1 Original article

2	The Significance of Comprehensive Metabolic Phenotypes in Cancer Risk:
3	A Japan Multi-Institutional Collaborative Cohort (J-MICC) Study
4	
5	Takeshi Watanabe ^{1#*} , Tien Van Nguyen ^{1, 2 #} , Sakurako Katsuura-Kamano ^{1, 3} , Kokichi Arisawa ¹ ,
6	Masashi Ishizu ¹ , Taichi Unohara ^{1, 4} , Keitaro Tanaka ⁵ , Chisato Shimanoe ⁶ , Mako Nagayoshi ⁷ ,
7	Takashi Tamura ⁷ , Yuko Kubo ⁷ , Yasufumi Kato ⁷ , Isao Oze ⁸ , Hidemi Ito ⁹ , Nobuaki Michihata ¹⁰ ,
8	Yohko Nakamura ¹⁰ , Shiroh Tanoue ¹¹ , Chihaya Koriyama ¹¹ , Sadao Suzuki ¹² , Hiroko
9	Nakagawa-Senda ¹² , Teruhide Koyama ¹³ , Satomi Tomida ^{13, 14} , Kiyonori Kuriki ¹⁵ , Naoyuki
10	Takashima ^{13, 16} , Akiko Harada ¹⁶ , Kenji Wakai ⁷ , Keitaro Matsuo ^{8, 17} for the J-MICC Study Group.
11	[#] Takeshi Watanabe and Tien Van Nguyen are co-first authors
12	Affiliations
13	¹ Department of Preventive Medicine, Tokushima University Graduate School of Biomedical
14	Sciences, Tokushima, Japan
15	² Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
16	³ Department of Food Nutritional Science, Tokushima Bunri University, Tokushima, Japan
17	⁴ Student Lab, Tokushima University Faculty of Medicine, Tokushima, Japan
18	⁵ Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
19	⁶ Department of Pharmacy, Faculty of Medicine, Saga University Hospital, Saga, Japan

- ⁷Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya,
- 21 Japan
- ⁸Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya,
- 23 Japan
- ⁹Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya
- 25 University Graduate School of Medicine, Nagoya, Japan
- ¹⁰Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
- ¹¹ Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of
- 28 Medical and Dental Sciences, Kagoshima, Japan
- 29 ¹²Department of Public Health, Nagoya City University Graduate School of Medical Sciences,
- 30 Nagoya, Japan
- ¹³Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University
- 32 of Medicine, Kyoto, Japan
- ¹⁴Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto,
 Japan
- ¹⁵Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional
- 36 Sciences, University of Shizuoka, Shizuoka, Japan
- ³⁷ ¹⁶NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan

38	¹⁷ Department	of Cancer	Epidemiology,	Nagoya	University	Graduate	School of	Medicine,	Nagoya
----	--------------------------	-----------	---------------	--------	------------	----------	-----------	-----------	--------

- 39 Japan
- 40
- 41 **Running title:** Metabolic Phenotypes and Cancer Risk in the J-MICC
- 42 Abbreviations list
- 43 J-MICC: Japan Multi-Institutional Collaborative Cohort
- 44 BMI: Body mass weight
- 45 MUHO: Metabolically unhealthy obese/obesity
- 46 MHO: Metabolically healthy obese/obesity
- 47 MUNW: Metabolically unhealthy normal weight
- 48 MHNW: Metabolically healthy normal weight
- 49 MetS: Metabolic syndrome
- 50 CVD: Cardiovascular disease
- 51 ICD-10: International Classification of Diseases, 10th revision
- 52 METs: metabolic equivalent of tasks
- 53 NAFLD: Nonalcoholic fatty liver disease
- 54 **Conflict of Interest**

55 All authors declare no potential conflicts of interest with respect to the authorship and/or publication

56 of this article.

57 * Corresponding author

- 58 Takeshi Watanabe D.D.S., Ph.D.
- 59 Mailing address: 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
- 60 Phone: +81-88-633-7073
- 61 E-mail: watanabe.takeshi.2@tokushima-u.ac.jp

62

64 Abstract (229 word)

The present study investigated the relationship between metabolic phenotypes and the risk of cancer 65 in a Japanese population using the criteria of metabolic phenotypes based on an examination and 66 those based on questionnaires. We used data from 25,357 subjects for examination-based analyses 67 and those from 53,042 subjects for questionnaire-based analyses in the Japan Multi-Institutional 68 69 Collaborative Cohort Study. Metabolic phenotypes were defined by classifying subjects according to their BMI (obesity: BMI $\geq 25 \text{ kg/m}^2$; normal weight: BMI $\leq 25 \text{ kg/m}^2$) and the number of metabolic 70 71 abnormalities. Metabolic abnormalities were defined according to metabolic syndrome components of the Joint Interim Statement Criteria for examination-based analyses and self-reported histories of 72 73 diabetes, dyslipidemia, and hypertension for questionnaire-based analyses. Cox proportional hazards 74 regression analyses adjusted for potential confounders were performed for total and site-specific 75 cancer incidence according to metabolic phenotypes. Metabolically unhealthy obesity (MUHO) was significantly associated with cancer incidence in both examination-based [HR (95% CI): 1.17 76 (1.01-1.36)] and questionnaire-based analyses [HR (95% CI): 1.15 (1.04-1.26)]. Regarding 77 site-specific cancer in questionnaire-based analyses, metabolically healthy obesity and MUHO were 78 79 associated with colorectum and liver cancers in all subjects and with breast cancer in female subjects. Subjects with a metabolically unhealthy normal weight had a higher risk of pancreatic cancer. 80 Moreover, MUHO was associated with corpus uteri cancer in female subjects. This prospective 81

- 82 cohort study suggests that metabolic phenotypes are important risk factors for total and some
- 83 site-specific cancers in Japanese adults.

84

85 Significance

- 86 The prospective cohort study in a large Japanese population suggested that metabolic phenotypes are
- 87 important risk factors for total and some site-specific cancers in Japanese adults. Moreover, the risk
- 88 of each site-specific cancer may differ according to metabolic phenotypes.

- 90 **Keywords:** Cancer incidence, cohort study, metabolic syndrome, metabolically unhealthy obesity,
- 91 Japanese.
- 92

93 Introduction

Obesity is a serious public health issue worldwide [1] and the number of people living with obesity is 94 95 increasing both globally [2] and in Japan [3]. Obesity and other cardiovascular risks, i.e., 96 hypertension, hyperglycemia, and dyslipidemia, form the complex called metabolic syndrome (MetS) [4-7]. Although obesity and other metabolic abnormalities have been identified as 97 98 independent risk factors for cardiovascular disease (CVD), the incidence and mortality of diseases including CVD may differ depending on their combination [8, 9]. For example, a previous study 99 showed that Metabolically Unhealthy Normal Weight (MUNW) and Metabolically Unhealthy Obese 100 101 (MUHO), but not Metabolically Healthy Obese (MHO) subjects had a higher risk of CVD and all-cause mortality than Metabolically Healthy Normal Weight (MHNW) subjects [8]. Furthermore, 102 103 the risk of diseases, such as atherosclerotic CVD, was found to be higher in MUNW, MUHO, and MHO subjects than in MHNW subjects [9]. The categorization of subjects based on obesity and the 104 105 metabolic health status is called the metabolic phenotype and has attracted attention [1, 10-12]. The pathogenesis of metabolic abnormalities has also been suggested to differ between obese and normal 106 107 weight subjects, such as the underlying genetic background [13]. Therefore, assessments of 108 differences in the risk of various diseases based on metabolic phenotypes, not simple obesity or MetS, 109 may contribute to the prevention of diseases according to patient characteristics. 110 Similar to CVD, the relationship between obesity, MetS, and cancer has been well-documented. For example, an umbrella review of systematic reviews and meta-analyses showed 111

112	that the relationship between adiposity and 11 cancers, including colon, breast, and pancreatic
113	cancers, was supported by strong evidence [14]. The relationship between MetS and site-specific
114	cancers has been extensively investigated [15]. A meta-analysis of 43 studies revealed that MetS wa
115	significantly associated with various cancers, including liver, colorectal, and breast cancers [15]. On
116	the other hand, evidence for the relationship between metabolic phenotypes and cancer is limited. A
117	prospective cohort study in Sweden showed that obese subjects regardless of metabolic health had a
118	higher risk of total cancer than MHNW subjects [16]. In a prospective cohort study conducted in
119	Taiwan, metabolically unhealthy overweight, but not obese subjects had a significantly higher total
120	cancer risk than MHNW subjects [17]. Recent studies performed in Europe reported a relationship
121	between metabolic phenotypes and obesity-related site-specific cancer [18, 19]. In Japan, MUHO
122	was associated with total cancer mortality [20]. Although data from anthropometric and blood
123	examinations are necessary to estimate metabolic phenotypes, they are costly and time consuming;
124	therefore, criteria by which metabolic phenotypes may be classified based simply on information
125	from questionnaires may be useful for future epidemiological studies.
126	The present study investigated the relationships between metabolic phenotypes and total an
127	site-specific cancer incidence using both examination- and questionnaire-based analyses of a large

- 128 Japanese population.
- 129

130 Materials and Methods

131 Study design and subjects

132 A prospective cohort analysis was conducted using data from the Japan Multi-Institutional

133 Collaborative Cohort (J-MICC) Study. Details on the J-MICC study have previously been reported

- 134 [21-23]. Briefly, the J-MICC Study was launched in April 2005 and recruited subjects aged 35 to 69
- 135 years from 14 research areas in Japan. The main purpose of the J-MICC study was to confirm the
- 136 interactions of lifestyle and genetic factors with the risk of chronic diseases. The study protocol was
- 137 approved by the Ethics Committee of the Aichi Cancer Center Research Institute (No. H2210001A),
- 138 Tokushima University Hospital (No. 466-15), and all other institutions participating in the J-MICC
- 139 Study. Written informed consent was obtained from all subjects.

