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ABSTRACT
In this study, we discuss the digital archiving of Japanese traditional puppets. We propose two
methods for extracting the puppet head shape from computed tomography (CT) images. The
first is the graph cut method, and the second is a machine learning method based on U-Net.
According to the experimental results of the extraction of puppet heads from CT images, the
U-Net-based method can extract puppet heads more accurately than the graph cut method.
Moreover, the U-Net-basedmethod can extract puppet heads withmultiplematerials. However,
the extraction of metal parts is inaccurate because of metal artefacts in the X-ray CT images and
insufficient learning data.
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1. Introduction

In recent years, the number of people engaged in tradi-
tional Japanese crafts has beendeclining.According to a
report [1], approximately 115,000 people were engaged
in Japanese crafts in 1998, however by 2017, the figure
had dropped to approximately 58,000. Therefore, an
urgent issue is how to preserve the techniques of tra-
ditional crafts and pass them on to the future. As a
solution to this problem, digital archiving has been
attracting attention.

“Digital archiving” [2] is a technique for preserving
data of object, such as three-dimensional (3D) shapes,
colour, and gloss, semi-permanently. This technique
has been studied and applied to national treasures,
important cultural properties, old documents, etc. In
the paper [2], the digital archiving of large monuments
such as Angkor Wat is introduced. In papers [3,4], the
digital archiving of rare old books is discussed.

In this study, we discuss a digital archiving method
of puppets used in a traditional Japanese puppet theatre
known as “Awa Ningyo Joruri,” which has been played
in Tokushima Prefecture of Japan. Figure 1 shows a
scene of the puppet theatre [5]. Two or three people
called “Ningyo Tsukai” operate one puppet, and this
puppet show is facilitated by a narrator called “Tayu”
and themusic of “Shamisen” (a three-stringed Japanese
musical instrument).

To promote Ningyo Joruri, we have discussed some
methods for measuring the 3D shape data of puppets
with a 3D scanner and manufacturing them with a 3D
printer [6]. However, a 3D scanner can only measure

the external shape of puppet. On the other hand, many
Ningyo Joruri puppets have mechanisms in their heads
that enable them to move their eyes and open/close
theirmouths. Therefore, to archive digital puppet infor-
mation more precisely, we must reconstruct the inner
parts of the puppet head.

In this study, we discuss amethod for reconstructing
the internal and external 3D shapes of the puppet head.
X-ray computed tomography (CT) systems are primar-
ily used for medical purposes to take X-ray images of
the inside of the human body and construct tomo-
graphic images. However, themainmaterial of the pup-
pet head is dry wood. Thus, it is not displayed clearly
in CT images because of low moisture. Human organ
detection methods cannot be used directly for puppets.

To solve this problem, we examine two types of
methods for reconstructing the puppet head shape.One
is the graph cut method, which performs region seg-
mentation based on the feature values of pixels in CT
images [7–9]. The other is a method based on U-Net, a
machine learning (ML) framework [10]. In the paper
[10], only the wood part was extracted, however, in
this study, the results of wood, paint, and metal part
extraction are presented. We compare the results of the
graph cutmethod and theMLmethod and discuss their
advantages and disadvantages.

The structure of this paper is as follows: in Section
2, we introduce related studies on about the measure-
ment and restoration methods of puppets, and the
related studies on the head shape measurement from
CT images are also shown. In Section 3, we describe CT
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Figure 1. Scene of Japanese traditional puppet theatre (Awa Ningyo Joruri).

images of puppet heads. In Section 4, we show the shape
reconstruction method of puppet heads using graph
cuts. In Section 5, we show the shape reconstruction
method based onML (U-Net). In Section 6, we present
and discuss the results of shape reconstruction using
two proposed methods. Finally, Section 7 provides a
summary of this study.

2. Related work

2.1. 3D shapemeasurement and reconstruction of
puppets

Figure 2 shows examples of puppet heads. Puppet
heads are carved out of wood by hand. Hence, the
production of heads takes a lot of time, and they
tend to be expensive. To popularize Ningyo Joruri
(puppet theatre), puppets must be quick to produce
and inexpensive. Recently, with the widespread use
of 3D-computer-aided design (CAD) software and
3D printers, the design of puppet heads using 3D-
CAD and their creation using 3D printers have been
attempted. A website [11] sells puppet heads created
in such a way.

We are also promoting a project to create puppets
using a 3D printer by measuring their external shapes

Figure 2. Examples of puppet heads.

with a 3D scanner to popularize Ningyo Joruri in gen-
eral [12]. Figure 3(a) shows a puppet head fixed on
a turn table, Figure 3(b) shows a scene of the mea-
surement of the puppet head shape by a 3D scanner,
and Figure 3(c) shows measured 3D head shape data
interpolated by 3D-CAD for areas that could not be
measured. Figure 3(d) shows the final created pup-
pet head. The shape of this head is output by a 3D
printer, and the eyes and mouth are painted with
colours. The hair is covered with a wig. Furthermore,
Figure 3(e) shows a completed puppet, with the head
attached to a body clothed in a kimono dress. Both
hands are also designed with 3D-CAD and output
with a 3D printer. Based on this technology, we offer
workshops on puppet making. We have also analysed
the facial features of puppets and proposed a method
for creating puppet heads that reflect human facial
features [13].

Generally, puppet heads are often made with mov-
able mechanisms for the eyes, mouth, neck, and other
parts. Figure 4 shows the inside of a puppet head dur-
ing production. The puppet head will be able to move
its eyes and neck. Puppet heads created by traditional
methods cannot be disassembled after completion, and
it is impossible to measure the internal shape of the
head with a 3D scanner. However, to realize the digital
archiving of Ningyo Joruri, it is necessary to accurately
measure the internal shape of the head. In this study, a
shape reconstruction method using CT images of the
head is discussed to measure the inside of the head
without disassembling it.

