circular radius is 200 mm in the 0.25 mm classification 

scheme. This is the same reason described in the 0.5 mm classification scheme results. 

 

5. Verification for actual defects of chemical plant piping 

5-1 Actual defects and MRCs 

In this section, the MLP is applied to 6 corrosion defects that are rusted on the 



 19 

pipes of a chemical plant, and the estimation results of the defect depths are presented. 

The pipes are all 60.5 mm in outer diameter and 3.8 mm in wall thickness (2B SGP). The 

6 corrosion defects are observed on the outer surface of the pipes. The 3D shapes of the 

6 corrosion defects measured using a 3D laser scanner are shown in Figures 14(a)–(f). 

The maximum defect depths were 1.3, 1.5, 1.9, 2.1, 2.9, and 3.8 mm, respectively. The 

3.8 mm depth implies a through-thickness hole. Four of the 6 defects (defect depths: 1.3, 

1.9, 2.1, and 3.8 mm) were identified as single isolated corrosions. In the case of the 2.9 

mm thinning depth, the 5 relatively large corrosions were clustered densely in a small 

area (approximately 40 mm in axial width), as shown in Figure 14(e). The last one, shown 

in Figure 14(b), has a maximum depth of 1.5 mm and is thinly distributed over a wide 

area. The distribution of fine corrosion clusters with large corrosion was confirmed in all 

the actual samples. The vertical axis in each graph indicates the circumferential location 

of the pipe, and the horizontal axis represents the axial distance from the piezoelectric 

dry-coupled transducer to the corrosion. The distances between the deepest point of 

corrosion and sensor location were 590, 970, 670, 490, 1355, and 980 mm (in decreasing 

order of the wall-thinning depth). 

Guided wave experiments were performed to obtain the MRCs for the 6 actual 

corrosions. The tone burst signals were used to generate the T(0,1) mode guided waves, 

and the frequency range was from 30–65 kHz (1 kHz steps), which was the same as that 

used in the experiments for the artificial circular defects described in Section 4. The RF 

time-domain signals of the three corrosions (the maximum depths are 1.5, 2.1, and 3.8 

mm) are shown in Figure 15. Each graph in Figure 15 represents a time-domain signal 

from a frequency of 30–65 kHz, which is arranged from bottom to top. The observed 

defect signal was normalized to the reflection signal at the end of the cutout piping to 
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obtain the reflection coefficient of the defect. The reflection coefficients for the two 

separate experiments for each of the 6 corrosion types as a function of frequency are 

shown in Figure 16. The reflection coefficients of the two deepest corrosions (d=3.8 mm 

and d=2.9 mm) were relatively high and easily distinguishable from those of the other 4 

corrosions. For the latter group, which is smaller in size, the reflection coefficients for the 

deeper two corrosions (d=1.9 mm and d=2.1 mm) are larger than those for the shallower 

two (d=1.3 mm and d=1.5 mm) in the frequency range below 37 kHz. Above this 

frequency, the magnitudes of these coefficients are almost reversed. As highlighted in 

Section 2, this variability indicates the challenges in evaluating the depth of wall thinning 

using a single frequency. The MRCs obtained in this study were used as input signals for 

the MLP to estimate the defect depth. 

 

5-2 Estimation results 

Details of the MLP and other settings are the same as those of the artificial 

circular defects described in Section 4. It is intended to evaluate the versatile performance 

of this MLP by assessing artificial and actual defects in the same network architecture 

and hyperparameters (except for dropout rate). 

The accuracy and loss as a function of epoch for the 0.5 mm step classification 

scheme are shown in Figures 17(a) and (b), respectively. The blue, orange, and green lines 

in Figure 17(a) represent the training accuracy, test accuracy, and 0.5 mm tolerant 

accuracy, respectively. The blue and orange lines in Figure 17(b) represent the training 

and test losses, respectively. All the lines and those accompanied by pale-colored areas 

are the average values and their ranges of the plus/minus one sigma taken during the 100 

optimization trials (the standard deviations of the training accuracy and loss are too 
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minute to confirm, as shown in Figure 17). As described in Section 4-3, we used the 

experimentally observed MRCs not only for defect depth estimation but also for the 

validation of the MLP (it was used to determine the epoch at the minimum test loss). The 

test accuracy and loss owing to the actual defects have ideal characteristics—they are 

closer to the training accuracy and loss than those owing to the artificial circular defects, 

as shown in Figure 9. This suggests that the MLP network optimization for actual defects 

is more optimal than that for artificial circular defects; the estimation results are higher. 

