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Abstract: High-speed ship operations have a significant risk of the broaching phenomenon

when navigating in following/quartering seas. The occurrence of this phenomenon can result

in a violent yaw motion, regardless of the steering effort. Centrifugal forces due to the yaw

motion could cause large roll motion and even capsizing in some cases. A necessary condition

for the occurrence of broaching is the surf-riding phenomenon. Therefore, the International

Maritime Organization (IMO) has set up criteria to include theoretical formulas for estimating

the occurrence of surf-riding phenomena. The theoretical equation used in the IMO Second-

Generation Intact Stability criteria (SGISC) to estimate the surf-riding threshold is based

on the authors’ method, and in its derivation process, Melnikov’s method. is utilized. This

paper deals with nonlinear equations describing the surge motions of a ship. However, such

equations cannot be directly solved; therefore, prior researchers and authors have proposed

various approximate methods to predict the surf-riding threshold, including the methods based

on Meknikov’s method. In this paper, first, the authors describe the mechanism of the surfing

phenomenon. Then, the authors explain in detail the derivation of the estimation methods for

the surf-riding phenomenon that have been proposed by the prior researchers and the authors.

Finally, the authors show the relationship between the theoretical prediction method of the

surf-riding threshold based on Melnikov’s method and the IMO SGISC.
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1. Introduction
Marine vessels operating at high speeds in following/quartering seas are at risk of surf-riding and

subsequent broaching phenomena. The broaching phenomenon is defined as a course-instability phe-

nomenon in waves. As described in Fig. 1, initially, the ship is overtaken by waves; however, the

force of the waves accelerates the hull, resulting in surf-riding. On the wave down-slope, the course

stability of the ship becomes unstable, resulting in a violent yaw motion. Saunders described the

broaching phenomenon that occurred with respect to the Portuguese Navy destroyer, N.R.P. Lima,

in the Atlantic Ocean [1]. At the time, N.R.P. Lima was being operated at 26 knots in following

waves with the wavelength-to-ship length ratio of almost 1. Despite the maximum steering efforts to

maintain her course, she was forced to turn to port, and her roll angle was reported to have reached

67 degrees.

Fig. 1. Schematic of the surf-riding phenomenon.

Nicholson [2] conducted an experiment on the model scale in the rectangular tank of the Hustler.

A 5-m-long, twin-screw, twin-rudder model ship was navigated by manual steering with radio control

in waves and a turning was recorded to the right even though the maximum rudder angle was 35

degrees to the left.

Broaching describes the loss of ship maneuverability in waves and could occur even at low speeds,

as described experimentally and theoretically by Kan [3], Spyrou [4, 5], and Maki [6]. However,

this phenomenon is considered as a self-excited oscillation of the control system involving waves.

Therefore, the appropriate control can prevent the occurrence of broaching at low speeds. In this

study, we focused on broaching at high speeds, which occurs after the occurrence of the surf-riding

phenomenon. Such a type of broaching phenomenon has been extensively investigated from various

aspects (e.g. [7]). If a surf-riding phenomenon occurs, vessels cannot easily maneuver through even if

the propeller thrust is reduced. In addition, a reduction of the propeller thrust results in a reduction

in the rudder force. Therefore, from the standpoint of safety, the surf-riding phenomenon must be

prevented.

As shown later in text, the equations of ship motion in the following waves are the same as the

equations of motion of a physical pendulum with respect to friction damping and constant motor

torque. In the motion of such a pendulum, in the range of small torque, the motion is an oscillation

that converges to an equilibrium point that exists, for example, at the lower point. The surfing

phenomenon is identical to this situation. However, as the torque increases, the motion changes to

a rotational motion, and this periodic state of motion is overtaken by waves. In terms of nonlinear

dynamics, the boundary of such a motion is termed as the heteroclinic bifurcation. Several attempts

have been made in the field of naval architect and ocean engineering to determine this bifurcation

point.

Grim [8] explained that under surf-riding threshold conditions, a trajectory leaving an unstable

equilibrium point connects to another unstable equilibrium point. This phenomenon is known as
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a heteroclinic bifurcation. Makov [9] validated this finding by using the phase plane analysis. An-

naniev [10] obtained the surf-riding threshold using the perturbation method. Kan [11] and Umeda [12]

also conducted the phase plane analyses, and based on these results, the International Maritime Or-

ganization (IMO) developed operational guidance for avoiding surf-riding in following seas as its MSC

Circ.707 [13]. Here, for simplicity, the critical Froude number for the surf-riding phenomenon was set

as 0.3 for any ship.

The nonlinear surge equation, which has been used, cannot be solved analytically. Therefore, Kan

applied Melnikov’s method [14] to propose an approximate formula for predicting the surf-riding

threshold [11]. Spyrou [15] extended Kan’s approach and then obtained an approximate formula.

Further, Maki generalized their approaches and then obtained an approximate formula [16]. Spy-

rou [17] also proposed an analytical formula for the nonlinear surge equation with a quadratically

approximated damping component. Maki et al. [16] applied the piecewise linear approximation to the

sinusoidal wave force and obtained the analytical formula. Furthermore, Maki et al. [18] applied the

cubic polynomial approximation to the sinusoidal wave force to obtain the analytical formula.

The IMO has recently developed new-generation intact stability criteria, covering five failure modes,

that is, parametric rolling, pure loss of stability, stability in dead-ship condition, broaching with surf-

riding, and excessive accelerations. Accordingly, the risk of surf-riding phenomena must be assessed

to prevent broaching phenomena. Therefore, Maki et al. [16] proposed a calculation method directly

based on Melnikov’s method for this purpose. The current paper begins with a description of the

nonlinear equations of motion that describe the surge motion in the waves. Then, several approximate

solution methods of this nonlinear equation are described. They include the theoretical approximate

formula described in IMO’s new-generation intact stability criteria. Finally, the criteria are explained

in detail.

2. Notation
In the following equation, t [s] is the time, R is a set of real numbers, and Rn is the n-dimensional

Euclidean space. ∥x(t)∥ for x ∈ Rn represents the Euclidean norm, (xTx)1/2. The absolute value of

x ∈ R is denoted as |x|, where i indicates the imaginary unit.

3. Froude–Krylov surge force
Two right-handed coordinate systems used in the paper are illustrated in Fig. 2. The ship-fixed

coordinate system, that is, G − xsyszs, has its origin at the center of gravity of the ship with the

x axis pointing toward the bow direction, y axis pointing the starboard side, and z axis pointing

downward. An inertial coordinate system, namely o − ξηζ, with the origin at a wave trough is

employed with the ξ axis pointing in the direction of wave travel and ζ axis pointing downward.

Fig. 2. Two right-handed coordinate systems, but ys and η axes are not
illustrated. Here, cW represents the wave celerity.

As pointed out by Umeda [19], assuming that the hull form is almost longitudinally symmetric,

the Froude-Krylov force is represented as a first-order approximation. Here, we show the detailed

derivation of the sinusoidal surge force.

The velocity potential of incident wave, ϕ0, can be represented as

ϕ0 = −gζW
ω

e−kWzs sin (kWξG + kWxs cosχs − kWys sinχs − ωet) (1)
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where ξG is the relative position of the center of gravity of the vessel to wave and has its origin at

a wave trough. xs, ys, and zs are positions on the hull, and the origin of its ship-fixed right-handed

coordinate system is at the center of gravity of the vessel, g is the gravitational acceleration, ζW is

the amplitude of the incident wave, kW = g/ω2
W = 2π/λ is the wave number, ωW represents the wave

frequency, λ is the wavelength of the incident wave, and χs is the ship direction to the incident wave.

Here, the following relation exists between wave and encounter frequencies:

ωe = ωW − kWU cosχs (2)

where U is the forward velocity of a vessel. The pressure p can be calculated as

p = ρ

(
∂

∂t
− U

∂

∂xs

)
ϕ0 (3)

where ρ is the water density. In the following/quartering seas, the encounter frequency is almost zero.

Therefore, hereafter, ωe = 0 and then p can be calculated as

p = −ρgζWe−kWzs cos (kWξG + kWxs cosχs − kWys sinχs) (4)

The integration of pressure p over the hull surface yields the Froude-Krylov force:

FFK
1 =

∫∫
SH

(−p)n1dS (5)

Here, SH denotes the hull surface region for area integral. The minus sign in −p, is derived from the

definition of the normal vector. As the main goal here is to obtain the surge force, we need to have

xs directional normal vector n1. However, unlike ys or zs directional normal vectors, the computation

of xs directional normal is not necessarily easy. Therefore, to bypass the use of n1, Gauss’s theorem

is applied.