Furthermore, in Ref. [14], an example of measuring
and producing the puppet head shape from CT images
is presented. This study aims to observe the inside of the
head with CT images and to create a puppet head with a
3D printer using the external shape of the head. On the
other hand, our research aims to identify the various
materials (wood, paint, etc.) that make up the puppet
head in CT images and to restore their shapes to realize
accurate digital archiving.
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Figure 3. Reproduction of puppet. (a) Puppet head. (b) Shape measurement by 3D scanner. (c) Measured 3D data and interpolated
by 3D CAD. (d) Created puppet head. (e) Created puppet.

Figure 4. Inside of puppet head in production.

2.2. 3D shape reconstruction fromCT images

X-ray CT is a device that reconstructs a tomographic
image of the interior of an object by irradiating X-rays
from various directions andmeasuring the absorptance
(transmittance) of X-rays within the object. Different
materials absorb X-rays at different rates, resulting in
different pixel values for each material in the tomo-
graphic image. Therefore, we can identify the internal
structure of an object by X-ray CT. (Hereafter, tomo-
graphic images are referred to as CT images, and pixel
values in CT images are referred to as CT values.) In
the human body, bones, muscles, and organs have rela-
tively different CT values. They are easy to distinguish.

However, organs such as the stomach, and small and
large intestines have similar CT values. They are diffi-
cult to distinguish.

Many methods have been explored for identifying
multiple organs in CT images of the human body.
Recently, an ML-based method has been proposed. A
paper [15] proposes a method based on Ada Boosting.
In this method, first, multiple discriminators are pre-
pared that use features in CT images for identification.
Then, from the results of each discriminator, the final
identification result is obtained by a voting process. A
paper [16] discusses a method for organ identification
using a convolutional neural network (CNN), an ML
framework.

On the other hand, this study aims to reconstruct
the shape of a puppet head from CT images. The pup-
pet head is made of wood (details will be described in
Section 3). In addition, paint, hair, and metals are used.
In particular, because wood is dry, it can be difficult to
distinguish it from other materials.

Therefore, this study examines two types of mate-
rial identificationmethods with reference to the human
body. One is to identify materials using the graph cut
method [17] based on CT values in CT images. This
method is feature-based and different from ML. The
other method uses U-Net [18], anML framework. This
method combines a feature extraction method by con-
volution processing and a feature restoration method
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by inverse convolution processing. In this study, we
show the results of using each of thesemethods to iden-
tify and extract the wood, paint, and metal parts that
primarily comprise the head, and reconstruct the 3D
shape. Furthermore, based on these results, we discuss
a suitable method for obtaining the shape of the puppet
head from CT images.

3. CT images of puppet heads

Figure 5 depicts the puppet head used in this study. The
length of this head is approximately 170mm long from
the apex of the head to the neck. The eyes of puppet
rotate up and down, and the headmoves back and forth.
Figure 6 shows a scene of a medical CT scan of the
head. In this study, we use a CT system at the Faculty
of Medicine, Tokushima University.

Figure 7 shows one of the CT images used in this
study. 341 CT images are taken in the axial direction
from the apex to the neck. The interval between images
is 0.5mm. The size of a CT image is 512 × 512pixels,
and the size of a pixel is 0.3 × 0.3mm. Each pixel has 16
bits of data. Pixel values are defined as 0 for water and

Figure 5. Puppet head used in this study.

Figure 6. Scene of a medical CT scan of puppet head.

Figure 7. CT image of a puppet head.

−1000 for air. The distribution of pixel values differs
depending on the material.

As depicted in Figure 7, the head of the puppet
is composed mainly of “wood,” “paint,” “hair,” and
“metal” materials. The regions of these four materials
and an “air” region are contained in CT images. The
characteristics of the pixel values for each material are
listed below.

• Both “wood” and “hair” have relatively low values
because of their low moisture content and overlap-
ping pixel value distributions.

• The “paint” is made from shell powder and contains
lime, which makes its pixel value relatively high.

• The “metal” is the nail used to attach the hair, which
has a very high value and affects the surrounding
pixel values.

In this study, we examine a method for extracting
the wood, paint, and metal regions, which mainly con-
stitute the shape of the head, among the four types of
materials.

4. Shape reconstructionmethod of puppet
head by graph cut method

In this section, we show material extraction methods
for the 3D reconstruction of the puppet head. This
method consists of two methods as follows:

(1) Rough region segmentation using thresholds
obtained from histograms of intensities in a man-
ually directed area in a CT image.

(2) Precise region extraction using a graph cutmethod
from the results of 1.

We explain these methods in the next subsections.
Note that, in this method, we consider that themetal

region is the same as the paint region because the CT
values of the metal and paint are significantly higher
than those of the other materials and the area of the
metal region is smaller than that of the other regions.
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4.1. Extractingmaterials based on histograms

This subsection shows a material extraction method
based on histogram.

Step 1-1. For four regions (air, hair, wood, and paint),
we obtain histograms from areas manually directed in
some CT images. Figure 8 shows an example of manu-
ally directed areas in a CT image.

Step 1-1. Each histogram is approximated to the
normal distribution by Equation (1):

fk(x) = 1√
2πσ 2

k

exp

(
− (x − μk)

2

2σ 2
k

)
, (1)

where k represents a type of region, x represents the
intensity, and μk and σk denote the mean and standard
deviation of region k, respectively.

Step 1-1. Estimate thresholds as cross points of nor-
mal distributions that are neighbouring two regions.

Using the estimated thresholds, we can roughly
group of the four regions in CT images.

4.2. Precise extraction by graph cutmethod

The graph cut method efficiently estimates the combi-
nation of a label of pixel (object or background) in an
image in a cost minimization criterion under the con-
dition that some parts of the image are assigned labels
beforehand [17].