It is suggested that the reflection coefficients produced by the mathematical model are 

closer to those of the actual defects rather than the artificial ones. When the number of 

epochs was 145, the test loss had a minimum value of 0.73. After 145 epochs, the test loss 

increased with the number of epochs, thereby confirming overlearning. At 145 epochs, 

the test accuracy and 0.5 mm tolerant accuracy are 0.70 and 1.00, respectively. Figures 

18(a)–(f) show the estimated probabilities for the 6 actual defects at 145 epochs. The blue 

and orange bars in each graph represent the estimated probabilities for the same defect in 

two separate experimental results (Exp. 1 and 2). The red vertical lines in all the graphs 

represent the correct answers. All the estimation results correspond well with the correct 

depths of the actual wall thinning. Table V shows that the correct answer rate is 75% and 

that within ±0.5 mm tolerance is 100% for the 0.5 mm classification scheme. 

Regarding the 0.25 mm classification scheme, the minimum loss was 2.00 at 120 

epochs. At 120 epochs, the accuracy was 0.24, and the 0.25 and 0.5 mm tolerant 

accuracies were 0.70 and 0.95, respectively. The 0.25 mm tolerant accuracy of 0.70 is 

considered sufficiently practical. The estimated probabilities resulting from the two 

separate experiments for the 6 actual defects are represented by the blue and orange bars 

in Figures 19(a)–(f). Although the average correct answer rate was low at 25%, it was 
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considerably high at 75% for the ±0.25 mm tolerance and 100% for the ±0.5 mm tolerance. 

Table V presents the correct answer rates of the two classification schemes. High correct 

answer rates were obtained except for the exact accuracy of 25% for the 0.25 mm 

classification scheme. This is simply owing to the increased number of classifications. 

The results show higher percentages of correct answers with actual defects than with 

artificial circular defects, as compared to the description in Section 4. The low 

percentages of the correct answer rates for the artificial circular defects were for the case 

with a circular radius of 200 mm for wall thinning. In Section 3, it has been shown that 

for long axial thinning, the training data computed by the mathematical model do not 

agree well with the FEM data. The high estimation results obtained for the six actual 

defects may be due to the short equivalent axial lengths of the defects. 

 

6. Discussion on dropout rate applied to input layer 

Determining hyperparameters is a challenging problem in the construction of AI. 

In the proposed MLP, one example is “linear” instead of “relu” as the activation function 

of the input layer (“relu” was used in all the other hidden layers and “softmax” in the 

output layer (Table I)). One of the most important aspects found in our trial-and-error 

process was the application of dropout to the input layer of the MLP. The correct answer 

rate is highly susceptible to the dropout rate applied to the input layer. The application of 

dropout to the input layer can be interpreted as the result of an ensemble average [32] of 

applying multiple different MLPs, which has been shown to contribute to a higher correct 

answer rate. Figure 20 shows the accuracy as a function of the dropout rate to the input 

layer for the artificial circular defects in the 0.25 mm classification scheme. The orange 

bars represent the accuracy. Red and green bars represent accuracies in the ±0.25 mm and 



 23 

±0.5 mm tolerances, respectively. The error bars represent the plus/minus one-sigma 

fluctuations for 100 trials with different initial weights and biases. The correct answer 

rate varied considerably based on the dropout rate. The accuracy changes from 0.05 to 

0.34. In the ±0.25 mm tolerance, the accuracy changes from 0.20 to 0.75. In the ±0.5 mm 

tolerance, the accuracy varies from 0.52–0.91. In this section, the importance of the 

application of the dropout rate to the input layer has been confirmed. All the dropout rates 

used the values presented in Table II. 

 

7. Conclusions 

In this study, we developed a novel method for estimating the depth of wall 

thinning using an MLP that utilizes the MRCs of the T(0,1) mode guided waves. We 

devised an MLP-based method with a remarkably high percentage of correct answers. 