Here, as shown in Fig. 3, the authors introduce the surface region, SWI, i.e., the water-level region

inside the hull, and the pressure on SWI is rigorously zero in the framework of linear theory.

Fig. 3. Definition of SH and SWI.

Then, by using Gauss’s theorem, the surface integration is successfully converted to the volume

integral.

FFK
1 =

∫∫
SH+SWI

(−p)n1dS = −
∫∫∫

V0

∂p

∂xs
dV (6)

Here, V0 denotes the underwater hull part for volume integral. Now, we substitute Eq. (4) into Eq. (6),

and the volume integral can be divided into two integrals, namely dxs and dS, by following the scheme

of the strip method.
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FFK
1 = −ρgζWkW cosχs

∫∫∫
V0

e−kWzs sin (kWξG + kWxs cosχs − kWys sinχs) dV

= −ρgζWkW cosχs

∫
L
dxs

∫∫
SSA(xs)

e−kWzs sin (kWξG + kWxs cosχs − kWys sinχs) dS

(7)

where L represents the xs-directional integration over ship length L, and SSA(xs) represents the

surface integral over a sectional area at xs. Now, the sinusoidal term can be expanded as

sin (kWξG + kWxs cosχs − kWys sinχs)

= sin (kWξG + kWxs cosχs) cos(kWys sinχs)− cos (kWξG + kWxs cosχs) sin(kWys sinχs)
(8)

Then, in the case of usual bilateral symmetry vessel, the second term in Eq. (8) disappears. Then,

we can obtain

FFK
1 = −ρgζWkW cosχs

∫
L
sin (kWξG + kWxs cosχs) dxs

∫∫
SSA(xs)

e−kWzs cos(kWys sinχs)dS (9)

Here, the authors assume the rectangular hull section, which has the same ship breadth, B(xs), and

ship draft, d(xs). Further, component e−kWzs is approximated as

e−kWzs ≈ e−kWd(xs)/2 (10)

Then, the second integral in Eq. (9) can be approximated as∫∫
SSA(xs)

e−kWzs cos(kys sinχs)dS ≈ e−kWd(xs)/2

∫ d(xs)

0

dzS

∫ B(xs)/2

−B(xs)/2

cos(kWys sinχs)dys

= CW1(xs)B(xs)

∫ d(xs)

0

dzs

≈ CW1(xs)AS(xs)

(11)

Here. AS(xs) represents the sectional area. In Eq. (11), CW1(xs) represents

CW1(xs) ≡
sin(kW sinχB(xs)/2)

kW sinχB(xs)/2
(12)

Finally, the Froude-Krylov surge force can be written as

FFK
1 = −ρgζWkW cosχ

∫
L
e−kWd(xs)/2CW1(xs)AS(xs) sin (kWξG + kWxs cosχs) dxs (13)

In the case of the following seas, χs is zero. Since limχs→0 CW1(xs) = 0, we have:

XW (ξG) = −ρgζWkW
∫ F.E.

A.E.

AS(xs)e
−kWd(xs)/2 sin kW (ξG + xs) dxs (14)

Here, A.E. means the aft-end whereas F.E. does the fore-end. Now, amplitude component fW and

phase component εW can be represented as

XW (ξG) = −fW sin (kWξG + εW)

where



fW =
√
I2W1 + I2W2

εW = tan−1 (IW2/IW1)

IW1 = ρgζWkW

∫ F.E.

A.E.

AS(xS)e
−kWd(xs)/2 cos kWxsdxs

IW2 = ρgζWkW

∫ F.E.

A.E.

AS(xS)e
−kWd(xs)/2 sin kWxsdxs

(15)
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4. Equation of motion
The following relation on the velocity holds:

u = cW +
dξG
dt

(16)

Here, cW ≡
√
g/kW represents the wave celerity whereas u does the instantaneous ship velocity. In

steeper waves, the wave celerity with nonlinear correction, that is cW =
√
g/kW

√
1 + k2Wζ

2
W [20], can

be used.

The equation of motion that represents nonlinear surge motion is given as

(mS +mSx)
d2ξG
dt2

+ (R(u)− Te(u, nP))−XW(ξG) = 0 (17)

In this equation, mS: the ship mass, mSx: the added mass in the x direction, R(u): the ship resistance

which is positive in the negative x direction, nP: the propeller revolution number, Te(u, nP): the

propeller thrust. Hereafter, the resistance in waves is considered the same as the value in calm water

at the same velocity; the effects of changes in trim, wetted surface, waterplane, local draughts, LCB

position, and other factors are all ignored [19].

The ship resistance component, R(u), is represented as the nM-th order polynomial:

R(u) ≈
nM∑
j=1

rju
j = r1u+ r2u

2 + · · · , (18)

Then, the ship thrust can be calculated as

Te(u, nP) = (1− tP) ρn
2
PD

4
PKT (JP(u, nP))

where JP(u, nP) =
(1− wP)u

nPDP

(19)

where DP: the propeller diameter, tP: the thrust deduction coefficient, wP: the wake fraction co-

efficient. Thrust coefficient KT (JP(u, nP)) inside Te is also represented as nM-th order polynomial:

KT(JP(u, nP)) ≈
nM∑
j=0

κiJ
j
P(u, nP) = κ0 + κ1JP(u, nP) + κ2J

2
P(u, nP) + · · · (20)

By substituting Eq. (20) in Eq. (19), the ship thrust can be calculated as

Te(u, nP) =

nM∑
j=0

(1− tP) (1− wP)
j
ρκju

j

nj−2
P Dj−4

P

, (21)

Then, the equation of motion becomes

(mS +mSx)
d2ξG
dt2

+

nM∑
j=1

j∑
k=1

cSj(nP)

(
j

k

)(
dξG
dt

)k

cj−k
W + fW sin kWξG = Te (cW, nP)−R (cW)

where cSj(nP) ≡ rj −
(1− tP) (1− wP)

j
ρκj

nj−2
P Dj−4

P
(22)

The introduction of new coefficients yields the following results:

d2ξG
dt2

+

nM∑
k=1

aSk(nP)

(
dξG
dt

)k

+
fW

mS +mSx
sin kWξG =

Te (cW, nP)−R (cW)

mS +mSx

where aSk(nP) =
1

mS +mSx

nM∑
j=k

cSj(nP)

(
j

k

)
cj−k
W

(23)
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The finally obtained equation of motion (Eq. (23)) is identical to that of a pendulum swing with

constant torque.

Now, the introduction of new coefficients yields the following:

d2y

dt2
+

nM∑
k=1

ASk(nP)

(
dy

dt

)k

+ qS sin y = rS (nP)

where



y = kWξG

ASk(nP) =
1

kk−1
W (mS +mSx)

nM∑
j=k

cSj(nP)

(
j

k

)
cj−k
W

qS =
fWkW

mS +mSx

rS (nP) =
(Te (cW, nP)−R (cW)) kW

mS +mSx

(24)

Further, if the following nondimensional time τ =
√
qSt is introduced, then coefficient qS in front

of sinusoidal term can be eliminated:

d2y

dτ2
+

nM∑
k=1

ĀSk(nP)

(
dy

dτ

)k

+ sin y = r̄S (nP)

where


τ =

√
qt

ĀSk(nP) = AkS(nP)q
k/2−1
S

r̄S (nP) =
rS (nP)

qS

(25)

This equation has two nonlinear components, complicating the direct analytical approach: (i) the

“damping” component, dy
dτ and (ii) the “restoring” component, y.

As stated above, the obtained equation is equivalent to the equation of motion of a nonlinear

pendulum with a constant-torque motor, as shown in the left panel of Fig. 4. This equation yields

two equilibrium points on the lower and upper sides, as shown in the right panel of Fig. 4, which

are stable and unstable, respectively. As shown in Fig. 5, when the constant torque is small, the

pendulum oscillates around the lower, stable equilibrium point, as shown in the left panel. However,

when the magnitude of the torque is increased, this pendulum changes to a rotational motion, moving

in circles, as shown in the right panel. The boundary between the two is the global bifurcation point,

which in this case is called the heteroclinic or homoclinic bifurcation point. Under this condition, a

special orbit appears that connects the two saddle points over an infinite time as shown in Fig. 6.