In this study, we reconstruct the 3D shape of the
wood and paint regions only. Because the shape of the
hair deforms according to the attitude of the puppet
head, it is difficult to model the 3D hair shape. Hence,
thewood and paint regions are considered object labels,
and the hair and air regions are the background.

Figure 8. Manually directed areas in a CT image.

The cost function E(L) used in the graph cutmethod
is shown in Equation (2) as the linear combination of
the region term R(L) and the boundary term B(L):

E(L) = R(L) + λ · B(L), (2)

where L represents a label assigned to pixels (L ∈
{obj, bkg}) and λ represents a weight between the
region term and the boundary term (non-negative
value).

The region term R(L) and the boundary term B(L)
are expressed as follows:

R(L) =
∑
u∈U

fu(Lu), (3)

B(L) =
∑

{u,v}∈N
gu,v(Lu, Lv), (4)

where fu denotes the likelihood of a region and gu,v
denotes the likelihood of a boundary between neigh-
bouring pixels. U represents a set of pixels and u rep-
resents a pixel. N represents a set of two neighbouring
pixels and u, v denotes a tuple of pixels. fu and gu,v are
expressed as follows:

fu(Lu) = −lnPr(Iu|Lu), (5)

gu,v(Lu, Lv) =
⎧⎨
⎩
exp{−β(Iu − Iv)2}

dist(u, v)
(Lu �= Lv),

0 (Lu = Lv).
(6)

Here, Pr(Iu|Lu) denotes the likelihood of pixel Iu in
each region. This is approximated to a normal distri-
bution. β represents constant and dist(u, v) denotes the
distance between neighbouring pixels.

Figure 9 shows the process of the graph cut method.
In this figure, node u corresponds to a pixel, and it is
connected to a neighbouring pixel (node v).We call this
linkage “n-link,” and we assume that this link has a cost

Figure 9. Example of graph structure.
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Figure 10. Seed region estimation.

estimated by Equation (6). Node u is also connected to
the node s-labelled object “obj” and the node t-labelled
background “bkg”. These linkages are called “t-link,”
and they have costs estimated by Equation (5). Cutting
off a link from u to t or s can be regarded as labelling
“obj” or “bkg” tou. Therefore, when the sumof the costs
of these linkages isminimum, the label assigned umini-
mize Equation (2). In this study, we apply theminimum
cutmaximumflow algorithmbyBoykov [19] to the cost
minimization method.

During region extraction using the graph cut
method, we must assign object or background labels to
some parts of regions as “seeds.” Generally, this “seed”
is typically assigned by a user manually in the graph cut
method. However, in this study, we attempt to assign a
“seed” without user input through the following steps
(Figure 10):

Step 2-1. By applying the method in Section 4.1 to
a CT image, the wood and paint regions are extracted
from the image.

Step 2-1. By using morphological methods (dilation
and erosion), we fill holes and eliminate small regions
(approximately 10 × 10 pixels) in the image in Step
2-1.

Step 2-1. We estimate a distance transformation
image from the result of Step 2-2 and extract two
regions as follows:

• One region consists of pixels with distances ranging
from the maximum distance (Dmax) to Dmax − �1.

• The other region consists of some pixels with dis-
tances ranging from the minimum distance (Dmin)
to Dmin + �2.

Here, �1 and �2 denote distance thresholds, and
they are assigned some values in advance. As a result, we
can obtain two seeds for the graph cut method. Using
these seed regions, we extract the object (wood and

paint) and background (hair and air) regions in a CT
image.

Moreover, a puppet head has many CT images,
which are aligned perpendicular to the image plane,
thus, to assign seeds to all CT images, we use the fol-
lowing steps (Figure 11):

Step 3-1. In a neighbouring (upper or lower) CT
image of a labelled CT image, first, region extraction
based on histograms is applied. After that, we obtain
an overlapped region as a “seed” region, comprising the
wood and paint regions in this image and the object
region in a labelled CT image. Using this seed region,
we apply the graph cut method.

Step 3-1. By propagating the results of Step 3-1 to the
upper and lower CT images, we extract object regions
from all CT images.

5. Shape reconstructionmethod of puppet
head byML

5.1. U-Net

In this section, we demonstrate how to extract mate-
rial from CT images by ML. In Section 4, we
consider that the paint and metal regions are the
same regions. However, in this section, we con-
sider that these are different regions for a precise
puppet head restoration. On the other hand, since
the deformation of hair occurs depending on the
orientation of the puppet head in Figure 5, and the
boundary between hair and air is not clear, hair is diffi
cult to annotate as correct training data. Therefore, the
hair and air regions are considered the background
region as demonstrated in Section 4. Thus, we propose
amethod for distinguishing the wood, paint, metal, and
background regions in CT images.

U-Net is a network based on CNN. Figure 12 shows
the configuration of theU-Netmodel used in this study.
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Figure 11. Object and background region estimation for all CT images. (a) Step 3-1. (b) Step 3-2.

U-Net consists of encoder and decoder parts. The U-
Net model in this study has eight layers in both the
encoder and decoder parts (the third to sixth layers
are omitted in Figure 12). The layers are joined in a
U-shape. In the encoder part, features are extracted
from the input image by convolutional and pooling
layers. In the decoder part, the extracted features are
used to restore the image using the reverse convolution
layer.

However, the feature extraction in the encoder part
discards the positional information in the image; thus,
even if the decoder part restores the image, it will
not be able to recover the same image as the origi-
nal. Therefore, U-Net introduces shortcut joints. This
is a method that concatenates the output from one
reverse convolution layer of the decoder part with the
features from the encoder part at the same level to
perform the next reverse convolution process. Using
this method, we can restore the image including the
positional information. Details of each layer are shown
below.

• Convolution layer

In the convolution layer, a convolution operation using
a kernel (filter) is performed (Figure 13). The result-
ing matrix is smaller than the original matrix. The

kernel corresponds to the weight w in the network
and is responsible for extracting the information to
be conveyed to the next layer. The weight w is opti-
mized to minimize the error through the learning
process.