MRCs are a critical feature for estimating the defect depth of the MLP. They are necessary 

in identifying the defect depth when the axial size of the defect varies. Regarding the 

collection of training data, which is an important issue for supervised AI, a mathematical 

model was proposed and used to quickly obtain large amounts of training data. Up to 

8347 different MRCs were used as training data. Quick and easy collections of large 

amounts of training data are the most important features of the mathematical model. The 

reflection coefficients of 36 frequencies (30–65 kHz) were used as the input layer of the 

MLP. Four hidden layers comprising 36, 700, 400, and 100 units were employed. Twenty-

one types of artificial wall thinning that mimic actual wall thinning and 6 types of actual 

defects, which rusted and thinned in a chemical plant, were used to estimate the depth 

using the two classification schemes with different step widths (0.5 and 0.25 mm). The 

overall correct answer rates for the 21 artificial defects were 63% with an exact match 
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and 93% with a tolerance of ±0.5 mm in the 0.5 mm classification scheme. Those for the 

0.25 mm classification scheme were 48% with an exact match, 78% with a tolerance of 

±0.25 mm, and 89% with a tolerance of ±0.5 mm. Regarding the 6 actual defects of the 

chemical plant, the overall correct answer rates were 75% with an exact match and 100% 

with a tolerance of ±0.5 mm for the 0.5 mm classification scheme, while those for the 

0.25 mm classification scheme were 25% with an exact match, 75% with a tolerance of 

±0.25 mm, and 100% with a tolerance of ±0.5 mm. Sufficiently high accuracies were 

obtained within a tolerance of ±0.25 mm both in the artificial and actual defects. The 

findings of this study confirm that the dropout rate of the input layer is considerably 

influenced by improved correct answer rates. This study has presented a pioneering case 

in the automatic estimation of actual wall thinning depths using an MLP, thereby 

achieving high correct answer rates. This method has the potential to be easily adapted 

for various pipe sizes and classification categories, thereby allowing for the efficient 

preparation of extensive training data using the proposed mathematical model. Future 

studies will aim to validate this approach with a broader range of actual wall thickness 

reductions and different types of piping beyond 2B pipes. This study provides the basis 

for an automatic wall-thinning-depth estimation method, which is well-suited for SHM. 

The present method, along with the permanently installed sensors, has the potential to 

determine minute deterioration automatically. 
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Figure Captions 

Figure 1 Reflection coefficient of a rectangular notch as a function of the notch length in 

the propagation direction when the notch depth is 30% of the plate thickness (a) 

and as a function of frequency, wherein the notch length is 40 mm (b). 

Figure 2 Nine variations in the reflection coefficients as functions of frequency. The 9 

graphs correspond with changes in the notch length, 20, 30, and 40 mm, in the 

horizontal direction and the wall-thinning ratio, 10, 20, and 30%, to wall thickness 

in the vertical direction. 
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Figure 3 Arbitrary wall thinning is divided into microregion Δ𝑧 along the axial direction. 

The waveform reflected at the wall thinning can be calculated by integrating the 

transmission and reflection coefficients at all the cross-sectional area changes 

while considering their corresponding phase advances. 

Figure 4 Pictures of the artificial circular defect (slight top view and side view), and its 

geometry determined using two parameters d and r. Here, r=200 mm and d=3.5 

mm. 

Figure 5 Reflection coefficients of the artificial circular defects calculated using the FEM 

and mathematical model. The number in each figure indicates the difference 

between the results of the FEM and mathematical model calculations. 

Figure 6 Frequency variation (30–65 kHz) of the time-domain signals observed with the 

artificial circular defect (circular radius r=50 mm and depth d=2.5 mm). The large 

signal at approximately 0.0 ms is the launch signal for each frequency. The signal 

at approximately 0.5 ms is the reflected signal at a circular defect.  

Figure 7 Reflection coefficients of the artificial circular defects for the different depths as 

functions of the guided wave frequency. Circular radii of the defects are (a) 50, (b) 

100, and (c) 200 mm, respectively. In all the cases, notably in the low-frequency 

range, deeper wall thinning results in a greater reflection coefficient, while in the 

high-frequency range, their relationship becomes more complex. These graphs 

indicate one of the reasons why defect depth estimation using guided waves of a 

single frequency is challenging. 

Figure 8 Network architecture of the MLP used in the estimations. 

Figure 9 Accuracy (a) and loss (b) as functions of the epochs for the artificial circular 

defects in the 0.5 mm classification scheme. At 268 epochs, when the loss is the 
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minimum at 1.51, the average accuracy and accuracy within ±0.5 mm tolerance 

are 0.56 and 0.94, respectively. 

Figure 10 Classification results (estimated probability vs. defect depth) of the 6 artificial 

defects in the defect radius of 50 mm in the 0.5 mm classification scheme. Two 

estimation results based on the separate experiments are represented as the blue 

and orange bars for the defects of 1.0 mm, 2.0 mm, and 3.5 mm depths, while the 

other estimations are shown as only blue bars based on the single experiments. 

Figure 11 Classification results for the 6 artificial defects in the defect radius of 100 mm 

in the 0.5 mm classification scheme. 