This is called a heteroclinic or homoclinic orbit.

Fig. 4. Equivalent pendulum with the surf-riding motion.
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Fig. 5. Global bifurcation in the pendulum.

Fig. 6. Pendulum motion at heteroclinic bifurcation condition.

5. Phase portrait
Although it should be noted that the existence of the equilibrium point does not directly imply the

occurrence of wave riding, the existence of an equilibrium point for the surge motion is the minimum

condition for the occurrence of the surf-riding phenomenon. Figure 7 shows the ship’s longitudinal

position as ξG/λ, i.e., y/2π, which satisfies the following equation:

qS sin y − rS (nP) = 0 or fW sin kWξG − (Te (cW, nP)−R (cW)) = 0 (26)

In this calculation, DTMB5415 hull form is used, and the details of the subject vessel used are shown

in Section 13. The wave conditions are λ/L = 1.25 and H/λ = 0.04. Here, H is the wave height. The

horizontal axis of this plot displays the Froude number, Fn, which corresponds to the Froude number

for the same propeller revolution in calm water. This Fn is defined as

Fn =
u√
Lg

(27)
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Here, L is the ship length. In addition, the vertical axis is a longitudinal position.

Fig. 7. Position of the equilibrium point and its stability with respect to
λ/L = 1.25 and H/λ = 0.04.

As no equilibrium point is observed in the blue region, a ship cannot surf-ride. The boundary

between blue and yellow regions is the local bifurcation point, which is known as the tangent bifur-

cation, and the tangent bifurcation points are located at Fn = 0.2602 and Fn = 0.5639. However,

note that the surf-riding phenomenon does not always occur in yellow areas; it could occur if special

initial values are used [12, 21]. The boundary between yellow and red regions is the global bifurcation

point, termed as the heteroclinic bifurcation, and the corresponding heteroclinic bifurcation points

are located at Fn = 0.3318 and Fn = 0.5532. In addition, surf-riding occurs in this red region for

all of the initial values. Hereafter, the heteroclinic bifurcation point at lower velocity is referred to

as the surf-riding threshold and the heteroclinic bifurcation point at high velocities is termed as

the wave-blocking threshold. Figures 8–9 show the schematic views of the equilibrium points and

their stability for low and high velocities, respectively.

Fig. 8. Schematic view of equilibrium points and its stability in low speed
surf-riding condition.

The phase portraits for DTMB5415 are shown in Figs. 10 and 11. The wave conditions in this

calculation are λ/L = 1.25 and H/λ = 0.04. Figure 10 indicates the change in the phase portrait

due to the change in the ship speed around the surf-riding threshold. With Fn = 0.2500, every

trajectory converges to the periodic attractor (gold line), as no stable equilibrium point exists for
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Fig. 9. Schematic view of equilibrium points and its stability in high speed
surf-riding condition.

this condition. With Fn = 0.3300, there exist trajectories that converge to the periodic attractor

and stable equilibrium point. The stable equilibrium point indicates the surf-riding phenomenon, and

this attractor has been analyzed in detail by Umeda [12, 21]. In this wave condition, the surf-riding

threshold is Fn = 0.3318, and the blue line existing in the third plot indicates the heteroclinic orbit

connecting the saddles. For Fn = 0.3600, every trajectory converges to a stable equilibrium point.

The phase plane changes qualitatively before and after the surf-riding threshold. Figure 11 shows the

change in the phase portrait due to the change in the ship speed around the wave-blocking threshold.

In this wave condition, the wave-blocking threshold is Fn = 0.5532. Similar to the qualitative change

in the phase plane near the surf-riding threshold, a qualitative change occurs in the phase plane

around the wave-blocking threshold.

6. Numerical bifurcation analysis [22, 23]

Numerical techniques for directly identifying heteroclinic bifurcation points have been extensively

investigated [24]. This section describes the numerical method proposed by Kawakami [22]. Al-

though not employed by Maki [23], the numerical bifurcation tool, AUTO, developed by Doedel and

Friedman [25, 26] has been widely used in related studies.

First, the state vector is defined as

X = (ξG/λ, u)
⊤ ∈ R2 (28)

The equation of motion, i.e., Eq. (17), is represented as the following vector form:

dX
dt

= fS(X )
(
= (fS,1(X ), fS,2(X ))⊤

)
where


fS,1(X ) = u/λ

fS,2(X ) = −R(u)− Te(u, nP)

mS +mSx
+

XW(ξG)

mS +mSx

(29)

Here, fS : R2 → R2, fS,1,2 : R2 → R.
The definitions of unstable manifold α (X0) and stable manifold ω (X1) are given as follows:

α (X0) =

{
X | lim

t→−∞
X (t) = X0

}
and ω (X1) =

{
X | lim

t→+∞
X (t) = X1

}
(30)

The saddle-type equilibrium points are defined as X0 ≡ (ξG0/λ, cW)
⊤

and X1 ≡ (ξG1/λ, cW)
⊤
, and

ξG0/λ = ξG1/λ± 2π. Here, X0 and X1 satisfy:
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Fig. 10. Phase portrait in the case of low speed with λ/L = 1.25 and
H/λ = 0.04. Here, the gold lines represent the periodic attractors, red lines
represent stable and unstable trajectories, and blue lines represent the hetero-
clinic trajectories. Further, the blue points denote the stable equilibrium point
whereas the red points denote the unstable equilibrium points.

fS (X0) = fS (X1) = 0 (31)

Now, we linearize the state equation in the vicinity of both equilibrium points X0 and X1 as follows:

dX
dt

= AE · (X − X0) and
dX
dt

= AE · (X − X1) (32)

AE ∈ R2×2 indicates the Jacobi matrix at X0 or X1 as follows:

AE =

(
αE11 αE12

αE21 αE22

)
=

(
0 1/λ

∂f2
∂ξG/λ

∂f2
∂u

)∣∣∣∣∣
X=X0 or X1

(33)

Here, µα and µω represent eigenvalues of AE, which represent the negative and positive real parts,

respectively:
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Fig. 11. Phase portrait in the case of high speed with λ/L = 1.25 and
H/λ = 0.04. Here, the gold lines represent the periodic attractors, red lines
represent the stable and unstable trajectories, and blue lines represent the
heteroclinic trajectories. Further, the blue points denote the stable equilibrium
point whereas the red points denote the unstable equilibrium points.

2µα,ω − (αE11 + αE22)∓
√
(αE11 + αE22)

2 − 4 (αE11αE22 − αE12αE21) = 0 (34)

The eigenvectors for these two eigenvalues are defined as hα ≡ (ξGα/λ, uα)
⊤
and hω ≡ (ξGω/λ, uω)

⊤
.

Now, the authors take Xα and Xω on α and ω blanches as follows:

hα = Xα −X0 and hω = Xω −X1 (35)

Of course, hα and hω satisfy the following condition of eigen direction:

(AE − µαI) · hα = 0 and (AE − µωI) · hω = 0 (36)

Here, I ∈ R2 indicates the unit matrix. Further, Xα and Xω are located in the vicinity of the saddles;

therefore, the authors impose the following condition:
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∥hα∥2 = ∥hω∥2 = ε2H (37)

Here, εH ≪ 1 is a preset sufficiently small value.

Moreover, heteroclinic bifurcation occurs when stable and unstable manifolds contact each other.

Now, we define trajectory ψH (XI, τI) ∈ R2 at time τI with initial condition XI as

ψH (XI, τI) = (ψH1 (XI, τI) , ψH2 (XI, τI))
⊤ (38)

Trajectories starting from X0 and X1 contact at the intermediate point at time τI.{
ψH1 (Xα, τI)− ψH1 (Xω,−τI) = 0

ψH2 (Xα, τI)− ψH2 (Xω,−τI) = 0
(39)

The computation of ψ (Xω,−τI) is obtained by solving the ordinary differential equation (Eq. (29))

in inverse time.

Finally, every condition (Eq. (31), Eq. (34), Eq. (36), Eq. (37), Eq. (39)) was solved by using

Newton’s method for nP, X0, X1, µα, µω, hα, hω, and τI.