140 We selected study subjects from the participants of the J-MICC Study for examination- and 141 questionnaire-based analyses. Examination- and questionnaire-based analyses were different in the 142 definition of metabolic phenotypes. Metabolic phenotypes in examination-based analyses were classified according to anthropometric and biological data and those in questionnaire-based analyses 143 were classified according to the self-reported medical history from questionnaire. These definitions 144 145 are described in detail below "Definitions of MetS and metabolic phenotypes" section. Dataset version 20210901 was used. In examination-based analyses, 37,915 individuals (17,561 men, 20,354 146 147 women) from 7 sites that used the same questionnaire and conducted the blood examination needed

148 to diagnose MetS (Okazaki, Shizuoka, Takashima, Kyoto, Kagoshima, Tokushima, and

149	Shizuoka-Sakuragaoka) were initially included. We excluded subjects with a history of cancer,
150	myocardial infarction, or stroke or missing information on these diseases (n=4,018), with missing
151	data on the follow-up period ($n = 2$), with missing data on smoking and drinking habits or physical
152	activity or whose total energy intake was extremely high or low (>4000 or \leq 1000 kcal, n=2316), or
153	with missing data on the body mass index (BMI), systolic blood pressure (SBP), diastolic blood
154	pressure (DBP), triglycerides, HDL-cholesterol, or fasting blood glucose (n=6,222). Therefore,
155	25,357 subjects (12,469 men, 12,888 women) were ultimately included. In questionnaire-based
156	analyses, 67,178 individuals (29,852 men, 37,326 women) from 11 sites that used the same
157	questionnaire (Chiba, Aichi Cancer Center, Okazaki, Shizuoka, Daiko, Takashima, Kyoto, Saga,
158	Kagoshima, Tokushima, and Shizuoka-Sakuragaoka) were initially included. We excluded subjects
159	with a history of cancer, myocardial infarction, or stroke or missing information on these diseases
160	(n=10,364), with missing data on the follow-up period $(n = 41)$, with missing data on smoking and
161	drinking habits or physical activity or whose total energy intake was extremely high or low
162	(n=3,092), or with missing data on the self-reported history of hypertension, dyslipidemia, and
163	diabetes (n=639). Therefore, 53,042 subjects (23,244 men, 29,798 women) were ultimately included.
164	Both selections of study subjects are shown in Figure 1.
165	Questionnaire

166 Data collection was performed based on a structured self-administered questionnaire, which subjects 167 completed, and the data obtained were checked by trained staff at the survey. The questionnaire

168	consisted of a series of questions regarding subjects' sociodemographic characteristics, lifestyle,
169	medical history, and medications. Dietary intakes of green and yellow vegetables, light-colored
170	vegetables, fruit, and miso soup were assessed using a validated short food frequency questionnaire
171	[24, 25]. Total energy and 26 nutrients including calcium intake was assessed with the program
172	developed and validated at the Department of Public Health, Nagoya City University School of
173	Medicine [26] . Dietary intakes of green and yellow vegetables, light-colored vegetables, fruit, miso
174	soup and calcium intake were log-transformed and energy-adjusted using the residual method.
175	Dietary vegetable intake was calculated by adding the intake of green and yellow vegetables and
176	light-colored vegetables.
177	Educational levels were classified into four categories (≤ 9 years, $10-15$ years, ≥ 16 years, and
178	unknown). Smoking habits were classified into three categories (current, ex, and non), and the
179	average number of cigarettes per day and age at the initiation of habitual smoking were noted.
180	Pack-years were calculated by multiplying the average number of cigarettes per day by the number
181	of years smoked and divided by 20 (one pack). Drinking habits were classified into three categories
182	(current, ex, and non), and the frequency and amount consumed each time for the following six
183	alcoholic drinks were noted: Japanese sake, shochu, shochu-based cocktails, beer, whiskey, and wine.
184	Ethanol intake (g/day) by current drinkers was calculated based on the amount of ethanol present in
185	each alcoholic drink. Total physical activity during leisure time was estimated using a questionnaire.
186	The frequency (5 categories from never to \geq 5 times/week) and average duration (6 categories from

187 \leq 30 minutes to \geq 4 hours) of the following three groups was reported by subjects: light intensity

- 188 exercise (e.g., walking and golf) at 3.4 metabolic equivalent of tasks (METs), moderate intensity
- 189 exercise (e.g., jogging and swimming) at 7.0 METs, and vigorous intensity exercise (e.g., marathon
- running) at 10.0 METs. The three levels of leisure-time physical activity were calculated as MET
- 191 hours/week (MET level × hours of activity × events per week), and these values were summed and
- used as the value for total physical activity in the present study.
- 193 Anthropometric and biochemical measurements

Height (cm), weight (kg), SBP and DBP, serum triglycerides, HDL cholesterol, and blood glucose

were measured at each research site according to standardized protocols. BMI (kg/m^2) was calculated

- 196 as weight (kg) divided by the square of height (m^2) .
- 197 **Definitions of MetS and metabolic phenotypes**

198 The definitions of MetS and metabolic phenotypes were described in a previous study [27]. Briefly,

- 199 we defined MetS based on the Joint Interim Statement Criteria [28]. BMI ($\geq 25 \text{ kg/m}^2$) was used
- instead of waist circumference (WC for Asians, including Japanese: \geq 90 for men and \geq 80 for women)
- 201 because WC was not measured in all subjects [28, 29]. MetS was defined as the combined presence
- of at least three of the following five criteria: (i) obesity: BMI ≥ 25 kg/m²; (ii) elevated blood
- 203 pressure: SBP \geq 130 mmHg and/or DBP \geq 85 mmHg, and/or the self-reported use of antihypertensive
- drugs; (iii) serum triglyceride level \geq 150 mg/dL; (iv) serum HDL-cholesterol level <40 mg/dL for

205 men and <50 mg/dL for women; and (v) blood glucose level ≥100 mg/dL and/or the self-reported use
206 of antidiabetic drugs.

207	In the classification of metabolic phenotypes, subjects were categorized into four groups based
208	on BMI (normal weight or obesity) and the metabolic health status (healthy or unhealthy).
209	Examination-based metabolic phenotypes were defined using data from anthropometric and blood
210	examinations. Subjects with a normal weight (BMI $<25 \text{ kg/m}^2$) were divided into two phenotypes:
211	MUNW and MHNW (≥ 1 or no components of MetS, respectively). Subjects with obesity (BMI ≥ 25
212	kg/m ²) were classified as MUHO and MHO (≥ 1 or no components of MetS other than BMI,
213	respectively). Questionnaire-based metabolic phenotypes were defined using BMI calculated from
214	self-reported height and weight, a history of hypertension, dyslipidemia, or diabetes, and a
215	medication history for these morbidities. Subjects stratified by obesity with ≥ 1 disease from the
216	self-reported history or medication for hypertension, dyslipidemia, or diabetes were categorized as
217	metabolically unhealthy. Sensitivity analyses changing the cut-off were also conducted in both
218	examination- and questionnaire-based metabolic phenotypes.
219	Follow-up and cancer ascertainment
220	Information on cancer incidence was collected through national cancer registries, regional cancer
221	registries, patient notifications from hospitals, and reports from subjects confirmed by medical
222	records. Data from the national cancer registries provided to us according to the Cancer Registry
223	Promotion Act were processed and analyzed independently for this study. All cancer cases were

224	classified according to the International Classification of Diseases, 10th revision (ICD-10). The
225	outcome of the present study was the incidence of total cancer (C001-809), stomach cancer (C16),
226	colon and rectum cancer (C18-21), liver cancer (C22), pancreatic cancer (C25), and lung and
227	bronchus cancer (C34) in all subjects, breast cancer (C50) and corpus uteri cancer (C54) in women,
228	and prostate cancer in men (C61). Moreover, colorectum cancer was separated out into proximal
229	colon cancer (C18.0-18.4), distal colon cancer (C18.5-18.7), and rectum cancer (C19-C20). In
230	analyses of cancer incidence, person-years of follow-up were calculated using the time from the date
231	of the baseline survey until the occurrence of cancer, death, moving, or the end of the follow-up
232	period (December 31, 2021). Cancer incidence was calculated using the number of incidences
233	divided by the person-years of follow-up. During a median (25%, 75%) follow up of 8.0 (5.5, 10.2)
234	years, 1,584 (951 men, and 633 women) cancer cases were identified in subjects in
235	examination-based analyses, while there were 4,467 (2,423 men and 2,044 women) cancer cases in
236	subjects in questionnaire-based analyses during a median (25%, 75%) follow-up of 9.1 (5.9, 10.5)
237	years.
238	Statistical analysis
239	Regarding the baseline characteristics of subjects according to the obesity status, the chi-square test
240	for categorical variables and the Wilcoxon rank sum test for continuous variables were applied.
241	Multivariable Cox proportional hazards regression analyses were conducted to assess the

242 relationships between MetS, the number of components, each individual component, and the