Figure 12 Classification results for the 6 artificial defects in the defect radius of 200 mm 

in the 0.5 mm classification scheme. 

Figure 13 Classification results (estimated probability vs. defect depth) for the six 

artificial defects in the defect radius of 50 mm in the 0.25 mm classification scheme. 

Figure 14 Defect depth distributions for the 6 actual defects thinned in a chemical plant. 

The 3D laser measurements revealed the actual defect distributions. 

Figure 15 RF time-domain signals of the multifrequency (30–65 kHz) observed for the 3 

actual defects. 

Figure 16 Frequency variation of the reflection coefficients for the 6 actual defects. Two 

separate experimental results are shown for every 6 defects. 

Figure 17 Accuracy (a) and loss (b) as functions of the epochs for the 6 actual defects in 

the 0.5 mm classification scheme. At 145 epochs, when the loss value is a 

minimum of 0.70, the accuracy and accuracy within ±0.5 mm tolerance are 0.70 

and 1.00, respectively. 

Figure 18 Classification results of the 6 actual defects in the 0.5 mm classification scheme. 
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Figure 19 Classification results of the 6 actual defects in the 0.25 mm classification 

scheme. 

Figure 20 Accuracy and accuracies within ±0.25 mm and ±0.5 mm tolerances as a 

function of the dropout rate of the input layer for the artificial circular defects in 

the 0.25 mm classification scheme. The accuracy changes significantly with the 

changes in the dropout rate. Table II summarizes the dropout rates applied to the 

input layer in this study. 

 

 

Table Captions 

Table I MLP architecture details for the 0.25 mm and 0.5 mm step classification schemes. 

Table II Dropout rate at the input layer. 

Table III Adam parameters for the network optimization. 

Table IV Summary of the estimation results for the artificial circular defects. 

Table V Summary of the estimation results for the actual defects. 



Figure 1

R. Katsuma et al

L= 20 mm

L= 30 mm

L= 40 mm

50 kHz

60 kHz

40 kHz(a) (b)



Figure 2

R. Katsuma et al



∆"

A1 A2 A3 A4 A5

˙˙˙˙˙

An

˙˙˙˙˙

An+1 AN-1 AN

Thinning region

So
un

d 
re

gi
on

So
un

d 
re

gi
on

Figure 3 R. Katsuma et al

˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙



d = 3.5 mm

r =
 20

0 m
m

3.
5 

m
m

Ci
rcu

lar
 ra

diu
s

r =
 20

0 m
m

Depth
d = 3.5 mm

Slight top view

Side view

Defect-
geometry and two parameters, r and d.

expanded

Figure 4 R. Katsuma et al



Figure 5
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Table 1

R. Katsuma et al

Dropout rate Activation No. of units

Input layer (see Table II) - 36

hidden layer 1 40% linear 36

hidden layer 2 40% relu 400

hidden layer 3 40% relu 700

hidden layer 4 0% relu 100

Output layer - softmax 9 (0.25 mm step)
17 (0.5 mm step)

Table I  MLP structure details for the 0.25 and 0.5 mm step classifications



Table 2

R. Katsuma et. al.

0.5 mm 0.25 mm

Artifical defect 0.2 0.25

Actual defect 0.1 0.25

Classification scheme

Table II  Dropout rate at input layer



Table 3

R. Katsuma et. al.

α 0.001

β 1 0.9

β 2 0.999

ε 10-8

Table III  Adam parameters



Table. 4

R. Katsuma et al

50 mm 100 mm 200 mm
±0 mm 6/9 (67%) 6/9 (67%) 5/9 (56%) 17/27 (63%)

±0.5 mm 9/9 (100%) 9/9 (100%) 7/9 (78%) 25/27 (93%)
±0 mm 5/9 (56%) 4/9 (44%) 4/9 (44%) 13/27 (48%)

±0.25 mm 9/9 (100%) 6/9 (67%) 6/9 (67%) 21/27 (78%)
±0.5 mm 9/9 (100%) 9/9 (100%) 6/9 (67%) 24/27 (89%)

Table IV

Circular radius r of aritificial defectTolerant
width

0.5-mm-classification
scheme

0.25-mm-classification
scheme

Overall percentage of
correct answers



Table. 5

R. Katsuma et al

±0 mm 9/12 (75%)
±0.5 mm 12/12 (100%)

±0 mm 3/12 (25%)
±0.25 mm 9/12 (75%)

±0.5 mm 12/12 (100%)

Tolerant
width

0.5-mm-classification
scheme

0.25-mm-classification
scheme

Overall percentage of
correct answers

Table V