7. Method based on the quadratic approximation of the damping com-

ponent [15]

As stated previously, the equation of motion (Eq. (25)) has two components that complicate the

theoretical approach. Spyrou [15] approximated the nonlinear “damping” component by using the

quadratic function as follows:

d2y

dτ2
+ γS(nP) sgn

(
dy

dτ

)
·
(
dy

dτ

)2

+ sin y = r̄S (nP)

where γS(nP) = −

nM∑
k=1

ĀSk

∫ ve

0

vk+2dv∫ ve

0

v4dv

(40)

where v = dy/dτ and ve is an upper limit of the least square fit of the damping component.

Equation (40) is well known to possess an analytical solution. The variable transformation is applied

to Eq. (40) to yield:
1

2

dv2

dy
+ γS(nP) sgn v · v2 = − sin y + r̄S (nP) (41)

In the case of dy
dτ < 0, the solution becomes

dy

dτ
= −

√
cQ1e2γS(nP)y +

2(cos y + 2γS(nP) sin y)

1 + 4γ2S(nP)
− r̄S (nP)

γS(nP)
(42)

Here, cQ1 represents the arbitrary coefficient to be determined by the initial condition. If Eq. (42)

satisfies the following condition:

dy

dτ
= 0 at

{
y = y1

y = y1 − 2kQπ
, (43)

then, Eq. (42) becomes the heteroclinic orbit, and such a condition is the heteroclinic bifurcation

point, where y1 indicates the saddle.

y1 = (2kQ − 1)π − sin−1 r̄S(nP) (44)

Here, kQ is the arbitrary constant, and stable equilibrium point y2 is formulated as follows (however,

it has not been used in subsequent analyses):
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y2 = 2kQπ + sin−1 r̄S(nP) (45)

Finally, the condition of the heteroclinic bifurcation can be obtained as

1

r̄2S(nP)
= 1 +

1

4γ2S(nP)
(46)

which results in

fW = (R− Te(nP))

√
k2W (mS +mSx)

2

4γ2S(nP)
+ 1 (47)

On the other hand, in the case of dy
dτ > 0, then the solution becomes:

dy

dτ
=

√
cQ2e−2γS(nP)y +

2(cos y − 2γS(nP) sin y)

1 + 4γ2S(nP)
+
r̄S(nP)

γS(nP)
(48)

Here, cQ2 represents the arbitrary coefficient to be determined by the initial condition. The same

approach results in the upper-speed heteroclinic bifurcation condition, which is written as

1

r̄2S(nP)
= 1 +

1

4γ2S(nP)
or fW = (Te (nP)−R)

√
k2W (mS +mSx)

2

4γ2S(nP)
+ 1 (49)

8. Method based on the cubic approximation of “restoring” compo-

nent [18]

One of the nonlinear components that complicates the problem is the nonlinear term of the damping

term. Therefore, Maki et al. [18] introduced the linear approximation of this component as follows:

d2y

dτ2
+ βS(nP)

dy

dτ
+ sin y = r̄S(nP)

where βS(nP) = −

nM∑
k=1

ĀSk(nP)

∫ ve

0

vk+1dv∫ ve

0

v2dv

(50)

Owing to the nonlinearity of the sinusoidal function, which represents the restoring moment, Eq. (50)

is still difficult to solve analytically. Here, this sinusoidal function is approximated using a third-order

polynomial, as follows:

sin y ≈ −µCy (y − yE) (y + yE) (51)

where µC = 8
3π3 and yE = π. Then, Eq. (50) becomes

d2y

dτ2
+ βS(nP)

dy

dτ
− µCy (y − yE) (y + yE) = r̄S(nP) (52)

Now, because of this approximation, the periodicity of wave-induced force disappears; however, the

approximation for one wave is sufficient for approximately obtaining the heteroclinic orbit joining two

saddles. Here, assuming aC1 < aC2 < aC3, an analytical factorization, such as Cardano’s technique,

yields
d2y

dτ2
+ βS(nP)

dy

dτ
− µC (y − aC1) (y − aC2) (y − aC3) = 0 (53)

Now, we introduce a new variable, ỹ as follows:

d2ỹ

dτ2
+ βS(nP)

dỹ

dτ
+ µ̃Cỹ(1− ỹ)(ỹ − ã) = 0

where


ỹ =

y − aC1

aC3 − aC1

ã =
aC2 − aC1

aC3 − aC1

µ̃C = µC (aC3 − aC1)
2

(54)
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The connection between Eq. (54) and the FitzHugh-Nagumo equation [27, 28], except for some of the

coefficients, has already been discussed by Maki et al. [29]. Now, the following solution form of the

heteroclinic orbit is assumed [29, 30]:

dỹ

dτ
= c̃ỹ(1− ỹ) or

d2ỹ

dτ2
= c̃2(1− ỹ)(1− 2ỹ) (55)

The left side of Eq. (55) indicates that the heteroclinic orbit becomes a parabolic function on ỹ and

the dỹ
dτ plane. Now, the substitution of Eq. (55) into Eq. (54) yields

ỹ
(
µ̃C − 2c̃2

)
+
(
c̃2 + βS(nP)c̃− µ̃Cã

)
= 0 (56)

If the trajectory (Eq. (55)) represents the solution of Eq. (54) for ỹ ∈ (0, 1), then the following

condition must be satisfied: {
µ̃C − 2c̃2 = 0

c̃2 + βS(nP)c̃− µ̃Cã = 0
(57)

The elimination of c̃ from Eq. (57) yields

µ̃C

2
± βS(nP)

√
µ̃C

2
− µ̃Cã = 0 (58)

Equation (58) can be solved using numerical iteration methods, such as Newton’s method with respect

to propeller revolution number, nP. Then, c̃ or µ̃C can be determined from:

c̃ = ∓
√
µ̃C/2 (59)

Here, the heteroclinic orbit in the time domain becomes

ỹ(τ) =
1

1 + exp(−(c̃τ − d̃))
or ỹ(τ) =

1

2

(
1 + tanh

c̃τ − d̃

2

)
(60)

In Eq. (60), d̃ ∈ (−∞,∞) is an arbitrary constant that can be determined by the initial condition.

9. Continuous, piecewise linear approximation method [16]

One of the nonlinearities that makes the theoretical approach difficult is the sinusoidal component

included in the equation of motion (Eq. (50)). Therefore, Maki et al. [16] tried to approximate this

term by using the following continuous piecewise linear function SPL:

sin y ≈ SPL (y) ≡


− 2

π (y + π) : Range 1
[
−3

2π ≤ y ≤ −1
2π
]

2
π (y + 2π) : Range 2

[
−5

2π ≤ y ≤ −3
2π
]

− 2
π (y + 3π) : Range 3

[
−7

2π ≤ y ≤ −5
2π
] (61)

Figure 12 shows its schematic view. Then, Eq. (50) becomes as follows:

Fig. 12. Schematic of piecewise linearization of a sinusoidal function.
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d2y

dτ2
+ βS(nP)

dy

dτ
+ SPL(y) = r̄S(nP) (62)

Komuro [31] as well as Endo and Chua [32] have extensively analyzed the piecewise linear system.

In the field of naval architecture and ocean engineering, Belenky [33, 34] proposed a method for

calculating the capsize probability in beam sea conditions based on a piecewise linear approach. Now,

the equation of motion is linearized in each region. The solution of Range 1 is given as:

y(τ) = cPL,1e
λPL,1τ + cPL,2e

λPL,2τ − π

2
(r̄S(nP) + 2)

where λPL,1,2 ≡
−βS(nP)±

√
βS(nP)2 + 8/π

2
.

(63)

In addition, the solution of Range 2 is formulated as

y(τ) = cPL,3e
λPL,3τ + cPL,4e

λPL,4τ +
π

2
(r̄S(nP)− 4)

where λPL,3,4 ≡
−βS(nP)±

√
βS(nP)2 − 8/π

2
.