243	incidence of cancer. The relationship between metabolic phenotypes and cancer incidence was also
244	examined using MHNW subjects as a reference. Model 1 was adjusted for age (continuous), sex,
245	research sites (seven categories in examination-based analyses and 11 categories in
246	questionnaire-based analyses), and educational background (four categories: (≤9 years, 10–15 years,
247	\geq 16 years, and unknown); Model 2 was additionally adjusted for pack-years (four categories: 0, >0
248	and <20, \leq 20, unknown), the drinking status (four categories: never, ex, >0 and <20 g/day, \geq 20
249	g/day), and physical activity levels (quartiles). Model 3 was adjusted for energy-adjusted vegetable,
250	fruit, and miso soup intakes (quartiles). Model 4 was additionally adjusted for hormone replacement
251	therapy, age of menarche (four categories: <11 , ≥11 and <15 , ≥15 , unknown), menopausal status and
252	age of menopause (four categories: pre-menopause, <55 , ≥55 , unknown) in the analyses of breast
253	cancer. Moreover, in addition to model 4 in breast cancer analyses, it was adjusted for history of
254	ovarian disease (three categories: non, current, past) in the model 4 of the analyses of corpus uteri
255	cancer. Antipyretic use (two categories: yes, no), calcium intake (quartiles), and red and processed
256	meat intake (quartiles) were additionally adjusted in the model 4 of the analyses of colorectum
257	cancer. History of hepatitis B and C (two categories: yes or no) were adjusted in the model 4 of the
258	analyses of liver cancer. We conducted sensitivity analyses by handling subjects who had cancer
259	within one year as censored. We additionally conducted analyses by handling subjects who had
260	cancer within two years as censored in the analyses of total and site-specific cancers with the
261	exception of cancers which were fewer than 10 cases in some groups of metabolic phenotypes. The test

262	for trends in the relationship between the number of components of MetS or metabolic phenotypes
263	and cancer incidence was performed using a likelihood ratio test. Proportional hazards assumptions
264	were checked for each variable using the Schoenfeld residual method. The results obtained indicated
265	that these assumptions were not violated over time.
266	All statistical analyses were performed using SAS statistical software (Version 9.4 for
267	Windows; SAS Institute Inc., Cary, NC, USA, RRID:SCR_008567). Statistical tests were based on
268	two-sided probabilities, and <i>P</i> -values <0.05 were considered to be significant. Forest plot was made
269	using the forestploter package of R (version 4.3.1, RRID:SCR_001905)
270	
271	Data availability statement
272	The anonymized minimum data needed to replicate the results of the present study are available upon
273	reasonable request to the corresponding author and after approval by all the participating institutions,
274	the Ministry of Health, Labour and Welfare, and the National Cancer Registry, Japan.
275	

277 **Results**

The baseline characteristics of subjects according to obesity for examination- and 278 279 questionnaire-based analyses are shown in Table 1. Among 25,357 subjects in examination-based analyses, 6,309 (24.9%) were obese (3,812 men, 2,497 women). Among 53,037 subjects in 280 questionnaire-based analyses, 11,559 (21.8%) were obese (6,727 men, 4,832 women). Among 281 282 subjects in examination-based analyses, obese subjects were more likely to be men and less physically active. Furthermore, obese subjects had a shorter duration of education, were more likely 283 284 to be current smokers, smoke more cigarettes, be current drinkers, drink more alcohol. Obese 285 subjects also had significantly more self-reported medical histories of colorectal polyps, fatty liver, high blood pressure, diabetes, and dyslipidemia, but a lower medical history of chronic gastritis. In 286 287 addition, obese subjects were taking more medications for hypertension, diabetes, and high blood 288 cholesterol, but less for constipation. Overall results were similar between subjects in examination-based and questionnaire-based analyses; however, in questionnaire-based analyses, 289 obese subjects were slightly older and had a higher self-reported medical history of hepatitis B. 290 291 Sex-stratified analyses were shown in Supplementary Table 1. Obese female subjects were more 292 likely to be postmenopausal women. Although overall results were similar between male and female 293 subjects, the significant difference in duration of education, antipyretic medication between normal 294 weight and obesity subjects were only observed in female subjects, and significant difference of medical history of hepatitis B was only observed in male subjects (Supplementary Table 1). 295

296	Supplementary Table 2 shows the HR (95% CI) for the risk of cancer according to MetS, the
297	number of components, or each component. Subjects with MetS had a higher risk of cancer than
298	those without MetS in all models. The number of MetS components were associated with cancer
299	incidence. Among MetS components, marginally significant association of obesity, hypertension and
300	elevated blood glucose with a higher risk of cancer were observed. We obtained similar results in
301	examination- and questionnaire-based analyses. Among the components examined, i.e., obesity,
302	hypertension, dyslipidemia, and diabetes, in the self-administered questionnaire, obesity,
303	hypertension, and diabetes were associated with a higher risk of cancer. The results obtained on the
304	relationship between the number of components and cancer incidence in subjects stratified by obesity
305	are shown in Supplementary Table 3. In examination- and questionnaire-based criteria, the number
306	of components was associated with cancer incidence in obese subjects only [Examination-based
307	analyses, model 3, <i>P</i> -trend =0.009, Questionnaire-based analyses, model 3, <i>P</i> -trend =0.041].
308	Sex-stratified analyses were showed in Supplementary Table 4. The association between the number
309	of components and cancer incidence in obese subjects were only observed in male subjects both in
310	examination- and questionnaire-based criteria (Supplementary Table 4). Supplementary Table 5
311	shows the relationships between individual components and cancer incidence in subjects stratified by
312	obesity. In examination-based analyses, an elevated blood glucose level was associated with cancer
313	in obese subjects only [model 3, HR (95% CI): 1.30 (1.07, 1.58)]. In questionnaire-based analyses,
314	high blood pressure and diabetes were associated with cancer incidence in both normal and obese

315	subjects; however, point estimates were higher in obese subjects. Sex-stratified analyses were also
316	conducted (Supplementary Table 6). Hypertension was significantly associated with cancer
317	incidence in male obese subjects in the questionnaire-based analyses and in female normal weight
318	subjects in both analyses (Supplementary Table 6). The same analyses as those shown in
319	Supplementary Table 3 and 5 by handling subjects with cancer within one year or two years as
320	censored were conducted, and similar results were obtained (Supplementary Table 7 and 8).
321	Figure 2, 3 and Supplementary Table 9 show the relationship between metabolic phenotypes
322	and cancer incidence in questionnaire-based analyses. MUHO was associated with total cancer in
323	both examination-based analyses [model 3, HR (95% CI): 1.17 (1.01, 1.36)] and questionnaire-based
324	analyses [model 3, HR (95% CI): 1.15 (1.04, 1.26)] (Supplementary Table 9). Analyses of
325	site-specific cancer and sex-stratified analyses were also conducted using questionnaire-based
326	criteria. MHO and MUHO were associated with colorectal cancer and liver cancer in all subjects
327	(Figure 2, Supplementary Table 9). MHO and MUHO were also associated with total cancer and
328	breast cancer in female subjects (Figure 3, Supplementary Table 9). Among female subjects, MUHO
329	subjects had a higher risk of corpus uteri cancer (Figure 3, Supplementary Table 9). Among all
330	subjects, MUNW was associated with pancreatic cancer (Figure 2, Supplementary Table 9). The
331	number of components was significantly associated with pancreatic cancer in normal weight subjects
332	and among components, diabetes was associated with pancreatic cancer in normal weight subjects
333	(Supplementary Table 10). In sensitivity analyses handling subjects with cancer within one year as

334	censored, a significant association was not observed between MHO and colorectal cancer (Figure 4
335	and Supplementary Table 11). On the other hand, MUHO was associated with pancreatic cancer
336	(Figure 4 and Supplementary Table 11). MUHO was associated with total cancer incidence in male
337	subjects (Figure 5 and Supplementary Table 11). Moreover, MUHO had tendency of higher risk of
338	total cancer in examination-based analyses although it was not significant (Supplementary Table 11).
339	The analyses were conducted handling subjects with cancer within two years as censored the results
340	were not so altered (Figure 4, 5 and Supplementary Table 11). Regarding breast cancer, age-stratified
341	analyses were also conducted (Supplementary Table 12). MUHO in subjects who was 54 years or
342	younger and MHO and MUHO in subjects who was older than 54 were associated with higher risk of
343	breast cancer (Supplementary Table 12). Moreover, regarding colorectum cancer, the analyses by
344	separating out proximal and distal colon cancer and rectum cancer were also conducted
345	(Supplementary Table 13). MHO was significantly associated with distal colon cancer. The
346	breakdown of site-specific cancer incidence is shown in Supplementary Table 14. It was similar
347	between the subjects of examination-based and those of questionnaire-based analyses
348	(Supplementary Table 14).
349	

350 Discussion

This prospective cohort study assessed the relationships between metabolic phenotypes and cancer
incidence both in examination- and questionnaire-based analyses. Results obtained from both