• Pooling layer

The pooling layer generates a new matrix by extract-
ing only the highest-valued elements in a square region
(max pooling) or by calculating the average value in
a square region (average pooling). In the example in
Figure 14, the max pooling method generates a 2 ×
2 matrix. This operation provides robustness against
objectmisalignment in the input image. In other words,
if the objects are the same, they will be recognized
as the same object even if their positions are slightly
different.

• Reverse convolution layer

In the reverse convolution layer, the input image
is enlarged before the convolution operation is per-
formed, whichmakes the size of the output feature map
larger than that of the input feature (Figure 15).

• Shortcut joint
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Figure 12. Configuration of U-Net.

Figure 13. Convolution layer.

Figure 14. Pooling layer.

Shortcut joints join two 3Darrays in the depth direction
to create a new 3D array. In the example in Figure 16, a
4 × 4 × 3 array is concatenated with a 4 × 4 × 3 array
to produce a 4 × 4 × 6 array.

The output data of U-Net (Figure 12) are four-
channel data like images. These channels correspond
to labels of materials (wood, paint, metal, and back-
ground), and the pixel value at the coordinate (x, y)
is the probability of being a material corresponding to
each channel. Hence, we obtain a label (material) that
has maximum probability at each co-ordinate (x, y).
This is the final result of the material extraction from
a CT image.
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Figure 15. Reverse convolution layer.

Figure 16. Shortcut joint.

5.2. Learning data

As described in Section 3, 341 CT images of the pup-
pet head are taken. In this study, we use n% CT images
as training image data among N (all) CT images. Here,
m CT images are selected at equal intervals (every p
images) from the top of the puppet head (Figure 17).
For example, when we use approximately 5% of 341 CT
images, the training data are selected for every 20 CT
images. In this case, we use 18CT images as the training
data. The number of CT images suitable for the train-
ing data is discussed in the experiments in Section 6.2.
The image data for training also need to represent the
correct material regions corresponding to the input CT
image (we call it “correct label image”). Here, correct
label images are obtained by manually checking and
correcting regions after the CT image is divided into
regions with threshold values based on the pixel values
of each material. The specific procedure is as follows.

(1) The range of pixel values for each material in a CT
image is distributed as depicted in Figure 18(a).
In particular, there are some overlaps in the pixel

Figure 17. Training data selection from CT images.

value range between hair and wood. From this dis-
tribution, a threshold value representing the range
of each material is set as depicted in Figure 18(b).
Note that Figure 18 is based on the experimental
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Figure 18. Material extraction by thresholds in CT image. (a)
Range of pixel values for each material. (b) Threshold values.

results in Section 6.1 which is an experiment of the
method described in Section 4.1.

(2) Using the thresholds in Figure 18(b), we obtain
an image divided into regions for each material
(Figure 19(a)) from CT images. The subsequent
process manually corrects pixels whose pixel val-
ues are incorrectly extracted because of overlap.

(3) To distinguish thematerial of each pixel during the
manual correction, which is easier for humans, a
colour image (Figure 19(b)) is generated by super-
imposing the original CT image (grey-scale image)
and the image of Figure 19(a).

(4) For the image shown in Figure 19(c), manually
check and correct material areas. Thus, four binary

images corresponding to four material regions are
obtained.

(5) Finally, the isolated noises are removed to obtain
the correct label images of the four material
regions. Figure 19(d) shows obtained correct label
image and Figure 19(e) shows the wood label
image as examples.

In addition, to evaluate the experimental results, cor-
rect label images were generated not only for the 18
training images but also for all CT images (341 images).

6. Experimental results

In this section, we show the experimental results of
the puppet shape extraction from CT images. Sec-
tions 6.1 and 6.2 show the material extraction and 3D
shape reconstruction results by each method. Section
6.3 shows the discrimination rate of thematerial extrac-
tion. Here, we compare the results of both methods.
Section 6.4shows the material extraction results using
two puppet heads by ML.

6.1. Experimental results by graph cutmethod

As shown in Section 4.1, we obtain histograms from
manually directed areas in some CT images about
four regions. Figure 20 shows directed areas on 10 CT
images. These CT images are mainly eyes and nose

Figure 19. Manual estimation of correct label image.
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Figure 20. Manually directed areas (blue:air, green:hair, red:wood, yellow:paint).

Figure 21. Probability distribution and normal distribution curve of CT value in each region.

Table 1. Estimated means, variances, and thresholds.

Air Hair Wood Paint

Mean −1056.3 −869.2 −780.0 150.7
Variance 135.9 13,042.2 4348.2 321,814.0
Threshold −1026 −850 −616

parts, and they also include the upper and lower parts
of puppet head. (Figure 20 includes Figure 8.)

Figure 21 shows histograms and normal distribu-
tions of the four regions (air, hair wig, wood, and paint)
denoted in Section 4.1. Table 1 shows the means and
variances of normal distributions and thresholds for
dividing these regions.

Figure 22 shows the results of the region segmenta-
tion process. Figure 22(a) shows the input CT image.
Figure 22(b) shows the results of segmentation by his-
togram. Some parts of wood (red) are estimated as hair

(green), and some parts of hair are also estimated as
wood.

Figure 22(c) shows the separated wood and paint
regions from Figure 22(b). Figure 22(d) shows the
results of the dilation and erosionmethod. Figure 22(e)
shows the result of distance transformation. White pix-
els in Figure 22(f) represent regionswith the label “obj,”
whereas, those in Figure 22(g) represent regions with
the label “bkg.”

Figure 22(h) shows the segmentation results of the
graph cut method. The object part (wood and paint)
is white, and the background part (air and hair) is
black. In these images, most of the hair regions can be
extracted as the background, whereas some parts of the
hair regions are extracted as the object.