(64)

The solution of Range 3 is formulated as

y(τ) = cPL,5e
λPL,1τ + cPL,6e

λPL,2τ − π

2
(r̄S(nP) + 6) (65)

Then, the solutions of Ranges 1 and 2 connect at the border as(
y,

dy

dτ

)
=

(
−3

2
π, ZPL,1

)
(66)

Here, ZPL,1 is an unknown parameter to be determined later. Then, if we impose the satisfaction of

Eq. (66) at time τ = 0 for Eq. (63), then unknown coefficients cPL,1 and cPL,2 can be determined as{
cPL,1 = 1

λPL,1−λPL,2

[
ZPL,1 +

π
2λPL,2(1− r̄S(nP))

]
cPL,2 = 1

λPL,1−λPL,2

[
−ZPL,1 − π

2λPL,2(1− r̄S(nP))
] (67)

Similarly, the solution of Ranges 2 and 3 connect at the border as(
y,

dy

dτ

)
=

(
−5

2
π, ZPL,2

)
(68)

Then, if we impose the satisfaction of Eq. (68) at time τ = 0 for Eq. (65), unknown coefficients cPL,5

and cPL,6 can also be determined as{
cPL,5 = 1

λPL,1−λPL,2

[
ZPL,2 − π

2λPL,2(1 + r̄S(nP))
]

cPL,6 = 1
λPL,1−λPL,2

[
−ZPL,2 +

π
2λPL,1(1 + r̄S(nP))

] (69)

Considering the characteristics of the heteroclinic orbit, the following condition must hold:

cPL,2 = 0 and cPL,5 = 0 (70)

Then, unknown coefficients ZPL,1 and ZPL,2 can be determined as follows:

ZPL,1 = −π
2
λPL,1(1− r̄S(nP)) and ZPL,2 =

π

2
λPL,2(1 + r̄S(nP)) (71)

Now, if we impose the satisfaction of Eq. (66) at time τ = 0 for Eq. (64), unknown coefficients cPL,3

and cPL,4 can be determined as:

cPL,3 = −π
2

λPL,1 + λPL,4

λPL,3 − λPL,4
(1− r̄(nP)) and cPL,4 =

π

2

λPL,1 + λPL,3

λPL,3 − λPL,4
(1− r̄(nP)) (72)
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The matching of the trajectory after τ̄ seconds results in the following condition: −π
2
(1 + r̄S(nP)) = cPL,3e

λPL,3τ̄ + cPL,4e
λPL,4τ̄

π

2
λPL,2(1 + r̄S(nP)) = cPL,3λPL,3e

λPL,3τ̄ + cPL,4λPL,4e
λPL,4τ̄

(73)

Here, {
cPL,3,4 ≡ cPL,R ± icPL,I

λPL,3,4 ≡ λPL,R ± iλPL,I

(74)

Then, the authors finally obtained the following condition, which must be satisfied by nP and τ̄ . Both

properties are determined by Newton’s method.
−π
2
(1 + r̄S(nP)) =2eλPL,Rτ̄ [cPL,R cosλPL,Iτ̄ − cPL,I sinλPL,Iτ̄ ]

π

2
λPL,2(1 + r̄S(nP)) =2eλPL,Rτ̄ [(cPL,RλPL,R − cPL,IλPL,I) cosλPL,Iτ̄

− (cPL,RλPL,I + cPL,IλPL,R) sinλPL,Iτ̄ ]

(75)

10. Melnikov’s method for the Hamiltonian part [16]

Melnikov’s method [14, 35, 36] is a powerful analytical method to estimate the heteroclinic point

of nonautonomous systems. In the field of naval architecture engineering, this method has been

utilized to predict the capsizing event in seas (e.g., [29]). Now, we assumed the following general

nonautonomous system:
dx

dτ
= f(x) + εg(x, τ) (76)

where x ∈ Rn, f(x): Rn → Rn, g(x, τ): T × Rn → Rn, and ε ∈ R+ is a small parameter. Assume

that the primary part of Eq. (76):
dx

dτ
= f(x) (77)

has saddles. Then, we assume that the primary part has a separatrix, xSP, in a certain parameter

condition. Then, Menikov’s function is formulated as

M = −
∫ ∞

−∞
f(xSP) ∧ εg(xSP, τ)dτ (78)

Here, ∧ indicates the wedge product. In the two dimensional case, aV ∧ bV = aV1bV2 − aV2bV1 for

a⊤V = (aV1, aV2) ∈ R2 and b⊤V = (bV1, bV2) ∈ R2. This indicates the projection of the difference

between stable and unstable branches onto the hyperplane, which is diagonal to xSP.

Now, let x ∈ R2 be

x(τ) ≡ (y,
dy

dτ
)⊤ (79)

Then, we define f(x) and εg(x, τ) for the components of Eq. (25) as follows:

dx

dτ
= f(x) + εg(x, τ)

where


f(x) ≡

(
dy

dτ
,− sin y

)⊤

∈ R2 → R2

g(x) ≡

(
0, r̄S (nP)−

nM∑
k=1

ĀSk(n)

(
dy

dτ

)k
)⊤

∈ R2 → R2

(80)

The Hamiltonian part of Eq. (25) is defined as

d2y

dτ2
+ sin y = 0 (81)

The phase portrait of the Hamiltonian system (Eq. (81)) is shown in Fig. 13. The trajectory connecting
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Fig. 13. Phase portrait of the Hamiltonian system ( d
2y

dτ2 + sin y = 0). Here,
the red solid lines indicate the separatrix (Eq. (82)).

y = ±π on the lower or upper sides of vector field can be determined as follows:

v ≡ dy

dτ
= ∓2 cos

y

2
. (82)

This is called a “separatrix.” Here, the Melnikov function is defined as follows:

M ≡
∫ ±∞

∓∞
v

(
r̄S (nP)−

nM∑
k=1

ĀSk(n)

(
dy

dτ

)k
)
dτ (83)

By substituting Eq. (82) into Eq. (83), we get

M =

∫ ±π

∓π

r̄S (nP) dy −
nM∑
k=1

ĀSk(n)

∫ ±π

∓π

(
∓2 cos

y

2

)k
dy (84)

Assuming that M = 0, the following relationship can be obtained:

2πr̄S (nP) =

nM∑
k=1

ĀSk(n) (∓2)
k
Ik

where Ik ≡
∫ π

−π

cosk(y/2)dy

(85)

Here, Ik can be evaluated using the Gamma function, Γ.

Ik = 2
√
πΓ

(
k + 1

2

)
/Γ

(
k + 2

2

)
(86)

Note that I1 = 4, I2 = π, I3 = 8
3 , I4 = 3

4π, and I5 = 32
15 . Here, if we put nM = 1, then we have

Te (cW;nP)−R (cW)

fW
= − 4cS1

π
√
fWkW(mS +mSx)

(87)

This relation is completely identical to the formula obtained by Kan [11]. Next, if we set nM = 3 and

κ3 = 0, then we have

Te (cW;nP)−R (cW)

fW
=−

4
(
cS1 + 2cS2cW + 3cS3c

2
W

)
π
√
fWkW(mS +mSx)

+
2 (cS2 + 3cS3cW)

kW(mS +mSx)

− 32cS3
√
fW

3π [kW(mS +mSx)]
3
2

(88)
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This relation is completely identical to the formula obtained by Spyrou [15].

Finally, if we set nM = 5 and κj = 0 (j = 3 ∼ 5), then we have the following formula [29]:

Te (cW;nP)−R (cW)

fW
=−

4
(
cS1 + 2cS2cW + 3cS3c

2
W + 4cS4c

3
W + 5cS5c

4
W

)
πf

1/2
W k

3/2
W (mS +mSx)3/2

+
2
(
cS2 + 3cS3cW + 6cS4c

3
W + 10cS5c

3
W

)
kW(mS +mSx)

−
32
(
cS3 + 4cS4cW + 10cS5c

2
W

)
f
1/2
W

3πk
3/2
W (mS +mSx)3/2

+
6 (cS4 + 5cS5cW) fW
k2W(mS +mSx)2

−
512cS5f

3/2
W

15πk
5/2
W (mS +mSx)5/2

(89)

This relation is completely identical to the Second-Generation Intact Stability criteria (SGISC) [37, 38]

described in Section 14.

11. Melnikov’s method for the non-Hamiltonian part (I) [39]

The original Melnikov’s method is applicable for the separatrix of the Hamiltonian part of the system.

In addition, the extended Melnikov’s method [40] can be applied to the heteroclinic orbit of the non-

Hamiltonian part of the system. In the field of naval architects and ocean engineering, this extended

Melnikov’s method is used in the study of the capsizing phenomena in regular beas seas [29, 30, 41, 42].

Maki and Miyauchi [39] applied the extended Melnikov’s method to the heteroclinic orbits, which had

been already obtained in [15]. This section presents the results of this method.