353	analyses were similar in the characteristics of participants (Table 1), the association between number
354	of components and cancer incidence (Supplementary Table 3), the association between each
355	component and cancer incidence (Supplementary Table 5), and the association between metabolic
356	phenotypes and total cancer incidence (Supplementary Table 9). The results from both analyses were
357	also similar in sex-stratified analyses and sensitivity analyses handling subjects who had cancer
358	within one or two years as censored (Supplementary Table 1, 4, 6, 7, 8, 9, and 11). Moreover,
359	associations were examined between metabolic phenotypes and various site-specific cancers;
360	however, results were only obtained from questionnaire-based analyses (Figure 2 and 3,
361	Supplementary Table 9).
262	
362	To date, few studies have reported a relationship between metabolic phenotypes and various
362 363	site-specific cancers. A previous study using data from UK Biobank showed that obesity was
362363364	site-specific cancers. A previous study using data from UK Biobank showed that obesity was associated with some cancers, such as endometrial cancer, regardless of the metabolic health status,
362363364365	site-specific cancers. A previous study using data from UK Biobank showed that obesity was associated with some cancers, such as endometrial cancer, regardless of the metabolic health status, while other cancers, including colorectal cancer, were associated with MUHO [18]. Moreover, a
 362 363 364 365 366 	site-specific cancers. A previous study using data from UK Biobank showed that obesity was associated with some cancers, such as endometrial cancer, regardless of the metabolic health status, while other cancers, including colorectal cancer, were associated with MUHO [18]. Moreover, a pooled study conducted in Europe reported a relationship between metabolic phenotypes and
 362 363 364 365 366 367 	site-specific cancers. A previous study using data from UK Biobank showed that obesity was associated with some cancers, such as endometrial cancer, regardless of the metabolic health status, while other cancers, including colorectal cancer, were associated with MUHO [18]. Moreover, a pooled study conducted in Europe reported a relationship between metabolic phenotypes and obesity-related cancers [19]. To the best of our knowledge, the present study is the first to examine
 362 363 364 365 366 367 368 	site-specific cancers. A previous study using data from UK Biobank showed that obesity was associated with some cancers, such as endometrial cancer, regardless of the metabolic health status, while other cancers, including colorectal cancer, were associated with MUHO [18]. Moreover, a pooled study conducted in Europe reported a relationship between metabolic phenotypes and obesity-related cancers [19]. To the best of our knowledge, the present study is the first to examine the relationships between metabolic phenotypes and total and site-specific cancers in Asia, where
 362 363 364 365 366 367 368 369 	site-specific cancers. A previous study using data from UK Biobank showed that obesity was associated with some cancers, such as endometrial cancer, regardless of the metabolic health status, while other cancers, including colorectal cancer, were associated with MUHO [18]. Moreover, a pooled study conducted in Europe reported a relationship between metabolic phenotypes and obesity-related cancers [19]. To the best of our knowledge, the present study is the first to examine the relationships between metabolic phenotypes and total and site-specific cancers in Asia, where even though the prevalence of obesity is lower, its impact on health is likely to be greater than in

371	Although most of the present results were consistent with the findings of previous studies
372	performed in Europe, there were some differences. For example, the inverse relationship between
373	MUHO and prostate cancer reported in a previous study using data from UK Biobank was not
374	observed in the present study [18] (Figure 3, Supplementary Table 9). Some studies indicated that
375	MetS and obesity reduced prostate-specific antigen concentrations, which delayed the diagnosis of
376	low-grade prostate cancer [32, 33]. This may be one of the reasons for the inverse relationships
377	observed between MUHO and prostate cancer in the previous study [18]. On the other hand, severe
378	obesity is less common in Japan, which may have contributed to the lack of relationship between
379	MUHO and prostate cancer in the present study [34] (Figure 3, Supplementary Table 9). Moreover,
380	MUHO subjects had a higher risk of corpus uteri cancer in the present study (Figure 3 and
381	Supplementary Table 9). In the previous studies, MHO and MUHO were associated with
382	endometrial cancer, which is the same classification of ICD10 as corpus uteri cancer (C54) in the
383	present study[17, 18]. The reasons for this discrepancy remain unknown; however, differences in the
384	criteria of obesity between the present study (BMI \geq 25) and studies conducted in Europe (BMI \geq 30)
385	may play a role.
386	MHO and MUHO were associated with colorectal and liver cancers in all subjects and

colorectal cancer in sensitivity analyses handling subjects who had cancer within one year or two

387

breast cancer in female subjects; however, an association was not observed between MHO and

389 years as censored (Figure 2-5, Supplementary Table 9 and 11). Previous studies showed that subjects

390	with obesity or MetS had a higher risk of colorectal cancer [35, 36]. Regarding liver and breast
391	cancers, a study conducted in Japan showed that MetS was associated with liver cancer in all
392	subjects [37] and female subjects with MetS or a high BMI had a higher risk of liver and breast
393	cancers [37]. Obesity is closely related to the prevalence and severity of nonalcoholic fatty liver
394	disease (NAFLD), which is emerging as one of the major causes of hepatocellular carcinoma, the
395	most common type of liver cancer [38, 39]. Insulin resistance and hyperinsulinemia accompanied by
396	NAFLD may be involved in liver tumorigenesis by activating intracellular signaling pathways, such
397	as the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway [39]. Moreover,
398	NAFLD may affect other gastrointestinal cancers, such as colorectal cancer [40]. Adipokines,
399	proinflammatory cytokines, insulin, and Insulin like growth factor secreted by adipose tissue have
400	been implicated in the development of colorectal cancer [41]. Regarding breast cancer especially
401	post-menopausal breast cancer, increased estrogen production by adipose tissue and the promotion of
402	estrogen receptor expression and transactivation have been suggested to promote its progression [42].
403	Epidemiological studies also suggested that obesity may be more critical factor for post-menopausal
404	breast cancer than pre-menopausal breast cancer [43] . In our study, obesity was associated with
405	breast cancer regardless of metabolic health in subjects who were older than 54 at baseline and
406	almost all the onset of breast cancer in these subjects may be at post-menopause, while only MUHO
407	was associated with breast cancer in subjects who were 54 years or younger (Supplementary Table
408	12). Based on the present results, previous findings, and plausible mechanisms, obesity itself and/or

409 other metabolic abnormalities accompanied by obesity may play important roles in the pathogenesis410 of these cancers.

411	MUNW, but not MHO nor MUHO, was associated with pancreatic cancer, although MUHO
412	was also associated with pancreatic cancer in sensitivity analyses handling subjects who had cancer
413	within one year as censored (Figure 2, 4 and Supplementary Table 9 and 11). Among normal weight
414	subjects, the number of components were significantly associated with pancreatic cancer and
415	diabetes may be the most important factor (Supplementary Table 10). Excess body weight is a
416	well-established risk factor for pancreatic cancer; however, in cohort studies, the association is often
417	underestimated because of the weight loss accompanied by diabetes, subjects with prediagnostic
418	pancreatic cancer often experience [44, 45]. This may be a reason why the association between
419	MUHO and pancreatic cancer was not observed in the main analysis and was unmasked in the
420	sensitivity analysis handling subjects who had cancer within one year as censored in the present
421	study (Figure 2, 4 and Supplementary Table 9 and 11). In the sensitivity analysis, there was still a
422	significant association between MUNW and pancreatic cancer (Figure 4 and Supplementary Table
423	11). Pancreatitis, which is induced by risk factors such as alcohol and smoking may causes diabetes
424	characterized by reduced or normal range of BMI [46, 47]. This pancreatogenic diabetes (Type 3c
425	DM) may play a role in the association between MUNW and pancreatic cancer in the present study.
426	The large number of study subjects is a major strength of the present study. The large
427	sample size made it possible to adjust for various potential confounders in the analyses. Moreover,

428	data from the relatively new cohort may reflect the current condition of MetS, metabolic phenotypes,
429	and cancer in Japan. In contrast, there are several limitations that need to be addressed. Due to the
430	lack of data on WC, we used BMI to assess obesity in examination-based analyses. However, a
431	strong correlation between WC and BMI was previously reported in a study with various ethnic
432	groups, including Japanese (Pearson's correlation coefficients 0.921 for Japanese men and 0.922 for
433	Japanese women) [29, 48, 49]. Furthermore, the assessment of metabolic phenotypes used baseline
434	data, and a status change was not monitored. Moreover, information on the lifestyle and background
435	characteristics of subjects and the components of metabolic phenotypes in questionnaire-based
436	analyses were based on a self-reported questionnaire; therefore, misclassifications may be inevitable.
437	Since number of subjects was limited, it was not possible to conduct the examination-based analyses
438	of site-specific cancer. Another limitation is the difficulties associated with applying the present
439	results directly to populations in other countries because this study was conducted solely on a
440	Japanese population.
441	In conclusion, the present study suggests that the number of metabolic abnormalities is
442	associated with the risk of cancer in obese Japanese adults. Moreover, hypertension and diabetes, but
443	not dyslipidemia, may be key metabolic abnormalities contributing to the risk of cancer. The risk of
444	each site-specific cancer may differ according to metabolic phenotypes. Further studies are
445	warranted on the underlying mechanisms as well as the causal relationship between metabolic

446 phenotypes and each site-specific cancer.

447 Acknowledgments

448	We thank all the contributors to the J-MICC study who are listed at supplementary file and the
449	following site (as of Aug 2024): https://jmicc.com/en/contributors. We also thank Ms. Noriko
450	Tsuruta, Rie Matsumura and Yayoi Asano of Tokushima University for their continuous support.
451	Funding
452	The present study was funded by Grants-in-Aid for Scientific Research on Priority Areas of Cancer
453	(No. 17015018) and on Innovative Areas (No. 221S0001) from the Ministry of Education, Culture,
454	Sports, Science and Technology (MEXT), and the Platform of Supporting Cohort Study and
455	Biospecimen Analysis (CoBiA, JSPS KAKENHI Grant No. JP16H06277 & 22H04923), a
456	Grant-in-Aid for Early-Career Scientists (JSPS KAKENHI Grant No. 20K18659 & 24K20112) from
457	the Japanese Society for the Promotion of Science (JSPS), COI-NEXT (Grant Number JPMJPF2018)
458	from Japan Science and Technology Agency (JST), and Kundara POC from Tokushima University.
459	Author contributions
460	TVN and TW wrote the first version of the manuscript. KA and other authors critically revised the
461	manuscript. Statistical analyses were independently conducted by TW and SK, who confirmed that
462	the results obtained were consistent. All authors contributed to the study design and data collection
463	and approved the final version of the manuscript.

