On Some Formulas for \(\pi/2 \)

By

Shin-ichi Katayama

Department of Mathematical and Natural Sciences,
Faculty of Integrated Arts and Sciences,
The University of Tokushima,
Minamijosanjima-cho 1-1, Tokushima 770-8502, JAPAN
e-mail address: katayama@ias.tokushima-u.ac.jp
(Received September 30, 2008)

Abstract

In his paper [1], J.G. Goggins has shown a formula which relates \(\pi \) and Fibonacci numbers. In our paper [2], we have proved a generalized version of this formula. In this note, we shall prove formulas which generalize Fibonacci number to certain binary recurrence sequences.

2000 Mathematics Subject Classification. Primary 11B39; Secondary 40A05, 11A99

Introduction

In [1], J.G. Goggins has shown the following simple but very interesting formula

\[
\frac{\pi}{4} = \sum_{n=1}^{\infty} \tan^{-1}(1/F_{2n+1}),
\] \hspace{1cm} (1)

where \(F_n \) is the \(n \)th Fibonacci number. We note this formula is also given as the formula (f) in the text [5] chapter 3. Since \(F_1 = 1 \), we see \(\frac{\pi}{4} = \tan^{-1}(1/F_1) \). Thus (1) is equivalent to the following formula

\[
\frac{\pi}{2} = \sum_{n=0}^{\infty} \tan^{-1}(1/F_{2n+1}).
\] \hspace{1cm} (2)

The purpose of this short note is to generalize this formula on Fibonacci number to two formulas on binary recurrence sequences, that is, to the following
two formulas

$$\frac{\pi}{2} = \sum_{n=0}^{\infty} \tan^{-1}(t/u_{2n+1}),$$

(3)

$$\frac{\pi}{2} = \sum_{n=-\infty}^{\infty} \tan^{-1}(t/v_{2n}).$$

(4)

Here \(\{u_n\} \) is the Lucas sequences associated to the parameter \((t, -1)\) and \(\{v_n\} \) is the companion Lucas sequences associated to the parameter \((t, -1)\), respectively.

First of all, let us recall the fundamental properties of \(u_n \) and \(v_n \). Let \(t \) be a positive integer and \(\{u_n\} \) and \(\{v_n\} \) be the binary recurrence sequences defined by putting

$$\begin{align*}
\begin{cases}
 u_{n+2} = tu_{n+1} + u_n, \\
 v_{n+2} = tv_{n+1} + v_n,
\end{cases}
\end{align*}$$

with initial terms \(u_0 = 0, u_1 = 1 \) and \(v_0 = 2, v_1 = t \).

Put \(\varepsilon = (t + \sqrt{t^2 + 4})/2 \) and \(\bar{\varepsilon} = (t - \sqrt{t^2 + 4})/2 \). Then one knows the following Binet’s formula

$$\begin{align*}
\begin{cases}
 u_n = (\varepsilon^n - \bar{\varepsilon}^n)/\sqrt{t^2 + 4}, \\
 v_n = \varepsilon^n + \bar{\varepsilon}^n,
\end{cases}
\end{align*}$$

Put \(\alpha_{2n} = \tan^{-1}(1/u_{2n}) \) and \(\alpha_{2n-1} = \tan^{-1}(t/u_{2n-1}) \) for any positive index \(n \). Then we can show the following proposition.

Proposition 1. For any integer \(n \geq 1 \), \(\alpha_{2n} = \alpha_{2n+1} + \alpha_{2n+2} \).

Proof. We have

$$\tan(\alpha_{2n+1} + \alpha_{2n+2}) = \frac{t/u_{2n+1} + 1/u_{2n+2}}{1 - t/(u_{2n+1}u_{2n+2})} = \frac{tu_{2n+2} + u_{2n+1}}{u_{2n+1}u_{2n+2} - t}$$

By virtue of the Binet’s formula, we see

$$u_{2n+1}u_{2n+2} - t = (\varepsilon^{2n+1} - \bar{\varepsilon}^{2n+1})(\varepsilon^{2n+2} - \bar{\varepsilon}^{2n+2})/(t^2 + 4) - t$$

$$= (\varepsilon^{4n+3} + \bar{\varepsilon}^{4n+3} + \varepsilon + \bar{\varepsilon})/(t^2 + 4) - t = (\varepsilon^{4n+3} + \bar{\varepsilon}^{4n+3} - t^3 - 3t)/(t^2 + 4).$$
On the other hand, we also have

\[
\begin{align*}
 u_{2n} u_{2n+3} &= (\varepsilon^{2n} - \varepsilon^{2n}) (\varepsilon^{2n+3} - \varepsilon^{2n+3}) / (t^2 + 4) \\
 &= (\varepsilon^{4n+3} + \varepsilon^{4n+3} - \varepsilon^3 - \varepsilon^3) / (t^2 + 4) = (\varepsilon^{4n+3} + \varepsilon^{4n+3} - t^3 - 3t) / (t^2 + 4).
\end{align*}
\]

Thus we have shown

\[
\tan(\alpha_{2n+1} + \alpha_{2n+2}) = \frac{1}{u_{2n}} = \tan(\alpha_{2n}),
\]

which completes the proof.