Here, Eq. (40) is solved using the following additional correction term:

d2y

dτ2
+ γS(nP)

(
dy

dτ

)2

sgn

(
dy

dτ

)
+ Γ1(nP)

dy

dτ
+ Γ2(nP)

(
dy

dτ

)2

+ sin y = r̄S(nP) (90)

In the above-mentioned equation, Γ1(nP) and Γ2(nP) are determined as the best fit of the original

nonlinear damping term in terms of the least square fit. Now, to apply the extended Melnikov’s

method, σN1 is added to both sides to get

d2y

dτ2
+γS(nP)

(
dy

dτ

)2

sgn

(
dy

dτ

)
+sin y− r̄S(nP)+σN1 = −

[
Γ1(nP)

dy

dτ
+ Γ2(nP)

(
dy

dτ

)2
]
+σN1 (91)

The left part of the above-mentioned equation has been explained in Section 7. If σN1 satisfies the

following condition, the heteroclinic trajectory is achieved:

σN1 = r̄S(nP)±
2γS(nP)√
1 + 4γ2S(nP)

(92)

The trajectory in the phase plane can be expressed as

v = ∓ 2

(1 + 4γ2S(nP))
1/4

∣∣∣∣cos y + εy
2

∣∣∣∣ where tan εy = ∓2γS(nP) (93)

The extended Melnikov’s integral can be evaluated as follows:

M = −
∫ ∞

−∞
v
(
σN1 − Γ1(nP)v − Γ2(nP)v

2
)
e∓2γS(nP)y dτ

= −
∫ π−εy

−π−εy

(
σN1 − Γ1(nP)v − Γ2(nP)v

2
)
e∓2γS(nP)y dy

(94)
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By imposing M = 0 and considering Eq. (94), the following condition of the surf-riding threshold is

achieved:

∓
σN1

(
−1 + e∓4γS(nP)y

)
γS(nP)

=

8Γ1(nP)
(
1 + e∓4γS(nP)y

)
(1 + 16γ2S(nP)) (1 + 4γ2S(nP))

1/4
∓

2Γ2(nP)
(
−1 + e∓4γS(nP)y

)
γS(nP) (1 + 4γ2S(nP))

√
1 + 4γ2S(nP)

(95)

12. Melnikov’s method for non-Hamiltonian part II [39]

Maki and Miyauchi also applied the extended Melnikov’s method [40] to the system used in [16]. They

introduced the correction components for the approximated wave force part as having the form of a

fifth-order polynomial as follows:

sin y ≈ −µCy (y − yE) (y + yE) + σ1y + σ3y
3 + σ5y

5 (96)

In this equation, the former part −µCy (y − yE) (y + yE) is identical to Eq. (51). The later new terms

are additional components, and the coefficients σ1, σ2, and σ3 are determined to be the best fit to

sinusoidal function in y ∈ [−3π/2, 3π/2]. In our case, σ1 = 3.352 × 10−3, σ2 = −3.680 × 10−2, and

σ3 = 5.035× 10−2 are utilized. Moreover, the correction components for the damping term, (βS1(nP)

and βS2(nP)), were also introduced:

d2y

dτ2
+βS(nP)

dy

dτ
+ βS1(nP)

dy

dτ
+ βS2(nP)

(
dy

dτ

)2

− µCy (y − yE) (y + yE) + σ1y + σ3y
3 + σ5y

5 = r̄S

(97)

Then, σN2 is added to both sides to get

d2y

dτ2
+ βS(nP)

dy

dτ
− µCy (y − yE) (y + yE)− r̄S(nP) + σN2

= −

(
βS1(nP)

dy

dτ
+ βS2(nP)

(
dy

dτ

)2

+ σ1y + σ3y
3 + σ5y

5

)
+ σN2

(98)

First, the authors solve the following non-Hamiltonian part of Eq. (98):

d2y

dτ2
+ βS(nP)

dy

dτ
− µCy (y − yE) (y + yE)− r̄(nP) + σN2 = 0 (99)

As shown in Section 8, the solution of Eq. (99) is written as

ỹ =
1

1 + exp(−c̃τ + d̃)
and

dỹ

dτ
=

exp(−c̃τ + d̃)[
1 + exp(−c̃τ + d̃)

]2 (100)

where

ỹ =
y − aC1

aC3 − aC1
and

dỹ

dτ
=

1

aC3 − aC1
v

Here, the definitions of aC1, aC2, and aC3 are shown in Eq. (53). Then, the Melnikov’s integral can

be evaluated as follows:

M = −
∫ ∞

−∞
v
[
σN2 −

(
βS1(nP)v + βS2(nP)v

2
)
−
(
σ1y + σ3y

3 + σ5y
5
)]
eβSτ dτ (101)

By considering Eq. (100), M can be evaluated as follows:
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M =σN2 (aC3 − aC1) I1 − βS1(nP) (aC3 − aC1)
2
I2 − βS2(nP) (aC3 − aC1)

3
I3

− (aC3 − aC1) (C0K0 + C1K1 + C2K2 + C3K3 + C4K4 + C5K5)

where



C0 = aC1(σ1a
4
C1 + σ3a

2
C1 + σ5)

C1 = −(aC1 − aC3)(5σ1a
4
C1 + 3σ3a

2
C1 + σ5)

C2 = aC1(aC1 − aC3)
2(10σ1a

2
C1 + 3σ3)

C3 = −(aC1 − aC3)
3(10σ1a

2
C1 + σ5)

C4 = 5σ1aC1(aC1 − aC3)
4

C5 = −σ1(aC1 − aC3)
5

(102)

Here, the definitions of Ki (for i = 1− 5) are shown in Eq. (107). Now, integral Ii can be calculated

as follows, and In is defined as

In = c̃n
∫ ∞

−∞

exp(−nc̃τ + βS(nP)τ)

[1 + exp(−c̃τ)]2n
dτ (103)

In addition, I1 can be calculated for the integral path on complex domain, as shown in Fig. 14

Fig. 14. Integral path for calculating I1. Here, τ = πi/c̃ represents the pole
of the integrand.

I1 = c̃

∫ ∞

−∞

exp(−c̃τ + βS(nP)τ)

[1 + exp(−c̃τ)]2
dτ =

πβS(nP) csc(πβS(nP)/c̃) sgn c̃

c̃
(104)

The application of integration by part yields the following asymptotic relation:

In+1 = −β
2
S(nP)− n2c̃2

2n(2n+ 1)c̃
In (105)

Therefore, In for n > 1 can be evaluated as

In = (−1)n−1πβS(nP) csc(πβS(nP)/c̃) sgn c̃

(2n− 1)!c̃2

n∏
j=2

(
(j − 1)β2

S(nP)− c̃2
)

(106)

Now, the result of integral Ki is calculated. Here, Kn is defined as follows:

Kn = c̃

∫ ∞

−∞

exp(−c̃τ + βS(nP)τ)

[1 + exp(−c̃τ)]n+2
dτ (107)

Now, K0 = I1. The application of integration by part yields the following asymptotic relation:

Kn+1 =
(n+ 1)c̃+ βS(nP)

(n+ 2)c̃
Kn (108)

Therefore, Kn for n ≥ 1 can be evaluated as

Kn =
πβS(nP) csc(πβS(nP)/c̃) sgn c̃

(n+ 1)!c̃n+1

n∏
j=1

(jc̃+ βS(nP)) (109)
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13. Comparison of the surf-riding threshold between theoretical and

free-running model experiments [39]

Here, we provide the comparison of the surf-riding threshold between the theoretical and experimental

free-running models. The target ship is the hull form known as DTMB5415; its body plan in real

scale is shown in Fig. 15. In addition, its principal particulars and coefficient list are shown in Tables

I and II, respectively. The experiment was conducted in the towing tank (Length : 257 m×Width :

12.5 m×Depth : 7 m) of the Naval Systems Research Center (Acquisition, Technology and Logistics

Agency, MINISTRY OF DEFENSE, Japan)). The photograph of the tank is shown in Fig. 16. The

free-running model is a twin-screw and twin-rudder vessel and is equipped with two propulsion motors

(200 W output in each) and two steering motors (steering speed of 30 deg./s). Each directional angle

and angular velocity were measured using a fiber-optic gyro. Photograph showing the experiment are

shown in Fig. 17. Based on the observed states, the model was operated in a straight line in following

waves by proportional and differential (PD) control. This free-running model test is unique in that it

was conducted in a towing tank. Unlike the experiment conducted in the rectangular tank, the model

was able to travel a longer distance, and thus the surf-riding phenomenon could be tested up to very

high speeds of approximately Fn = 0.8 or more.