464

References

467	1.	Preda A, Carbone F, Tirandi A, Montecucco F, Liberale L: Obesity phenotypes and cardiovascular
468		risk: From pathophysiology to clinical management. Rev Endocr Metab Disord 2023, 24(5):901-919.
469	2.	Catalán V, Avilés-Olmos I, Rodríguez A, Becerril S, Fernández-Formoso JA, Kiortsis D, Portincasa P,
470		Gómez-Ambrosi J, Frühbeck G: Time to Consider the "Exposome Hypothesis" in the Development of
471		the Obesity Pandemic. Nutrients 2022, 14(8).
472	3.	Hata J, Ninomiya T: Epidemiology of Stroke in a General Japanese Population: The Hisayama Study.
473		J Atheroscler Thromb 2023, 30(7):710-719.
474	4.	Saklayen MG: The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep 2018, 20(2):12.
475	5.	Gami AS, Witt BJ, Howard DE, Erwin PJ, Gami LA, Somers VK, Montori VM: Metabolic syndrome
476		and risk of incident cardiovascular events and death: a systematic review and meta-analysis of
477		longitudinal studies. J Am Coll Cardiol 2007, 49(4):403-414.
478	6.	Wilson PW, D'Agostino RB, Parise H, Sullivan L, Meigs JB: Metabolic syndrome as a precursor of
479		cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112(20):3066-3072.
480	7.	Wannamethee SG, Shaper AG, Lennon L, Morris RW: Metabolic syndrome vs Framingham Risk
481		Score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch Intern Med
482		2005, 165(22):2644-2650.

483 8. Zembic A, Eckel N, Stefan N, Baudry J, Schulze MB: An Empiricall	J Derived Definition of
---	-------------------------

- 484 Metabolically Healthy Obesity Based on Risk of Cardiovascular and Total Mortality. JAMA Netw
- 485 *Open* 2021, 4(5):e218505.
- 486 9. Zhou Z, Macpherson J, Gray SR, Gill JMR, Welsh P, Celis-Morales C, Sattar N, Pell JP, Ho FK: Are
- 487 people with metabolically healthy obesity really healthy? A prospective cohort study of 381,363 UK
- 488 Biobank participants. *Diabetologia* 2021, 64(9):1963-1972.
- 489 10. Kammerlander AA, Mayrhofer T, Ferencik M, Pagidipati NJ, Karady J, Ginsburg GS, Lu MT, Bittner
- 490 DO, Puchner SB, Bihlmeyer NA, Meyersohn NM, Emami H, Shah SH, Douglas PS, Hoffmann U:
- 491 Association of Metabolic Phenotypes With Coronary Artery Disease and Cardiovascular Events in
- 492 Patients With Stable Chest Pain. *Diabetes Care* 2021, 44(4):1038-1045.
- 493 11. Stefan N: Metabolically Healthy and Unhealthy Normal Weight and Obesity. *Endocrinol Metab*
- 494 (*Seoul*) 2020, 35(3):487-493.
- 495 12. Stefan N, Schulze MB: Metabolic health and cardiometabolic risk clusters: implications for prediction,
 496 prevention, and treatment. *Lancet Diabetes Endocrinol* 2023.
- 497 13. Stefan N, Schick F, Häring HU: Causes, Characteristics, and Consequences of Metabolically
- 498 Unhealthy Normal Weight in Humans. *Cell Metab* 2017, 26(2):292-300.
- 499 14. Kyrgiou M, Kalliala I, Markozannes G, Gunter MJ, Paraskevaidis E, Gabra H, Martin-Hirsch P,
- 500 Tsilidis KK: Adiposity and cancer at major anatomical sites: umbrella review of the literature. *Bmj*

501 2017, 356:j477.

502	15.	Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D: Metabolic syndrome and risk of cancer: a
503		systematic review and meta-analysis. Diabetes Care 2012, 35(11):2402-2411.
504	16.	Arnlöv J, Ingelsson E, Sundström J, Lind L: Impact of body mass index and the metabolic syndrome
505		on the risk of cardiovascular disease and death in middle-aged men. Circulation 2010,
506		121(2):230-236.
507	17.	Lin CJ, Chang YC, Hsu HY, Tsai MC, Hsu LY, Hwang LC, Chien KL, Yeh TL: Metabolically
508		healthy overweight/obesity and cancer risk: A representative cohort study in Taiwan. Obes Res Clin
509		Pract 2021, 15(6):564-569.
510	18.	Cao Z, Zheng X, Yang H, Li S, Xu F, Yang X, Wang Y: Association of obesity status and metabolic
511		syndrome with site-specific cancers: a population-based cohort study. Br J Cancer 2020,
512		123(8):1336-1344.
513	19.	Sun M, Fritz J, Häggström C, Bjørge T, Nagel G, Manjer J, Engeland A, Zitt E, van Guelpen B,
514		Stattin P, Ulmer H, Stocks T: Metabolically (un)healthy obesity and risk of obesity-related cancers: a
515		pooled study. J Natl Cancer Inst 2023, 115(4):456-467.
516	20.	Nguyen TV, Arisawa K, Katsuura-Kamano S, Ishizu M, Nagayoshi M, Okada R, Hishida A, Tamura
517		T, Hara M, Tanaka K, Nishimoto D, Shibuya K, Koyama T, Watanabe I, Suzuki S, Nishiyama T,
518		Kuriki K, Nakamura Y, Saito Y, Ikezaki H, Otonari J, Y NK, Matsuo K, Mikami H, Kusakabe M,
519		Takeuchi K, Wakai K: Associations of metabolic syndrome and metabolically unhealthy obesity with

520		cancer mortality: The Japan Multi-Institutional Collaborative Cohort (J-MICC) study. <i>PLoS One</i> 2022,
521		17(7):e0269550.
522	21.	Wakai K, Hamajima N, Okada R, Naito M, Morita E, Hishida A, Kawai S, Nishio K, Yin G, Asai Y,

- 523 Matsuo K, Hosono S, Ito H, Watanabe M, Kawase T, Suzuki T, Tajima K, Tanaka K, Higaki Y, Hara
- 524 M, Imaizumi T, Taguchi N, Nakamura K, Nanri H, Sakamoto T, Horita M, Shinchi K, Kita Y, Turin
- 525 TC, Rumana N, Matsui K, Miura K, Ueshima H, Takashima N, Nakamura Y, Suzuki S, Ando R,
- 526 Hosono A, Imaeda N, Shibata K, Goto C, Hattori N, Fukatsu M, Yamada T, Tokudome S, Takezaki T,
- 527 Niimura H, Hirasada K, Nakamura A, Tatebo M, Ogawa S, Tsunematsu N, Chiba S, Mikami H, Kono
- 528 S, Ohnaka K, Takayanagi R, Watanabe Y, Ozaki E, Shigeta M, Kuriyama N, Yoshikawa A, Matsui D,
- 529 Watanabe I, Inoue K, Ozasa K, Mitani S, Arisawa K, Uemura H, Hiyoshi M, Takami H, Yamaguchi
- 530 M, Nakamoto M, Takeda H, Kubo M, Tanaka H: Profile of participants and genotype distributions of
- 531 108 polymorphisms in a cross-sectional study of associations of genotypes with lifestyle and clinical
- 532 factors: a project in the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. J Epidemiol

533 2011, 21(3):223-235.

- 534 22. Takeuchi K, Naito M, Kawai S, Tsukamoto M, Kadomatsu Y, Kubo Y, Okada R, Nagayoshi M,
- 535 Tamura T, Hishida A, Nakatochi M, Sasakabe T, Hashimoto S, Eguchi H, Momozawa Y, Ikezaki H,
- 536 Murata M, Furusyo N, Tanaka K, Hara M, Nishida Y, Matsuo K, Ito H, Oze I, Mikami H, Nakamura
- 537 Y, Kusakabe M, Takezaki T, Ibusuki R, Shimoshikiryo I, Suzuki S, Nishiyama T, Watanabe M,
- 538 Koyama T, Ozaki E, Watanabe I, Kuriki K, Kita Y, Ueshima H, Matsui K, Arisawa K, Uemura H,

539		Katsuura-Kamano S, Nakamura S, Narimatsu H, Hamajima N, Tanaka H, Wakai K: Study Profile of
540		the Japan Multi-institutional Collaborative Cohort (J-MICC) Study. J Epidemiol 2021,
541		31(12):660-668.
542	23.	Hamajima N: The Japan Multi-Institutional Collaborative Cohort Study (J-MICC Study) to detect
543		gene-environment interactions for cancer. Asian Pac J Cancer Prev 2007, 8(2):317-323.
544	24.	Tokudome S, Goto C, Imaeda N, Tokudome Y, Ikeda M, Maki S: Development of a data-based short
545		food frequency questionnaire for assessing nutrient intake by middle-aged Japanese. Asian Pac J
546		<i>Cancer Prev</i> 2004, 5(1):40-43.
547	25.	Imaeda N, Goto C, Tokudome Y, Hirose K, Tajima K, Tokudome S: Reproducibility of a short food
548		frequency questionnaire for Japanese general population. J Epidemiol 2007, 17(3):100-107.
549	26.	Tokudome Y, Goto C, Imaeda N, Hasegawa T, Kato R, Hirose K, Tajima K, Tokudome S: Relative
550		validity of a short food frequency questionnaire for assessing nutrient intake versus three-day weighed
551		diet records in middle-aged Japanese. J Epidemiol 2005, 15(4):135-145.
552	27.	Watanabe T, Arisawa K, Nguyen TV, Ishizu M, Katsuura-Kamano S, Hishida A, Tamura T, Kato Y,
553		Okada R, Ibusuki R, Koriyama C, Suzuki S, Otani T, Koyama T, Tomida S, Kuriki K, Takashima N,
554		Miyagawa N, Wakai K, Matsuo K: Coffee and metabolic phenotypes: A cross-sectional analysis of
555		the Japan multi-institutional collaborative cohort (J-MICC) study. Nutr Metab Cardiovasc Dis 2023,
556		33(3):620-630.