Next, we show a confusion matrix as the identifica-
tion results. Since the graph cut method assigns two
labels which are the object and background, this matrix
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Figure 22. Experimental results of the proposed graph cut method. (a) Input CT image. (b) Segmentation by histogram. (c) Wood
and paint regions. (d) Results of dilation and erosion method. (e) Distance transformation image. (f ) Object seed. (g) Background
seed. (h) Result of graph cut method.

has 2 × 2 elements as shown in Table 2. (The most
right-side column is the total number of correct labelled
pixels.) Here, we use the correct label images used in
ML (U-Net) as the true value, and the metal in the
correct label images is included in object (wood and
paint). In Table 2, the numbers without brackets are the
number of pixels identified in the CT images, and the
bracketed percentages represent the ratio to the number
of the correct label in each row. The numbers under-
lined in bold indicate the highest discrimination rate for
each correct label. From these results, we can see that a
lot of pixels are misidentified.

Figure 23 shows the reconstructed 3D shape of the
puppet head. Figure 23(a) shows the extracted wood,
paint, and hair from the histogram thresholds. Figure
23(b) shows the extracted objects (wood and paint) by
the graph cut method. In the result in Figure 23(b), at
the top of the puppet head, the hair region remains. This

Table 2. Confusion matrix by the graph cut method.

Identified label

Object Background Total

Correct label Object 7,867,585 417,207 8,284,792
(%) (94.96) (5.04) (100.0)

Background 1,942,526 79,163,786 81,106,312
(%) (2.40) (97.60) (100.0)

is because hair is dense at this part to fix hair to wood
parts, and the intensity of hair is almost the same as that
of dry wood. As a result, these parts are extracted as the
wood region.

6.2. Experimental results byML

In this section, first, we show the identification results
of the ML method about various numbers of training
data. Here, we compare the results of three types of the
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Figure 23. Reconstructed 3D shape of puppet head using the graph cut method. (a) Before applying graph cut. (b) After applying
graph cut.

numbers of training data (m). (Refer Figure 17 aboutm,
n, and p.)

• TD1:m = 9
(
n .=· 2.5%, p = 40

)
• TD2:m = 18

(
n .=· 5%, p = 20

)
• TD3:m = 35

(
n .=· 10%, p = 10

)
Here, “TD” means “Training Data.” Figure 24 shows

nine correct label images used in TD1.

As the identification results, we show confusion
matrices. Since there are four materials (wood, paint,
metal, and background (hair and air)), the confusion
matrix in this experiment has 4 × 4elements as shown
in Table 3.Nij is the number of pixels which is identified
as the label j and this correct label is i in all CT images. Si
is all number of correct label i pixels. It can be obtained
by Equation (7):

Figure 24. Correct label images (TD1: nine images). (There are no labels in No.1 and No.41.)
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Table 3. Confusionmatrix for identification result of fourmate-
rials.

Identified label

Wood Paint Metal Background Total

Correct label Wood N11 N12 N13 N14 S1
(%) (r11) (r12) (r13) (r14) (100.0)
Pain N21 N22 N23 N24 S2
(%) (r21) (r22) (r23) (r24) (100.0)
Metal N31 N32 N33 N34 S3
(%) (r31) (r32) (r33) (r34) (100.0)

Background N41 N42 N43 N44 S4
(%) (r41) (r42) (r43) (r44) (100.0)

IoU IoU1 IoU2 IoU3 IoU4
PA PA

Si =
L∑
j=1

Nij, (7)

where L is the number of labels (L = 4). And,

rij = (Nij/Si) × 100. (8)

We also evaluate the identification rate for eachmaterial
by the intersection over union (IoU). The IoUj for the
label (material) j is obtained by Equation (9):

IoUj = Njj∑L
k=1 Nkj +

∑L
k=1 Njk − Njj

. (9)

Moreover, the pixel accuracy (PA) is introduced as an
evaluation of the overall identification result. PA is

obtained by Equation (10):

PA =
∑L

i=1 Nii∑L
i=1
∑L

j=1 Nij
. (10)

Tables 4–6 show the identification results for three types
of the training data (TD1, TD2, and TD3). IoUj and PA
are added under the confusion matrix. The numbers
underlined in bold indicate the highest discrimination
rate for each correct label. From these results, the accu-
racy of TD1 (nine images) is lower than other results.
But the accuracies of TD2 (18 images) and TD3 (35
images) are almost the same. Therefore, from the view-
point of the efficiency of the learning process, TD2 (18
training data) is suitable for this experiment. In the
following, we conduct experiments using 18 training
data.

Figures 25 and 26 show the extraction results of four
material regions using U-Net. The input CT images
in these figures are not used in the training data.
These are the areas around the eyes of puppet. Metal
parts do not exist in Figure 25, but they exist in
Figure 26.

In Figures 25 and 26, (a) is the input CT image, (b) is
the result of material extraction, (c) is the correct label
image, and (d) is the difference image between (b) and
(c). The red area is the extracted wood area, the yel-
low is the paint region, the purple is the metal region,
and the black is the background (air and hair). In
(d), the white area represents an incorrectly identified
area.

Table 4. Confusion matrix for identification results using TD1.

Identified label

Wood Paint Metal Background Total

Correct label Wood 5,801,628 99,075 32 614,032 6,514,767
(%) (89.05) (1.52) (0.00) (9.43) (100.0)
Pain 67,682 1,567,981 4 117,274 1,752,941
(%) (3.86) (89.45) (0.00) (6.69) (100.0)
Metal 355 12,412 393 3924 17,084
(%) (2.08) (72.65) (2.30) (22.97) (100.0)

Background 502,290 78,549 46 80,525,427 81,106,312
(%) (0.62) (0.10) (0.00) (99.28) (100.0)

IoU 81.88 80.70 2.29 98.39

PA 98.33

Table 5. Confusion matrix for identification results using TD2.