From this proposition, we have \(\alpha_{2n} - \alpha_{2n+2} = \alpha_{2n+1}\) for any \(n \geq 1\). Then we have

\[
\sum_{n=1}^{\infty} \tan^{-1}(t/u_{2n+1}) = \sum_{n=1}^{\infty} \alpha_{2n+1} = \sum_{n=1}^{\infty} (\alpha_{2n} - \alpha_{2n+2}) = (\alpha_2 - \alpha_4) + (\alpha_4 - \alpha_6) + \cdots + (\alpha_{2n} - \alpha_{2n+2}) + \cdots = \alpha_2.
\]

Since \(\alpha_2 = \tan^{-1}(1/t) = \frac{\pi}{2} - \tan^{-1}(t/u_1)\), we have shown the formula (3).

Now we shall show the formula (4) similarly. Put \(\beta_{2n} = \tan^{-1}(t/v_{2n})\) and \(\beta_{2n-1} = \tan^{-1}(2/v_{2n-1})\) for any positive index \(n\). Then we can show the following proposition.

Proposition 2. For any integer \(n \geq 1\), \(2\beta_{2n} = \beta_{2n-1} - \beta_{2n+1}\).

Proof. We have

\[
\tan(\beta_{2n-1} - \beta_{2n+1}) = \frac{2/v_{2n-1} - 2/v_{2n+1}}{1 + 4/(v_{2n-1}v_{2n+1})} = \frac{2(v_{2n+1} - v_{2n-1})}{v_{2n-1}v_{2n+1} + 4}.
\]

By virtue of the Binet’s formula, we see

\[
\begin{align*}
 v_{2n-1}v_{2n+1} + 4 &= (\varepsilon^{2n-1} + \varepsilon^{2n+1})(\varepsilon^{2n-1} + \varepsilon^{2n-1}) + 4 \\
 &= (\varepsilon^{4n} + \varepsilon^{4n}) - (\varepsilon^2 + \varepsilon^2) + 4 = (\varepsilon^{4n} + \varepsilon^{4n}) - (t^2 + 2) + 4 \\
 &= (\varepsilon^{2n} + \varepsilon^{2n})^2 - t^2 = v_{2n}^2 - t^2.
\end{align*}
\]
On the other hand, we have
\[
\tan(2\beta_{2n}) = \frac{t/v_{2n} + t/v_{2n}}{1 - (t/v_{2n})^2} = \frac{2tv_{2n}}{v_{2n}^2 - t^2}.
\]

Thus we have shown
\[
\tan(\beta_{2n-1} - \beta_{2n+1}) = \tan(2\beta_{2n}),
\]
which completes the proof.

From this proposition, we have \(\beta_{2n-1} - \beta_{2n+1} = 2\beta_{2n}\) for any \(n \geq 1\).

Then we have
\[
\sum_{n=1}^{\infty} 2\tan^{-1}(t/v_{2n}) = \sum_{n=1}^{\infty} 2\beta_{2n} = \sum_{n=1}^{\infty} (\beta_{2n-1} - \beta_{2n+1}) = \beta_1 = \tan^{-1}(2/t).
\]

Since \(v_{-2n} = v_{2n}\), one knows that \(\tan^{-1}(t/v_{-2n}) = \tan^{-1}(t/v_{2n})\).

Hence we have
\[
\sum_{n=-\infty}^{\infty} \tan^{-1}(t/v_{2n}) = 2 \left(\sum_{n=1}^{\infty} \tan^{-1}(t/v_{2n}) \right) + \tan^{-1}(t/v_0)
\]
\[= \tan^{-1}(2/t) + \tan^{-1}(t/2) = \frac{\pi}{2},\]
which completes the proof of (4).

Now we have completely proved two formulas of (4), which we shall state as the following theorem.

Theorem. With the above notations, we have the following formulas,

\[
\frac{\pi}{2} = \sum_{n=0}^{\infty} \tan^{-1}(t/u_{2n+1}),
\]
\[= \sum_{n=-\infty}^{\infty} \tan^{-1}(t/v_{2n}).\]
References