557	28.	Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP,
558		Loria CM, Smith SC, Jr.: Harmonizing the metabolic syndrome: a joint interim statement of the
559		International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung,
560		and Blood Institute; American Heart Association; World Heart Federation; International
561		Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009,
562		120(16):1640-1645.
563	29.	Lauria MW, Moreira LM, Machado-Coelho GL, Neto RM, Soares MM, Ramos AV: Ability of body
564		mass index to predict abnormal waist circumference: receiving operating characteristics analysis.
565		Diabetol Metab Syndr 2013, 5(1):74.
566	30.	Boutari C, Mantzoros CS: A 2022 update on the epidemiology of obesity and a call to action: as its
567		twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues
568		to rage on. Metabolism 2022, 133:155217.
569	31.	Sun C, Kovacs P, Guiu-Jurado E: Genetics of Obesity in East Asians. Front Genet 2020, 11:575049.
570	32.	Bañez LL, Hamilton RJ, Partin AW, Vollmer RT, Sun L, Rodriguez C, Wang Y, Terris MK, Aronson
571		WJ, Presti JC, Jr., Kane CJ, Amling CL, Moul JW, Freedland SJ: Obesity-related plasma
572		hemodilution and PSA concentration among men with prostate cancer. Jama 2007,
573		298(19):2275-2280.
574	33.	Hammarsten J, Damber JE, Haghsheno MA, Mellström D, Peeker R: A stage-dependent link between
575		metabolic syndrome components and incident prostate cancer. Nat Rev Urol 2018, 15(5):321-333.

- 576 34. Tsugane S: Why has Japan become the world's most long-lived country: insights from a food and
- 577 nutrition perspective. *Eur J Clin Nutr* 2021, 75(6):921-928.
- 578 35. Choi YJ, Lee DH, Han KD, Shin CM, Kim N: Abdominal obesity, glucose intolerance and decreased
- 579 high-density lipoprotein cholesterol as components of the metabolic syndrome are associated with the

580 development of colorectal cancer. *Eur J Epidemiol* 2018, 33(11):1077-1085.

- 581 36. Liu PH, Wu K, Ng K, Zauber AG, Nguyen LH, Song M, He X, Fuchs CS, Ogino S, Willett WC,
- 582 Chan AT, Giovannucci EL, Cao Y: Association of Obesity With Risk of Early-Onset Colorectal
- 583 Cancer Among Women. *JAMA Oncol* 2019, 5(1):37-44.
- 584
 37.
 Osaki Y, Taniguchi S, Tahara A, Okamoto M, Kishimoto T: Metabolic syndrome and incidence of
- 585 liver and breast cancers in Japan. *Cancer Epidemiol* 2012, 36(2):141-147.
- 586 38. Polyzos SA, Kountouras J, Mantzoros CS: Obesity and nonalcoholic fatty liver disease: From
- 587 pathophysiology to therapeutics. *Metabolism* 2019, 92:82-97.
- 588 39. Polyzos SA, Chrysavgis L, Vachliotis ID, Chartampilas E, Cholongitas E: Nonalcoholic fatty liver
- 589 disease and hepatocellular carcinoma:Insights in epidemiology, pathogenesis, imaging, prevention
- and therapy. Semin Cancer Biol 2023, 93:20-35.
- 591 40. Ibrahim MK, Simon TG, Rinella ME: Extrahepatic Outcomes of Nonalcoholic Fatty Liver Disease:
- 592 Nonhepatocellular Cancers. *Clin Liver Dis* 2023, 27(2):251-273.
- 41. Ionescu VA, Gheorghe G, Bacalbasa N, Chiotoroiu AL, Diaconu C: Colorectal Cancer: From Risk
- 594 Factors to Oncogenesis. *Medicina (Kaunas)* 2023, 59(9).

595	42.	Nahmias-Blank D, Maimon O, Meirovitz A, Sheva K, Peretz-Yablonski T, Elkin M: Excess body
596		weight and postmenopausal breast cancer: Emerging molecular mechanisms and perspectives. Semin
597		<i>Cancer Biol</i> 2023, 96:26-35.
598	43.	Dehesh T, Fadaghi S, Seyedi M, Abolhadi E, Ilaghi M, Shams P, Ajam F, Mosleh-Shirazi MA,
599		Dehesh P: The relation between obesity and breast cancer risk in women by considering menstruation
600		status and geographical variations: a systematic review and meta-analysis. BMC Womens Health 2023,
601		23(1):392.
602	44.	Mandic M, Pulte D, Safizadeh F, Niedermaier T, Hoffmeister M, Brenner H: Overcoming
603		underestimation of the association of excess weight with pancreatic cancer due to prediagnostic
604		weight loss: Umbrella review of systematic reviews, meta-analyses, and pooled-analyses. Obes Rev
605		2024, 25(10):e13799.
606	45.	Hart PA, Kamada P, Rabe KG, Srinivasan S, Basu A, Aggarwal G, Chari ST: Weight loss precedes
607		cancer-specific symptoms in pancreatic cancer-associated diabetes mellitus. Pancreas 2011,
608		40(5):768-772.
609	46.	Wayne CD, Benbetka C, Besner GE, Narayanan S: Challenges of Managing Type 3c Diabetes in the
610		Context of Pancreatic Resection, Cancer and Trauma. J Clin Med 2024, 13(10).
611	47.	Weiss FU, Laemmerhirt F, Lerch MM: Etiology and Risk Factors of Acute and Chronic Pancreatitis.
612		Visc Med 2019, 35(2):73-81.

613	48.	Shiwaku K, Anuurad E,	Enkhmaa B, Nogi A	, Kitajima K, T	Yamasaki M,	Yoneyama T, Oyunsuren T,
-----	-----	-----------------------	-------------------	-----------------	-------------	--------------------------

- 614 Yamane Y: Predictive values of anthropometric measurements for multiple metabolic disorders in
- 615 Asian populations. *Diabetes Res Clin Pract* 2005, 69(1):52-62.
- 616 49. Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, Qizilbash N, Collins R, Peto
- 617 R: Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57
- 618 prospective studies. *Lancet* 2009, 373(9669):1083-1096.

619

Table 1. Background characteristics of participants according to obesity classification.