Identified label

Wood Paint Metal Background Total

Correct label Wood 6,191,791 92,567 1531 228,878 6,514,767
(%) (95.04) (1.42) (0.02) (3.51) (100.0)
Pain 23,089 1,705,733 261 23,858 1,752,941
(%) (1.32) (97.31) (0.01) (1.36) (100.0)
Metal 803 2607 10,530 3144 17,084
(%) (4.70) (15.26) (61.64) (18.40) (100.0)

Background 243,187 98,699 628 80,763,798 81,106,312
(%) (0.30) (0.12) (0.00) (99.58) (100.0)

IoU 91.30 87.62 53.99 99.26
PA 99.20
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Table 6. Confusion matrix for identification results using TD3.

Identified label

Wood Paint Metal Background Total

Correct label Wood 6,390,563 34,366 29 89,809 6,514,767
(%) (98.09) (0.53) (0.00) (1.38) (100.0)
Pain 35,532 1,698,437 17 18,955 1,752,941
(%) (2.03) (96.89) (0.00) (1.08) (100.0)
Metal 4042 1250 742 11,050 17,084
(%) (23.66) (7.32) (4.34) (64.68) (100.0)

Background 532,165 72,531 52 80,501,564 81,106,312
(%) (0.66) (0.09) (0.00) (99.25) (100.0)

IoU 90.18 91.26 4.32 99.11
PA 99.11

Figure 25. Results of wood and paint extraction without metal
parts. (a) CT image. (b) Extracted wood and paint parts. (c)
Correct label image. (d) Difference image.

The results in Figures 25 and 26 show that hair
around the head, which overlaps the range of pixel val-
ues with the wood area, is not almost detected. There-
fore, we can say thatML (U-Net) can correctly discrim-
inate between wood and hair. On the other hand, the
results in Figure 26 show that some areas around the
metal parts are not correctly discriminated as wood.
This is the area where metal artefacts occur. Hence, we
think that this effect is not sufficiently learned in this
experiment.

Next, the 3D shapes of the wood extraction are
depicted in Figure 27. Figure 27(a) shows the result
of the extraction of all materials before the extraction
process, Figure 27(b) shows the results of the extracted
regions, and Figure 27(c) shows the correct label image
(ground truth). The red area indicates the wood region,
the yellow area indicates the paint region, the pur-
ple area indicates the metal region, and the black area
indicates the background region. Figure 27(b) shows

Figure 26. Results of wood and paint extraction with metal
parts. (a) CT image. (b) Extracted wood and paint parts. (c)
Correct label image. (d) Difference image.

that some areas on the top of the head are incorrectly
extracted as wood regions. The reason for this is that,
as shown in Figure 26, there are metal parts for fixing
the hair on the top of the head aswell, which are affected
by metal artefacts.

In addition, the neck area at the bottom of the head
has areaswhere thewood area is not correctly extracted.
The following are possible reasons for this. The wood
region of the head is surrounded by paint. In U-Net
training, the positional relationship between the wood
region and the surrounding paint region is considered
a feature for wood region extraction.

Figure 28 shows 3D shape views of the inside of a
head. The head contains small parts such as strings
close to the threshold of wood as well as hair, but these
parts have also been removed.

In the results of U-Net, it fails the correct extraction
of the metal regions. To solve this problem, we should
consider for finding the part of the nail in advance using
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Figure 27. 3D shapes of extracted materials. (a) Before the extraction process. (b) Extracted regions. (c) Ground truth.

Figure 28. Inside shapes of extracted materials. (a) Before the extraction process. (b) Extracted regions. (c) Ground truth.

amethod different fromML. For example, the use of the
condition that the CT value of the metal is significantly
high compared to the others and the shape of the nail is
long and thin.

6.3. Comparison of proposedmethods

In this section, we compare both methods, namely, the
graph cut and ML (U-Net) methods for reconstructing
a puppet head from CT images.

6.3.1. Comparison of head part extraction
Figures 29 and 30 show the extraction results of each
method using the same CT image. Figure 29 shows
the results without metal and Figure 30 shows the
results with metal. In Figures 29 and 30, (a) are CT
images (same as Figures 25 and 26). Both (b) show
the results of the graph cut method, and both (c) show
the results of U-Net. White indicates correct extraction
results, and red indicates incorrect extraction results. In
the graph cut method, wood and paint are extracted

Figure 29. Extraction results by each method without metal regions. (a) CT image. (b) Graph cut method. (c) U-Net.
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Figure 30. Extraction results by each method with metal regions. (a) CT image. (b) Graph cut method. (c) U-Net.

Table 7. Exchanged confusion matrix of two labels from the
results of U-Net method (Table 5).

Identified label

Object Background Total

Correct label Object 8,028,912 255,880 8,284,792
(%) (96.91) (3.09) (100.0)

Background 342,514 80,763,798 81,106,312
(%) (0.42) (99.58) (100.0)

as objects, and metal parts are also included in the
paint. Therefore, the U-Net results are shown for wood,
paint, and metal. Both (Figures 29 and 30) show that
the U-Net method correctly identifies the object (pup-
pet head). The same trend can be seen in the other
CT images.

6.3.2. Comparison of accuracy
Next, the material identification rates of the two meth-
ods are compared. As mentioned above, the graph cut
method extracts wood, paint, and metal as an object,
and the U-Net method also evaluates wood, paint, and
metal as an object.

The results by U-Net shown in Table 5 are changed
to the confusion matrix in the case of two labels (the
object and background). This result is shown in Table
7. The PA of Tables 2 and 7 are shown below:

• Graph cut method: 97.36%
• U-Net: 99.33%

These results show that the U-Net method is more
accurate for the entire CT image.

But the graph cut method estimates based on man-
ually directed regions in 10 CT images as shown in
Figure 20. In contrast, U-Net uses the correct label
images manually annotated on all pixels in 18 CT
images. Therefore, the above results show that the graph
cut method compares unfavourably with the U-Net
method. As a result of the comparison under the same
conditions, we show the results of the graph cutmethod
using the correct label images for the U-Net as the
manually directed regions.