Fig. 15. Body plan of DTMB5415 in real scale (Length : 142.17 m).

Table I. Principal particulars of DTMB5415 in 1/51.7 scale model (Length :
2.75 m) [39].

item value item value

LWL [ m ] 2.750 ∇
[
m3

]
0.0626

BS [ m ] 0.369 Cb 0.507

dS [ m ] 0.119 Cp 0.618

DP [ m ] 0.1045 scale 1/51.7

The results based on all the theoretical and numerical bifurcation analyses described in this paper

are compared with the experimentally obtained surf-riding threshold in Fig. 18. In this figure, the

red point denotes the condition in which the surf-riding phenomenon happens whereas the black

point does the that in which the periodic motion happens. Furthermore, the area hatched in thin
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Table II. Coefficient list of DTMB5415 in 1/51.7 scale model (Length :
2.75 m) [39].

item value item value

r1 [ N · s/m] 9.407 κ0 0.6882

r2
[
N · s2/m2

]
−21.96 κ1 −0.4047

r3
[
N · s3/m3

]
19.56 κ2 −0.09504

r4
[
N · s4/m4

]
−5.243 1− wP 0.94

r5
[
N · s5/m5

]
0.4599 1− tP 0.85

Fig. 16. Towing tank of NSRC. Fig. 17. Free-running model experiment.

Fig. 18. Comparison of the surf-riding and wave-blocking threshold for the
proposed methods with the experimental results as a function of λ/L, with
H/λ = 0.04. Here, the area hatched in thin red is the experimental condition
in which the surf-riding was observed. (This figure duplicates Figs. 9 and 10
in the literature [39], but with minor modifications).

red is the experimental condition in which the surf-riding phenomenon was observed. First, the

surf-riding thresholds obtained by numerical bifurcation analysis show a good correlation with the

experimentally obtained surf-riding threshold. The results obtained by numerical bifurcation analysis

are the correct solutions of the surf-riding threshold of the equation of motion which we are dealing

with. The equations used in this study, that is Eq. (17), are quite simple, and it considers only one

degree-of-freedom surge motion. However, it can be seen that the equations can be used to estimate

the nonlinear surge motion of the ship in the following seas with quantitative accuracy.
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From this figure, the trend of the theoretically obtained surf-riding and wave-blocking thresholds

is generally close. However, there is some variation in the accuracy of the quantitative estimates.

Among them, however, the theoretical estimation methods based on Melnikov’s method are found to

be able to estimate surf-riding and wave-blocking thresholds with particularly high accuracy.

14. SGISC (Second-Generation Intact Stability criteria)

The IMO developed the SGISC to prevent ship accidents due to roll motion. Here, the “intact

stability” indicates the stability of a nondamaged ship, and the antonym is “damage stability”. The

current draft interim guidelines on the SGISC were finalized by the IMO’s Sub-Committee on Ship

Design and Construction in 2020 [37, 38] and are under a trial period.

The SGISC represent physics-based criteria for assessing five stability failure modes, namely, broach-

ing, parametric roll, pure loss of stability, dead ship condition, and excessive acceleration, and possess

a multilayered structure for each stability failure mode. The first two layers comprise level-1 and

level-2 vulnerability criteria, which are simplified assessments of the failure modes. The third layer

possesses direct stability assessment, which is a probabilistic assessment based on ship-motion equa-

tions validated with a model experiment.

The broaching phenomenon is a stability failure mode that has been considered in the SGISC. This

is because the centrifugal force due to broaching induces ship-roll motion, usually in the direction

away from the center of the yaw motion. As surf-riding is a precursor to broaching, the current draft

Interim Guidelines on the SGISC adopt level-1 and level-2 vulnerability criteria for broaching based

on the surf-riding dynamics. This section explains the level-1 and level-2 vulnerability criteria for

broaching.

The basic concept of the vulnerability criteria shows that a ship is considered vulnerable to the

broaching failure mode if the service speed is higher than the threshold of the nominal speed of the

ship, at which surf-riding occurs, regardless of the initial ship speed (the critical nominal speed of the

ship). The critical nominal speed of the ship is calculated as the nominal speed of the ship at which

the heteroclinic bifurcation occurs. Here, the nominal speed of the ship indicates the speed of the

ship for a given propulsor(s) input in calm water, i.e., without waves.

In the case of level-1 vulnerability criterion, a ship is considered to be nonvulnerable to the broaching

failure mode if

L ≥ 200 [m] (110)

or

Fn ≤ 0.3 (111)

Here, L [m] is the length of the ship, as defined in paragraph 2.12 of the introduction part of the

2008 IS Code, and Fn is the Froude number, which is a speed-length ratio based on inertial and

gravitational forces defined as

Fn =
Vs√
Lg

(112)

Here, Vs represents the service speed of the ship and g is the gravitational acceleration. Equation

(110) corresponds to the fact that a ship can only surf-ride a steep wave of a length comparable to the

length of the ship and that a long, steep wave rarely occurs in the ocean. Equation (111) corresponds

to the lower surf-riding threshold in the case of conventional ships [38].

In the level-2 vulnerability criterion, vulnerability is judged based on the occurrence probability of

surf-riding. In ocean engineering, sea states are generally considered from two perspectives: short- and

long-term. In the level-2 vulnerability criterion, the short-term sea-state statistics are characterized

by the significant wave height and zero-crossing wave period, and the long-term sea-state statistics are

given as a joint frequency table of the significant wave height and the zero-crossing wave period (wave

scatter table). Once the spectral density of the wave elevation is achieved for the short-term sea state,

the probability density function of the local regular wave is determined according to Longuet–Higgins’

theory [43]. Then, the critical nominal speed of the ship is calculated for each local regular wave, and

the occurrence probability of surf-riding in the sea state is estimated as the occurrence probability
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of the local regular waves, where the critical nominal speed of the ship is less than the service speed

of the ship. Therefore, in the case of the level-2 vulnerability criterion, a ship is considered to be

nonvulnerable to the broaching failure mode if

C ≤ RSR (113)

where

C =
∑
HS

∑
TZ

W2 (HS, TZ)

Nλ∑
i=0

Na∑
j=0

wij (HS, TZ)C2 ij

 (114)

RSR = 0.005 (115)

Here, C: a value corresponding to the occurrence probability of surf-riding, W2 (HS, TZ): probability

of short-term sea states based on the wave scatter table (Table III) [44], HS: significant wave height

[m] that is specified in Table III, TZ: zero-crossing wave period [s] that is specified in Table III, wij :

joint probability density function of a local wave with the wave steepness and wave-length to ship-

length ratio [43], Na: number of discretization for the wave-length to ship-length ratio of the local

regular wave, Nλ: number of discretization for the steepness of the local regular wave, and C2 ij : the

coefficient of the occurrence of surf-riding. The joint probability-density function of a local wave, wij ,

is calculated as

wij(HS,TZ) =4

√
g

πν

L
5
2T01
Hs

3
sWj

2rWi
3
2

√
1 + ν2

1 +
√
1 + ν2

∆rW∆sW

· exp

−2

(
LrWisWj

Hs

)2

1 + 1

ν2

1−

√
gT012

2πrWiL

2



(116)

Here, ν:represents the band parameter, 0.425; T01: is the mean wave period, 1.086TZ, sWj :is the wave

steepness of the local regular wave varying from 0.03 to 0.15 with the increment of ∆sW = 0.0012,

and rWi is the wave-length to ship-length ratio of the local regular wave varying from 1.0 to 3.0 with

the increment of ∆rW = 0.025. The coefficient on the occurrence of surf-riding C2 ij is defined as

C2 ij =

{
1 if Fn > Fncr (rWj , sWi)

0 if Fn ≤ Fncr (rWj , sWi)
(117)

Fncr (rWj , sWi) =
ucr (rWj , sWi)√

Lg
(118)

Here, Fncr represents the critical Froude number in regular waves with respect to steepness sWj and

wave-length to ship-length ratio rWi and ucr (rWj , sWi) is the critical nominal speed of the ship [m/s].