Subjects for the analysis of Examination-based Metabolic phenotypes

Subjects for the analysis of Questionnaire-based Metabolic phenotypes

Characteristics ^a	Normal weight	Obesity	P-value ^b	Characteristics ^a	Normal weight	Obesity	P-value ^b	
	(n = 19048)	(n = 6309)			(n = 41483)	(n = 11559)		
Age (years)	56 (46, 63)	56 (47, 63)	0.136	Age (years)	55 (46, 62)	55 (47, 62)	< 0.0001	
Exercise during leisure time (MET-hours/week)	6.0 (0.4, 17.9)	5.1 (0, 17.9)	< 0.0001	Exercise during leisure time	6.0 (0.4, 17.9)	5.1 (0.4, 16.2)	< 0.0001	
Sex				Sex				
Men	8657 (45.4)	3812 (60.4)	<0.0001	Men	16517 (39.8)	6727 (58.2)	<0.0001	
Women	10391 (54.6)	2497 (39.6)	<0.0001	Women	24966 (60.2)	4832 (41.8)	<0.0001	
Educational background (years)				Educational background (years)				
≤9	2240 (11.8)	1002 (15.9)		≤9	3344 (8.1)	1382 (12.0)		
10–15	12211 (64.1)	3762 (59.6)	-0.0001	10–15	27355 (65.9)	6992 (60.5)	-0.0001	
≥16	4479 (23.5)	1505 (23.9)	<0.0001	≥16	10582 (25.5)	3126 (27.0)	<0.0001	
Unknown	118 (0.6)	40 (0.6)		Unknown	202 (0.5)	59 (0.5)		
Smoking habit				Smoking habit				
Current	3024 (15.9)	1125 (17.8)		Current	6795 (16.4)	2306 (20.0)		
Past	4227 (22.2)	1759 (27.9)	< 0.0001	Past	8527 (20.6)	3147 (27.2)	< 0.0001	
Never	11797 (61.9)	3425 (54.3)		Never	26161 (63.1)	6106 (52.8)		
Pack-years				Pack-years				
0	11797 (61.9)	3425 (54.3)		0	26161 (63.1)	6106 (52.8)		
>0 and <20	3176 (16.7)	989 (15.7)		>0 and <20	6694 (16.1)	1825 (15.8)		
≥20	3693 (19.4)	1744 (27.6)	< 0.0001	≥20	7963 (19.2)	3388 (29.3)	<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.109 <0.0001 <0.0001 <0.0001 <0.0001	
Unknown	382 (2.0)	151 (2.4)		Unknown	665 (1.6)	240 (2.1)		
Alcohol drinking				Alcohol drinking				
Never	7940 (41.7)	2433 (38.6)		Never	17261 (41.6)	4507 (39.0)		
Past	308 (1.6)	106 (1.7)		Past	848 (2.0)	248 (2.2)		
>0 and <20 g/day	6585 (34.6)	1969 (31.2)	< 0.0001	>0 and <20 g/day	14683 (35.4)	3600 (31.1)	< 0.0001	
≥20 g/day	4215 (22.1)	1801 (28.6)		≥20 g/day	8691 (21.0)	3204 (27.7)		
Medical history				Medical history				
Gastric ulcer	2313 (12.1)	694 (11.0)	0.015	Gastric ulcer	5534 (13.3)	1485 (12.9)	0.166	
Chronic gastritis	2247 (11.8)	532 (8.4)	< 0.0001	Chronic gastritis	5301 (12.8)	1179 (10.2)	< 0.0001	
Colorectal polyps	1648 (8.7)	623 (9.9)	0.003	Colorectal polyps	3340 (8.1)	1135 (9.8)	< 0.0001	
Hepatitis B	230 (1.2)	92 (1.5)	0.123	Hepatitis B	496 (1.2)	178 (1.5)	0.004	
Hepatitis C	156 (0.8)	53 (0.8)	0.872	Hepatitis C	442 (1.1)	143 (1.2)	0.118	
Fatty liver	1159 (6.1)	1172 (18.6)	< 0.0001	Fatty liver	2539 (6.1)	2309 (20.0)	< 0.0001	
Asthma	1156 (6.1)	398 (6.3)	0.493	Asthma	2600 (6.3)	772 (6.7)	0.109	
High blood pressure	2916 (15.3)	1908 (30.2)	< 0.0001	High blood pressure	5680 (14.1)	3457 (29.9)	< 0.0001	
Diabetes	835 (4.4)	544 (8.6)	< 0.0001	Diabetes	1760 (4.2)	970 (8.4)	< 0.0001	
Dyslipidemia	2621 (13.8)	1229 (19.5)	< 0.0001	Dyslipidemia	5919 (14.3)	2443 (21.1)	< 0.0001	
Medication				Medication				
High blood pressure	2389 (12.5)	1683 (26.7)	< 0.0001	High blood pressure	4681 (11.3)	2974 (25.7)	< 0.0001	
Diabetes	504 (2.7)	393 (6.2)	< 0.0001	Diabetes	1071 (2.6)	713 (6.2)	< 0.0001	
High blood cholesterol	1527 (8.0)	793 (12.6)	< 0.0001	High blood cholesterol	3115 (7.5)	1458 (12.6)	< 0.0001	
Sleeping pills	661 (3.5)	221 (3.5)	0.902	Sleeping pills	1696 (4.1)	431 (3.7)	0.081	
Antipyretic	548 (2.9)	197 (3.1)	0.317	Antipyretic	1282 (3.1)	395 (3.4)	0.076	
Laxative	766 (4.0)	193 (3.1)	0.0005	Laxative	1924 (4.6)	377 (3.3)	< 0.0001	
		(/						

MET, metabolic equivalent.

^a Median (25%, 75%) or number of subjects (%).

^b Wilcoxon's rank sum test or Chi-square test.

622 Figure legends

Figure 1. Flowcharts of the selection of study participants.

- 624 (A) Study participants for analyses of examination-based metabolic phenotypes.
- 625 (B) Study participants for analyses of questionnaire-based metabolic phenotypes.
- 626

Figure 2. Relationships between questionnaire-based metabolic phenotypes and site-specific
 cancers.

- 629 HRs and 95 % CIs are shown as points and error bars.
- 630 Cox proportional hazard models to estimate association between metabolic phenotypes and
- 631 site-specific cancers after adjusting for age, sex, research sites, educational background, pack-years,
- drinking habit, physical activity level, and miso soup, fruits and vegetables consumption.
- HR, hazard ratio; CI, confidence interval; MHNW, Metabolically healthy normal weight; MUNW,
- 634 Metabolically unhealthy normal weight; MHO, Metabolically healthy obesity; MUHO,
- 635 Metabolically unhealthy obesity.
- 636

637 Figure 3. Sex-stratified analyses of relationships between questionnaire-based metabolic

- 638 phenotypes and site-specific cancers.
- HRs and 95 % CIs are shown as points and error bars.

640	
	Sex-stratified Cox proportional hazard models to estimate association between metabolic phenotypes
641	and site-specific cancers after adjusting for age, research sites, educational background, pack-years,
642	drinking habit, physical activity level, and miso soup, fruits and vegetables consumption.
643	HR, hazard ratio; CI, confidence interval; MHNW, Metabolically healthy normal weight; MUNW,
644	Metabolically unhealthy normal weight; MHO, Metabolically healthy obesity; MUHO,
645	Metabolically unhealthy obesity.
646	
647	Figure 4. Relationships between questionnaire-based metabolic phenotypes and site-specific
	concors handling subjects who had concor within one year or two years as consored
648	cancers nanoning subjects who had cancer within one year of two years as censored.
648 649	HRs and 95 % CIs are shown as points and error bars.
648 649 650	HRs and 95 % CIs are shown as points and error bars. Cox proportional hazard models to estimate association between metabolic phenotypes and
648649650651	 HRs and 95 % CIs are shown as points and error bars. Cox proportional hazard models to estimate association between metabolic phenotypes and site-specific cancers after adjusting for age, sex, research sites, educational background, pack-years,
648649650651652	 HRs and 95 % CIs are shown as points and error bars. Cox proportional hazard models to estimate association between metabolic phenotypes and site-specific cancers after adjusting for age, sex, research sites, educational background, pack-years, drinking habit, physical activity level, and miso soup, fruits and vegetables consumption.
 648 649 650 651 652 653 	 HRs and 95 % CIs are shown as points and error bars. Cox proportional hazard models to estimate association between metabolic phenotypes and site-specific cancers after adjusting for age, sex, research sites, educational background, pack-years, drinking habit, physical activity level, and miso soup, fruits and vegetables consumption. HR, hazard ratio; CI, confidence interval; MHNW, Metabolically healthy normal weight; MUNW,
 648 649 650 651 652 653 654 	 HRs and 95 % CIs are shown as points and error bars. Cox proportional hazard models to estimate association between metabolic phenotypes and site-specific cancers after adjusting for age, sex, research sites, educational background, pack-years, drinking habit, physical activity level, and miso soup, fruits and vegetables consumption. HR, hazard ratio; CI, confidence interval; MHNW, Metabolically healthy normal weight; MUNW, Metabolically unhealthy normal weight; MHO, Metabolically healthy obesity; MUHO,
 648 649 650 651 652 653 654 655 	 HRs and 95 % CIs are shown as points and error bars. Cox proportional hazard models to estimate association between metabolic phenotypes and site-specific cancers after adjusting for age, sex, research sites, educational background, pack-years, drinking habit, physical activity level, and miso soup, fruits and vegetables consumption. HR, hazard ratio; CI, confidence interval; MHNW, Metabolically healthy normal weight; MUNW, Metabolically unhealthy normal weight; MHO, Metabolically healthy obesity; MUHO, Metabolically unhealthy obesity.

- 657 Figure 5. Sex-stratified analyses of relationships between questionnaire-based metabolic
- 658 phenotypes and site-specific cancers handling subjects who had cancer within one year or two
- 659 years as censored.
- 660 HRs and 95 % CIs are shown as points and error bars.
- 661 Sex-stratified Cox proportional hazard models to estimate association between metabolic phenotypes
- and site-specific cancers after adjusting for age, research sites, educational background, pack-years,
- drinking habit, physical activity level, and miso soup, fruits and vegetables consumption.
- 664 HR, hazard ratio; CI, confidence interval; MHNW, Metabolically healthy normal weight; MUNW,
- 665 Metabolically unhealthy normal weight; MHO, Metabolically healthy obesity; MUHO,
- 666 Metabolically unhealthy obesity.

Study participants for the analysis of examination-based metabolic phenotypes

25,357 subjects (12,469 men and 12,888 women)

Study participants for the analysis of questionnaire-based metabolic phenotypes

53,042 subjects (23,244 men and 29,798 women)

Subgroup	Participants	Person-years	No. of cases		HR(95% CI)
Total cancer					
MHNW	30099	246204.1	2183	-	1.00 (1.00 to 1.00)
мно	6377	53399.4	497	+	1.06 (0.96 to 1.17)
MUNW	11384	91532.3	1211	+	1.05 (0.97 to 1.12)
MUHO	5182	42344	576		1.15 (1.04 to 1.26)
Stomach					
MHNW	30099	246204.1	253	•	1.00 (1.00 to 1.00)
мно	6377	53399.4	47	- -	0.76 (0.56 to 1.04)
MUNW	11384	91532.3	178		1.13 (0.92 to 1.37)
MUHO	5182	42344	67	_ _	0.93 (0.71 to 1.22)
Colon and rectum					
MHNW	30099	246204.1	258	-	1.00 (1.00 to 1.00)
мно	6377	53399.4	79		1.41 (1.09 to 1.82)
MUNW	11384	91532.3	159		1.09 (0.89 to 1.34)
MUHO	5182	42344	91		1.45 (1.13 to 1.85)
Liver					
MHNW	30099	246204.1	38		1.00 (1.00 to 1.00)
мно	6377	53399.4	23	\longrightarrow	2.39 (1.41 to 4.03)
MUNW	11384	91532.3	36		1.54 (0.97 to 2.46)
MUHO	5182	42344	27	\longrightarrow	2.36 (1.43 to 3.92)
Pancreas					
MHNW	30099	246204.1	64	-	1.00 (1.00 to 1.00)
MHO	6377	53399.4	14		1.06 (0.59 to 1.89)
MUNW	11384	91532.3	63	-	1.60 (1.12 to 2.29)
MUHO	5182	42344	24		1.51 (0.94 to 2.44)
Lung and Bronchus					
MHNW	30099	246204.1	234	•	1.00 (1.00 to 1.00)
мно	6377	53399.4	59		1.09 (0.82 to 1.46)
MUNW	11384	91532.3	137		0.94 (0.75 to 1.16)
МИНО	5182	42344	56	0.5 1 1.5 2 2.5	0.86 (0.64 to 1.16)