However, in the graph cut method shown in
Section 4, the first process to calculate the thresh-
old value to divide the region is to obtain histograms
for the four materials: air, hair, wood, and paint.
On the other hand, the U-Net extracts background
(air and hair), wood, paint, and metal materials.
This is due to the difficulty of accurately annotating
the hair in creating the correct label image, and we
prioritize the extraction of wood and paint regions for
the reconstruction of a puppet head by the 3D printer.
But the graph cut method can be applied when the
background (air and hair) and the object (wood, paint,
and metal) can be divided. Hence, the histogram is
calculated by regarding the air and hair as one area
(background), and the threshold with wood area can be
obtained.

Figure 31 depicts histograms and normal distribu-
tions of three materials obtained from 18 correct label
images. Note that the histogram of the metal region
is not obtained because the graph cut method does
not consider the metal region. Table 8 shows means
and variances of normal distributions and thresholds
to divide these materials. The threshold which divides
wood andhair is−850 inTable 1, but it changes to−888
in Table 8. This is because the air and hair are regarded
as one region.

Table 9 shows the confusion matrix of the identi-
fied object and background by the graph cut method
based on the threshold in Table 8. The PA of this result
is shown below:

• Graph cut method (Table 9): 97.17%

Figure 32 shows reconstructed 3D shapes of
extracted object parts. The PA value is 0.19% lower than
the results of manually directing areas. But more hair
parts are remained than Figure 23(b). To investigate
this reason, the same CT image around the eyes of the
puppet head is binarized at the thresholds of −850 and
−888, and the extracted images are shown in Figure 33.
Threshold −888 is closer to the hair range. Large parts
of hair which is not the object are extracted. Because
these parts are remained as the object seeds in the graph
cut method, a large number of hair areas are remained.
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Figure 31. Probability distributions and normal distributions using 18 correct label images.

Table 8. Estimated means, variances, and thresholds using 18
correct label images.

Background Wood Paint

Mean −1023.9 −736.0 160.1
Variance 9910.6 25,440.5 226,150.0
Threshold −888 −429

Table 9. Confusion matrix by the graph cut method using 18
correct label images.

Identified label

Object Background Total

Correct label Object 8,169,424 115,368 8,284,792
(%) (98.61) (1.39) (100.0)

Background 2,412,353 78,693,959 81,106,312
(%) (2.97) (97.03) (100.0)

The graph cut method requires the specification of
regions that can be used as seeds reliably, therefore seed
regions are generally annotated manually. The correct
label images used in this experiment are different from
manual directed areas in the way of the region speci-
fication. Hence, the thresholds change, uncertain seeds
increase, and accuracy becomes low. Changes in thresh-
old values are small relative to the range of pixel values
in a CT image. However, because of its large influence,
the method using the threshold and the graph cut is
more unstable than the ML (U-Net) method.

6.4. Two heads extraction by theMLmethod

In this section,we show the extraction results of another
puppet head shown in Figure 34 using U-Net. From
here, the puppet head in Figure 5 is called “No.1” and
the head in Figure 34 is called “No.2.” The size of a CT
image of No.2 is 512 × 512 pixels, it is the same as that

Figure 32. Reconstructed 3D shape of puppet head using the
graph cut method by 18 correct label images.

Figure 33. Binarized results of CT images. (a) Threshold:−850.
(b) Threshold:−888.

of No.1, but the size of head of No.2 is larger than that
of No.1, the number of CT images is 361, 20 more than
that of No.1. A part of the hair extends to the outside
area of the CT image.

For head No.2, 19 images, which is approximately
5% of all CT images, are selected as training data in the
same way as in Figure 17. The following three types of
training data are prepared from the combination with
the training data of No.1, and the identification results
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Figure 34. Another puppet head (No.2).

of head No.1 and No.2 are obtained for each of them.
Note that the results of EX A-1 correspond to Table 5
shown in Section 6.2.

• Training data A: 18 images of Head No.1.
oEXA-1. Identification of headNo.1. (Experimental

results in Section 6.2, Table 5.)
o EX A-2. Identification of head No.2.

• Training data B: 19 images of Head No.2.
o EX B-1. Identification of head No.1.
o EX B-2. Identification of head No.2.

• Training data C: 18 images of head No.1 and 19
images of head No.2 (total of 37 images).
o EX C-1. Identification of head No.1.
o EX C-2. Identification of head No.2.

Tables 10–14 show the confusion matrix, IoUj, and
PA as the identification results from EX A-2 to EX C-2.
Including Table 5, when the correspondence between

Table 10. Confusion matrix for identification results of EX A-2.

Identified label

Wood Paint Metal Background Total

Correct label Wood 7,097,128 192,466 2249 863,723 8,155,566
(%) (87.02) (2.36) (0.03) (10.59) (100.0)
Pain 31,949 1,907,761 239 63,861 2,003,810
(%) (1.59) (95.21) (0.01) (3.19) (100.0)
Metal 208 3679 11,708 4620 20,215
(%) (1.03) (18.20) (57.92) (22.85) (100.0)

Background 1,102,733 395,195 737 82,955,728 84,454,393
(%) (1.31) (0.47) (0.00) (98.23) (100.0)

IoU 76.39 73.51 49.95 97.15
PA 97.19

Table 11. Confusion matrix for identification results of EX B-1.

Identified label

Wood Paint Metal Background Total

Correct label Wood 6,278,286 99,740 1189 135,552 6,514,767
(%) (96.37) (1.53) (0.02) (2.08) (100.0)
Pain 42,912 1,673,707 294 36,028 1,752,941
(%) (2.45) (95.48) (0.02) (2.06) (100.0)
Metal 776 2402 11,581 2325 17,084
(%) (4.54) (14.06) (67.79) (13.61) (100.0)

Background 1,465,178 145,566 1281 79,494,287 81,106,312
(%) (1.81) (0.18) (0.00) (98.01) (100.0)

IoU 78.25 83.66 58.35 97.80
PA 97.84

Table 12. Confusion matrix for identification results of EX B-2.