Hereafter, the authors omit to show the dependencies of ucr on (rWj , sWi). The critical nominal speed

of the ship, ucr, is estimated based on Melnikov’ method (Section 10). If the ship uses propeller(s)

as the propulsor(s), the relationship between the critical nominal speed of the ship and the critical

number of revolutions of the propeller(s) nP,cr is defined as

Te (ucr;nP,cr)−R (ucr) = 0 (119)

where Te (u;n) is the propeller thrust in calm waters [N], R (u) is the ship resistance in calm waters

[N], u is the speed of the ship [m/s], and n is the number of revolutions of the propeller(s) [1/s]. The

propeller thrust and ship resistance should be balanced in calm waters. In addition, the propeller

thrust in calm waters, Te (u;n), is approximated as

Te (u;nP) = (1− tp) ρn
2
PD

4
p

{
κ0 + κ1JP (u, nP) + κ2 [JP (u, nP)]

2
}

= τP0n
2
P + τP1unP + τP2u

2
(120)
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Table III. Wave scatter table used in the SGISC [44]. The total number of
occurrences is 106.

PPPPPPPPPHS [m]

TZ [s]
3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

0.5 1.3 133.7 865.6 1186.0 634.2 186.3 36.9 5.6

1.5 0.0 29.3 986.0 4976.0 7738.0 5569.7 2375.7 703.5

2.5 0.0 2.2 197.5 2158.8 6230.0 7449.5 4860.4 2066.0

3.5 0.0 0.2 34.9 695.5 3226.5 5675.0 5099.1 2838.0

4.5 0.0 0.0 6.0 196.1 1354.3 3288.5 3857.5 2685.5

5.5 0.0 0.0 1.0 51.0 498.4 1602.9 2372.7 2008.3

6.5 0.0 0.0 0.2 12.6 167.0 690.3 1257.9 1268.6

7.5 0.0 0.0 0.0 3.0 52.1 270.1 594.4 703.2

8.5 0.0 0.0 0.0 0.7 15.4 97.9 255.9 350.6

9.5 0.0 0.0 0.0 0.2 4.3 33.2 101.9 159.9

10.5 0.0 0.0 0.0 0.0 1.2 10.7 37.9 67.5

11.5 0.0 0.0 0.0 0.0 0.3 3.3 13.3 26.6

12.5 0.0 0.0 0.0 0.0 0.1 1.0 4.4 9.9

13.5 0.0 0.0 0.0 0.0 0.0 0.3 1.4 3.5

14.5 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.2

15.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4

16.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

PPPPPPPPPHS [m]

TZ [s]
11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5

0.5 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0

1.5 160.7 30.5 5.1 0.8 0.1 0.0 0.0 0.0

2.5 644.5 160.2 33.7 6.3 1.1 0.2 0.0 0.0

3.5 1114.1 337.7 84.3 18.2 3.5 0.6 0.1 0.0

4.5 1275.2 455.1 130.9 31.9 6.9 1.3 0.2 0.0

5.5 1126.0 463.6 150.9 41.0 9.7 2.1 0.4 0.1

6.5 825.9 386.8 140.8 42.2 10.9 2.5 0.5 0.1

7.5 524.9 276.7 111.7 36.7 10.2 2.5 0.6 0.1

8.5 296.9 174.6 77.6 27.7 8.4 2.2 0.5 0.1

9.5 152.2 99.2 48.3 18.7 6.1 1.7 0.4 0.1

10.5 71.7 51.5 27.3 11.4 4.0 1.2 0.3 0.1

11.5 31.4 24.7 14.2 6.4 2.4 0.7 0.2 0.1

12.5 12.8 11.0 6.8 3.3 1.3 0.4 0.1 0.0

13.5 5.0 4.6 3.1 1.6 0.7 0.2 0.1 0.0

14.5 1.8 1.8 1.3 0.7 0.3 0.1 0.0 0.0

15.5 0.6 0.7 0.5 0.3 0.1 0.1 0.0 0.0

16.5 0.2 0.2 0.2 0.1 0.1 0.0 0.0 0.0

where

JP (u, n) =
u (1− wp)

nDp
(121)

τP0 = κ0 (1− tp) ρDp
4 (122)

τP1 = κ1 (1− tp) (1− wp) ρDp
3 (123)

τP2 = κ2 (1− tp) (1− wp)
2
ρDp

2 (124)

where JP is the advance ratio; tp is the approximate thrust deduction factor; wp is the approximate

wake fraction; κ0, κ1, and κ2 are the approximation coefficients for the approximated propeller thrust
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coefficient in calm water; and τP0, τP1, and τP2 are the approximation coefficients for the approximated

propeller thrust coefficient in calm waters as functions of u and n. The ship resistance in calm waters,

R (u), is approximated by the quintic polynomial as

R(u) = r1u+ r2u
2 + r3u

3 + r4u
4 + r5u

5, (125)

where r1, r2, r3, r4, and r5 represent the regression coefficients for the ship resistance in calm waters.

In addition, the amplitude of the wave surging force by the local regular wave fWij [N] is estimated as

fWij = ρgki
Hij

2

√
FCi

2 + FSi
2 (126)

where

Hij = sWjrWiL (127)

kWi =
2π

rWiL
(128)

FCi =
N∑

m=1

δxmAS (xm) sin (kWi xm) exp

[
−1

2
kWid (xm)

]
(129)

FSi =

N∑
m=1

δxmAS (xm) cos (kWi xm) exp

[
−1

2
kWid (xm)

]
(130)

where Hij is the height of the local regular wave [m], kWi is the wave number of the local regular wave

[1/m], FCi and FSi represent the parts of the Froude–Krylov component of the wave surging force

[m], m is the index of a station, N is the number of stations, and xm is the longitudinal distance from

the midship to the station m [m] (positive to the bow section). Furthermore, δxm is the length of the

ship strip associated with the station m [m], AS (xm) represents the area of the submerged portion

of the ship at station m in calm waters [m2], and d (xm): the draft at the station m in calm water

[m]. Therefore, the critical number of revolutions of the propeller(s) ncr (sWj , rWi) is directly derived

from Melnikov’s method shown in Section 10 as

2π
Te (ci;ncr)−R (ci)

fij
+ 8aM0ncr + 8aM1 − 4πaM2 +

64

3
aM3 − 12πaM4 +

1024

15
aM5 = 0 (131)

where

aM0 = − τP1√
fWij kWi (M +Mx)

(132)

aM1 =
r1 + 2r2cWi + 3r3c

2
Wi + 4r4c

3
Wi + 5r5c

4
Wi − 2τP2cWi√

fWij kWi (M +Mx)
(133)

aM2 =
r2 + 3r3cWi + 6r4c

2
Wi + 10r5c

3
Wi − τ2

kWi (M +Mx)
(134)

aM3 =
r3 + 4r4cWi + 10r5c

2
Wi√

k3Wi (M +Mx)
3

√
fWij (135)

aM4 =
r4 + 5r5cWi

k2i (M +Mx)
2 fWij (136)

aM5 =
r5√

k5Wi (M +Mx)
5

√
fWij

3 (137)

cWi =

√
g

kWi
(138)

Here, M : the mass of the ship [kg], Mx: the added mass of the ship in surge [kg], and cWi: the

wave celerity of the local regular wave [m/s]. Sakai et al. has shown that Eq. (131) is a quadratic
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equation of ncr and that the larger solution is appropriate for the critical number of revolutions of

the propeller(s) if Eq. (131) has two real solutions [45]. The critical nominal speed of the ship ucr is

obtained by Eq. (119).

Notably, Eq. (131) is completely identical with the estimation formula of the surf-riding threshold

(Eq. (89) in this paper), as shown by Maki [16].

15. Conclusion
This paper presented a comprehensive review of almost all analytical formulae proposed so far for

estimating the surf-riding threshold. The equation of motion governing the surge motion of vessels in

following seas is not directly solvable because of its nonlinearity. To address this difficulty, approximate

solution methods were used along with a numerical solution approach. The results show that the

proposed methods were able to capture the qualitative trend of the surfing threshold. Among them,

the approximate estimation method based on Melnikov’s method could quantitatively capture the

trend of the surf-riding threshold. Finally, the interconnection between the prediction formula rooted

in Melnikov’s method and its relevance with IMO’s SGISC was comprehensively explained.
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