Subgroup	Participants	Person-years	No. of cases		HR(95% CI)
Male					
Total cancer					
MHNW	11083	89738.8	1018	•	1.00 (1.00 to 1.00)
MHO	3597	29773.1	276		0.95 (0.83 to 1.09)
MUNW	5434	42650.9	739	-	1.05 (0.95 to 1.15)
MUHO	3130	25117.7	390	-	1.11 (0.99 to 1.25)
Prostate					
MHNW	11083	89738.8	214	ŧ	1.00 (1.00 to 1.00)
MHO	3597	29773.1	41		0.75 (0.54 to 1.05)
MUNW	5434	42650.9	145		0.91 (0.74 to 1.13)
MUHO	3130	25117.7	88		1.22 (0.95 to 1.57)
Female					
Total cancer					
MHNW	19016	156465.3	1165	•	1.00 (1.00 to 1.00)
МНО	2780	23626.2	221		1.37 (1.19 to 1.59)
MUNW	5950	48881.4	472		1.10 (0.98 to 1.23)
MUHO	2052	17226.3	186		1.32 (1.12 to 1.55)
Breast					
MHNW	19016	156465.3	370	•	1.00 (1.00 to 1.00)
MHO	2780	23626.2	71		1.45 (1.12 to 1.88)
MUNW	5950	48881.4	121		1.10 (0.89 to 1.38)
MUHO	2052	17226.3	59		1.63 (1.22 to 2.17)
Corpus uteri					
MHNW	19016	156465.3	65	•	1.00 (1.00 to 1.00)
MHO	2780	23626.2	11		1.36 (0.71 to 2.59)
MUNW	5950	48881.4	17	<- ■	0.75 (0.43 to 1.31)
MUHO	2052	17226.3	13		1.95 (1.04 to 3.63)
				1 1.5 2	

Subgroup	Participants	Person-years	No. of cases		HR(95% CI)
Total cancer (one year)				1	
MHNW	30099	246204.1	1534	•	1.00 (1.00 to 1.00)
МНО	6377	53399.4	364	+	1.04 (0.93 to 1.17)
MUNW	11384	91532.3	900	-	1.08 (0.99 to 1.17)
МИНО	5182	42344	441	-	1.18 (1.06 to 1.31)
Total cancer (two years)					. ,
MHNW	30099	246204.1	1357	•	1.00 (1.00 to 1.00)
мно	6377	53399.4	328	+	1.05 (0.93 to 1.19)
MUNW	11384	91532.3	803		1.09 (1.00 to 1.20)
мино	5182	42344	394		1 19 (1 06 to 1 33)
Stomach (one year)					
MHNW	30099	246204 1	195		1.00 (1.00 to 1.00)
MHO	6377	53399.4	40		0.82 (0.58 to 1.15)
MUNW	11384	91532 3	142		1 17 (0 94 to 1 46)
MUHO	5182	42344	55		0.96 (0.71 to 1.30)
Stomach (two years)	5162	72077	00		0.50 (0.71 (0 1.50)
	20000	246204 1	170	_	1.00(1.00 to 1.00)
MHNW	30099	240204.1	172	-	1.00(1.00101.00)
	6377	04520.2	34		0.78 (0.54 to 1.13)
MUNW	11384	91532.3	128		1.21 (0.96 to 1.53)
MUHO	5182	42344	45		0.89 (0.64 to 1.24)
Colon and rectum (one year)					
MHNVV	30099	246204.1	198	•	1.00 (1.00 to 1.00)
МНО	6377	53399.4	55		1.23 (0.91 to 1.67)
MUNW	11384	91532.3	125	+	1.12 (0.89 to 1.41)
мино	5182	42344	73		1.48 (1.13 to 1.95)
Colon and rectum (two years)					
MHNW	30099	246204.1	176		1.00 (1.00 to 1.00)
МНО	6377	53399.4	51		1.29 (0.94 to 1.77)
MUNW	11384	91532.3	111	+	1.14 (0.90 to 1.46)
МИНО	5182	42344	66		1.54 (1.15 to 2.06)
Liver (one year)					
MHNW	30099	246204.1	28	•	1.00 (1.00 to 1.00)
мно	6377	53399.4	17	——●	2.33 (1.27 to 4.28)
MUNW	11384	91532.3	27		1.52 (0.89 to 2.61)
МИНО	5182	42344	23		2.54 (1.44 to 4.46)
Liver (two years)					
MHNW	30099	246204.1	26	-	1.00 (1.00 to 1.00)
МНО	6377	53399.4	14		2.05 (1.06 to 3.95)
MUNW	11384	91532.3	25		1.54 (0.88 to 2.69)
МИНО	5182	42344	23	• →	2.74 (1.54 to 4.87)
Pancreas (one year)					
MHNW	30099	246204.1	37	÷	1.00 (1.00 to 1.00)
мно	6377	53399.4	10		1.27 (0.63 to 2.57)
MUNW	11384	91532.3	39		1.70 (1.07 to 2.69)
MUHO	5182	42344	18		1.96 (1.10 to 3.48)
Lung and Bronchus (one year)					
MHNW	30099	246204 1	145		1.00(1.00 to 1.00)
MHO	6377	53399 /	31		0.88 (0.59 to 1.30)
MUNW	11384	91532.3	87	_	1.00(0.76 to 1.30)
MUHO	5182	42344	38		$0.93(0.65 \pm 0.131)$
	5162	72044	00	-	0.55 (0.65 10 1.54)
MUNIW	20000	246204 4	121		1 00 (1 00 to 1 00)
	50033	240204.1	20		
	03//	01520.0	28		0.88 (0.58 to 1.33)
MUNW	11384	91532.3	80		1.02 (0.77 to 1.36)
MUHU	5182	42344	36		0.98 (0.67 to 1.42)
				0.5 1 1.5 2 2.5	

Subgroup	Participants	Person-years	No. of cases		HR(95% CI)
Male				1	
Total cancer (one year)					
MHNW	11083	89738.8	743	- 	1.00 (1.00 to 1.00)
МНО	3597	29773.1	205	 	0.95 (0.81 to 1.11)
MUNW	5434	42650.9	547		1.08 (0.97 to 1.21)
MUHO	3130	25117.7	302		1.16 (1.01 to 1.32)
Total cancer (two years)					
MHNW	11083	89738.8	658	÷	1.00 (1.00 to 1.00)
MHO	3597	29773.1	189	-	0.98 (0.83 to 1.16)
MUNW	5434	42650.9	490	-	1.11 (0.98 to 1.24)
МИНО	3130	25117.7	270	- - -	1.17 (1.02 to 1.35)
Prostate (one year)					
MHNW	11083	89738.8	214	-	1.00 (1.00 to 1.00)
мно	3597	29773.1	41		0.70 (0.48 to 1.02)
MUNW	5434	42650.9	145	_ 	0.93 (0.74 to 1.18)
мино	3130	25117.7	88	÷	1.21 (0.92 to 1.59)
Prostate (two years)					
MHNW	11083	89738.8	163	÷	1.00 (1.00 to 1.00)
мно	3597	29773.1	31		0.73 (0.49 to 1.07)
MUNW	5434	42650.9	110		0.94 (0.74 to 1.20)
MUHO	3130	25117.7	66		1.21 (0.91 to 1.62)
Female					
Total cancer (one year)					
MHNW	19016	156465 3	791		1.00 (1.00 to 1.00)
мно	2780	23626.2	159		1.33 (1.12 to 1.58)
MUNW	5950	48881 4	353	-	1.13 (0.99 to 1.29)
MUHO	2052	17226 3	139		1.31 (1.09 to 1.58)
Total cancer (two years)	2002	11220.0	100		1.01 (1.00 to 1.00)
	19016	156465 3	699	-	1.00 (1.00 to 1.00)
MHO	2780	23626.2	139		1.00 (1.00 to 1.00)
MUNW	5950	18881 A	313		1.30 (1.08 to 1.30)
MUHO	2052	17026.2	124		1.14(0.33 to 1.31)
Breast (one year)	2052	17220.5	124		1.51 (1.08 to 1.60)
	10016	156465 2	242		1.00 (1.00 to 1.00)
	2780	23626.2	51		1.00(1.00 to 1.00)
	5950	23020.2	02		1.42(1.05(0, 1.93))
	2052	40001.4	92 41		1.21(0.94101.36)
	2052	17220.3	41		1.55 (1.10 to 2.16)
	10010	150405.2	014	L .	1.00 (1.00 to 1.00)
	19016	156465.3	214		1.00 (1.00 to 1.00)
	2780	23020.2	44		1.37 (0.99 to 1.91)
	3950	40001.4	02		1.25 (0.94 to 1.62)
	2052	1/226.3	34		1.45 (1.00 to 2.11)
Corpus uteri (one year)	10010	450405.0	50		
MHNW	19016	156465.3	50	_	1.00 (1.00 to 1.00)
мно	2780	23626.2	10	-	1.48 (0.74 to 2.93)
MUNW	5950	48881.4	10	-	0.58 (0.29 to 1.18)
MUHO	2052	17226.3	11		2.09 (1.05 to 4.15)
				0.5 1 1.5 2 2.5	