Identified label

Wood Paint Metal Background Total

Correct label Wood 7,912,431 115,860 2614 124,661 8,155,566
(%) (97.02) (1.42) (0.03) (1.53) (100.0)
Pain 52,712 1,916,172 427 34,499 2,003,810
(%) (2.63) (95.63) (0.02) (1.72) (100.0)
Metal 608 3580 13,436 2591 20,215
(%) (3.01) (17.71) (66.47) (12.82) (100.0)

Background 345,404 157,175 1406 83,950,408 84,454,393
(%) (0.41) (0.19) (0.00) (99.40) (100.0)

IoU 92.50 84.03 54.48 99.21
PA 99.11
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Table 13. Confusion matrix for identification results of EX C-1.

Identified label

Wood Paint Metal Background Total

Correct label Wood 6,338,401 96,839 817 78,710 6,514,767
(%) (97.29) (1.49) (0.01) (1.21) (100.0)
Pain 20,022 1,705,074 280 27,565 1,752,941
(%) (1.14) (97.27) (0.02) (1.57) (100.0)
Metal 2246 8485 5725 628 17,084
(%) (13.15) (49.67) (33.51) (3.68) (100.0)

Background 512,990 125,184 894 80,467,244 81,106,312
(%) (0.63) (0.15) (0.00) (99.21) (100.0)

IoU 89.91 85.97 30.01 99.08
PA 99.02

Table 14. Confusion matrix for identification results of EX C-2.

Identified label

Wood Paint Metal Background Total

Correct label Wood 7,979,343 112,416 703 63,104 8,155,566
(%) (97.84) (1.38) (0.01) (0.77) (100.0)
Pain 42,188 1,935,928 133 25,561 2,003,810
(%) (2.11) (96.61) (0.01) (1.28) (100.0)
Metal 2791 9818 6316 1290 20,215
(%) (13.81) (48.57) (31.24) (6.38) (100.0)

Background 284,514 174,498 729 83,994,652 84,454,393
(%) (0.34) (0.21) (0.00) (99.46) (100.0)

IoU 94.04 84.15 29.00 99.35

PA 99.24

the training data and the head is different, the identi-
fication rate become low slightly. But, in case C, where
both training data are used, both heads are identified
with high accuracy. However, in all results, the identifi-
cation rate of metals is low.

Figures 35 and 36 show the identification results of
head No.2 in EX C-2. These are corresponding to Fig-
ures 25 and 26. Figure 35 is the case withoutmetal parts
and Figure 36 is the case with metal parts. From these
results, we can see that the identification accuracy of the
metal parts is low.

Figures 37 and 38 show a 3D view of the extrac-
tion results. In the CT images, the face of this puppet
is slightly tilted upward, hence these are rotated so
that they are in the frontal plane. A part of the hair
is not shown in the result before the extraction pro-
cess, because the hair is spread outside the area of the
CT image. Although a part of the hair remains, the
extraction result is similar to that of No.1.

Furthermore, to improve the accuracy of ML meth-
ods, it is necessary to increase the training data. In the
future, we will need to increase the training data when
extracting and evaluating other head shapes. However,
we need to prepare the training data (correct label
images) of puppet heads by ourselves. In this study, as
shown in Section 5.2, we manually correct the thresh-
old images to obtain the correct label images. However,
because the graph cut method is more accurate than
the thresholding method, it will be effective to correct
the graph cut method results manually to obtain cor-
rect label images. Then, by using such training data,

Figure 35. Results of wood and paint extraction without metal
parts (puppet head No.2). (a) CT image. (b) Extracted wood and
paint parts. (c) Correct label image. (d) Difference image.

the head is extracted using the U-Net method. It is
necessary to study such a system in the future.

7. Conclusion

In this study, for the digital archiving of Japanese tradi-
tional puppet theatre (Awa Ningyo Joruri), we propose
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Figure 37. 3D shapes of extracted materials (puppet head No.2). (a) Before the extraction process. (b) Extracted regions. (c) Ground
truth.

Figure 38. Inside shapes of extracted materials (puppet head No.2). (a) Before the extraction process. (b) Extracted regions. (c)
Ground truth.

Figure 36. Results of wood and paint extraction with metal
parts (puppet head No.2). (a) CT image. (b) Extracted wood and
paint parts. (c) Correct label image. (d) Difference image.

twomethods for extracting the puppet head shape from
CT images. One is the graph cut method, and the other
is the U-Net method, an ML approach.

From the experimental results of the extraction of
the puppet head from CT images, the U-Net method
can extract the puppet head more accurately than the
graph cut method. Moreover, we can show that the
U-Net method can extract a puppet head with multi-
ple materials. However, the extraction of metal parts is
inaccurate because of the metal artefacts in the X-ray
CT images and insufficient learning data.

In future studies, because hair is not subjected for
identifying region in this study, hence, it is necessary
to discuss the extraction of air and hair separately to
reconstruct the perfect puppet head as digital archiving.
we will discuss how to improve the extraction accu-
racy of each material using the U-Net method. In the
proposed method, each CT image is extracted inde-
pendently, and we will also investigate an extraction
method using 3D information consisting of adjacent
CT images. Furthermore, we plan to improve the accu-
racy of the learning model using CT images of other
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puppet heads and to realize the digital archiving of pup-
pet heads by extracting many heads. Hence, we will
discuss the improvement of the extraction accuracy of
each material using not only the U-Net but also other
ML frameworks, such as PSPNet, U2Net, U-Net++,
SegNet, and so on.
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